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Abstract

A classical theorem, mainly due to Aleksandrov [Al2] and Pogorelov
[P], states that any Riemannian metric on S2 with curvature K > −1
is induced on a unique convex surface in H3. A similar result holds
with the induced metric replaced by the third fundamental form. We
show that the same phenomenon happens with yet another metric on
immersed surfaces, which we call the horospherical metric.

This result extends in higher dimensions, the metrics obtained are
then conformally flat. One can also study equivariant immersions of
surfaces or the metrics obtained on the boundaries of hyperbolic 3-
manifolds. Some statements which are difficult or only conjectured for
the induced metric or the third fundamental form become fairly easy
when one considers the horospherical metric, which thus provides a
good boundary condition for the construction of hyperbolic metrics
on a manifold with boundary.

The results concerning the third fundamental form are obtained
using a duality between H3 and the de Sitter space S3

1 . In the
same way, the results concerning the horospherical metric are proved
through a duality between Hn and the space of its horospheres, which
is naturally endowed with a fairly rich geometrical structure.

Convex surfaces in H3. Let S be a smooth, strictly convex, compact
surface in H3. Then S is diffeomorphic to S2, and the Gauss formula
indicates that its induced metric has curvature K > −1. A well-known
theorem, to which several mathematicians have contributed (e.g. Weyl,
Nirenberg [N], Aleksandrov [Al2], [AlZ] and Pogorelov [P]; see [L1] for a
modern approach) is

Theorem 0.1. Each smooth metric with curvature K > −1 on S2 is
induced on a unique convex surface in H3.

Note that a similar result holds in R3, and also in the 3-dimensional
sphere S3. The uniqueness here is of course up to global isometries of H3.

Although the “usual” way of considering this theorem is as describing
surfaces in H3, it can also be understood as a remarkable statement of
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existence and uniqueness for a strongly non-linear boundary value problem:
finding a hyperbolic metric on the 3-dimensional ball B3 which induces a
given metric on the boundary. When considered in this way a basic question
is whether the boundary condition chosen here is the only one possible, or
indeed the best. One of the goals of this paper is to show that there is an
alternative candidate.

The de Sitter space and the space of horospheres. A striking re-
mark is that an analogue of Theorem 0.1 is also valid with the induced
metric replaced by the third fundamental form III of the surface (more de-
tails are given in section 1). An explanation for this phenomenon comes
from a rather well-known duality between H3 and the de Sitter space S3

1 ,
a 3-dimensional Lorentzian space with constant curvature 1. The point is
that the third fundamental form of a surface in H3 is the induced metric
on the dual “surface” in S3

1 , so that results on the third fundamental form
in H3 are again isometric embeddings statements, but in S3

1 .
The de Sitter space can be considered as the space of oriented planes

in H3. The main point of this paper is to remark that the space of horo-
spheres in H3 also has an interesting geometric structure; it carries a degen-
erate metric – of signature (2, 0) – but one can nonetheless do interesting
geometry in it (see section 5). We call this space C3

+ here. It also has a
natural duality with H3, so that a surface S in H3 has a dual “surface”
– which in general might be singular – in C3

+. The duality thus defines
on S a metric (also the induced metric on the dual surface) which we call
the horospherical metric of S, and denote by I∗. The metric I∗ has a sim-
ple expression in terms of the usual extrinsic invariants of a hypersurface:
I∗ = I + 2II + III, where II is the second fundamental form.

Results. The point is that the horospherical metric provides another
good boundary condition for the existence and uniqueness of hyperbolic
metrics on B3. There is class of metrics on S2, which we call “H-admissible”
(resp. “C-admissible”), and which have a rather simple definition (see Def-
inition 6.6); those metrics have curvature K < 1 (resp. K ∈ (−1, 1)), and
are exactly the horospherical metrics of the H-convex (resp. convex) sur-
faces in H3. Here an H-convex surface in H3 is a surface which remains
on one side of all tangent horospheres. An important point is that, given a
smooth metric h on S2, Ch is C-admissible (and thus H-admissible) for C
large enough.

Theorem 7.2. Let h be a smooth metric on S2. It is the horospherical
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metric I∗ of a H-convex immersed sphere S in H3 if and only if it is H-
admissible. It is the horospherical metric of a convex embedded sphere
S ⊂ H3 if and only if it is C-admissible. In each case, S is unique up to
the global isometries of H3.

In higher dimension, it is not so clear what the metrics induced on e.g.
the convex hypersurfaces are. Of course not all metrics are possible, and
the conformal flatness of the metrics plays a role [C]. It turns out that the
situation is much simpler for the horospherical metric, since here again a
simple result holds and is easy to prove.

Theorem 7.1. Let h be smooth metric on Sn−1. h is the horospherical
metric I∗ of a H-convex immersed sphere S in Hn if and only if:

• h is locally conformally flat;

• 2rich − Sh
n−2h− (n− 3)h is everywhere negative definite.

S is then unique up to the isometries of Hn. Moreover, S is convex
if and only if all eigenvalues of 2(n − 2)rich − Shh are in
(−(n− 2)(n − 3), (n − 3)(n − 3)).

Again, there is also a simple characterization of the metrics which are
the horospherical metrics of convex hypersurfaces.

Equivariant surfaces. Let Σ be a surface of genus at least two. Al-
though Σ carries many metrics with curvature K > −1, they can of course
not be induced by an embedding in H3, since it should then be convex.
One needs the slightly refined notion of equivariant embedding. This is a
couple (φ, ρ), where φ is an embedding of the universal cover Σ̃ of Σ, and
ρ is a morphism from π1(Σ) into Isom(H3), such that

∀x ∈ Σ̃ , ∀γ ∈ π1(Σ) , φ(γx) = ρ(γ)φ(x) .

One can then search for equivariant embeddings inducing a given metric;
it turns out that (because of the index theorem) there are too many of those,
so that one can impose an additional condition on ρ.

Theorem 0.2 (Gromov [Gro]). Let Σ be a surface of genus at least 2,
and let h be a smooth metric on Σ with curvature K > −1. There is an
equivariant isometric embedding (φ, ρ) of (Σ, h) into H3 such that ρ fixes
a plane.

A remarkable point is that it is still not known whether the uniqueness
holds in the theorem above. On the other hand, an analogous results holds
with the induced metric replaced by the third fundamental form:
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Theorem 0.3 [LS]. Let Σ be a surface of genus at least 2, and let h be
a smooth metric on Σ with curvature K < 1 such that all closed geodesics
of Σ̃ have length above 2π. There is a unique equivariant embedding (φ, ρ)
of Σ into H3 such that the third fundamental form III of φ is h and that ρ
fixes a plane.

The uniqueness above is of course up to global isometries of H3.
Considering the horospherical metric on Σ instead of either the induced

metric or the third fundamental form leads to simpler results again. There
are simple definitions (see 7.3) of “H-admissible” and “C-admissible” met-
rics on Σ, which are sub-classes of the metrics with curvature K < 1 and
K ∈ (−1, 1) respectively. Then
Theorem 7.4. A smooth metric h on Σ is the horospherical metric of a H-
convex equivariant immersion whose representation fixes a plane if and only
if h is H-admissible. It is the horospherical metric of a convex embedding
whose representation fixes a plane if and only if h is C-admissible. The
equivariant immersion/embedding is then unique up to global isometries.

Here again the proof is quite simple.

Manifolds with boundaries. As stated above, Theorem 0.1 can (as
well as the other results stated above) be considered as a boundary value
problem for hyperbolic metrics on the 3-dimensional ball. When considered
in this way it should be possible to generalize it to manifolds other than
B3. Such a generalization was proposed in the following conjecture.

Conjecture 0.4 (Thurston). Let M be a 3-dimensional manifold with
boundary which admits a complete, convex co-compact metric. Then, for
any smooth metric h on ∂M with curvature K > −1, there is a unique
hyperbolic metric g on M which induces h on the boundary, and for which
the boundary is convex.

The proof of the existence part of the conjecture was obtained by
Labourie [L2,3], but the uniqueness remains unknown. Theorem 0.3 also
suggests that the same kind of result might hold with the induced metric
replaced by the third fundamental form; actually the main point of this
paper is that the “horospherical metric” works quite well for this.

In all this paper, we consider a compact 3-manifold with boundary M ,
which admits a complete, convex co-compact hyperbolic metric. The ex-
istence of such a metric can of course be formulated in purely topological
terms thanks to the work of Thurston [T]. There are natural classes of
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“H-admissible” and “C-admissible” metrics, defined in 8.1, which have cur-
vature K < 1, such that

Theorem 8.2. Let h be a smooth metric on ∂M .

1. h is the horospherical metric of ∂M for a hyperbolic metric g on M ,
such that ∂M is convex, if and only if h is C-admissible. g is then
unique.

2. h is the horospherical metric of a H-convex immersion φ of ∂M in M
for a complete hyperbolic metric g onM , such that φ can be deformed
through immersions to the identity map ∂M → ∂∞M , if and only if
h is H-admissible. g and φ are then unique.

In this setting again, the proof is easy, although it uses a deep re-
sult, the Ahlfors–Bers theorem (seen here as a bijection between conformal
structures on ∂M and hyperbolic metrics on M ; see [A], [O]). Actually,
Theorem 7.4 is a direct consequence of Theorem 8.2; it might still be help-
ful to some readers to have stated it separately. Section 8 contains some
further results concerning the higher dimensional case.

The main point of all this is that some results which are either rather
difficult or actually still conjectures for the induced metric or the third
fundamental form of (hyper-)surfaces become easy when one considers the
horospherical metric instead. Section 9 contains examples of some other
areas where this metric might be of interest.

Other applications. The horospherical metric plays an interesting role
in other situations, for instance when the surface has constant mean curva-
ture 1. It then corresponds to a well-known metric, which can be obtained
(in a rather indirect way) by considering the third fundamental form of the
minimal “cousin” of the surface in Euclidean space (see [Br]). The dual-
ity between C3

+ and H3 can therefore be used to reconstruct a constant
mean curvature one surface from its constant curvature one metric. A few
additional details on this are given in section 9.

Another viewpoint is in terms of Möbius structures on n-manifolds, or
CP 1-structures on surfaces. One can associate canonically to those struc-
tures a metric (see [KP]) which turns out to be the horospherical metric of
a locally convex surface obtained by a convex hull construction. Although
this paper mostly takes a transversal approach, the Möbius structure view-
point is partly described in section 4, with additional details at the end of
section 6.
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What follows. Section 1 contains some background material on the de
Sitter space and the hyperbolic-de Sitter duality. Section 2 then contains a
basic construction of the space of horospheres and its most basic properties.
The next section is about the definition of the dual of a hypersurface in Hn.
We then pause in section 4 to consider the Möbius structures viewpoint,
and to give some relevant examples where the horospherical structure is
related to known constructions like the Kulkarni–Pinkall metric. Section 5
contains further geometric properties of the dual of a hypersurface, and
section 6 is dedicated to the basic properties of hypersurfaces in Cn

+. The
consequences for hypersurfaces in Hn are given in section 7, while section 8
contains the results on hyperbolic manifolds with boundaries. Finally some
additional remarks are left for section 9.

1 The Third Fundamental Form and the de Sitter Space

It should be helpful to recall here in short some of the properties of the
third fundamental form of a hypersurface in Hn, and of the de Sitter space.

The third fundamental form of a surface. This is a fairly classical
bilinear form, called III here, on the tangent space of an immersed surface.
Let H be a smooth oriented hypersurface in Hn, and let X and Y be two
vector fields on H. Call D the Levi–Cività connection of Hn. Then

DXY = DXY + II(X,Y )N ,
where D is the Levi–Cività connection of the induced metric I on H, and
N is the unit normal vector field on H. II is called the second fundamental
form of H, it is a symmetric bilinear form on TH. The Weingarten operator
B of H is then defined by

II(X,Y ) = I(−BX,Y ) = I(X,−BY ) .
The sign convention used here is not so standard but will make things easier
because we will want to use the exterior normal of e.g. spheres in Hn. The
third fundamental form of H is

III(X,Y ) = I(BX,BY ) .
When H is strictly convex, III is a Riemannian metric; for surfaces in R3,
III is just the pull-back by the Gauss map of the canonical metric on S2.

An interesting point is that III provides another good boundary condi-
tion for the existence and uniqueness of hyperbolic metrics on B3:
Theorem 1.1 [S1]. Let h be a smooth metric on S2. h is the third
fundamental form of a convex surface S in H3 if and only if it has curvature
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K < 1 and its closed geodesics have length above 2π. S is then unique up
to global isometries.

This result is quite strongly related to analogous polyhedral statements
– just like Theorem 0.1 was related to the investigation of polyhedra in H3

(see [Al1]). See [RH], [R], [S3] for some related questions.

Models of Hn. Recall that the Poincaré model of Hn is a conformal
map from Hn to the Euclidean disc Dn (see e.g. [GHL]). Moreover, there
is a also a conformal map from the n-sphere Sn minus a point to the Eu-
clidean space Rn. This map can be obtained by stereographic projection.
Composing those maps gives us a conformal map from Hn to a geodesic
ball in Sn, whose radius can be chosen by choosing the right radius for the
image of the Poincaré model of Hn in Rn.

There is also another model of Hn+1, called the “Klein” or “projective”
model. This is a map from Hn+1 to Dn+1 which has the striking property
that the geodesics of Hn+1 are mapped to the segments of Dn+1.

It has a natural extension to a projective map from the part of the
n+ 1-dimensional de Sitter space Sn+1

1 which is on one side of a space-like
hyperplane to the complement of Dn+1 in Rn+1. Remember that Sn+1

1

can also be seen as a quadric in Minkowski n + 2-space, with the induced
metric:

Sn+1
1 =

{
x ∈ Rn+2

1

∣∣ 〈x, x〉 = 1
}
.

The hyperbolic-de Sitter duality. There is a natural duality between
Hn+1 and Sn+1

1 , which associates to an oriented totally geodesic hyperplane
in Hn+1 a point in Sn+1

1 . It can be defined in the Minkowski models of
Hn+1 and Sn+1

1 as follows. Remember that Hn+1 can be seen as

Hn+1 =
{
x ∈ Rn+2

1

∣∣ 〈x, x〉 = −1 and x0 > 0
}
.

Given a point x ∈ Sn+1
1 , let D be the oriented line going through 0 and

x in Rn+2
1 , and let Dd be its orthogonal, which is an oriented space-like

hyperplane in Rn+2
1 . The dual of x is the intersection xd := Dd ∩ Hn+1.

The same works in the opposite direction, from points in Hn+1 to space-like
totally geodesic hyperplanes in Sn+1

1 .
The dual of an oriented hyperplane H ∈ Hn+1 can be constructed

geometrically in the Klein model, at the cost of a small loss of information.
H corresponds, in the Klein model of Hn+1, to the intersection P of a
hyperplane with the ball Bn+1 ⊂ Rn+1; suppose that H does not contain
its center 0 ∈ Bn+1. Let p be a point in Rn+1 \ Bn+1 such that all lines
going through p and tangent to Sn meet Sn at a point of ∂P . As mentioned
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above, Rn+1 \ Bn+1 carries a projective model of the part of Sn+1
1 which

stands on one side of a space-like hyperplane. In this model, p corresponds
to either the dual Hd of H or to the antipodal point.

Given a smooth, oriented, strictly convex hypersurface S ⊂ Hn+1, the
set of points in Sn+1

1 which are the duals of the hyperplanes tangent to S
is called the dual hypersurface; the notation used here will be Sd. It is
a space-like, convex hypersurface in Sn+1

1 ; its induced metric is Id = III,
while its third fundamental form is IIId = I. Theorem 0.1 can therefore be
considered as an isometric embedding theorem in S3

1 – and indeed that is
how it is proved.

See e.g. [S2], [RH] for a detailed construction and some additional re-
marks (in particular concerning polyhedra) on the projective model.

2 The Space of Horospheres in Hn

We will describe in this section the natural geometric structure on the space
of horospheres in Hn. This structure will be a basic tool in the sequel, so
it will be important to understand various basic aspects of it, for instance
what the “hyperplanes” or the “umbilical hypersurfaces” are, and how the
isometries act.

Horospheres in Hn. Recall that horospheres in Hn can be defined as
the level set of the Busemann functions. So to each points at infinity
ξ ∈ ∂∞Hn is associated a foliation of Hn by horospheres which are the
level sets of the Busemann function Bξ. Two horospheres with the same
point at infinity are therefore at a constant distance. Horospheres in Hn

are characterized by the equation
III = II = I ,

in particular they are umbilical.

The space of horospheres in Hn. As mentioned above, the Poincaré
model of Hn allows us to consider Hn as the interior of an oriented geodesic
sphere S0 in Sn. Sn can, through the Klein model ofHn+1, be considered as
the boundary at infinity of Hn+1. S0 is the boundary of an oriented totally
geodesic hyperplane H0 ⊂ Hn+1; let S∗0 be the point in Sn+1

1 which is dual
of H0. The horospheres in Hn are then identified with the oriented spheres
in Sn which are interior to and tangent to S0; they are the boundaries of the
oriented totally geodesic hyperplanes in Hn+1 which have exactly one point
at infinity in S0, lie on the “positive” side of H0, and have a compatible
orientation at the intersection point.
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Using the geometrical construction of the dual of a hyperplane (in the
Klein model), we see that the set of point in Sn+1

1 which are the duals of
those oriented hyperplanes is included in the cone of lines in Rn+1 going
through S∗0 and tangent to Sn; more precisely, it is the set of points of
this cone which lie strictly between S∗0 and Sn, or, in other terms, the
positive light-cone of a point in Sn+1

1 – whence the notation Cn
+. Note

that the term “positive” light-cone is with respect to the time orientation
of de Sitter space obtained by deciding that ∂∞Hn, seen as one connected
component of the boundary at infinity of Sn

1 , is in the “future” of each
point of Sn

1 .
We already see that Cn

+ inherits from this construction a degenerate
metric – the one induced on the cone by the de Sitter metric – and a
foliation by a family of lines – those going through S∗0 . We call those lines
“vertical”. By construction both the metric and the family of vertical lines
are independent of the choices made in the construction. The vertical lines
are actually characterized as the curves which are everywhere tangent to
the kernel of the (degenerate) metric g0.

Note that Cn
+ has, by construction, a very large group of “isometries”

which fix both g0 and the vertical lines: all isometries of Hn extend to
isometries of Hn+1 and of Sn+1

1 which fix S∗0 , and thus they act on Cn
+

fixing g0 and the vertical lines. This indicates that it is a kind of “degenerate
constant curvature space”.

A cylindrical model. A slightly different model, which might sometimes
be more convenient, is obtained by taking Hn as a hemisphere in Sn; S0 is
then an “equatorial” (n− 1)-sphere, and its dual point S∗0 is at infinity, so
that Cn

+ is identified with the union of the lines tangent to Sn at a point
of S0, and orthogonal in Rn+1 to the hyperplane containing S0.

The induced structure. As a submanifold of Sn+1
1 , Cn

+ inherits a de-
generate metric g0, i.e. a bilinear form on the tangent space which is at
each point of rank n− 1. Moreover the kernel of this bilinear form, which
at each point is made of a line in the tangent space, integrate as “lines”
in Cn

+.
Those lines are the lines in Rn+1 which contain S∗0 and are tangent

to Sn. They are therefore light-like geodesics of Sn+1
1 , and are naturally

equipped with a connection; in other terms they have a parametrization
by R which is defined up to an affine transformation. But those lines
actually also have a natural parametrization which is defined up to the
addition of a constant; namely, it is easy to check that they correspond to
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Figure 1: Conical model of Cn
+

the sets of horospheres which have a given focal point at infinity, so that
the horospheres corresponding to two points in a given line are equidistant.
The distance between them defines the required parametrization.

Note that, from g0 and this canonical parametrization of the vertical
lines, one could define a (family of) Riemannian metrics on Cn

+. But it
does not seem very helpful to do this.

Totally geodesic hyperplanes. Cn
+ comes equipped with a collection

of hypersurfaces which play a special role, and that will be called “totally
geodesic hyperplanes”. They are the sets of points dual to the horospheres
containing a given point in Hn. Section 5 contains details on the geome-
try of Cn

+, in particular the definition of the second fundamental form of
hypersurfaces – this definition is not completely obvious since the “met-
ric” g0 is degenerate. It should then be clear that those “totally geodesic
hyperplanes” are indeed totally geodesic.

Proposition 2.1. In the cone model described above, the totally geodesic
hyperplanes correspond to the intersections of the cone with the hyper-
planes of Rn+1 which are tangent to Sn at an interior point of S0. Thus



Vol. 12, 2002 HYPERSURFACES IN Hn AND SPACE OF ITS HOROSPHERES 405

H

H
S

h

x

x

*

*

n+1

n+1
1

n

C+
n

h

Figure 2: Cylindrical model of Cn
+

the metric induced on those totally geodesic hyperplanes is isometric to the
canonical metric on Sn−1.

Proof. Let x0 ∈ Hn. We consider the cone model. The geometric descrip-
tion of the Hn+1—Sn+1

1 duality given above, extended to the boundary at
infinity Sn of Hn+1, shows that the dual of x0 is the hyperplaneH0 in Rn+1

which is tangent to Sn at x0; it is a degenerate totally geodesic hyperplane
in Sn+1

1 . It is also the set of points in Sn+1
1 which are duals of hyperplanes

in Hn+1 which contain x0.
The horospheres in Hn which contain x0 correspond, in Sn, to the

geodesic spheres which contain x0 and are tangent to S0. They are the
boundaries at infinity of the hyperplanes in Hn+1 which contain x0 in their
boundary and have exactly one point at infinity in S0. Therefore, the points
which are duals of those hyperplanes are those which are both in H0 and
in the cone Cn

+. This proves the first point.
The second point is a direct consequence; since H0 is a degenerate hy-

perplane in Sn+1
1 , all the spheres which are “around” the singular point are

isometric to (Sn, can). ✷

It should be clear from the description below that they are the only
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space-like hypersurfaces in Cn
+ with an induced metric isometric to

(Sn−1, can). By definition, the set of those totally geodesic hyperplanes
is an n-dimensional manifold – it is parametrized by Hn.
Lemma 2.2. Let x ∈ Cn

+, and let P ⊂ TxC
n
+ be a hyperplane which

is transverse to the vertical line at x. There is a unique totally geodesic
hyperplane H0 in Cn

+ which is tangent to P at x.

Proof. Consider the cylindrical model of Cn
+ described above. P corre-

sponds to an (n − 1)-plane in Rn+1 which is disjoint from Sn. There are
two hyperplanes containing P which are tangent to Sn, and one of them
is tangent to Cn

+ along a line; so there is a unique hyperplane P which
contains P , is transverse to Cn

+, and is tangent to Sn. P intersects Cn
+

along an (n− 1)-dimensional manifold which, by construction, is a totally
geodesic hyperplane in Cn

+. ✷

Parallel transport along the vertical lines. In the cone model above,
the tangent space to Cn

+ is parallel (in Sn+1
1 ) along the “vertical lines”

(which are the lines in Cn
+ which are tangent to Sn at the points of S0).

Therefore, the restriction of the Levi–Cività connection of Sn+1
1 defines a

connection along the vertical lines in Cn
+, and thus also a natural notion of

parallel transport along those lines. We call this induced connection Dv.

A kind of connection. Now let x0 ∈ Cn
+, and let H be a hyperplane in

Tx0C
n
+ which is transverse to the vertical direction. We can define a kind of

connection, which we call DH , along the vectors tangent to H at x0. Note
that it depends on the choice of H ! It is defined as follows. Call H0 the
totally geodesic hyperplane tangent to H at x0, let X ∈ H, and let Y be a
vector field defined in a neighborhood of x0, which is tangent to H0; then
define

DH
XY = D0

XY ,

whereD0 is the Levi–Cività connection ofH0 for the induced metric. More-
over, if T is the vector field everywhere parallel to the vertical lines, and
with length given by the natural parametrization of those lines, then we
decide that, for any function f on Cn

+,
DH

XfT = df(X)T .
This clearly defines DH

XY by linearity for any vector field Y on Cn
+. More-

over, its definition shows that it is compatible with g0.
Note that, on the other hand, we do not define a canonical connection on

Cn
+ – and we will not really need one here. Of course g0 has no Levi–Cività

connection since it is degenerate.
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The definition of DH can also be obtained in an extrinsic way as follows.
For x0 and H chosen as above, there is a unique hyperplane of Rn+1 which
is transverse to Cn

+, tangent to Sn, and contains H. This plane contains
a unique light-like line D′ containing x0. Now choose X ∈ H, and let Y
be a vector field defined on Cn

+ in a neighborhood of x0. One can project

on Tx0C
n
+ along D′ the vector DSn+1

1
X Y , where DSn+1

1 is the Levi–Cività
connection of Sn+1

1 . The reader might want to check that this indeed
defines the same vector as DH

XY . Of course the point is that the result
depends on D′, and therefore on H.

3 The Geometry of Cn

+.

This section contains some elementary remarks about the dual, in Cn
+, of

some hypersurfaces in Hn. They are then used to give an intrinsic, and
quite simple, expression of the metric on Cn

+, and this leads to some remarks
on the geometry of Cn

+.

H-convex hypersurfaces. The following notion of convexity is impor-
tant in our context. Note that horospheres are convex hypersurfaces in Hn,
so they bound two domains of Hn, one of which is convex.

Definition 3.1. Let S be an oriented hypersurface in Hn, let x ∈ S, and
let h be a horosphere in Hn. We say that h is tangent to S at x if h is
tangent to S at x in the usual sense, and moreover the convex side of h is
on the “positive” side of S.

Definition 3.2. Let S be an oriented hypersurface in Hn. S is H-convex
if, at each point x ∈ S, S remains on the concave side of the horosphere
tangent to S at x. S is strictly H-convex if, moreover, the distance be-
tween S and that horosphere does not vanish up to the second order in any
direction at x.

We now define the dual of a hypersurface S in Hn; it will be a smooth
hypersurface in Cn

+ when S is strictly H-convex.

Definition 3.3. Let S be a hypersurface in Hn. We denote by S∗ the set
of points in Cn

+ which are dual to the horospheres tangent to S.

Almost all the hypersurfaces in that we will consider in Cn
+, in particular

the duals of hypersurfaces in Hn, have the following property.

Definition 3.4. Let S be a smooth hypersurface in Cn
+. We say that S is

space-like if S is everywhere transverse to the vertical lines.
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An alternate formulation is that the restriction to the tangent plane of
the (degenerate) metric of Cn

+ is positive definite.
Note that, if S is a compact space-like hypersurface in Cn

+, then the
projection from S to any totally geodesic hypersphere along the vertical
lines is a diffeomorphism; therefore, any compact space-like hypersurface
surface is topologically a sphere.

We will often implicitly identify a hypersurface S ⊂ Hn with its dual,
using the natural map sending a point x ∈ S to the dual h∗ ∈ Cn

+ of the
horosphere h ⊂ Hn tangent to S at x. This is done for instance in the next
proposition, where it allows us to compare metrics on S and on S∗.

Lemma 3.5. If S is a hypersurface in Hn such that its principal curvatures
are nowhere equal to −1, then S∗ is an immersed space-like surface in Cn

+.
This happens in particular when S is strictly H-convex. The metric induced
by g0 on S∗ is

I∗ := I + 2II + III ,

where II and III are the second and third fundamental forms of S respec-
tively.

The metric on S which appears here is the main object of study of this
paper.

Definition 3.6. The metric I∗ = I + 2II + III is called the horospherical
metric of S.

The proof of Lemma 3.5 will use the cylindrical model of Cn
+ in an

explicit way. Consider a strictly H-convex hypersurface H in Hn, and
let x ∈ H. We will use the cylindrical model of Cn

+, with x located at the
“north pole” of Sn; this is possible since its isometry group acts transitively
on Hn. The dual of the horosphere h which is tangent to H at x is then a
point h∗ of the intersection of Cn

+ (seen as a cylinder) with the hyperplane
in Rn+1 which is tangent to Sn at x.

The tangent space toH at x is identified with an affine (n−1)-dimension-
al subspace V of Rn+1, and the tangent space to Cn

+ at h∗ can be seen as an
n-dimensional affine subspace W of Rn+1 which contain an (n − 1)-plane
parallel to V . We call φ the duality map from H to H∗, sending a point y
in H to the dual of the horosphere tangent to H at y, and we consider dφ
as a map from V to W , where W ⊃ V . Then
Proposition 3.7. The linearized map at x is Txφ = E + B, where E is
the identity map on V = TxH and B is the Weingarten operator of H.
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Proof. Let v ∈ TxH; call v∗ the vector in W corresponding to the variation
of the dual point to the horosphere tangent to H at a point which moves
in the direction of v on H. v∗ is the sum of a term v∗1 corresponding to the
displacement of x (with a parallel transport of the tangent hyperplane) and
a term v∗2 corresponding to the variation of the tangent hyperplane, while
x doesn’t move. Using the cylindrical model, one checks that v∗1 = v (with
both terms seen as in W ) while v∗2 = Bv. ✷

Proof of Lemma 3.5. The previous proposition shows that S∗ is smooth
and space-like except maybe when B has −1 as one of its eigenvalues.

Moreover, the bilinear form induced on W by g0 (i.e. by the de Sitter
metric on the outside of the ball) is a degenerate metric which coincides, on
the parallel transport of V , with the metric induced on V byHn. Therefore,
if v, v′ ∈ TxH, we have that v∗, v′∗ ∈W and:

〈v +Bv, v′ +Bv′〉 = 〈v, v′〉+ 〈Bv, v′〉+ 〈v,Bv′〉+ 〈Bv,Bv′〉 ,
so that

〈v∗, v′∗〉 = I(v, v′) + 2II(v, v′) + III(v, v′) ,
and the result follows. ✷

Example. LetM be a complete, convex co-compact hyperbolic manifold.
Let C be the convex core of M ; Thurston [T] has shown that the induced
metric on its boundary hyperbolic metric. ∂C also carries a measured lam-
ination µ describing its bending. µ determines a distance on ∂C, with the
length of a segment transverse to µ equal to the integral over it of the trans-
verse measure of µ. Adding this distance to the induced metric – a process
sometimes known as “grafting” – determines a metric on ∂C, which is none
other than its horospherical metric. More generally, in higher dimension,
the horospherical metric can be used to recover the metric introduced by
Kulkarni and Pinkall. This is shown in the next section.

A duality. An important point is that the map sending a hypersurface
S in Hn to its dual S∗ in Cn

+ is a real duality, in the following sense. First
remark that to each totally geodesic hyperplane H0 in Cn

+ is associated a
point in Hn, namely the intersection of all the horospheres which are dual
to the points of H0. We call this point the dual of H0, and denote it by H∗

0 .
Then we have
Lemma 3.8. If S∗ is smooth, then S is the set of points in Hn which are
the duals of the totally geodesic hyperplanes tangent to S∗ in Cn

+.

Proof. This follows again from Proposition 3.7, and from the correspon-
dence between vectors on S and on S∗. ✷
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An intrinsic definition of the metric g0. Lemma 3.5 can be used to
give a simple form of the metric on Cn

+; using it will relieve us from the
constant use of the cone model, the de Sitter space and so on.
Lemma 3.9. There exists an isometry Φ from Cn

+ to Sn−1 × R with the
(degenerate) metric

g0  e2tcanSn−1 ,

where canSn−1 is the canonical metric on Sn−1. Moreover the vertical lines
are sent to the lines {s}×R, for s ∈ Sn−1, with the same parametrization.

Proof. Let x0 ∈ Hn. For t ∈ R \ {0}, call St the geodesic sphere of radius
|t| centered at x0, with the normal oriented towards the exterior for t > 0
and towards the interior for t < 0. Define a map Ψ from Sn−1 × (R \ {0})
to Cn

+ sending (s, t) to the horosphere tangent to St at the point expx0
(ts),

where s is considered as a unit vector in Tx0H
n. Ψ can then be extended

by continuity to a map from Sn−1 × R to Cn
+. Φ is the inverse of Ψ.

By Lemma 3.5, the metric induced on S∗t is
I∗t = It + 2IIt + IIIt

= sinh2(t)canSn−1(1 + 2 coth(t) + coth2(t))

=
(
sinh2(t) + 2 sinh(t) cosh(t) + cosh2(t)

)
canSn−1

= e2tcanSn−1 .

Now, using e.g. the cylindrical model described above, with x0 as the
“north pole” in Sn, shows that the hypersurfaces S∗t are the intersections
of Cn

+ (seen as a cylinder in Rn+1) with the horizontal hyperplanes, i.e. the
hyperplanes in Rn+1 which are parallel to the hyperplane containing S0.
Therefore the lines {s}×R are in the kernel of g0, and moreover they cor-
respond to the vertical lines. Finally, by definition of their parametrization
(by the distance between equidistant horospheres) it is the same as the one
they have in Sn−1 ×R. ✷

A conformal map. Now we remark that all the space-like hypersurfaces
in Cn

+ can be naturally identified in a conformal way; they are moreover all
naturally conformal to the boundary at infinity of Hn. Call Π0 the map
from Cn

+ to ∂∞Hn sending a horosphere to its point at infinity. Then
Lemma 3.10. 1. Let H1 and H2 be two compact space-like hypersurfaces
in Cn

+. The projection from H2 to H1 along the vertical lines is conformal
for the induced metrics on H1 and H2.

2. For each space-like hypersurface H1 ⊂ Cn
+, the restriction of Π0 to

H1 is conformal for the induced metric on H1 and the usual conformal



Vol. 12, 2002 HYPERSURFACES IN Hn AND SPACE OF ITS HOROSPHERES 411

structure on ∂∞Hn.

Proof. The first point is a direct consequence of Lemma 3.9 above. For the
second point remark that, if x0 is the point in Hn which is the intersection
of the horospheres in H1, then the map sending a horosphere h ∈ H1 to its
point at infinity is by construction an isometry between H1 with its induced
metric and ∂∞Hn with the visual metric at x0. It is therefore a conformal
map. ✷

Let H be an oriented hypersurface in Hn; there is a natural map from
H to ∂∞Hn, which sends a point x ∈ H to the end point of the ray starting
at x in the direction of the oriented normal vector to H at x. We call this
“Gauss map” G (see e.g. [L3] for some applications of this map). As a
consequence of Lemma 3.10 we obtain the following:

Lemma 3.11. If H is a strictly H-convex hypersurface in Hn, the con-
formal structure obtained on H as the pull-back by G of the conformal
structure on ∂∞Hn is the conformal structure of I∗.

Umbilical hyperplanes. Some hypersurfaces in Cn
+ play a special role

and have a very simple geometry; they are the hypersurfaces H∗, where H
is an umbilical hypersurface in Hn. By Lemma 3.5, H∗ is then homothetic
to H. This is specially interesting when H is a totally geodesic hyperplane
in Hn, since then H∗ is isometric to H. We call those hypersurfaces “dual
hyperplanes”. It is not difficult to check that the image of a dual hyperplane
by the projection on a totally geodesic hyperplane along the vertical lines
is a hemisphere.

4 The Horospherical Metric and Möbius Structures

We develop here some relations between the horospherical metric and
Möbius or CP 1-structures, starting with some remarks on the isometries
of Cn

+.

Isometries. Let γ be an isometry of Hn. Consider the cone model of
Cn

+ described in section 2. Then γ acts on Sn as a Möbius transformation
leaving S0 stable. Therefore it acts as an isometry on Hn+1, seen as the
interior of Sn, and therefore also as an isometry on the de Sitter space which
lies on the outside of Sn, leaving invariant the cone made of the (light-like)
lines tangent to Sn along S0 and containing S∗0 . So, by construction, γ also
acts on Cn

+ without changing its metric or its vertical lines.
Note that if γ has no parabolic fixed point in ∂∞Hn, then it has no
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fixed point in Cn
+ – since an isometry fixing a horosphere should fix its

point at infinity. This strongly contrasts with the Hn/Sn
1 duality, where

all isometries of Hn without fixed point in Hn or parabolic fixed point in
∂∞Hn have at least one fixed point in Sn

1 .
The isometries of Cn

+ can be characterized in the following simple ways.

Lemma 4.1. 1. Let H be a totally geodesic hyperplane in Cn
+. For any

isometry γ of Hn, (the extension to Cn
+ of) γ, composed with the projection

on H along the vertical lines, is a Möbius transformation of H.

2. Moreover, any global conformal transformation of H corresponds in
this way to a unique isometry.

3. Let D be a dual hyperplane in Cn
+. Each isometry of D extends in

exactly two ways as an isometry of Cn
+, one of which preserves orientation.

Proof. Isometries correspond by definition to isometries of Hn, which act
conformally on ∂∞Hn, and thus on H by Lemma 3.10; point (1) follows.
Conversely, any conformal transformation of H defines by Lemma 3.10 a
conformal transformation of ∂∞Hn, and therefore an isometry of Hn, and
also an isometry of Cn

+. This proves point (2).
For point (3), let D∗ be the dual hyperplane of D, i.e. the oriented

totally geodesic hyperplane in Hn such that D corresponds to the set of
horospheres tangent to D∗. Let γ be an isometry of D. By construction,
D∗ is isometric to D, so that γ defines an isometry γ∗ of D∗. Since D∗ is an
hyperplane in Hn, γ∗ has two extensions as an isometry of Hn, one of which
preserves orientation. We call this orientation preserving extension γ∗. γ∗

defines a unique isometry γ of Cn
+, which leaves D stable by construction.

The same works for the other extension of γ∗. ✷

A quasi-fuchsian example. Let Γ ⊂ SO(3, 1) be a quasi-fuchsian group,
which is not fuchsian. Let Λ ⊂ ∂∞H3 be the limit set of Γ, and let C be
its convex hull. Then ∂C has two connected components Σ+ and Σ−. Al-
though those surfaces are not smooth, they are convex (but not strictly
convex), and thus H-convex. Let g+ and g− be the induced metrics on Σ+

and Σ−. Then both (Σ+, g+) and (Σ−, g−) are isometric to H2.
In addition, Σ+ and Σ− carry measured laminations µ+ and µ− describ-

ing their bending (see [T]). Those “bending laminations” can be “added”
to g± to obtain metrics h± on Σ± as follows: the length of a segment is de-
fined as the sum of its length for g± and the integral over it of the measure
on µ±.

This is simpler to understand when µ±, considered on Σ±/Γ, have
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support on a finite set of closed curves. Then h± on Σ±/Γ is obtained
by cutting open (Σ±, g±) along each of those curves (which are geodesics)
and gluing in a flat band of width equal to the bending angle at the curve.
A moment of thought shows that this operation is indeed the same as the
one used to define h± above; it is called “grafting” g± along µ±.

One would like to consider the horospherical metric of Σ±/Γ, but some
care is necessary since Σ+ and Σ− are not C1 smooth. To define it, define
first, for ε > 0, the surfaces Σ+,ε and Σ−,ε, which are the surfaces at constant
distance ε from Σ+/Γ,Σ−/Γ on the side opposite to C/Γ; Σ±,ε are convex
and C1,1 smooth. One can thus consider the horospherical metrics I∗±,ε on
them.

Proposition 4.2. As ε→ 0, (I∗±,ε) converges to the metric h± on Σ±/Γ.

Note that, as ε → 0, a degeneration occurs: different points of Σ±,ε

might collapse to the same point of Σ±. So the limit metric I∗ is not really
a metric on Σ±, but rather on the set of unit normals UΣ± of the oriented
support planes of Σ±.

We will not prove this statement here, since it is a consequence of the
more general Proposition 4.3 below. But we can explain the proof in the
simple case where µ± have support on a finite set of closed curves. For
simplicity we restrict our attention to Σ+. Note that there is a natural
projection π from Σ+,ε to Σ+, sending each point in Σ+,ε to the closest
point in Σ+.

For each ε > 0, Σ+,ε can be decomposed as the union of two closed
subsets, Σ+,ε = Σf

+,ε ∪ Σb
+,ε, corresponding respectively to points project

to a “flat” point of Σ+ or to a point which is on a bending geodesic. An
elementary computation, using the fact that I∗ = I + 2II + III, shows that

• Σf
+,ε is umbilical, with principal curvatures equal to tanh(ε). So the

horospherical metric is (1 + tanh ε)2 times the induced metric, which
converges as ε→ 0 to the pull-back metric by π.

• at each point of Σb
+,ε, there are two principal curvatures, equal respec-

tively to tanh(ε) and to cotanh(ε), with associated principal directions
the inverse image by π of the direction of the bending geodesic and the
orthogonal direction, respectively. Thus, as ε→ 0, the horospherical
metric converges to a flat metric, which is the product of the bending
geodesic g by an interval of length equal to the bending angle at g.

This shows Proposition 4.2 when the bending lamination has support on a
finite set of closed curves.
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CP 1-structures on surfaces. The construction above can be stated in
terms of CP 1-structure on surfaces; recall (see [T]) that the boundary at
infinity of an end of a convex co-compact manifolds carries a canonical
CP 1-structure, which completely determines the end.

Moreover, a CP 1-structure on a surface is the same as a Möbius struc-
ture. Seen in this light, Proposition 4.2 appears as a special case of the
construction of the next subsection, concerning higher dimensional mani-
folds with Möbius structures.

The Kulkarni–Pinkall metric. The same can be done in higher di-
mension (and in a slightly more general setting). Start with a hyperbolic
Möbius structure on a compact (n − 1)-dimensional manifold M . Let
dev : M̃ → Sn−1 be the associated developing map. One can associate
to M a convex hull construction in Hn (Sn−1 is seen as the boundary at
infinity of Hn), see [KP]. There is thus a natural equivariant Lipschitz map
from M̃ to a locally convex (non-smooth) immersed hypersurface Σ ⊂ Hn,
which is defined as the inverse of the “normal exponential” map N from
Σ to ∂∞Hn – note that N is in general multi-valued since it depends on
the support plane of Σ which is chosen at each point. It can be defined
as a function on the set of couples (x,N), where x ∈ Σ and N is the unit
normal vector of an oriented support plane of Σ at x. Σ is invariant under
the action of π1M on Hn induced by its Möbius action on M̃ .

Since Σ lacks smoothness we can not a priori define its horospherical
metric; this can be done, however, by considering the equidistant surfaces
Σt at distance t on the concave side of Σ, and taking the limit as t → ∞.
It is not difficult to check that

1. for t > 0, Σt is C1,1 smooth, in particular it has at each point a unique
normal vector;

2. the normal exponential map Nt from Σt to ∂∞Hn defines an equiv-
ariant diffeomorphism from Σt to M̃ ;

3. if I∗t is the horospherical metric of Σt, (Nt∗I∗t ) converges as t→ 0 to
a C1,1 equivariant metric I∗;

4. I∗ is compatible with the Möbius structure we started with (or more
precisely with its conformal structure).

Of course, as above I∗ is in fact not a metric on Σ, but rather on the set
UΣ of unit normals of the oriented support planes of Σ.

The properties of I∗ in this case can be seen as consequences of
Proposition 4.3. The metric I∗ on M̃ is the same as the metric defined
by Kulkarni and Pinkall in [KP].
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Before proving the proposition we have to recall the definition of the
Kulkarni–Pinkall metric. They consider the universal cover M̃ of an n-
dimensional manifold M with a Möbius structure, and the developing map
dev : M̃ → Sn. Then they consider the maximal balls in the image. Each
such ball B carries a hyperbolic metric which is compatible with the re-
striction of the Möbius structure, and its boundary intersects ∂ dev(M̃).
Kulkarni and Pinkall then introduce the hyperbolic convex hull C(B) in B
of ∂B ∩ ∂ dev(M̃), and they show that the C(B), when B ranges over all
maximal balls in dev(M̃ ), define a stratification of M̃ , which by construc-
tion is equivariant under the action of π1M .

So each x ∈ M̃ is in C(B) for a maximal ball B, and the conformal
factor corresponding to the hyperbolic metric on B determines a conformal
factor at x. The metrics on the C(B) for different choices of B glue well,
and they are by construction all compatible with the conformal structure
underlying the Möbius structure on M̃ .

We shall consider a slightly modified (but equivalent) definition. Con-
sider the same hypersurface Σ as above. Let UΣ the set of unit normal
vectors of the oriented support hyperplanes of Σ, and let N be the “hyper-
bolic Gauss map”, which sends a unit vector v ∈ UΣ to the endpoint on
∂∞Hn of the geodesic ray starting from v. The local convexity of Σ shows
that N determines a bijection from UΣ to M̃ .

Let x ∈ Σ, and let P be an oriented support hyperplane of Σ at x. The
boundary at infinity ∂P of P is then the boundary of a maximal ball B in
dev(M̃ ). There is natural hyperbolic metric on B coming from identifying
B with P , and the convex hull C(B) of ∂B ∩Λ then corresponds to P ∩Σ.
Let uP be the map sending a point x ∈ P ∩Σ to the unit normal vector to P
at x, which is in UΣ. An elementary translation shows that an equivalent
definition of the Kulkarni–Pinkall metric gKP is that it is the metric on UΣ
which

• is compatible with the pull-back by N of the conformal structure on
dev M̃ ;

• for each support plane P of Σ, is equal on uP (P ∩Σ) to the induced
metric on P ∩ Σ.

Now it is a consequence of the previous section that, for each t > 0, the
horospherical metric I∗t on Σt is compatible with the conformal structure
on ∂∞Hn; more precisely, the “hyperbolic Gauss map” Nt, which sends
a point x ∈ Σt to the endpoint of the geodesic ray normal to Σt at x, is
a conformal map between (Σt, I

∗
t ) and ∂∞Hn with its canonical conformal
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structure. So the horospherical metric I∗ defined above on UΣ is conformal
to gKP . Moreover, for each v ∈ UΣ, the oriented hyperplane P which
is orthogonal to v is by construction a support plane of Σ, and P ∩ Σ
contains a geodesic γ. Since γ is a geodesic contained in Σ and Σ is locally
convex, both II and III vanish on γ, so that I∗|γ = I|γ , while the alternate
definition of gKP above shows that gKP |uP (γ) is the induced metric on γ.
This shows that the conformal factor between gKP and I∗ at v is 1, and
proves Proposition 4.3.

An indirect consequence of this identification is that some of the proper-
ties of the Kulkarni–Pinkall metric – for instance the fact that its curvature
is well defined almost everywhere and between −1 and 1, and between −1
and 0 for surfaces – can be seen as a consequence of the statements that
follow concerning the horospherical metric of convex hypersurfaces in Hn.

5 Hypersurfaces in Cn

+

We now come back to the geometry of Cn
+, and in particular of its hyper-

surfaces.

Second fundamental forms in Cn

+. Let H be a hypersurface in Cn
+.

Let x ∈ H, and call H0 ∈ TxC
n
+ the totally geodesic hyperplane tangent to

H at x. Let X and Y be vector fields on H. Locally (in the neighborhood
of x) H intersects exactly once each vertical line; therefore, the “vertical
connection” Dv defined in section 2 allows us to extend X and Y as vector
fields on a neighborhood of x in Cn

+ by parallel transport along the vertical
lines. We can then use the kind of connection defined in section 2 to define
a “second fundamental form” of H at x.

Definition 5.1. The second fundamental form of H at x is defined as

II∗(X,Y ) := Π(DH0
X Y ) ,

for the extended vector fields, where Π is the “length” of the projection on
the vertical direction in TxC

n
+ along the direction of H0.

Note that the “length” of vertical vectors is well defined since, as men-
tioned above, the vertical lines have a canonical parametrization defined
up to addition of a constant.

Lemma 5.2. 1. II∗ defines a symmetric bilinear form on H0.

2. If P0 is the (unique) totally geodesic hyperplane in Cn
+ which is

tangent to H0 at x, then H is locally the graph of a function u above P0;
II∗ is then the Hessian of u at x for the metric induced on P0.
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3. II∗ is also the Hessian at x of u, seen as a function on H, for the
induced metric I∗ on H.

In the second part of this lemma, u is the function such that, at a point
y ∈ P0 near x, u(y) is the “oriented distance” from y to the intersection of
H with the vertical line through y, for the natural parametrization of that
vertical line.
Proof. The first point is obviously a consequence of the others. For the
second point note that, in the neighborhood of x, the extended vector field
Y is, up to the first order, of the form:

Y = Y0 + du(Y0)T ,
with Y0 tangent to P0. Therefore the definition of DH0 shows that

DH0
X Y = D0

XY0 +
(
X.du(Y0)

)
T ,

where D0 is the Levi–Cività connection of the induced metric g0 on P 0,
and the result follows since du = 0 at x.

For the third point note that, by Lemma 3.9, I∗ = e2ug0, so that the
Levi–Cività connection D∗ of I∗ is given by

D∗
XY = D0

XY + du(X)Y + du(Y )X − g0(X,Y )D0u ,

where vector fields on H and P0 are identified through the projection along
the vertical lines. Therefore (by the usual conformal transformation for-
mulas, see e.g. [B, chapter 1]),

(D∗du)(X,Y ) = (D0du)(X,Y )− 2du(X)du(Y ) + g0(X,Y )‖du‖2
g0
,

so that D∗du = D0du at x since du = 0 at x. ✷

We then use II∗ to define the “Weingarten operator” of a hypersurface
H in Cn

+.
Definition 5.3. If H is a space-like hypersurface in Cn

+ and x ∈ H, the
“Weingarten operator” of H at x is the linear map B∗ from TxH to TxH,
self-adjoint for I∗, defined by

II∗(X,Y ) = I∗(B∗X,Y ) = I∗(X,B∗Y ) .
The mean curvature of H at x is H∗ := tr(B∗)/2; the third fundamental
form of H at x is defined by

III∗(X,Y ) := I∗(B∗X,B∗Y ) .
Lemma 5.4. If H is space-like, then the induced metric on the dual
hypersurface in Hn is I = III∗.

Proof. The proof can be done using the same setting as in the proof of
Lemma 3.5, or in Proposition 3.7; one needs to consider the opposite map,
and to remark that the displacement of the point in Hn which is dual to a
tangent hyperplane in Cn

+ is given by the third fundamental form in Cn
+. ✷
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An inversion formula. We have already seen in Lemma 3.5 that
I∗(X,Y ) = I((E +B)X, (E +B)Y ) .

Together with the previous lemma, we get
Lemma 5.5. If S is a hypersurface in Hn with no principal curvature
equal to −1 at any point, then:

B∗ = (E +B)−1 .

Convex hypersurfaces. Using the previous definition, we can define a
convex hypersurface in Cn

+:
Definition 5.6. Let H be a space-like hypersurface in Cn

+. We say that H
is convex if II∗ is positive semi-definite, and that H is strictly convex if II∗

is positive definite at each point of H. H is tamely convex if all eigenvalues
of B∗ are in (0, 1) at each point.

The point is that convex hypersurfaces in Cn
+ have a smooth and H-

convex dual hypersurface in Hn, and that tamely convex hypersurfaces
have convex duals. More precisely:
Lemma 5.7. Let H be a hypersurface in Cn

+ such that B∗ is nowhere
degenerate. Then H∗ is smooth, and its induced metric is

I(X,Y ) = I∗(B∗X,B∗Y ) .
H is strictly convex if and only if H∗ is strictly H-convex. H is tamely
convex if and only if H∗ is strictly convex.

Proof. This follows again from Lemma 5.5. ✷

6 Isometric Embeddings in Cn

+

The point of this section is to give an elementary study of the induced met-
rics on hypersurfaces in Cn

+, like the one which can be found in elementary
differential geometry books for hypersurfaces in e.g. Rn. The results are a
little different, however, due to the degeneracy of the metric.

The Gauss formula. The curvature tensor of the induced metric on a
hypersurface in Cn

+ is determined by the following analogue of the Gauss
formula:
Lemma 6.1. Let H be a space-like hypersurface in Cn

+. Let x ∈ H, call P0

the (unique) totally geodesic hyperplane in Cn
+ which is tangent to H at x.

Let X,Y,Z be three vector fields on H. The Riemann curvature tensor R∗

of the induced metric I∗ on H is given by

R∗
X,Y Z = R0

X,Y Z+II
∗(X,Z)Y −II∗(Y,Z)X−I∗(Y,Z)B∗X+I∗(X,Z)B∗Y ,
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where R0 is the curvature tensor of P0.

Note that this formula differs from the Euclidean one, in particular
because it is linear in B∗ instead of quadratic.
Proof. We also call X,Y and Z the projections of the vector fields on P0,
and gP0 its metric, which has constant curvature 1. The metric on H is
then the pull-back of e2ugP0 under the projection of H to P0 along the
vertical lines. Therefore, the Levi–Cività connection D of I∗ is (see e.g. [B,
chap. 1]):

DXY = DXY + du(X)Y + du(Y )X − gP0(X,Y )Du ,
where D is the Levi–Cività connection of gP0 . Thus, using the fact that
du = 0 at x, we find that, still at x,
R∗

X,Y Z = DXDY Z −DYDXZ −D[X,Y ]Z

= DXDY Z −DYDXZ −D[X,Y ]Z

= DX(DY Z + du(Y )Z + du(Z)Y − gP0(Y,Z)Du)−
−DY

(
DXZ + du(X)Z + du(Z)X − gP0(X,Z)Du

) −D[X,Y ]Z

= R0
X,Y Z + (DXdu)(Y )Z + (DXdu)(Z)Y−

−(DY du)(X)Z−(DY du)(Z)X−I∗(Y,Z)DXDu+I∗(X,Z)DYDu,

and the result follows. ✷

Consequences for surfaces. To simplify somewhat the exposition, we
first concentrate on surfaces, i.e. the n = 3 case. The above formula be-
comes, for the Gauss curvature of a surface,

K∗ = 1− tr(B∗) .
From Lemma 5.5, this can be translated as

K∗ = 1− tr
(
(E +B)−1

)
= 1− tr(E +B)

det(E +B)
,

so that

K∗ =
det(E +B)− tr(E +B)

det(E +B)
=

det(B)− 1
1 + tr(B) + det(B)

,

and, since det(B)−1 is the Gauss curvature K of the dual surface (in H3),
by the (usual) Gauss formula in H3,

K∗ =
K

K + 2H + 2
,

where H is the mean curvature of the dual surface in H3. Therefore, when
K �= 0, we have

K∗ =
1

1 + 2(H + 1)/K
. (1)
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This has interesting consequences for constant mean curvature 1 surfaces
in the hyperbolic 3-space, see section 9.

Higher dimensions. Now consider a space-like hypersurface H in Cn
+.

Choose x ∈ H, and let (ei)1≤i≤n−1 be an orthonormal frame of TxH for
the induced metric on H in which B∗ is diagonal. From Lemma 6.1 we see
that the scalar curvature S∗ of the induced metric on H is
S∗ =

∑
i	=j

I∗(R∗
ei,ej
ej , ei)

=
∑
i	=j

I∗(R0
ei,ej
ej , ei)− II∗(ej , ej)I∗(ei, ei)− I∗(ej , ej)I∗(B∗ej , ej)

= (n− 1)(n − 2)− 2(n − 2)tr(B∗) .
Thus we see that the constant scalar curvature metrics on H are exactly
the metrics induced on the “minimal” (i.e. mean curvature 0) hypersurfaces
in Cn

+.

The Codazzi theorem. Another basic point is that, just as for hyper-
surfaces in Euclidean space, we have
Lemma 6.2. Let H be a space-like hypersurface in Cn

+ with a smooth dual
hypersurface; let D∗ be the Levi–Cività connection of its induced metric,
and let D be the Levi–Cività connection of the metric induced on its dual
(in Hn). Then, for any vector fields X,Y on H,

D∗
XY = B∗DX(B∗−1Y ) ,

and
(D∗

XB
∗)Y = (D∗

Y B
∗)X .

Proof. For the first part of the lemma, we want to show that the connection
(again called D∗) defined by

D∗
XY = (E +B)−1DX

(
(E +B)Y

)
is torsion-free and compatible with I∗. But it is torsion-free because

D∗
XY −D∗

YX = (E +B)−1
(
DX((E +B)Y )−DY (E +B)X

)
= (E +B)−1

(
(E +B)(DXY −DYX)+

+ (DXE)Y − (DYE)X + (DXB)Y − (DY B)X
)

= DXY −DYX ,

the last step using the Codazzi equation on the dual hypersurface. There-
fore D∗

XY −D∗
YX = [X,Y ], and D∗ is torsion-free.

To check that D∗ is compatible with I∗ is even easier. If X,Y,Z are
vector fields on H, then:
X.I∗(Y,Z) = X.I

(
(E +B)Y, (E +B)Z

)
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= I
(
DX((E+B)Y ), (E+B)Z

)
+ I

(
(E+B)Y,DX((E+B)Z)

)
= I∗(D∗

XY,Z) + I
∗(Y,D∗

XZ) .

The second point of the lemma is easy to prove using the first; if X and
Y are vector fields on H, then

(D∗
XB

∗)Y − (D∗
YB

∗)X = D∗
X(B

∗Y )−D∗
Y (B

∗X)−B∗(D∗
XY −D∗

YX)
= B∗(DXY −DYX)−B∗(D∗

XY −D∗
YX)

= B∗[X,Y ]−B∗[X,Y ]
= 0 . �

Remark. Lemma 6.2 provides another proof of the formulas given above,
relating K to K∗ for surfaces in H3 and in C3

+. Indeed, let (e1, e2) be
an orthonormal frame on a surface S ⊂ H3; then, by definition of I∗,
(e1, e2) := ((E + B)−1e1, (E + B)−1e2) is an orthonormal frame for I∗

on S∗. Moreover, the connection 1-forms ω and ω of those frames are the
same:

ω(u) := I(Due1, e2)

= I∗((E +B)−1Due1, (E +B)−1e2)

= I∗(D∗
u((E +B)−1e1), (E +B)−1e2)

= I∗(D∗
ue1, e2)

=: ω(u) .

Therefore, the curvatures on S and S∗ differ only by the same factor as the
area forms, so that

K∗ =
K

det(E +B)
.

Isometric embeddings – higher dimensions. Here we take n ≥ 4,
the next paragraph will center on n = 3. Let h be a smooth metric on
Sn−1, we have the following elementary characterization of whether h can
be obtained as the induced metric on a space-like hypersurface in Cn

+.

Theorem 6.3. (Sn−1, h) admits a space-like isometric embedding into
Cn

+ if and only if h is locally conformally flat. In this case the embedding
is unique up to the isometries of Cn

+.

Proof. Let P0 be any totally geodesic hyperplane in Cn
+. If (Sn−1, h) has a

space-like isometric embedding in Cn
+, then the projection from the image

to P0 along the vertical lines is conformal by Lemma 3.10. Therefore h
is conformal to canSn−1 . Conversely, if h is locally conformally flat, it is
conformal to canSn−1 , so there exists a function u : Sn−1 → R such that
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h = e2ucanSn−1 ; then the graph of u above P0 is, by Lemma 3.9, isometric
to h. ✷

A more interesting – but still easy – question is to determine when h is
induced on a strictly convex or tamely convex hypersurface in Cn

+. We call
Sh the scalar curvature of h.
Theorem 6.4. h is induced on a strictly convex space-like hypersurfaceH
in Cn

+ if and only if h is locally conformally flat and it satisfies condition (H):

2rich − Sh

n− 2
h− (n− 3)h is everywhere negative definite. (H)

H is then unique up to isometries of Cn
+. H is tamely convex if and only if

it satisfies condition (C):
all eigenvalues of 2(n−2)rich−Shh are in (−(n−2)(n−3), (n−2)(n−3)).

(C)
We will say that h is H-admissible if it satisfies condition (H), and C-

admissible if it satisfies condition (C).
Proof. Let (ei)1≤i≤n−1 be an orthonormal frame for I∗ which diagonalizes B∗,
and let (ki)1≤i≤n−1 be the associated eigenvalues of B∗. Call Ki,j the sec-
tional curvature of h on the 2-plane generated by ei and ej. Then, by
Lemma 6.1,

Ki,j = 1− ki − kj ,
so that

rich(ei, ei) =
∑
j 	=i

Ki,j = (n− 2)− (n − 3)ki −
∑

j

kj ,

and
Sh =

∑
i

rich(ei, ei) = (n− 1)(n − 2)− 2(n − 2)
∑

j

kj ,

so that

ki =
Sh + (n − 2)(n − 3)− 2(n − 2)rich(ei, ei)

2(n − 2)(n − 3)

=
Sh − 2(n − 2)rich(ei, ei)

2(n− 2)(n − 3)
+
1
2
,

and both results follow. ✷

Isometric embeddings of surfaces. The analogue of Theorem 6.3 is
even simpler in dimension n = 3, since in that case all metrics on S2 are
conformal to the canonical metric. Therefore:
Theorem 6.5. For any smooth metric h on S2, (S2, h) admits a unique
(up to the isometries of C3

+) space-like isometric embedding in C3
+.
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To understand the metrics induced on convex surfaces we have to in-
troduce a definition (which is also a lemma).

Definition 6.6. Let h be a smooth metric on S2. Let x ∈ S2. There
is a unique function ux on S2 such that the metric e−2uxh has constant
curvature 1 and that ux(x) = dux(x) = 0. We say that h is H-admissible
if, for each x ∈ S2, the Hessian of ux at x is positive definite, and that h
is C-admissible if, for each x, all eigenvalues of the Hessian of ux at x are
in (0, 1).

Proof. We have to prove the existence and uniqueness of ux.
h is conformal to canS2, so there exists a function u : S2 → R such that

e2ucanS2 = h. Choose a totally geodesic plane P0 ⊂ C3
+, and let S be the

graph of u above P0. Then, by Lemma 3.9, the metric induced on S is h.
Now let x ∈ S. By Lemma 2.2, there exists a unique totally geodesic

plane P1 in C3
+ which is tangent to S at x. P1 is the graph above S of a

function v on S. Then e−2vh is the metric induced on P1, and is isometric
to canS2 , so v satisfies the conditions set on ux.

Conversely, if w : S → R satisfies those conditions, then the graph P
of w above S has as induced metric canS2, so it is a totally geodesic plane,
and moreover it is tangent to S at x. Thus, by Lemma 2.2, P = P1, and
w = v. ✷

Now we can state

Theorem 6.7. Let h be a smooth metric on S2. h is induced on a strictly
convex surface in C3

+ if and only if h is H-admissible. h is induced on a
tamely convex surface if and only if h is C-admissible.

Proof. Since h is conformal to canS2 , there exists a function u : S2 → R
such that e2ucanS2 is isometric to h. If P0 is any totally geodesic plane
in C3

+, the graph S of u above P0 has h as its induced metric. Moreover,
by the previous definition, h is H-admissible if and only if S has positive
definite second fundamental form II∗, so if and only if S is strictly convex.
And h is C-admissible if and only if B∗ has its eigenvalues in (0, 1), so if
and only if S is tamely convex. ✷

Remark. H-admissible metrics on S2 have curvature K < 1, while C-
admissible metrics on S2 have curvature in (−1, 1). The converse, however,
is not true.

Proof. Theorem 6.7 shows that any H-admissible metric is induced on
a strictly convex surface in C3

+, and Lemma 6.1 then indicates that it
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has curvature strictly below 1. Similarly C-admissible metrics are in-
duced on tamely convex surfaces, which have curvature K ∈ (−1, 1) by
Lemma 6.1. ✷

Möbius structures. It might be helpful to point out that the natural
setting for the definition of H-admissible and C-admissible metrics uses the
notion of Möbius structure, as described in section 4, rather than confor-
mally flat structure. In dimension at least 3 (i.e. for n ≥ 4) it is basically
the same thing, but not in dimension 2. On surfaces, Möbius structures
are the same as CP1 structures, and a CP1 structure contains in general
– for instance on a surface of genus g ≥ 2 – much more information than
its conformal metric. On the other hand, on the sphere, the two notions
are basically the same, and this explains why Definition 6.6 can be given
as it is. The same holds in the other situations described below, where in
each case a CP1-structure is picked out by the context: for Definition 7.3
it is the one such that the universal cover of Σ is isomorphic (as a complex
projective surface) to an hemisphere, while in Definition 8.1 it is related to
the magic of the Ahlfors–Bers theorem.

The analogue of Definition 6.6 for a surface Σ endowed with a CP1

structure σ is simple. Note that σ induces a conformal structure on Σ.
Choose x ∈ Σ and a metric h on Σ whose conformal structure is the same
as that of σ. σ has a developing map dev : Σ̃ → S2 which is well defined
up to a Möbius transformation of S2. So there is a unique metric h0 on Σ
which

• has constant curvature 1,
• has the same conformal structure as h and σ,
• has the same developing map in S2 as σ,
• coincides with h on TxΣ.

In the neighborhood of x, there exists a function u such that h = e2uh0;
the conditions of Definition 6.6 then apply to u.

The point of course is that the conditions in Definition 6.6, which are
global when referring to a surface with a conformal metric, are local when
a CP1 structure is given.

7 Hypersurfaces in Hn

We will use in this section the results concerning the metrics on convex
hypersurfaces to understand the dual metrics on H-convex spheres in Hn,
and then on equivariant hypersurfaces.
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Compact surfaces in Hn, n ≥ 4. As a consequence of Theorems 6.3
and 6.4, we have for n ≥ 4:

Theorem 7.1. Let h be smooth metric on Sn−1. h is the horospher-
ical metric I∗ of a strictly H-convex sphere S in Hn if and only if h is
H-admissible, in the sense that it is locally conformally flat and satisfies
condition (H). S is then unique up to the isometries of Hn. Moreover, H
is tamely convex if and only if h satisfies condition (C).

Compact surfaces in H3. The same theorem holds in H3 with the
adequate notion of H-convexity; it is a consequence of Theorems 6.5 and 6.7.

Theorem 7.2. Let h be a smooth metric on S2. It is the horospherical
metric I∗ of a strictly H-convex immersed sphere S in H3 if and only if it is
H-admissible. It is the horospherical metric of a strictly convex embedded
sphere S ⊂ H3 if and only if it is C-admissible. In each case, S is unique
up to the global isometries of H3.

Equivariant surfaces. We consider now a surface Σ of genus at least 2.
First we introduce a class of metrics on Σ in the following way – this
definition is also a lemma.

Definition 7.3. Let h be a smooth metric on Σ; we also call h the
pull-back metric on the universal cover Σ̃ of Σ. For each x ∈ Σ̃, there is a
unique function ux : Σ̃ → R such that e−2uxh is isometric to a hemisphere
of (S2, can), and that ux(x) = dux(x) = 0. h is H-admissible if, for each x,
the Hessian of ux is positive definite at x. h is C-admissible if, for each x,
all eigenvalues of the Hessian at x of ux are in (0, 1).

Note that, here again, H-admissible metrics have K < 1, and C-admis-
sible metrics have K ∈ (−1, 1), while the converse is false. Any metric can
be “scaled up” to a metric which is C-admissible, and thus H-admissible.

Proof. We only have to prove the existence and uniqueness of ux.
It is well known that there exists a unique hyperbolic metric in the

conformal class of h, i.e. a unique function u : Σ → R such that e−2uh has
constant curvature −1. We also call u the induced function on Σ̃. Then
(Σ̃, e−2uh) is isometric to H2, and this defines a function u on H2 which is
invariant under an action of π1(Σ) by isometries.

Now choose a dual plane P0 ⊂ C3
+. Its induced metric is isometric to

that of H2; choose an isometry between P0 and (Σ̃, e−2uh). This defines
a function u on P0, and by construction and Lemma 3.9, the graph of u
above P0 is isometric to (Σ̃, h). We identify Σ̃ with this graph.
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Now choose x ∈ Σ̃, and let P1 be the totally geodesic plane tangent to
Σ̃ at x. P0 is a graph above a hemisphere P1,+ of P1, thus Σ̃ is also the
graph above P1,+ of a function v; by construction, v satisfies the conditions
on ux.

Conversely, if w is a function satisfying those conditions, then the graph
of −w above Σ̃ is a hemisphere of a totally geodesic plane which is tangent
to Σ̃ at x, so w = v. ✷

This leads to a characterization of the metrics induced on equivariant
surfaces in H3 as follows.

Theorem 7.4. A smooth metric h on Σ is the horospherical metric of a
strictly H-convex equivariant immersion whose representation fixes a plane
if and only if h is H-admissible. It is the horospherical metric of a strictly
convex equivariant embedding whose representation fixes a plane if and
only if h is C-admissible. The equivariant immersion/embedding is then
unique up to global isometries.

Proof. First note that any metric h on Σ has an equivariant isometric
embedding into C3

+ whose representation fixes a dual plane. Indeed, there
is a unique function u : Σ → R such that e−2uh is hyperbolic; u can then
be identified with an equivariant function defined on a dual plane P0 ⊂ C3

+,
and then (Σ̃, h) is isometric to the graph of u above P0.

The previous proof then indicates that Σ̃ ⊂ C3
+ is strictly convex if and

only if h is H-admissible, and tamely convex if and only if h is C-admissible.
Therefore, the dual immersion in H3 is strictly H-convex if and only if h is
H-admissible, and strictly convex if and only if h is C-admissible. In this
last case, the convexity implies that the immersion is an embedding. ✷

Some kind of analogous results in higher dimension might hold, but
they could be less interesting since the metrics obtained are conformally
flat, which is a fairly strong condition. On the other hand they might be
used to put special (e.g. hyperbolic) metrics on conformally flat manifolds,
through deformations of equivariant sub-manifolds of Hn or Cn

+.

8 Hyperbolic Manifolds with Boundaries

Why do all this? As pointed out in the introduction, a natural question
along the lines of Conjecture 0.4 is to find the right boundary condition
necessary to obtain a unique hyperbolic metric on a given 3-manifold with
boundary. While Conjecture 0.4 strongly suggests that one should consider
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the metric induced on the boundary, Theorem 0.3 indicates that the third
fundamental form of the boundary could be another choice.

The same question can be asked in higher dimensions, with hyperbolic
metrics replaced by Einstein metrics of negative curvature. A basic step
is taken in [S4], where it is shown that any small deformation of the met-
ric induced on the boundary of a hyperbolic ball can be “followed” by an
(essentially unique) Einstein deformation of the metric in the interior. How-
ever, in this case again it is not completely obvious whether the induced
metric on the boundary is the right object to consider.

It appears clearly from recent work (see e.g. [GrL], [GrW], [W], [A1,2])
that, when one considers complete, conformally compact manifolds instead
of metrics for which the boundary is at finite distance, then the conformal
class of the boundary is what one needs. This does not indicate in any clear
way what one should use when the boundary is at finite distance, because,
in a conformally compact manifold, the hypersurfaces which are “close” to
the boundary in the conformal compact model are “almost umbilical”, so
that the conformal class of the induced metric is also (asymptotically) the
conformal class of the second or third fundamental forms.

The solution advocated here is that the horospherical metric might be
the right thing to consider; the main argument is that, for hyperbolic 3-
manifolds, one can then obtain a satisfying existence and uniqueness result
in a very simple way. Of course the real challenge will be to obtain similar
results in higher dimensions, for Einstein manifolds with boundary, or in
other settings.

H-admissible metrics. We consider now a geometrically finite 3-mani-
fold with boundary (M,∂M) which admits a complete convex co-compact
hyperbolic metric. Then the universal cover of M is the 3-dimensional
ball B3. If h is a Riemannian metric on ∂M , then h defines a complete
metric on an open dense subset of S2, which is invariant under a conformal
action of π1M . Moreover, its conformal structure defines a conformal struc-
ture on an open dense set of S2, which extends to a conformal metric on S2,
and the universal cover ∂̃M of ∂M has a unique conformal embedding into
S2 whose image is an open dense set (see e.g. [AB], [A], [O]).

We can thus define a proper class of metrics on ∂M .

Definition 8.1. Let h be a smooth metric on ∂M , and let x ∈ ∂̃M .
There exists a unique function ux on ∂̃M such that e−2uxh extends to a
constant curvature 1 metric on S2, and such that ux(x) = dux(x) = 0. We
say that h is H-admissible if, for all x, the Hessian of ux at x is positive
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definite. h is C-admissible if, for all x, the eigenvalues of the Hessian of ux

at x are in (0, 1).
Note that this definition coincides with Definitions 6.6 and 7.3 in the

corresponding special cases. Again as above, H-admissible metrics have
curvature K < 1, and C-admissible metrics have curvature K ∈ (−1, 1).
Moreover, here again, any metric can be scaled up to one which is C-
admissible.
Proof. Again we only have to prove the existence and uniqueness of ux.

We know that there exists a function u on the universal cover of ∂M
such that e−2uh is isometric to an open dense subset of S2. This defines
(Σ̃, h) as the graph of u above an open dense subset of a totally geodesic
plane P0 (with the induced metric).

The rest of the proof is just like for Definitions 6.6 and 7.3, and uses
the uniqueness of the conformal change of metric. ✷

Existence and uniqueness. We can now state the analogue of Conjec-
ture 0.4 for the horospherical metric.
Theorem 8.2. Let h be a smooth metric on ∂M .

1. h is the horospherical metric of ∂M for a hyperbolic metric g on M ,
such that ∂M is strictly convex, if and only if h is C-admissible. g is
then unique.

2. h is the horospherical metric of a strictly H-convex immersion φ of
∂M in M for a complete hyperbolic metric g on M , such that φ can
be deformed through immersions to the identity map ∂M → ∂∞M ,
if and only if h is H-admissible. g and φ are then unique.

Proof. We already know from the proof of Definition 8.1 that (∂̃M, h) is
isometric to the graph of a unique (up to global isometries) graph above a
totally geodesic plane P0.

Taking the dual surface in H3 gives an immersion φ of ∂̃M in H3 which
is strictly H-convex if h is H-admissible, and strictly convex if h is C-
admissible.

Moreover, π1M acts by conformal transformations on P0, so, by Lem-
ma 4.1, by isometries on H3. By construction, φ(∂̃M ) is invariant under
those isometries. Thus (∂M,h) is isometric to the quotient by π1M of the
image of φ with its horospherical metric. ✷

Note that, if h is only strictly H-convex, we only obtain a priori an
immersion of ∂M in M , which can be deformed through immersions to an
embedding. If h is C-admissible, on the other hand, ∂M is obtained as a
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strictly convex surface in M , so it is embedded (and it bounds a strictly
convex domain in M).

It should be pointed out that Theorem 7.4 is a direct consequence
of Theorem 8.2. Indeed consider the manifold (M,∂M) =
(Σ × [−1, 1],Σ × {−1, 1}), where Σ is a surface of genus at least 2, and
take on ∂M a metric which is identical on both copies of Σ. Then the
uniqueness statement in Theorem 8.2 implies that the metric g obtained
will have a Z/2Z symmetry, which will exchange the two connected com-
ponents of ∂M . Therefore ∂̃M will be immersed/embedded in H3 as two
equivariant surfaces, symmetric with respect to a plane which is fixed by
both representations.

Higher dimensions. We briefly discuss here some properties appearing
in higher dimensions.

Let Σ be a compact n − 1-dimensional manifold, with a smooth, con-
formally flat Riemannian metric h. h defines on Σ a Möbius structure, and
the corresponding developing map dev : Σ̃ → Sn−1. If g0 is the canonical
metric on Sn−1, dev∗ g0 is conformal to h, so there exists a unique function
u : Σ̃ → R such that h = e2u dev∗ g0.

Now identify isometrically Sn−1 with a totally geodesic plane H0 ⊂ Cn
+,

and let φ be the function sending x ∈ Σ to the point at distance u(x)
from dev(x) along the vertical line going through dev(x). By construction,
φ is an equivariant isometric embedding of (Σ̃, h) into Cn

+. Moreover, it
should be clear to the reader that its image is tamely convex (resp. convex)
if and only if h satisfies condition (C) (resp. (H)). In this case, the dual
of φ(Σ) will be a smooth, convex (resp. H-convex), equivariant, immersed
hypersurface in Hn, whose horospherical metric is h.

This picture is more precise with additional assumptions. Suppose for
instance that the conformal class of h has positive scalar curvature (i.e. that
there is a metric, conformal to h, with positive scalar curvature). Then,
by the results of Schoen and Yau [ScY], the developing map dev : Σ → Sn

is injective, and its image is a simply connected, dense subset of Sn−1. If
moreover h verifies condition (C), then the hypersurface in Hn which is
dual to φ(Σ) will be convex and embedded. Taking the quotient of Hn by
the representation π1(Σ) → Isom(Hn) defined by the developing map dev,
we see that φ(Σ) appears as the convex boundary of a compact hyperbolic
n-orbifold.
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9 Moreover

Hypersurfaces in Sn1 . Note that if S ⊂ Hn is a convex surface, and if
Sd is the dual surface in Sn

1 (which is also a convex surface, and moreover
is space-like) then the first, second and third fundamental forms on Sd are
Id = III, IId = II, and IIId = I respectively. Therefore:

I + 2II + III = Id + 2IId + IIId ,

so that most of the themes described in this paper for hypersurfaces in
Hn are also valid for convex hypersurfaces in Sn

1 , and can be proved by
considering the dual surface in Hn. Presumably a weaker hypothesis than
convexity could be used (like the H-convexity condition in Hn); it should
be possible to repeat some of the arguments below without reference to the
dual hypersurface in Hn, by replacing the horospheres in Hn by their dual
hypersurfaces in Sn

1 .

An elementary approach. A large part of what we have described here
can be reduced essentially to a simple (but remarkable) property. Let H be
a complete oriented hypersurface in Hn, which is “uniformly H-convex” in
the most natural sense. Let u be a function on h, with a differential which
is “small”. For each point x ∈ H, consider the horosphere hx tangent to H
at x, and its equidistant horosphere h′x at distance u(x). Then let H ′ be
the envelope of the horospheres h′x, and let φ be the map sending x ∈ H
to the point φ(x) ∈ H ′ where h′x is tangent to H ′ (this is well defined if
u and H are well behaved). Then φ is an isometry between (H, e2uI∗H)
and (H ′, I∗H′).

Of course this is basically a translation, in purely hyperbolic terms, of
the basic properties of the metric on Cn

+, as described in Lemma 3.9, and of
the duality between Hn and Cn

+. Moreover the statement is quite imprecise
concerning the precise conditions on u; of course things are clear in Cn

+, the
point is only that u has to be such that the graph of u above H∗ (which
will be the dual of H ′) remains convex, so that H ′ remains smooth and
H-convex. More generally, I guess that some of the results obtained here
could be achieved without using Cn

+, but I doubt whether it could improve
the clarity of this matter.

Symmetric spaces and dualities. Given a symmetric spaceG/K, there
is a quite general way of constructing other spaces (of the form G/H, for
various choices of H ⊂ G) which are in “duality” with G/K – see e.g.
[H1,2]. The duality between Hn and Cn

+ can be seen as a special case of
this (with G = SO(n, 1), K = SO(n) and H = Isom(Rn−1)), just like
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the duality between Hn and Sn
1 (with G = SO(n, 1), K = SO(n) and

H = SO(n − 1, 1)). In this general setting there is a natural – and well
understood – duality between the functions or distributions on a space and
on its dual. The duality between the hypersurfaces can be put in this con-
text by replacing a hypersurface by some measure which it defines, the dual
hypersurface is then the support of the dual measure.

In the cases which we have described, however, one should not use the
measure associated to the area form on the hypersurfaces, since the duality
would then act with a factor equal to the Gauss–Kronecker curvature of
the hypersurfaces (in the case of the Hn/Sn

1 duality) or the determinant
of E + B (in the Hn/Cn

+ duality). Rather one should normalize this area
measure by a factor 1/

√
det(B) or 1/

√
det(E +B) inHn, and 1/

√
det(B∗)

in Sn
1 or Cn

+.
A natural question is to understand to what extend the duality proper-

ties of hypersurfaces in other symmetric spaces extend from the hyperbolic
setting described above, and what one could get out of it.

Constant mean curvature one surfaces. Equation (1) shows that the
constant mean curvature −1 surface in H3 are characterized as those whose
dual has constant curvature 1 (of course the minus sign is just a question
of orientation). As pointed out in the introduction – and as the reader can
readily check – the horospherical metric of those surfaces corresponds to
the third fundamental form of the minimal cousin surface in R3 (see [Br]).

This metric, along with some additional information in some cases, can
be used to reconstruct a constant mean curvature one surface in H3 from
a constant curvature one metric on a surface. Several interesting results
were obtained in this direction in particular by Umehara and Yamada, see
e.g. [UY1,2]. We will only outline here how the H3—C3

+ duality provides
a geometric way of understanding this correspondence.

A first remark, which is not too difficult to check, is that the catenoid-
like ends of constant mean curvature one surfaces induce conical points on
the dual surface, with an angle which depends on the behavior at infinity
in H3. Moreover, umbilical points of the surfaces correspond to singular,
ramifications points on the dual surface.

On the other hand, the problem of finding a constant curvature one
metric on a sphere with prescribed conical singularities is now rather well
understood (see for instance [Tr] and [LuT]). Given such a metric, it is
induced on a unique surface in C3

+ (see Theorem 6.4 below). It is a simple
matter to prove (by using the same arguments as above backwards) that
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the dual surface in H3 has constant mean curvature one.
When one considers surfaces of higher genus, things are slightly more

complicated because such surfaces have more than one conformal structure.
Thus one needs to prescribe, in addition to the position of the conical points
and their cone angle, the conformal structure of the surface, or alternatively
a map from the surface to S2. The ramification points will be associated to
the umbilical points of the constant curvature one surface in H3. But the
main idea remains valid: the conformal structure, along with the conical
singularities, determines (under some conditions) a constant curvature one
metric (with some singularities). This metric is induced on a unique surface
in C3

+ (with prescribed projection to a totally geodesic S2), and the dual
surface in H3 has constant mean curvature one.

Induced metrics and third fundamental forms. One striking fea-
ture of the results above is that they are simpler to obtain – and more
powerful in some cases – that the corresponding results obtained for con-
vex (hyper-)surfaces when one considers on them the induced metrics or
third fundamental forms. This leads to the idea that those results could be
used as a tool to obtain results on the induced metrics or third fundamen-
tal form; for this one should obtain rigidity results on the way the induced
metric (resp. third fundamental form) varies when a deformation changes
the horospherical metric.

The horospherical metric of a polyhedron. Let P be a convex poly-
hedron in Hn. P has a dual polyhedron P d in the de Sitter space Sn

1 (see
e.g. [RH]); each (closed) k-face F of P has a dual (n−1−k)-face F d in Sn

1 ,
which is a face of P d and carries a metric with constant curvature one.
P also has a dual object P ∗ in Cn

+; it is the set of support horospheres
of P . P ∗ has an induced metric, and it is not too difficult to understand its
relationship with the metrics on P and P d. Namely, P ∗, with its induced
metric, is isometric to the object obtained by gluing the “faces” φ(F ) :=
F × F d, where F is any k-face of P (with 0 ≤ k ≤ n− 1) with its induced
metric in Hn, and F d is the dual (n − 1 − k)-face with its induced metric
in Sn

1 .
The fact that those “faces” can be glued is an interesting (although not

too surprising) fact; for each face F of P , φ(F ) is glued to the φ(F ′), where
F ′ is a face of P which either is contained in F or contains F .

Einstein manifolds, etc. The most natural framework in which Con-
jecture 0.4 could be extended is the theory of negatively curved Einstein
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manifolds with boundaries; indeed, in dimension 3, negatively curved Ein-
stein metrics are the same as hyperbolic metrics.

An elementary (and far too restricted) first step was taken in this di-
rection in [S4] (see also [RS1,2] for some strikingly related rigidity results
obtained by very different methods). The outstanding problem there, how-
ever, is that the infinitesimal rigidity result which is needed – stating that
an infinitesimal deformation of the interior metric induces a non-trivial de-
formation of the boundary metric – is only obtained when the boundary is
umbilical.

A natural question is therefore whether an analogue of the horospherical
metric (maybe defined as I + 2II + III) could lead to some infinitesimal
rigidity result for Einstein manifolds with boundary; this would open the
door to possible results on the existence and/or uniqueness of Einstein
metrics inducing a given horospherical metric on the boundary.

Note that the theory concerning complete metrics is rather more ad-
vanced; in that case one only prescribes the conformal structure on the
boundary at infinity, and the Einstein metrics are required to be confor-
mally compact. In dimension 3 it is just the classical Ahlfors–Bers theorem,
while in higher dimension the theory seems to be advancing (see the previ-
ous section for references).
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bure constante, Commun. Anal. and Geom. 4 (1996), 285–331.

[S2] J.-M. Schlenker, Métriques sur les polyèdres hyperboliques convexes,
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