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Abstract

We consider the gradient flow associated to the following functionals:

Fm(ϕ) =
∫

M

1 + |∇mν|2 dµ .

The functionals are defined on hypersurfaces immersed in Rn+1 via
a map ϕ : M → R

n+1, where M is a smooth closed and connected
n-dimensional manifold without boundary. Here µ and ∇ are re-
spectively the canonical measure and the Levi–Civita connection of
the Riemannian manifold (M, g), where the metric g is obtained by
pulling back on M the usual metric of Rn+1 with the map ϕ. The
symbol ∇m denotes the mth iterated covariant derivative and ν is a
unit normal local vector field to the hypersurface.

Our main result is that if the order of derivation m ∈ N is strictly
larger than the integer part of n/2 then singularities in finite time
cannot occur during the evolution.

These geometric functionals are related to similar ones proposed
by Ennio De Giorgi, who conjectured for them an analogous regular-
ity result. In the final section we discuss the original conjecture of
De Giorgi and some related problems.

1 Introduction

In one of his last papers Ennio De Giorgi conjectured that any compact n-
dimensional hypersurface in R

n+1, evolving by the gradient flow of certain
functionals depending on sufficiently high derivatives of the curvature does
not develop singularities during the flow ([D1], [D2, Sec. 5, Conj. 2], see
[D2] for an English translation). This result is central in his program to
approximate singular geometric flows with sequences of smooth ones.

Representing hypersurfaces in R
n+1 as immersions ϕ : M → R

n+1, we
consider the gradient flow associated to the following functionals:

Fm(ϕ) =
∫
M

1 + |∇mν|2dµ ,
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where µ and ∇ are respectively the canonical measure and the Levi–Civita
connection of the Riemannian manifold (M, g), where the metric g is ob-
tained by pulling back on M the usual metric of R

n+1 via ϕ. We denote by
∇m the mth iterated covariant derivative and by ν a unit normal local vec-
tor field to the hypersurface. Finally, A and H are respectively the second
fundamental form and the mean curvature of the hypersurface. These func-
tionals are strictly related to the ones proposed by De Giorgi since, roughly
speaking, the derivative of the normal is the curvature of M . Though not
exactly the same, they can play the same role in the approximation pro-
cess he suggested. At the end of the paper we discuss some other possible
functionals and, in particular, the original De Giorgi conjecture.

Our main result is that if the order of derivation m ∈ N is strictly larger
than [n/2] (where [n/2] denotes the integer part of n/2), then singularities
cannot occur.

The simplest case n = 1 and m = 1 is concerned with curves in the
plane evolving by the gradient flow of

F1(γ) =
∫
S1

1 + k2ds , (1.1)

since the curvature k of a curve γ : S
1 → R

2 satisfies k2 = |∇ν|2. The
global regularity in this case was shown by Polden in the papers [Po1,2]
which have been a starting point for our work. Wen in [W] found results
similar to Polden’s, in considering the flow for

∫
S1 k2ds of curves with a

fixed length.
The very first step in attacking our problem is the analysis of the first

variation of the functionals Fm, which gives rise to a quasilinear system of
partial differential equations on the manifold M . The small time existence
and uniqueness of a smooth flow is a particular case of a very general
result of Polden proven in [HuP], [Po2]. Then the long time existence is
guaranteed as soon we have suitable a priori estimates on the flow.

In the study of the mean curvature flow of a hypersurface
ϕ : M × [0, T ) → R

n+1,
∂ϕ
∂t = −Hν = ∆tϕ

(which is of second order) via techniques such as varifolds, level sets, vis-
cosity solutions (see [ATW], [AmS], [B], [ES], [I]), the maximum principle
is the key tool to get comparison results and estimates. In our case, even
if m = 1, the first variation and hence the corresponding parabolic prob-
lem turns out to be of order higher than two, precisely of order 2m + 2,
so we have to deal with equations of fourth order at least. This fact has
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the relevant consequence that we cannot employ the maximum principle to
get pointwise estimates and to compare two solutions, thus losing a whole
bunch of geometric results holding for the mean curvature flow. In par-
ticular, we cannot expect that an initially embedded hypersurface remains
embedded during the flow, since self-intersections can appear in finite time
(an example is given by Giga and Ito in [GI]). For these reasons, techniques
based on the description of the hypersurfaces as level sets of functions seem
difficult to apply in this case and therefore we adopt a parametric approach
as in the work of Huisken [Hu1].

Despite the large literature on the mean curvature flow, fourth or even
higher order flows appeared only recently. Besides the cited works of Polden
and Wen, we quote the work of Escher, Mayer and Simonett [EMS] on the
surface diffusion flow (see also the references therein)

∂ϕ
∂t = (∆tH)ν

and of Simonett [Si] on the gradient flow of the Willmore functional (see [Wi])

W(ϕ) =
∫
M
|A|2 dµ

defined on surfaces immersed in R
3. In these papers the long term existence

and convergence of the flow for initial data which are C2,α-close to a sphere
is shown.

In the article of Chruściel [Ch], the global existence of a fourth order
flow of metrics on a two-dimensional Riemannian manifold is applied to
the construction of solutions of Einstein vacuum equations representing an
isolated gravitational system (called Robinson–Trautman metrics).

Another problem considered by Polden in [Po2,3] is the conformal evo-
lution of a metric g on a two-dimensional manifold M by the gradient flow
of the functional

R(g) =
∫
M

F (R)dµ ,

where R is the scalar curvature of (M, g) and F is an even, smooth and
strictly convex function.

Finally, in the recent papers [KS1,2], Kuwert and Schätzle study the
global existence and regularity of the gradient flow of the Willmore func-
tional for general initial data.

Our work borrows from [Ch], [Po1,2,3] the basic idea of using interpo-
lation inequalities as a tool to get a priori estimates.

We want to remark here that a strong motivation for the study of these
flows is the fact that, in general, regularity is not shared by second order
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flows, with the notable exceptions of the evolution by mean curvature of
embedded curves in the plane (see [GH], [Gr], [Hu3]) and of convex hy-
persurfaces (see [Hu1]). So our result opens the possibility to approximate
canonically singular flows with smooth ones by singular perturbation argu-
ments (see [D1,2] and section 9).

In order to show regularity, a good substitute for the pointwise esti-
mates coming from the maximum principle, are suitable estimates on the
second fundamental form in Sobolev spaces, using Gagliardo–Nirenberg in-
terpolation type inequalities for tensors. Since the constants involved in
these inequalities depend on the Sobolev constants and these latter on the
geometry of the hypersurface where the tensors are defined, before doing
estimates we absolutely need some uniform control, independent of time,
on these constants. In [Po1] these controls are obvious as the constants
depend only on the length; on the other hand, much more work is needed
in [Ch], [KS1,2], [Po3], because of the richer geometry of surfaces.

In our case, we will see that if m is large enough, the functional Fm,
which decreases during the flow, controls the Lp norm of the second fun-
damental form for some exponent p larger than the dimension. This fact,
combined with a universal Sobolev type inequality due to Michael and Si-
mon [MS], where the dependence of the constants on the curvature is made
explicit, allows us to get a uniform bound on the Sobolev constants of the
evolving hypersurfaces and then to obtain time-independent L2 estimates
on curvature and its derivatives. These bounds imply in turn the desired
pointwise estimates and the long time existence and regularity of the flow.

In the last section we will discuss some possible extensions of our results,
some open problems and the related conjectures of De Giorgi.

Acknowledgement. We are grateful to Gerhard Huisken for many dis-
cussions about geometric flows; moreover, we wish to thank Luigi Ambrosio
for his constant encouragement and invaluable help on several occasions.

Our work would have been impossible without the enlightening mathe-
matical insight of Ennio De Giorgi. This paper is dedicated to his memory.

2 Notation and Preliminaries

We devote this section to introducing the basic notation and facts about
differentiable and Riemannian manifolds we need in the paper, a good
reference for this introduction is [GaHL] or the first part of [P].

The main objects of the paper are n-dimensional closed hypersurfaces
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immersed in R
n+1, that is, pairs (M, ϕ) where M is an n-dimensional

smooth manifold, compact, connected with empty boundary, and a smooth
map ϕ : M → R

n+1 such that the rank of dϕ is everywhere equal to n.
The manifold M naturally gets a metric tensor g turning it in a Rie-

mannian manifold (M, g), by pulling back the standard scalar product of
R
n+1 with the immersion map ϕ.

Taking local coordinates around p∈M given by a chart F : R
n⊃U → M ,

we identify the map ϕ with its expression in coordinates ϕ ◦F : R
n ⊃ U →

R
n+1, then we have local bases of TpM and T ∗

p M , respectively given by
vectors {∂/∂xi} and covectors {dxj}.

We will denote vectors on M by X = Xi, which means X = Xi ∂
∂xi

,
covectors by Y = Yj, that is Y = Yjdxj , and a general mixed tensor with
T = T i1...ik

j1...jl
, where the indices refer to the local basis.

Sometimes we will also need to consider tensors along M , viewing it as
a submanifold of R

n+1 via the map ϕ; in that case we will use the Greek
indices to denote the components of such tensors in the canonical basis
{eα} of R

n+1. For instance, given a vector field X along M , not necessarily
tangent, we will have X = Xαeα.

Throughout the paper the convention to sum over repeated indices will
be adopted.

The inner product on M , extended to tensors, is given by

g(T, S) = gi1s1 . . . giksk
gj1z1 . . . gjlzlT i1...ik

j1...jl
Ss1...sk
z1...zl

,

where gij is the matrix of the coefficients of the metric tensor in the local
coordinates and gij is its inverse. Clearly, the norm of a tensor is

|T | =
√

g(T, T ) .

The scalar product in R
n+1 will be denoted with 〈· | ·〉. As the metric g

is obtained pulling it back with ϕ, we have

gij(x) =
〈

∂ϕ(x)
∂xi

∣∣∣∣ ∂ϕ(x)
∂xj

〉
.

The canonical measure induced by the metric g is given by µ =
√

GLn
where G = det(gij) and Ln is the standard Lebesgue measure on R

n.
The second fundamental form A = hij of M is the 2-tensor defined as

follows:
hij(x) = −

〈
ν(x)

∣∣∣∣ ∂2ϕ(x)
∂xi∂xj

〉
,

the mean curvature H is the trace of A,

H(x) = gij(x)hij(x) . (2.1)



Vol. 12, 2002 SMOOTH GEOMETRIC EVOLUTIONS 143

The induced covariant derivative on (M, g) of a vector field X is given by

∇jX
i = ∂

∂xj
Xi + ΓijkX

k

where the Christoffel symbols Γ = Γijk are expressed by the following for-
mula,

Γijk = 1
2gil

(
∂
∂xj

gkl + ∂
∂xk

gjl − ∂
∂xl

gjk

)
.

Throughout the paper the covariant derivative ∇T of a tensor T = T i1...ik
j1...jl

will be denoted by ∇sT
i1...ik
j1...jl

= (∇T )i1...iksj1...jl
.

By∇mT we will mean the kth iterated covariant derivative of a tensor T .
We recall that the gradient ∇f of a function and the divergence div X

of a vector field at a point p ∈ (M, g) are defined respectively by

g
(∇f(p), v

)
= dfp(v) ∀v ∈ TpM

and
div X = Trace ∇X = ∇iX

i = ∂
∂xi

Xi + ΓiikX
k .

Notice that considering M as a submanifold of R
n+1, if {ei} ∈ R

n+1 is an
orthonormal basis of TpM we can express the divergence of X as

div X(p) = g(ei,∇eiX) = 〈ei |∇M
ei

X〉 = ∇M
ei
〈X | ei〉 = ∇ei〈X | ei〉 ,

where ∇M denotes the projection on TpM of the covariant derivative
of R

n+1.
Using this last expression we can define the divergence of a general, not

necessarily tangent, vector field X along M as a Riemannian submanifold of
R
n+1. Such definition is useful in view of the following tangential divergence

formula (see [S1, Chap. 2, Sec. 7]),∫
M

div X dµ =
∫
M
〈ν |X〉H dµ (2.2)

holding for every vector field X along M . Notice that the right term is well
defined since, by definition (2.1), H ν is independent of the choice of the
local unit normal ν. Moreover, if X is a tangent vector field we recover the
usual divergence theorem ∫

M
div X dµ = 0 .

The Laplacian ∆T of a tensor T is

∆T = gij∇i∇jT .

The Riemann tensor, the Ricci tensor and the scalar curvature can be
expressed via the second fundamental form as follows,

Rijkl = hikhjl − hilhjk ,
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Ricij = H hij − hilg
lkhkj ,

R = H2 − |A|2 .

Hence, the formulas for the interchange of covariant derivatives, which in-
volve the Riemann tensor, become

∇i∇jX
s −∇j∇iX

s = Rijklg
ksX l = Rs

ijlX
l = (hikhjl − hilhjk) gksX l ,

∇i∇jYk −∇j∇iYk = Rijklg
lsYs = Rs

ijkYs = (hikhjl − hilhjk) glsYs . (2.3)

The Codazzi equations

∇ihjk = ∇jhik = ∇khij

imply the following identity (see [Sim]) which will be crucial in the sequel,

∆hij = ∇i∇jH + H hilg
lshsj − |A|2hij . (2.4)

Also fundamental will be the Gauss–Weingarten relations
∂2ϕ

∂xi∂xj
= Γkij

∂ϕ

∂xk
− hijν ,

∂

∂xj
ν = hjlg

ls ∂ϕ

∂xs
, (2.5)

which easily imply |∇ν| = |A|.
Now we introduce some non-standard notation which will be useful for

the computations of the following sections.
Throughout the paper we will write T ∗ S, following Hamilton [H], to

denote a tensor formed by contraction on some indices of the tensors T and
S using the coefficients gij . Abusing the notation a little, if T1, . . . , Tl is a
finite family of tensors (here l is not an index of the tensor T ), the symbol

l�
i=1

Ti

will mean T1 ∗ T2 ∗ · · · ∗ Tl.
We will use the symbol ps(T1, . . . , Tl) for a polynomial in the tensors

T1, . . . , Tl and their iterated covariant derivatives with the ∗ product like

ps(T1, . . . , Tl) =
∑

i1+···+il=s
ci1...il ∇i1T1 ∗ · · · ∗ ∇ilTl ,

where the ci1...il are some real constants. Notice that every tensor Ti must
be present in every additive term of ps(T1, . . . , Tl) and there are no repeti-
tions. We will use instead the symbol qs when the tensors involved are all
A or ∇ν, repetitions are allowed and in every additive term there must be
present every argument of qs, for instance,

qs(∇ν, A) =
∑(

N

�
k=1

∇ik(∇ν)
M

�
l=1
∇jlA

)
with N , M ≥ 1.
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The order s denotes the sum

s =
N∑
k=1

(ik + 1) +
M∑
l=1

(jl + 1) .

Remark 2.1. Supposing that qs is completely contracted, that is, there
are no free indices and we get a function, then the order s has the following
strong geometric meaning: if we consider the family of homothetic immer-
sions λϕ : M → R

n+1 for λ > 0, they have associated normal νλ, metric
gλ, connection ∇λ and second form Aλ satisfying the following rescaling
equations,

(∇λ)iνλ = ∇iν (∇λ)jAλ = λ∇jA ,

(gλ)ij = λ2gij (gλ)ij = λ−2gij .

Then every completely contracted polynomial qs in ∇ν and A will have the
form∑

(∇i1∇ν) . . . (∇ik∇ν) . . . (∇iN∇ν)∇j1A . . .∇jlA . . .∇jM A gw1z1 . . . gwtzt

with

s =
N∑
k=1

(ik + 1) +
M∑
l=1

(jl + 1)

and since the contraction is total it must be

t =
1
2

( N∑
k=1

(ik + 1) +
M∑
l=1

(jl + 2)
)

as the sum between the large brackets gives the number of covariant indices
in the product above. By this argument and the rescaling equations above,
we see that qs rescales as

qs(∇λνλ, . . . , Aλ) = λM−2tqs(∇ν, . . . , A)

=λ−(
PN

k=1(ik+1)+
PM

l=1(jl+1) )qs(∇ν, . . . , A)
=λ−sqs(∇ν, . . . , A) .

For this reason, with a little misuse of language, we will say that s is the
rescaling order of qs, also when qs is not completely contracted.

In most of the following computations only the rescaling order and the
arguments of the polynomials involved will be important, so we will avoid
making their inner structure explicit. The following substitutions, which
we will often apply, provide an example in this spirit:
∇ps(T1, . . . , Tl)=ps+1(T1, . . . , Tl) and ∇qz(∇ν, . . . , A)=qz+1(∇ν, . . . , A) .

We advise the reader that the polynomials ps and qz could vary from one
to another in a computation by addition of terms with the same rescaling
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order. Moreover, the constants too could vary between different formulas
and from one line to another.

3 First Variation

Given an immersion ϕ : M → R
n+1 of a smooth closed hypersurface in

R
n+1, we consider the following functionals for m ≥ 1,

Fm(ϕ) =
∫
M

1 + |∇mν|2dµ ,

where ν is a local unit normal vector field to M and |∇mν|2 means∑n+1
α=1 |∇mνα|2. The norm | · |, the connection ∇ and the measure µ are all

relative to the Riemannian metric g which is induced on M by R
n+1 via the

immersion ϕ. Notice that these functionals are well defined also without
a global unit normal vector field, i. e., M is not orientable, because of the
modulus.

In this section we are going to analyze the first variation of these func-
tionals. Actually, computing the exact form can be quite long but for our
purposes we need only study some properties of its structure.

Suppose that we have a one-parameter family I of immersions ϕt :
M → R

n+1, with ϕ0 = ϕ, we compute

δFm(ϕ)(I) =
d

dt
Fm(ϕt)

∣∣∣∣
t=0

=
d

dt

∫
M

1 + |∇mν|2 dµt

∣∣∣∣
t=0

, (3.1)

where clearly the metric g, the covariant derivative ∇ and the normal ν
depend on t. Setting X(p) = ∂

∂tϕt(p)
∣∣
t=0

we obtain a vector field along M
as a submanifold of R

n+1 via ϕ. It is well known that
∂
∂tµt

∣∣
t=0

= H〈ν |X〉µ ,

so it follows that
d

dt
Fm(ϕt)

∣∣∣∣
t=0

=
∫
M

(
1 + |∇mν|2) d

(
∂µt
∂t

∣∣∣∣
t=0

)
+

∫
M

∂

∂t
|∇mν|2

∣∣∣∣
t=0

dµ

=
∫
M
|∇mν|2 H〈ν |X〉 dµ

+
∫
M

∂

∂t

(
gi1j1 . . . gimjm∇i1...imν∇j1...jmν

) ∣∣∣∣
t=0

dµ .

Then, we need to compute the derivatives in the last term. For the metric
tensor gij we have

∂
∂tgij = ∂

∂t

〈
∂ϕ
∂xi

∣∣∣ ∂ϕ
∂xj

〉
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=
〈
∂X
∂xi

∣∣∣ ∂ϕ
∂xj

〉
+

〈
∂X
∂xj

∣∣∣ ∂ϕ
∂xi

〉
= ∂

∂xi

〈
X

∣∣∣ ∂ϕ
∂xj

〉
+ ∂

∂xj

〈
X

∣∣∣ ∂ϕ
∂xi

〉
− 2

〈
X

∣∣∣ ∂2ϕ
∂xi∂xj

〉
= aij(X) .

Differentiating the formula gisg
sj = δji we get

∂
∂tg

ij = −gis ∂∂tgslg
lj = −gisasl(X)glj .

The derivative of the normal ν is given by
∂
∂tν =

〈
∂ν
∂t

∣∣∣ ∂ϕ
∂xi

〉
∂ϕ
∂xj

gij = −
〈

ν
∣∣∣ ∂2ϕ
∂t∂xi

〉
∂ϕ
∂xj

gij

= −
〈

ν
∣∣∣ ∂X∂xi

〉
∂ϕ
∂xj

gij = −∇〈ν |X〉 +
〈
∂ν
∂xi

∣∣∣ X
〉

∂ϕ
∂xj

gij

= −∇〈ν |X〉 +∇ναXα = b(X) .

Finally the derivative of the Christoffel symbols is
∂
∂tΓ

i
jk = 1

2gil
{

∂
∂xj

(
∂
∂tgkl

)
+ ∂

∂xk

(
∂
∂tgjl

)− ∂
∂xl

(
∂
∂tgjk

)}
+ 1

2
∂
∂tg

il
{

∂
∂xj

gkl + ∂
∂xk

gjl − ∂
∂xl

gjk

}
= 1

2gil
{∇j

(
∂
∂tgkl

)
+∇k

(
∂
∂tgjl

)−∇l

(
∂
∂tgjk

)}
+ 1

2gil
{
∂
∂tgkzΓ

z
jl +

∂
∂tglzΓ

z
jk + ∂

∂tgjzΓ
z
kl +

∂
∂tglzΓ

z
jk

− ∂
∂tgjzΓ

z
kl − ∂

∂tgkzΓ
z
jl

}
− 1

2gis ∂∂tgszg
zl

{
∂
∂xj

gkl + ∂
∂xk

gjl − ∂
∂xl

gjk

}
= 1

2gil
{∇j

(
∂
∂tgkl

)
+∇k

(
∂
∂tgjl

)−∇l

(
∂
∂tgjk

)}
+ gil ∂∂tglzΓ

z
jk − gis ∂∂tgszΓ

z
jk

= 1
2gil

{∇j

(
∂
∂tgkl

)
+∇k

(
∂
∂tgjl

)−∇l

(
∂
∂tgjk

)}
= 1

2gil {∇jakl(X) +∇kajl(X) −∇lajk(X)} .

Notice that all these derivatives are linear in the field X, since the aij(X)
and b(X) are such.

Lemma 3.1. If a(X) = ∂
∂tg is the tensor defined before, for every covariant

tensor T = Ti1...il we have
∂
∂t∇sT = ∇s ∂T

∂t + ps−1

(
T,∇a(X)

)
,

where the constants in the polynomials ps−1(T,∇a(X)) are universal. More-
over, if the tensor T is a function f : M → R

k the last term ps−1(f,∇a(X))
can be substituted by another polynomial p̃s−2(∇f,∇a(X)).
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Proof. We prove the lemma by induction on s ≥ 1.
If s = 1 then

∂
∂t∇jTi1...il = ∂

∂t

(
∂
∂xj

Ti1...il − ΓrjizTi1...iz−1riz+1...il

)
= ∂

∂xj

∂
∂tTi1...il − Γrjiz

∂
∂tTi1...iz−1riz+1...il

− ∂
∂tΓ

r
jizTi1...iz−1riz+1...il

= ∇j
∂
∂tTi1...il + T ∗ ∇a(X)

by the previous computation, hence
∂
∂t∇T = ∇∂T

∂t + p0

(
T,∇a(X)

)
and the initial case is proved.

Supposing the lemma holds for s− 1, we have
∂
∂t∇sT = ∂

∂t∇(∇s−1T )

= ∇(
∂
∂t∇s−1T

)
+ p0

(∇s−1T,∇a(X)
)

= ∇(∇s−1 ∂T
∂t + ps−2(T,∇a(X))

)
+ p0

(∇s−1T,∇a(X)
)

= ∇s ∂T
∂t +∇ps−2

(
T,∇a(X)

)
+ p0

(∇s−1T,∇a(X)
)

= ∇s ∂T
∂t + ps−1

(
T,∇a(X)

)
,

where we set

ps−1

(
T,∇a(X)

)
= ∇ps−2

(
T,∇a(X)

)
+ p0

(∇s−1T,∇a(X)
)

.

From this last formula, it is clear that the constants involved are universal.
Moreover, if T is a function f : M → R

k then the term p0(f,∇a(X))
vanishes and the same formula says that ps−1(f,∇a(X)) does not contain
f without being differentiated. ✷

Remark 3.2. In the following we will omit to underline that all the coeffi-
cients of the polynomials ps and qs which will appear are algebraic, that is,
they are the result of formal manipulations. In particular, such coefficients
are independent of the manifold (M, g) where the tensors are defined. This
is crucial in view of the geometry-independent estimates we want to obtain.

Proposition 3.3. The derivative
∂
∂t

(
gi1j1 . . . gimjm∇i1...imν∇j1...jmν

) ∣∣
t=0

depends only on the vector field X = ∂
∂tϕt

∣∣
t=0

and such dependence is
linear. The first variation of Fm

δFm(ϕ)(I) = d
dtFm(ϕt)

∣∣
t=0

is a linear function of the field X.
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Proof. Distributing the derivative in t on the terms of the product, we have
seen that the derivatives of the metric coefficients depend linearly on X; it
remains to check the derivative of ∇i1...imν.

By the last assertion of Lemma 3.1, we have
∂
∂t∇mν = ∇m∂ν

∂t + pm−2

(∇ν,∇a(X)
)

,

and since ∂ν/∂t = b(X) we get
∂
∂t∇mν = ∇mb(X) + pm−2

(∇ν,∇a(X)
)

,

which proves the first part of the lemma as a(X) and b(X) are linear in X.
The second statement clearly follows from the previous computations

and the first part of the lemma. ✷

By this result, we can write δFm(ϕ)(I) = δFm(ϕ)(X). Now we want
to prove that actually the first variation depends only on the normal com-
ponent of the field X, that is, 〈ν |X〉, by linearity, it is clearly sufficient to
show that δFm(ϕ)(X) = 0 for every tangent vector field X. By the pre-
vious proposition, in order to compute the derivative (3.1) we can choose
any family I of immersions with X = ∂

∂tϕt

∣∣
t=0

.
Given a vector field X along M as a submanifold of R

n+1 which is tan-
gent, there exists a tangent vector field Y on M such that dϕp(Y (p)) = X(p)
for every p ∈ M . We then consider the smooth flow L(p, t):M×(−ε,ε)→M
generated by Y on M as the solution of the ODE’s system{

∂
∂tL(p, t) = Y (L(p, t)) ,

L(p, 0) = p

for every p ∈ M and t ∈ (−ε, ε), and we define ϕt(p) = ϕ(L(p, t)). Clearly
ϕ0 = ϕ and

∂
∂tϕt(p)

∣∣
t=0

= dϕL(p,t)

(
∂
∂tL(p, t)

)∣∣
t=0

= dϕp(Y (p)) = X(p) ,

hence, using the family I = {ϕt} we have

δFm(ϕ)(X) = d
dtFm(ϕt)

∣∣
t=0

.

If gt is the metric tensor on M induced by R
n+1 via the immersion ϕt,

then the Riemannian manifolds (M, gt) and (M, g) are isometric for every
t ∈ (−ε, ε), I(· , t) = ϕ−1 ◦ϕt : (M, gt) → (M, g) being an isometry between
them. Since the functional Fm is invariant by isometry, Fm(ϕt) does not
depend on t and its derivative is zero. From the previous discussion we now
have the following proposition.

Proposition 3.4. The first variation δFm(ϕ)(X) depends only on 〈ν |X〉.
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This means that, in studying δFm(ϕ)(X), we can suppose that X is a
normal field, hence we can strengthen the previous computations as follows,

∂
∂tgij = aij(X) = −2

〈
X

∣∣∣ ∂2ϕ
∂xi∂xj

〉
= 2 〈ν |X〉hij

∂
∂tg

ij = − gis ∂∂tgslg
lj = −2 〈ν |X〉hij

∂
∂tν = −∇〈ν |X〉
∂
∂tΓ

i
jk = gil

{∇j(〈ν |X〉hkl) +∇k(〈ν |X〉hjl)−∇l(〈ν |X〉hjk)
}

=∇A ∗ 〈ν |X〉 + A ∗ ∇〈ν |X〉 .
Supposing X normal, we immediately have the following modification

of Lemma 3.1 substituting the tensor aij(X) with 2 〈ν |X〉hij .
Lemma 3.5. For every covariant tensor T = Ti1...il , we have

∂
∂t∇sT = ∇s ∂T

∂t + ps
(
T, A, 〈ν |X〉) ,

where in ps(T, A, 〈ν |X〉) the derivative ∇sT does not appear. If T is a
function f : M → R

k

∂
∂t∇sf = ∇s ∂f

∂t + ps−1

(∇f, A, 〈ν |X〉)
and ps−1(∇f, A, 〈ν |X〉) does not contain ∇sf .

This lemma and the fact that ∂ν/∂t = −∇〈ν |X〉 lead to the following
proposition.

Proposition 3.6. Letting {eα} be the canonical basis of R
n+1 and setting

ν = ναeα ∈ Rn+1, we have

∂
∂t∇i1...imνα = −∇i1...im∇α〈ν |X〉 + pm−1

(∇ν, A, 〈ν |X〉) ,

where ∇α〈ν |X〉 denotes the α component of the gradient ∇〈ν |X〉 in the
canonical basis of R

n+1. Moreover, the derivative ∇mν is not present in
pm−1(∇ν, A, 〈ν |X〉).

We are finally ready to compute

d

dt

∫
M

1 + |∇mν|2dµt

∣∣∣∣
t=0

=
∫
M

(
1 + |∇mν|2)H〈ν|X〉jdµ

+
∫
M

gi1j1 . . .
∂

∂t
gikjk . . . gimjm∇i1...imν∇j1...jmν dµ

− 2
∫
M

gi1j1 . . . gimjm∇i1...im∇α〈ν|X〉∇j1...jmναdµ

+ 2
∫
M
∇mν ∗ pm−1

(∇ν, A, 〈ν |X〉)dµ
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=
∫
M

(
1 + |∇mν|2)H〈ν|X〉dµ

+ 2m

∫
M
∇mν ∗ ∇mν ∗A〈ν|X〉dµ

− 2
∫
M

gi1j1 . . . gimjm∇i1...im∇α〈ν|X〉∇j1...jmναdµ

+
∫
M

pm−1

(∇mν,∇ν, A, 〈ν|X〉)dµ .

Now, in order to “carry away” derivatives from 〈ν |X〉 in the last inte-
gral, we integrate by parts with the divergence theorem, “moving” all the
derivatives on the other terms of the products. Hence, we can rewrite it as∫

M
p2m−2(∇ν,∇ν, A)〈ν |X〉 dµ ,

which is equal to ∫
M

q2m+1(∇ν, A)〈ν |X〉 dµ

with the conventions of section 2. Since the second integral also has this
form, collecting them together, we obtain

d

dt

∫
M

1 + |∇mν|2 dµt

∣∣∣∣
t=0

=
∫
M

H〈ν |X〉 dµ+
∫
M

q2m+1(∇ν, A)〈ν |X〉 dµ

− 2
∫
M

gi1j1 . . . gimjm ∇i1...im∇α〈ν |X〉∇j1...jmνα dµ .

Finally, we deal with this last term. First, by the divergence theorem it
can be transformed into

−2(−1)m
∫
M
∇α〈ν |X〉∇jm...j1∇j1...jmνα dµ ;

second, using the tangential divergence formula (2.2), it is equal to

2(−1)m
∫
M
〈ν |X〉∇α∇jm...j1∇j1...jmνα dµ +

∫
M

q2m+1(∇ν, A)〈ν |X〉 dµ ,

where the extra term q2m+1(∇ν, A)〈ν |X〉, which has a differentiation order
lower than the first term, comes from the product with the mean curvature
in the tangential divergence formula.

Notice now that the permutation of derivatives introduces additional
lower order terms of the form∫

M
q2m+1(∇ν, A)〈ν |X〉 dµ

by formulas (2.3), hence we get

2(−1)m
∫
M
〈ν|X〉∇j1∇j1 . . .∇jm∇jm∇αναdµ +

∫
M

q2m+1(∇ν, A)〈ν|X〉dµ,
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that is,

2(−1)m
∫
M
〈ν |X〉

m times︷ ︸︸ ︷
∆∆ . . . ∆∇ανα dµ +

∫
M

q2m+1(∇ν, A)〈ν |X〉 dµ .

By Gauss–Weingarten relations (2.5), we have

∇ανα = ∂ϕα

∂xi
gijhjlg

ls ∂ϕα

∂xs
= gijhjlg

lsgsi = gijhji = H ,

so we conclude

δFm(ϕ)(X) =
∫
M

H〈ν |X〉 dµ +
∫
M

q2m+1(∇ν, A)〈ν |X〉 dµ

+ 2(−1)m
∫
M

m times︷ ︸︸ ︷
∆∆ . . . ∆H〈ν |X〉 dµ

=
∫
M

q1(A)〈ν |X〉 dµ +
∫
M

q2m+1(∇ν, A)〈ν |X〉 dµ

+ 2(−1)m
∫
M

m times︷ ︸︸ ︷
∆∆ . . . ∆H〈ν |X〉 dµ .

By the previous discussion this formula holds in general for every vector
field X along M . We summarize all these facts in the following theorem.
Theorem 3.7. For any m ≥ 1 the first variation of the functional Fm is
given by

δFm(ϕ)(X) =
∫
M

Em(ϕ)〈ν |X〉 dµ ,

where the function Em(ϕ) has the form

Em(ϕ) = 2(−1)m
m times︷ ︸︸ ︷

∆∆ . . . ∆H + q2m+1(∇ν, A) + q1(A) .

4 Gradient Flow and Small Time Existence

Suppose that ϕ0 : M → R
n+1 is smooth immersion of an n-dimensional

hypersurface M which is compact, connected and has empty boundary.
We look for a smooth function ϕ : M × [0, T ) such that

1. the map ϕt = ϕ(·, t) : M → R
n+1 is an immersion, for every t ∈ [0, T );

2. the following partial differential equation is satisfied:
∂ϕ
∂t (p, t) = −Em(ϕt)(p)ν(p, t) .

If we have a solution, then we say that the hypersurfaces Mt = (M, gt),
where gt is the induced metric on M , evolve by the gradient flow of the
functional Fm.
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The small time existence of such flow is a slight modification of the
following result of Polden (see [Po2, Thm. 2.5.2, Sec. 2], or [HuP]).
Theorem 4.1. For any smooth hypersurface immersion ϕ0 : M → N ,
with N a smooth (n + 1)-dimensional Riemannian manifold, there exists a
unique solution to the flow problem

∂ϕ
∂t =

(
(−1)s+1

s times︷ ︸︸ ︷
∆∆ . . . ∆H + Φ(ϕ, ν, A,∇A, . . . ,∇2s−1A)

)
ν

defined on some interval 0 ≤ t < T and taking ϕ0 as its initial value.

Looking at Polden’s proof, it is possible to allow the function Φ to
depend also on the metric g; moreover the covariant derivatives of the
normal ν, using induction and the Gauss–Weingarten relations (2.5), can
be expressed in terms of the covariant derivatives of the curvature (see the
proof of Lemma 7.5). Hence, we can conclude that there exists a small time
solution of the problem

∂ϕ
∂t =

(
(−1)m+1

m times︷ ︸︸ ︷
∆∆ . . . ∆ H +Φ(ϕ, g, A, ν,∇A,∇ν, . . . ,∇2m−1A,∇2mν)

)
ν

which includes our case up to a constant multiplying the leading term.
Since such a constant can be eliminated by a time-only rescaling and since
a smooth evolution of an immersed compact manifold clearly remains an
immersion at least for some positive time, we have a small time existence
and uniqueness result for the gradient flow of Fm with every initial hyper-
surface.

5 A Priori Estimates

To prove long time existence we need a priori estimates on the second
fundamental form and its derivatives which are obtained via Sobolev and
Gagliardo–Nirenberg interpolation inequalities for functions defined on Mt.
Since the hypersurfaces are moving, also the constants appearing in such
inequalities change during the flow, hence, before proceeding with the esti-
mates, we need some uniform control on them.

In this section we see that if the integer m is larger than [n/2] then
we have a uniform control, independent of time, on the Ln+1 norm of the
second fundamental form; this is a crucial point where such a hypothesis is
necessary. This fact will allow us to show in the next section that also the
above constants are uniformly bounded during the flow.

In the last part of the section, using an inequality of Michael and Si-
mon, we prove also an a priori lower bound on the volume of the evolving
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hypersurfaces.
By the very definition of the flow, the value of the functional Fm de-

creases in time, since
d

dt
Fm(ϕt) = −

∫
M

[Em(ϕt)]
2 dµt ≤ 0 ;

hence, as long as the flow remains smooth, we have the uniform estimate∫
M

1 + |∇mν|2 dµt = Fm(ϕt) ≤ Fm(ϕ0) (5.1)

for every t ≥ 0.
Now we want to prove that if m > [n/2], this estimate implies that

the Ln+1(µt) norms of the second fundamental form A of Mt are uniformly
bounded independently of time.

Our starting point is the following universal interpolation type inequal-
ities for tensors.
Proposition 5.1. Suppose that (M, g) is a smooth and compact n-
dimensional Riemannian manifold without boundary and µ the measure as-
sociated to g. Then for every covariant tensor T and exponents q ∈ [1, +∞)
and r ∈ [1, +∞], we have

‖∇jT‖Lp(µ) ≤ C‖∇sT‖
j
s

Lq(µ)‖T‖
s−j

s

Lr(µ) ∀j ∈ [0, s] , (5.2)
with 1

p
=

j

sq
+

s− j

sr
,

where the constant C depends only on n, s, j, p, q, r and not on the metric
or the geometry of M .

The proof of the case r = +∞ can be found in [H, Sec. 12]; along the
same lines also the case r < +∞ follows (see also [Au, Chap. 3, Sec. 7.6]).

Suppose that M is orientable and that g is the metric induced by the
immersion ϕ : M → R

n+1, let ν be a global unit normal vector field on M .
If in (5.2) we consider T = ν, s = m, j = 1, q = 2 and r = +∞, then we
have |T | = 1 and p = 2m, hence

‖∇ν‖L2m(µ) ≤ C‖∇mν‖1/m
L2(µ)

,

for a constant C = C(n, m).
Since by (2.5) |∇ν| = |A|, we conclude∫

M
|A|2m dµ ≤ C

∫
M
|∇mν|2 dµ ≤ CFm(ϕ) .

If M is not orientable, then there exists a two-fold Riemannian covering
M̃ of M , with a locally isometric projection map π : M̃ → M which is
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orientable and immersed in R
n+1 via the map ϕ◦π. Repeating the previous

argument for M̃ we get∫
fM
|A|2m dµ̃ ≤ C

∫
fM
|∇mν|2 dµ̃ .

Since π is a local isometry and noticing that the global unit normal field on
M̃ gives locally a unit normal field on M , all the quantities which appear
inside the integrals above do not change passing from M̃ to M ; only when
we integrate do we need to take into account the two-fold structure of the
covering. This means that for every smooth function u : M → R we have∫

fM
u ◦ π dµ̃ = 2

∫
M

u dµ .

Hence, we deduce

2
∫
M
|A|2m dµ ≤ 2 C

∫
M
|∇mν|2 dµ ≤ 2 CFm(ϕ)

which clearly gives the same estimate as in the orientable case.
As 2m > 2[n/2] ≥ n + 1, we have∫
M
|A|n+1 dµ ≤

(∫
M
|A|2m dµ

)n+1
2m

(VolM)
2m−n−1

2m ≤ CFm(ϕ) (5.3)

with a constant C = C(n, m).
Finally we show that also the volume of M is well controlled by the

value of Fm(ϕ) under the hypothesis m > [n/2]. The bound from above
is obvious, the bound from below in dimension n > 1 can be obtained via
the following universal Sobolev inequality due to Michael and Simon (see
[MS], [S1]).
Proposition 5.2. Let ϕ : M → R

n+1 be an immersion of an n-dimensional,
compact hypersurface without boundary. On M we consider the Rieman-
nian metric induced by R

n+1 and the corresponding measure µ. Then,
there exists a constant C = C(n, p) depending only on the dimension n
and the exponent p such that, for every smooth function u : M → R(∫

M
|u|p∗ dµ

)1/p∗

≤ C(n, p)
(∫

M
|∇u|pdµ +

∫
M
|Hu|p dµ

)1/p

, (5.4)

where p ∈ [1, n), n > 1 and p∗ = np/(n − p).
Considering the function u : M → R constantly equal to 1 in the in-

equality for p = 1, and taking in account (5.3), we get

(Vol M)
n−1

n ≤C

∫
M
|H| dµ

≤C‖A‖Ln+1(µ) (Vol M)
n

n+1
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≤CFm(ϕ)
1

n+1 (Vol M)
n

n+1 .

Dividing both members by (Vol M )
n−1

n , as n
n+1 > n−1

n we conclude

1 ≤ CFm(ϕ)
1

n+1 (Vol M)
1

n(n+1) ,

that is,
C

Fm(ϕ)n
≤ Vol M ≤ Fm(ϕ)

for a constant C = C(n, m).
Remark 5.3. With the same argument, it follows that also ‖A‖Ln+1(µ) can
be controlled above and below with Fm(ϕ) and that the functional Fm is
uniformly bounded from below by a constant greater than zero.

In the special case n = 1, we recall that for every closed curve γ : S
1 →

R
2 in the plane the integral of the modulus of its curvature is at least 2π,

then

2π ≤
∫
S1

|A| ds ≤
(∫

S1

|A|2 ds

)1/2 √
Length γ ≤ C

√
Fm(γ)

√
Length γ .

Hence,
C

Fm(γ)
≤ Length γ ≤ Fm(γ)

with C = C(m).
Putting together all these inequalities and the uniform estimate (5.1)

we obtain the following result.
Proposition 5.4. As long as the flow by the gradient of Fm of a hyper-
surface in R

n+1 exists, we have the estimates

‖A‖Ln+1(µt) ≤ C1 < +∞
0 < C2 ≤ Vol Mt ≤ C3 < +∞ ,

where the three constants C1, C2 and C3 are independent of time. They
depend only on n, m and the value of Fm for the initial hypersurface.

6 Interpolation Inequalities for Tensors

We now show that the uniform bound on the Ln+1 norm of the second
fundamental form implies that the constants involved in some Sobolev and
Gagliardo–Nirenberg interpolation type inequalities are also equibounded.

Recalling inequality (5.4), we have
‖u‖Lp∗ (µ) ≤ C(n, p)

(‖∇u‖Lp(µ) + ‖Hu‖Lp(µ)

)
(6.1)

for every u ∈ C1(M), where p∗ = np
n−p and p ∈ [1, n).
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Proposition 6.1. If the manifold (M, g) satisfies Vol M+‖H‖Ln+δ(µ) ≤ B
for some δ > 0, then for every p ∈ [1, n),

‖u‖Lp∗ (µ) ≤ C
(‖∇u‖Lp(µ) + ‖u‖Lp(µ)

) ∀u ∈ C1(M) ,

where the constant C depends only on n, p, δ and B.

Proof. Applying the Hölder inequality to the last term of inequality (6.1),
we get

‖u‖Lp∗ (µ) ≤ C(n, p)‖∇u‖Lp(µ) + C(n, p, δ, B)‖u‖Lep(µ) ,

where p̃ is given by

p̃ =
p(n + δ)
n + δ − p

= p∗
n(n + δ)

n(n + δ) + p∗δ
;

then p < p̃ < p∗. Hence, we can interpolate ‖u‖Lep(µ) between a small
fraction of ‖u‖Lp∗ (µ) and a possibly large multiple of ‖u‖Lp(µ),

‖u‖Lp∗ (µ)≤C(n, p)‖∇u‖Lp(µ)+C(n, p, δ, B)
(
ε‖u‖Lp∗ (µ)+C(ε, p)‖u‖Lp(µ)

)
.

Choosing ε > 0 such that εC(n, p, δ, B) ≤ 1/2 and collecting terms we
obtain

‖u‖Lp∗ (µ) ≤ C(n, p, δ, B)
(‖∇u‖Lp(µ) + ‖u‖Lp(µ)

)
. �

When p > n we prove the following L∞ result (see also [KS1, Thm. 5.6)].
Proposition 6.2. If the manifold (M, g) satisfies Vol M +‖H‖Ln+δ(µ) ≤ B
for some δ > 0, then for every p > n, we have

max
M
|u| ≤ C

(‖∇u‖Lp(µ) + ‖u‖Lp(µ)

) ∀u ∈ C1(M) ,

where the constant C depends only on n, p, δ and B.

Proof. Suppose first that M is embedded and n + δ ≥ p > n, clearly
‖H‖Lp(µ) is bounded by a value depending on the constant B. We consider
M as a subset of R

n+1 via the embedding ϕ and µ as a measure on R
n+1

which is supported on M . Then the following result holds ([S1, Thm. 17.7]):
let Bρ(x) be the ball of radius ρ centered at x in R

n+1, for every 0 < σ <
ρ < +∞ we have(

µ(Bσ(x))
σn

)1/p

≤
(

µ(Bρ(x))
ρn

)1/p

+ C(n, p, δ, B)(ρ1−n/p − σ1−n/p) .

Hence, (
µ(Bσ(x))

σn

)1/p

≤ C1

ρn/p
+ C2ρ

1−n/p ,

and choosing ρ = 1, for every 0 < σ < 1 we get the inequality
µ(Bσ(x)) ≤ C(n, p, δ, B)σn .
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Then we need the following formula which is proved in [S1, Sec. 18], as a con-
sequence of the tangential divergence formula (2.2). For every 0<σ<ρ<+∞
we have∫

Bσ(x) u dµ

σn
≤

∫
Bρ(x) u dµ

ρn
+

∫ ρ

σ
τ−n−1

∫
Bτ (x)

r
(|∇u|+ |uH|)dµ(y) dτ ,

where r = |x− y| and u is any smooth non-negative function.
Noticing that r ≤ τ and using the Hölder inequality we estimate∫

Bσ(x) u dµ

σn
≤

∫
Bρ(x) u dµ

ρn
+
(∫

M
|∇u|p+|uH|pdµ

) 1
p
∫ ρ

σ
τ−nµ(Bτ (x))1−

1
p dτ

≤
∫
B1(x)

u dµ + C
(‖∇u‖Lp(µ) + ‖uH‖Lp(µ)

) ∫ 1

σ
τ−nτn−n/pdτ ,

where in the last passage we set ρ = 1 used the previous estimate on
µ(Bτ (x)). The function τ−n/p is integrable since p > n and we get∫

Bσ(x) u dµ

σn
≤

∫
B1(x)

u dµ + C
(‖∇u‖Lp(µ) + ‖uH‖Lp(µ)

) 1− σ1−n/p

1− n/p
.

Now sending σ to zero, on the left side we obtain the value of u(x) times
ωn which is the volume of the unit ball of R

n, hence

ωnu(x) ≤
∫
B1(x)

u dµ + C
(‖∇u‖Lp(µ) + ‖uH‖Lp(µ)

)
≤C(n, p, δ, B)

(‖u‖L1(µ) + ‖∇u‖Lp(µ) + ‖uH‖Lp(µ)

)
.

For a general u we apply this inequality to the function u2, thus

u2(x) ≤ C

(∫
M
|u|2 dµ +

(∫
M
|u∇u|p dµ

)1/p

+
(∫

M
|u2H|p dµ

)1/p)
≤ C max

M
|u|

(∫
M
|u| dµ +

(∫
M
|∇u|p dµ

)1/p

+
(∫

M
|uH|p dµ

)1/p)
.

Since x ∈ R
n+1 was arbitrary we conclude that

max
M
|u| ≤ C(n, p, δ, B)

(‖u‖L1(µ) + ‖∇u‖Lp(µ) + ‖uH‖Lp(µ)

)
for a constant C depending on n, p, δ and B. If M is only immersed,
we consider the embeddings of M in R

n+1 × R
k given by the map

ϕ× εψ : M → R
n+1 × R

k, where ψ : M → R
k is an embedding of M in

some Euclidean space. Then, repeating the previous argument (this is pos-
sible since the starting inequalities from [S1] hold for embeddings in any
R
l) we will get the same conclusion with a constant Cε. Finally, as Cε

depends only on Vol M and H, and all the geometric quantities converge
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uniformly when ε goes to zero, we conclude that the inequality holds also
in the immersed case.

Now, given any p > n, we choose p̃ = 1
2 min{n + p, 2n + δ}, clearly

n < p̃ < min{p, n + δ/2}. By the inequality above we have

max
M
|u| ≤ C(n, p̃, δ, B)

(‖u‖L1(µ) + ‖∇u‖Lep(µ) + ‖uH‖Lep(µ)

)
,

then using the Hölder inequality and an interpolation argument as in the
proof of Proposition 6.1 we get

max
M
|u| ≤ C(n, p̃, δ, B)

(‖u‖L1(µ) + ‖∇u‖Lep(µ) + ‖u‖Lp(µ)

)
.

Applying the Hölder inequality again, as p̃ < p, we conclude that

max
M
|u| ≤ C(n, p̃, δ, B)

(‖∇u‖Lp(µ) + ‖u‖Lp(µ)

)
,

which gives the thesis since p̃ depends only on n, p and δ. ✷

We now extend these propositions to tensors (see [Au, Prop. 2.11], and
also [C1], [C2]). Since |T | is not necessarily smooth we apply the previous
inequalities first to the smooth functions

√|T |2 + ε2, converging to |T |
when ε → 0. As∣∣∣∇√

|T |2 + ε2
∣∣∣ =

∣∣∣∣ 〈∇T, T 〉√|T |2 + ε2

∣∣∣∣ ≤ |T |√|T |2 + ε2
|∇T | ≤ |∇T |

we then easily get the following result.

Proposition 6.3. If the manifold (M, g) satisfies Vol M+‖H‖Ln+δ(µ) ≤ B
for some δ > 0 then for every covariant tensor T = Ti1...il we have,

‖T‖Lp∗ (µ) ≤ C
(‖∇T‖Lp(µ) + ‖T‖Lp(µ)

)
if 1 ≤ p < n , (6.2)

max
M
|T | ≤ C

(‖∇T‖Lp(µ) + ‖T‖Lp(µ)

)
if p > n , (6.3)

where the constants depend only on n, l, p, δ and B.

We define the Sobolev norm of a tensor T on (M, g) as

‖T‖W s,q(µ) =
s∑

i=0

‖∇iT‖Lq(µ) .

Corollary 6.4. In the same hypothesis on (M, g) we have

‖∇jT‖Lp(µ) ≤ C‖T‖W s,q(µ) with
1
p

=
1
q
− s− j

n
> 0 , (6.4)

max
M
|∇jT | ≤ C‖T‖W s,q(µ) when

1
q
− s− j

n
< 0 . (6.5)

The constants depend only on n, l, s, j, p, q, δ and B.
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Proof. By inequality (6.2) applied to the tensor ∇jT we get

‖∇jT‖Lp(µ) ≤ C
(‖∇j+1T‖Lp1 (µ) + ‖∇jT‖Lp1 (µ)

)
≤ C

(‖∇j+2T‖Lp2 (µ) + 2 ‖∇j+1T‖Lp2 (µ) + ‖∇jT‖Lp2 (µ)

)
≤ . . .

≤ C
(‖∇sT‖Lps−j (µ) + · · ·+ ‖∇jT‖Lps−j (µ)

)
≤ C‖T‖W s,ps−j (µ) .

Since the pi are related by
1
pi

= 1
pi+1

− 1
n ,

p0 = p and ps−j = q, we have
1
p

=
1

ps−j
− s− j

n
=

1
q
− s− j

n
,

and the first part of the corollary is proved. The second part follows anal-
ogously using also inequality (6.3). ✷

Now we put together this result and the universal inequalities

‖∇jT‖Lp(µ) ≤ C ‖T‖
j
s

W s,q(µ)‖T‖
s−j

s

Lr(µ) , (6.6)

which are obviously implied by Proposition 5.1, to get the following inter-
polation type inequalities.

Proposition 6.5. In the same hypothesis on (M, g) as before, there exist
a constant C depending only on n, l, s, j, p, q, r, δ and B, such that for
every covariant tensor T = Ti1...il , the following inequality holds

‖∇jT‖Lp(µ) ≤ C ‖T‖aW s,q(µ)‖T‖1−aLr(µ) , (6.7)

for all j ∈ [0, s], p, q, r ∈ [1, +∞) and a ∈ [j/s, 1] with the compatibility
condition

1
p

=
j

n
+ a

(
1
q
− s

n

)
+

1− a

r
.

If such condition gives a negative value for p, the inequality holds for every
p ∈ [1, +∞) on the left side.

Proof. The cases a = j/s and a = 1 are inequalities (6.6) and (6.4), respec-
tively; the intermediate cases, when j/s < a < 1, are obtained immediately
by the log-convexity of ‖ · ‖Lp(µ) in 1/p, which is a linear function of a, and
the fact that the right side is exponential in a.

If p is negative then 1
q − s

n < 0 and

1
q
− s− j

n
≤ j

n
+ a

(
1
q
− s

n

)
+

1− a

r
,
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hence, the L∞ estimate of inequality (6.5) together with (6.6) gives the
inequality for every p ∈ [1, +∞). ✷

Remark 6.6. For simplicity, throughout the section we avoided a discus-
sion of the critical cases of the inequalities, for instance p = n in Proposi-
tion 6.3. Actually, for our purposes, we just need to say that in a critical
case we can allow any value of p ∈ [1, +∞) in the left side of inequalities like
(6.7). This can be seen easily by considering a suitable inequality with a
lower integrability exponent on the right side and then applying the Hölder
inequality.

Putting together the estimates of this section with Proposition 5.4 we
obtain the following result.
Proposition 6.7. As long as the flow by the gradient of Fm of a hyper-
surface in R

n+1 exists, for every smooth covariant tensor T = Ti1...il we
have the inequalities

‖∇jT‖Lp(µ) ≤ C ‖T‖aW s,q(µ)‖T‖1−aLr(µ) , (6.8)
for all j ∈ [0, s], p, q, r ∈ [1, +∞) and a ∈ [j/s, 1] with the compatibility
condition 1

p
=

j

n
+ a

(
1
q
− s

n

)
+

1− a

r
.

If such condition gives a negative value for p, the inequality holds for every
p ∈ [1, +∞) on the left side. The constant C depends only on m, n, l, s, j,
p, q, r and the value of Fm for the initial hypersurface.

7 Long Time Existence of the Flow

Suppose that at a certain time T > 0 the evolving hypersurface develops a
singularity, then considering the family {Mt}t∈[0,T ), we are going to use the
time-independent inequalities (6.8) to show that we have uniform estimates

max
Mt

|∇kA| ≤ Ck < +∞ ∀t ∈ [0, T )

for all k ∈ N. We will see that such estimates contradict the development
of a singularity at time t = T , hence the flow must be smooth for every
positive time. To this aim we are going to study the evolution of the
following integrals, ∫

M
|∇kA|2 dµt .

Remark 7.1. As in the previous sections, in the computations we will
omit to state that all the polynomials ps and qs which will appear are
independent of the manifold (M, g) where the tensors are defined.
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First we derive the evolution equations for g, ν, Γijk and A. Essentially
repeating the computations of section 3, we get

∂
∂tgij = −2Emhij
∂
∂tg

ij = 2Emhij

∂
∂tν = ∇Em

∂
∂tΓ

i
jk = ∇Em ∗A + Em ∗ ∇A .

Lemma 7.2. The second fundamental form of Mt satisfies the evolution
equation

∂
∂thij = 2(−1)m

m+ 1 times︷ ︸︸ ︷
∆ ◦ . . . ◦∆hij + q2m+3(A, A) + q2m+3(∇ν, A) + q3(A) .

Proof. Keeping in mind the Gauss–Weingarten relations (2.5) and the equa-
tions above, we compute

∂

∂t
hij = − ∂

∂t

〈
ν

∣∣∣∣ ∂2ϕ

∂xi∂xj

〉
=

〈
ν

∣∣∣∣ ∂2(Emν)
∂xi∂xj

〉
−

〈
∇Em

∣∣∣∣ ∂2ϕ

∂xi∂xj

〉
=

∂2Em

∂xi∂xj
+ Em

〈
ν

∣∣∣∣ ∂

∂xi

(
hjlg

ls ∂ϕ

∂xs

)〉
−

〈
∂Em

∂xl
· ∂ϕ

∂xs
gls

∣∣∣∣ Γkij
∂ϕ

∂xk
− hijν

〉
=

∂2Em

∂xi∂xj
− Γkij

∂Em

∂xk
+ Emhjlg

ls

〈
ν

∣∣∣∣Γzis ∂ϕ

∂xz
− hisν

〉
=∇i∇jEm − Emhisg

slhlj .

Expanding Em we continue,

∂
∂thij =∇i∇j

(
2(−1)m

m times︷ ︸︸ ︷
∆∆ . . . ∆H + q2m+1(∇ν, A) + q1(A)

)
−

(
2(−1)m

m times︷ ︸︸ ︷
∆∆ . . . ∆H + q2m+1(∇ν, A) + q1(A)

)
hisg

slhlj

= 2(−1)m∇i∇j

m times︷ ︸︸ ︷
∆∆ . . . ∆H + q2m+3(∇ν, A) + q3(A) .

Repeatedly interchanging derivatives in the first term we introduce some
extra terms of the form q2m+3(A, A) and we get

∂
∂thij = 2(−1)m

m times︷ ︸︸ ︷
∆∆ . . . ∆∇i∇jH + q2m+3(A, A) + q2m+3(∇ν, A) + q3(A) ,
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then using equation (2.4) we conclude

∂
∂thij = 2(−1)m

m times︷ ︸︸ ︷
∆∆ . . . ∆(∆hij −Hhilg

lshsj + |A|2hij)

+ q2m+3(A, A) + q2m+3(∇ν, A) + q3(A)

= 2(−1)m
m+ 1 times︷ ︸︸ ︷
∆∆ . . . ∆hij + q2m+3(A, A) + q2m+3(∇ν, A) + q3(A) . �

Now we deal with the covariant derivatives of A.
Lemma 7.3. We have

∂
∂t∇khij =2(−1)m

m+ 1 times︷ ︸︸ ︷
∆∆ . . . ∆∇khij

+ qk+2m+3(A, A) + qk+2m+3(∇ν, A) + qk+3(A) .

Proof. With a reasoning analogous to the one of Lemma 3.5 applied to the
tensor A and by the previous lemma, we have

∂
∂t∇khij = ∇k ∂

∂thij + pk(A, A, Em)

= ∇k ∂
∂thij + qk+2m+3(A, A) + qk+2m+3(∇ν, A) + qk+3(A, A)

= 2(−1)m∇k

m+ 1 times︷ ︸︸ ︷
∆∆ . . . ∆hij

+∇kq2m+3(A, A) +∇kq2m+3(∇ν, A) + ∇kq3(A)

+ qk+2m+3(A, A) + qk+2m+3(∇ν, A) + qk+3(A, A)

= 2(−1)m∇k

m+ 1 times︷ ︸︸ ︷
∆∆ . . . ∆hij

+ qk+2m+3(A, A) + qk+2m+3(∇ν, A) + qk+3(A) .

Interchanging the operator ∇k with the Laplacians in the first term and
including the extra terms in qk+2m+3(A, A), we obtain

∂
∂t∇khij =2(−1)m

m+ 1 times︷ ︸︸ ︷
∆∆ . . . ∆∇khij

+ qk+2m+3(A, A) + qk+2m+3(∇ν, A) + qk+3(A) . �

Proposition 7.4. The following formula holds,
d

dt

∫
M
|∇kA|2 dµt = − 4

∫
M
|∇k+m+1A|2 dµt

+
∫
M

q2(k+m+2)(A, A, A) + q2(k+m+2)(∇ν, A, A) dµt

+
∫
M

q2(k+2)(A, A) dµt .
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Proof. By the previous results we have
∂
∂t |∇kA|2 = 2gi1j1 . . . gikjkgisgjz ∂∂t∇i1...ikhij∇j1...jkhsz

+ gi1j1 . . . ∂
∂tg

iljl . . . gikjkgisgjz∇i1...ikhij∇j1...jkhsz

= 4(−1)mgi1j1 . . . gikjkgisgjz
m+ 1 times︷ ︸︸ ︷
∆∆ . . . ∆∇i1...ikhij∇j1...jkhsz

+
(
qk+2m+3(A, A) + qk+2m+3(∇ν, A) + qk+3(A)

) ∗ ∇kA

+ 2Emgi1j1 . . . hiljl . . . gikjkgisgjz∇i1...ikhij∇j1...jkhsz

= 4(−1)mgi1j1 . . . gikjkgisgjz
m+ 1 times︷ ︸︸ ︷
∆∆ . . . ∆∇i1...ikhij∇j1...jkhsz

+ q2(k+m+2)(A, A, A) + q2(k+m+2)(∇ν, A, A) + q2(k+2)(A, A)

= 4(−1)mgisgjz∇ik+1
∇ik+1...∇ik+m+1

∇ik+m+1∇i1...ikhij∇i1...ikhsz

+ q2(k+m+2)(A, A, A) + q2(k+m+2)(∇ν, A, A) + q2(k+2)(A, A) .

Interchanging the covariant derivatives in the first term we introduce some
extra terms of the form q2(k+m+2)(A, A, A), hence we get

∂

∂t

∫
M
|∇kA|2 dµt

= 4(−1)m
∫
M

gisgjz∇ik+1...∇ik+m+1∇ik+m+1
...∇ik+1

∇i1...ikhij∇i1...ikhszdµt

+
∫
M

q2(k+m+2)(A, A, A) + q2(k+m+2)(∇ν, A, A) + q2(k+2)(A, A) dµt

+
∫
M

q2(k+m+2)(A, A, A) dµt ,

where the last integral comes from the time derivative of µt.
Then, carrying the m + 1 derivatives ∇ik+1 . . .∇ik+m+1 on ∇i1...ikhsz by
means of the divergence theorem, we finally obtain the claimed result,

= −4
∫
M

gisgjz∇ik+m+1
...∇ik+1

∇i1...ikhij∇ik+m+1...∇ik+1∇i1...ikhsz dµt

+
∫
M

q2(k+m+2)(A, A, A) + q2(k+m+2)(∇ν, A, A) + q2(k+2)(A, A)dµt

= −4
∫
M
|∇k+m+1A|2 dµt

+
∫
M

q2(k+m+2)(A, A, A) + q2(k+m+2)(∇ν, A, A) + q2(k+2)(A, A)dµt .

The leading coefficient became −4 since we multiplied 4(−1)m for (−1)m+1

while doing the m + 1 integrations by parts. ✷
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Now we analyze the terms∫
M

q2(k+m+2)(A, A, A) dµt and
∫
M

q2(k+m+2)(∇ν, A, A) dµt .

If one of the two polynomials contains a derivative ∇iA or ∇i(∇ν) of order
i > k + m + 1, then all the other derivatives must be of order lower than
k + m, since the rescaling order of the polynomials is 2(k + m + 2) and
the fact that there are at least three factors in every additive term. In
this case, repeatedly using the divergence theorem as before, to lower the
highest derivative, we get the integral of a new polynomial which does not
contain derivatives of order higher than k + m + 1. Moreover, if there is a
derivative of order k + m + 1 then the order of all the other derivatives in
q2(k+m+2) must be lower than or equal to k + m, by the same argument.

With the same reasoning, the term∫
M

q2(k+2)(A, A) dµt ,

can be transformed it in a term without derivatives of order higher than or
equal to k + m + 1.

Hence, we can suppose that the last three terms in
d

dt

∫
M
|∇kA|2 dµt = − 4

∫
M
|∇k+m+1A|2 dµt

+
∫
M

q2(k+m+2)(A, A, A) + q2(k+m+2)(∇ν, A, A) dµt

+
∫
M

q2(k+2)(A, A) dµt (7.1)

do not contain derivatives of A or of ∇ν of order higher than k + m + 1;
possibly, only one derivative of order k + m + 1 can appear.
Lemma 7.5. The following inequality holds

|∇sν| ≤ |∇s−1A|+ |qs(A)| ,
where qs(A) does not contain derivatives of A of order higher than s− 2.

Proof. By equations (2.5) it follows that ∇ν = A ∗ ∇ϕ, hence

∇sν = ∇s−1A ∗ ∇ϕ +
∑

i+j=s−2

∇iA ∗ ∇j∇2ϕ

and since ∇2
ijϕ = −hijν, we get

∇sν =∇s−1A ∗ ∇ϕ +
∑

i+j=s−2

∇iA ∗ ∇j(Aν)

=∇s−1A ∗ ∇ϕ +
∑

i+j+k=s−2

∇iA ∗ ∇jA ∗ ∇kν .
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Then, by an induction argument we can express ∇sν as
∇sν = ∇s−1A ∗ ∇ϕ + qs(A) ,

where qs(A) does not contain derivatives of order higher than s−2. Taking
the norm of both sides we get

|∇sν| ≤ |∇s−1A ∗ ∇ϕ|+ |qs(A)|
and we conclude the proof computing

|∇s−1A ∗ ∇ϕ| =
∣∣∣∇i1...is−1hilg

lk ∂ϕ
∂xk

∣∣∣
= (∇i1...is−1 ]hilg

lk ∂ϕ
∂xk

gi1j1...gis−1js−1gij∇j1...js−1hjwgwz ∂ϕ
∂xz

)1/2

= (∇i1...is−1hilg
lkgkzg

wzgi1j1 . . . gis−1js−1gij∇j1...js−1hjw)1/2

= (∇i1...is−1hilg
lwgi1j1 . . . gis−1js−1gij∇j1...js−1hjw)1/2

= |∇s−1A| . �

Taking the absolute values inside the integrals and using this lemma to
substitute every derivative of ν in (7.1), we obtain
d

dt

∫
M
|∇kA|2dµt≤−4

∫
M
|∇k+m+1A|2dµt+

∫
M
|q2(k+m+2)(A)|+|q2(k+2)(A)|dµt,

where, as before, the two polynomials do not contain derivatives of A of
order higher than k+m+1; possibly, only one derivative of order k+m+1
can appear in every multiplicative term of q2(k+m+2)(A).

Before going on, we remark that the ∗ product of tensors satisfies the
following metric property,

|T ∗ S| ≤ |T | · |S| . (7.2)
This can be easily seen choosing an orthonormal basis at a point of M ; in
such coordinates we have

|T ∗ S|2 =
∑
free

indices

( ∑
contracted

indices

Ti1...ikSj1...jl

)2

≤
∑
free

indices

( ∑
contracted

indices

T 2
i1...ik

)( ∑
contracted

indices

S2
j1...jl

)

≤
( ∑

free
indices

∑
contracted

indices

T 2
i1...ik

)( ∑
free

indices

∑
contracted

indices

S2
j1...jl

)
= |T |2 · |S|2 .

Now by definition we have

q2(k+m+2)(A) =
∑
j

Nj

�
l=1
∇cjlA
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with
Nj∑
l=1

(cjl + 1) = 2(k + m + 2)

for every j, hence

|q2(k+m+2)(A)| ≤
∑
j

Nj∏
l=1

|∇cjlA|

by (7.2). Setting

Qj =
Nj∏
l=1

|∇cjlA|

we clearly obtain∫
M
|q2(k+m+2)(A)| dµt ≤

∑
j

∫
M

Qj dµt .

If Qj contains a derivative of A of order k+m+1, we have seen that all the
others have order lower than or equal to k + m, then collecting derivatives
of the same order, Qj can be estimated as follows

Qj ≤ |∇k+m+1A| ·
k+m∏
i=0

|∇iA|αji

for some αji satisfying the rescaling condition

(k + m + 2) +
k+m∑
i=0

(i + 1)αji = 2(k + m + 2) .

Hence, using the Young inequality, for every εj > 0 we have∫
M

Qj dµt ≤ εj

∫
M
|∇k+m+1A|2 dµt +

1
4εj

∫
M

k+m∏
i=0

|∇iA|2αji dµt

= εj

∫
M
|∇k+m+1A|2 dµt +

∫
M
|q2(k+m+2)(A)| dµt ,

where we put in evidence the fact that the last term again satisfies the
rescaling condition and no longer contains the derivative ∇k+m+1A.

Collecting together such “bad” terms, and choosing suitable εj > 0 such
that their total sum is less than one, we obtain

d

dt

∫
M
|∇kA|2dµt ≤ −3

∫
M
|∇k+m+1A|2dµt

+
∫
M

∣∣q2(k+m+2)(A)
∣∣ +

∫
M

∣∣q2(k+2)(A)
∣∣dµt ,



168 C. MANTEGAZZA GAFA

where now in the last two terms all the derivatives of A have order lower
than k + m + 1. We are then ready to estimate them via interpolation
inequalities.

As before,
|q2(k+m+2)(A)| ≤

∑
j

Qj ,

and after collecting derivatives of the same order in Qj ,

Qj =
k+m∏
i=0

|∇iA|αji with
k+m∑
i=0

αji(i + 1) = 2(k + m + 2) .

Then, ∫
M

Qj dµt =
∫
M

k+m∏
i=0

|∇iA|αji dµt

≤
k+m∏
i=0

(∫
M
|∇iA|αjiγi dµt

)1/γi

=
k+m∏
i=0

‖∇iA‖αij

Lαjiγi (µt)
,

where the γi are arbitrary positive values such that
∑

1/γi = 1.
We apply interpolation inequalities: if in (6.7) we take q = 2, r = n+1,

s = k + m + 1, j = i and T = A we get
‖∇iA‖Lpi (µt)

≤ C‖A‖aW 2,k+m+1(µt)
‖A‖1−aLn+1(µt)

with

a =
1
pi
− i

n − 1
n+1

1
2 − k+m+1

n − 1
n+1

∈
[

i

k + m + 1
, 1

]
(7.3)

and pi > 1.
Now, since the volumes of Mt and ‖A‖Ln+1(µt)

are uniformly bounded
in time, also ‖A‖L2(µt)

is uniformly bounded and using the universal in-
equalities (6.6) with p = q = r = 2 we have

‖A‖W 2,k+m+1(µt)
≤

k+m+1∑
s=0

C‖∇k+m+1A‖
s

k+m+1

L2(µt)

≤
k+m+1∑
s=0

‖∇k+m+1A‖L2(µt)
+ C

≤B‖∇k+m+1A‖L2(µt)
+ C ,
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where we applied Young inequality. Hence, we conclude that we have con-
stants B, C independent of t such that

‖∇iA‖Lpi (µt)
≤ (

B‖∇k+m+1A‖L2(µt)
+ C

)a (7.4)

for a as in (7.3) and pi > 1.
Choosing γi = 0 if αji = 0 and γi = 2(k + m + 2)/αji(i + 1) otherwise,

we clearly have
k+m∑
i=0

1
γi

=
k+m∑
i=0

αji(i + 1)
2(k + m + 2)

= 1

by the rescaling condition on the αji. We claim that for every i∈{0,...,k+m},
the product pi = αjiγi satisfies condition (7.3).

By definition, pi = 2(k + m + 2)/(i + 1), hence we must check that the
following inequality

i

k + m + 1
≤

i+1
2(k+m+2) − i

n − 1
n+1

1
2 − k+m+1

n − 1
n+1

≤ 1

holds for every i ∈ {0, . . . , k + m}. Since every term is an affine function
of i, the claim follows if we show that the inequality holds for i = 0 and
i = k + m + 1. If i = 0 we have to prove that

0 ≤
1

2(k+m+2) − 1
n+1

1
2 − k+m+1

n − 1
n+1

≤ 1 ,

that is, since the denominator of the fraction is negative (as 2m ≥ n + 1),
1
2
− k + m + 1

n
− 1

n + 1
≤ 1

2(k + m + 2)
− 1

n + 1
≤ 0 .

The right inequality is clearly true, again since 2m ≥ n + 1; the left one
becomes

k + m + 1
2(k + m + 2)

=
1
2
− 1

2(k + m + 2)
≤ k + m + 1

n

which is true as 2(k +m+2) ≥ n. When i = k +m+1 the fraction is equal
to 1, hence the inequality obviously holds.

Then, the exponents pi = αjiγi are allowed in inequality (7.4) and we
get

‖∇iA‖Lαjiγi (µt) ≤
(
B‖∇k+m+1A‖L2(µt) + C

)aji ,

where aji is the relative value obtained from (7.3).
Hence, ∫

M
Qj dµt ≤

k+m∏
i=0

‖∇iA‖αij

Lαjiγi (µt)
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≤
k+m∏
i=0

(
B‖∇k+m+1A‖L2(µt) + C

)ajiαji

≤
(
B‖∇k+m+1A‖L2(µt) + C

)Pk+m
i=0 ajiαji

,

where the constants B and C are independent of t and

aji =
1

αjiγi
− i

n − 1
n+1

1
2 − k+m+1

n − 1
n+1

.

Multiplying this relation by αji and summing on i from 0 to k + m we get
k+m∑
i=0

αjiaji =
k+m∑
i=0

1
γi
− iαji

n − αji

n+1

1
2 − k+m+1

n − 1
n+1

=
1−∑k+m

i=0

(
iαji

n + αji

n+1

)
1
2 − k+m+1

n − 1
n+1

=
1−∑k+m

i=0
αji(i+1)

n −∑k+m
i=0 αji

(
1

n+1 − 1
n

)
1
2 − k+m+1

n − 1
n+1

.

Recalling that
∑k+m

i=0 αji(i + 1) = 2(k + m + 2) we continue,

=
1− 2k+m+2

n +
∑k+m

i=0
αji

n(n+1)

1
2 − k+m+1

n − 1
n+1

=
1− 2k+m+1

n − 2
n +

∑k+m
i=0

αji

n(n+1)

1
2 − k+m+1

n − 1
n+1

.

Now the denominator is negative, and clearly
k+m∑
i=0

αji ≥
k+m∑
i=0

αji(i + 1)
k + m + 1

= 2
k + m + 2
k + m + 1

,

so we obtain
k+m∑
i=0

αjiaji ≤
1− 2k+m+1

n − 2
n + 2k+m+2

k+m+1
1

n(n+1)

1
2 − k+m+1

n − 1
n+1

=
1− 2k+m+1

n − 2
n + 2

n(n+1) + 2
k+m+1

1
n(n+1)

1
2 − k+m+1

n − 1
n+1

=
1− 2k+m+1

n − 2
n+1 + 2

k+m+1
1

n(n+1)

1
2 − k+m+1

n − 1
n+1
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= 2−
2

k+m+1
1

n(n+1)

k+m+1
n + 1

n+1 − 1
2

= 2− 4
(k + m + 1)[2(k + m + 1)(n + 1)− n(n− 1)]

< 2 .

Hence, we finally get∫
M

Qj dµt ≤
(

B

∫
M
|∇k+m+1A|2 dµt + C

)1−δ

for a positive δ and again using the Young inequality, we have∫
M

Qj dµt ≤ εj

∫
M
|∇k+m+1A|2 dµt + C

for arbitrarily small εj . Repeating this argument for all the Qj and choosing
suitable εj whose sum is less than one, we conclude that

d

dt

∫
M
|∇kA|2 dµt ≤ −2

∫
M
|∇k+m+1A|2 dµt + C +

∫
M
|q2(k+2)(A)| dµt

with a constant C independent of time.
The last term can be treated in the same way. It can be estimated by

the sum of the multiplicative terms Qj and collecting derivatives of the
same order as before, we have

Qj ≤
k+m∏
i=0

|∇iA|βji with
k+m∑
i=0

βji(i + 1) = 2k + 4 .

In this case the coefficients γi, when βji �= 0, are given by γi = 2(k+2)
αji(i+1) ,

hence
k+m∑
i=0

1
γi

=
k+m∑
i=0

αji(i + 1)
2(k + 2)

= 1

by the rescaling condition.
With an analogous control, one can see that the conditions on the ex-

ponent pi are satisfied. It remains to compute
k+m∑
i=0

βjiaji =
k+m∑
i=0

1
γi
− iβji

n − βji

n+1

1
2 − k+m+1

n − 1
n+1

=
1−∑k+m

i=0

(
iβji

n + βji

n+1

)
1
2 − k+m+1

n − 1
n+1

=
1−∑k+m

i=0
βji(i+1)

n +
∑k+m

i=0
βji

n(n+1)

1
2 − k+m+1

n − 1
n+1



172 C. MANTEGAZZA GAFA

=
1− 2k+4

n +
∑k+m

i=0
βji

n(n+1)

1
2 − k+m+1

n − 1
n+1

.

As the denominator is negative and
k+m∑
i=0

βji ≥
k+m∑
i=0

βji(i + 1)
k + m + 1

=
2k + 4

k + m + 1
,

we obtain
k+m∑
i=0

βjiaji ≤
1− 2k+4

n +
∑k+m

i=0
βji(i+1)
k+m+1

1
n(n+1)

1
2 − k+m+1

n − 1
n+1

=
1− 2k+4

n + 2k+4
k+m+1

1
n(n+1)

1
2 − k+m+1

n − 1
n+1

< 2 ,

since this last inequality is equivalent to

1− 2k + 4
n

+
2k + 4

k + m + 1
1

n(n + 1)
> 1− 2(k + m + 1)

n
− 2

n + 1
and simplifying, to

2k + 4
k + m + 1

1
n(n + 1)

> −2(m− 1)
n

− 2
n + 1

,

which is obviously true.
Concluding as before we finally get

d

dt

∫
M
|∇kA|2 dµt ≤ −

∫
M
|∇k+m+1A|2 dµt + C (7.5)

for a constant C independent of time.
By (5.2) and the Young inequality, we have∫

M
|∇kA|2 dµt + C ≤ B‖∇k+m+1A‖

k
k+m+1

L2(µt)
‖A‖

m+1
k+m+1

L2(µt)
+ C

≤ B‖∇k+m+1A‖
k

k+m+1

L2(µt)
+ C

≤ 1
2

∫
M
|∇k+m+1A|2 dµt + C ,

again with a uniform constant. Combining this inequality with (7.5), we
obtain

d

dt

∫
M
|∇kA|2 dµt ≤ − 1

2

∫
M
|∇kA|2 dµt + C

and a simple ODE argument proves that there exist constants Ck indepen-
dent of time such that ∫

M
|∇kA|2 dµt ≤ Ck .
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To pass from W 2,p(µt) to pointwise estimates, first we notice that as all
the derivatives of A are bounded in L2(µt), by inequalities (6.2), for every
p ≥ 1 and k ∈ N we have constants Ck,p such that∫

M
|∇kA|p dµt ≤ Ck,p .

Then choosing a p > n, we apply inequalities (6.3) to every∇kA to conclude
that for every k ∈ N we have constants Ck, independent of t, such that

max
Mt

|∇kA| ≤ Ck . (7.6)

Looking back at the way we obtained them, we can see that the con-
stants Ck depend only on the dimension n, the differentiation order k and
the initial hypersurface ϕ0.

Following Huisken [Hu1, Sec. 8] and Kuwert and Schätzle [KS1, Sec. 4],
these estimates imply the smoothness of the map ϕ(p, t). Since ∇kA are
uniformly bounded in time, supposing that [0, T ) is the maximal interval
of existence of the flow, we have∣∣ϕ(p, t)− ϕ(p, s)

∣∣ ≤ ∫ t

s

∣∣Em(ϕξ)(p)
∣∣dξ ≤ C(t− s)

for every 0 ≤ s ≤ t < T , then ϕt uniformly converge to a continuous limit
ϕT as t → T .

We recall Lemma 8.2 in [Hu1] (Lemma 14.2 in [H]).
Lemma 7.6. Let gij a time-dependent metric on a compact manifold M
for 0 ≤ t < T ≤ +∞. Suppose that∫ T

0
max
Mt

∣∣∣∣ ∂

∂t
gij

∣∣∣∣ dt ≤ C .

Then the metrics gij(t) are all equivalent, and they converge as t → T
uniformly to a positive definite metric tensor gij(T ) which is continuous
and also equivalent.

In our situation, if T < +∞, the hypotheses of this lemma are clearly
satisfied, hence ϕ(·, T ) represents a hypersurface. Moreover, it also follows
that there exists a positive constant C depending only on n and ϕ0 such
that for every 0 ≤ t < T we have

1
C ≤ gij(t) ≤ C .

Since
∂
∂tgij = −2Emhij

by (7.6), for every k ∈ N we have∥∥∥∇k ∂
∂tgij

∥∥∥
L∞(µ)

≤ Ck .
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Analogously, as the time derivative of the Christoffel symbols is given by
∂
∂tΓ

i
jk = ∇Em ∗A + Em ∗ ∇A ,

it follows that ∥∥∇k ∂
∂tΓ

i
jk

∥∥
L∞(µ)

≤ Ck .

for every k ∈ N.
With an induction argument, we can prove the following formula (where

we avoid indicating the indices) relating the iterated covariant and coordi-
nate derivatives of a tensor T ,

∇mT = ∂mT +
m∑
i=1

∑
j1+···+ji+k≤m−1

∂j1Γ . . . ∂jiΓ∂kT . (7.7)

By this formula and induction, it follows that

‖∂kΓijl‖L∞(µ) ,
∥∥∥∂k ∂∂tΓ

i
jl

∥∥∥
L∞(µ)

≤ Ck ,

for every t ∈ [0, T ).
Applying again formula (7.7) to T = ∇sA we see that

∂k∇sA−∇k+sA =
k∑
i=1

∑
j1+···+ji+l≤k−1

∂j1Γ . . . ∂jiΓ ∂l∇sA ,

and by induction and estimates (7.6) we obtain

‖∂k∇sA‖L∞(µ) ≤ Ck,s

for every k, s ∈ N.
Since we already know that |ϕ| is bounded and |∂ϕ| = 1, by the Gauss–

Weingarten relations (2.5)
∂2ϕ = Γ∂ϕ + Aν , ∂ν = A ∗ ∂ϕ

and the previous estimates, we can conclude that
‖∂kϕ‖L∞(µ) ≤ Ck

for every k ∈ N and t ∈ [0, T ). The regularity of the time derivatives also
follows by these estimates and the evolution equation.

Hence, the convergence ϕt → ϕT , when t → T , is in the C∞ topology
and MT is smooth. Then, using Theorem 4.1 to restart the flow with ϕT

as the initial hypersurface, we get a contradiction to the fact that [0, T ) is
the maximal interval of existence.
Remark 7.7. Though this argument shows that the solution is classical, we
cannot conclude that the estimates on the parametrization hold uniformly
for every t ∈ [0, +∞) which is instead the case for the estimates (7.6) on
the curvature.
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Theorem 7.8. If m > [n/2], for any smooth hypersurface immersion
ϕ0 : M → R

n+1 there exists a unique smooth solution to the problem
∂ϕ
∂t (p, t) = −Em(ϕt)(p)ν(p, t) ,

that is, the gradient flow associated to the functional

Fm(ϕ) =
∫
M

1 + |∇mν|2 dµ ,

defined for every t ∈ [0, +∞) and taking ϕ0 as its initial value. Moreover,
such solution satisfies

max
Mt

|∇kA| ≤ Ck .

for constants Ck depending only on n, k and ϕ0.

8 Convergence

Let us consider the function σ : [0, +∞) → R,

σ(t) =
∫
M

[Em(ϕt)]
2 dµt ≥ 0 .

Clearly we have
d

dt
Fm(ϕt) = −

∫
M

[Em(ϕt)]
2 dµt = −σ(t) ,

and integrating both sides in t on [0, +∞) we get∫ +∞

0
σ(t) dt = Fm(ϕ0)−Fm(ϕt) ≤ Fm(ϕ0) .

Moreover,∣∣∣∣ d

dt
σ(t)

∣∣∣∣ =
∫
M

∣∣∣∣2 ∂Em(ϕt)
∂t

Em(ϕt)−H [Em(ϕt)]
3

∣∣∣∣ dµt ≤ C

by the bounds (7.6). Then the function σ, being Lipschitz and integrable
on [0, +∞), converges to zero at +∞. This means that every C∞ limit
hypersurface of the flow ψ : M → Rn+1 satisfies Em(ψ) = 0, i. e., it is a
critical point of Fm.

To find limit hypersurfaces, we need the following compactness result
of Langer and Delladio [Del], [L].
Theorem 8.1. Let (M, gi) be a family of closed, oriented, n-dimensional
hypersurfaces, isometrically immersed in R

n+1 via the maps ϕi : M →
R
n+1; let µi be the associated measures on M and Bari the center of gravity

of ϕi, that is,

Bari =
∫
M

ϕi dµi .
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Let h be any metric tensor on M , if for some exponent p > n and C > 0
we have ∫

M
1 + |A|p dµi + |Bari| ≤ C < +∞ .

Then there exist a subsequence of {ϕi} (not relabeled) and diffeomorphisms
σi : M → M such that, {ϕi ◦ σi} converges in the H2,p weak topology of
maps from (M, h) → R

n+1 to an immersion ϕ : M → R
n+1.

Translating the hypersurfaces ϕt : M → R in order to have Bart = 0 ∈
R
n+1, we are in the above hypotheses. Hence, we can extract a subsequence

of smooth hypersurfaces ϕi = ϕti and diffeomorphisms σi : M → M such
that, for a fixed metric h on M , the sequence {ϕi ◦ σi} converges in the
H2,p weak topology to an immersion ψ : M → R

n+1.
With the arguments of the proof of Theorem 8.1 in [Del], [L] and taking
into account that in our case we have also the estimates (7.6), it is possible
to conclude that actually the convergence is in the C∞ topology and the
limit hypersurface is smooth (see also [Hu2, Prop. 3.4]).

Theorem 8.2. The family of smooth hypersurfaces ϕ0 : M → R
n+1,

immersed in R
n+1, evolving by the gradient flow for the functional

Fm(ϕ) =
∫
M

1 + |∇mν|2 dµ ,

when m > [n/2], up to reparametrizations and translations, is compact in
the C∞ topology of maps. Moreover, every limit point for t → +∞ is a
C∞ critical hypersurface of the functional Fm.

9 Some Remarks and Open Problems

9.1 Other ambient spaces. A natural extension would be to consider
an ambient space different by R

n+1 and a codimension s greater than one,
that is, a general Riemannian manifold (N, h) of dimension n+s (we remark
that Polden’s Theorem 4.1 about small time existence of the flow already
deals with hypersurfaces in a general target manifold). In this context a
functional which could be considered is

Fm(ϕ) =
∫
M

1 + |∇mω|2 dµ ,

where ω = ν1 ∧ · · · ∧ νs is an s-vector obtained by a local orthonormal
basis of the normal space to the n-dimensional immersed submanifold ϕ :
M → Nn+s. The case n = 1 was treated in [DzKS] by Dziuk, Kuwert and
Schätzle, extending Polden’s results to space curves.
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9.2 Other Functionals. It would be very interesting to study the flows
in the “critical” case 2m = n, where our proof fails since we are no longer
able to bound the constants independently of time. Notice that the well-
known Willmore functional on surfaces in R

3 (see [S2], [Wi])

W(ϕ) =
∫
M
|A|2 dµ

falls exactly into this case if we add the area term, since |A|2 is equal to
|∇ν|2. To the best of the author’s knowledge, up to now, there is no proof
of regularity of the flow, nor an example showing the development of a sin-
gularity in finite time. Mayer and Simonett have recently obtained strong
numerical evidence that a singularity could appear and by a contradiction
argument Kuwert was able to show an example of a non-embedded initial
surface becoming singular, though possibly at t = +∞ (personal commu-
nication). However, the problem is completely open in the case of initial
embedded data. See [KS1,2], [Si] for the recent results on this subject.

When 2m < n we do not expect regularity of the flow by the gradient
of Fm since the curvature term is not sufficiently strong to give regularity,
and dumb-bell-like separation phenomena should appear during the flow
of certain hypersurfaces. It should also be noticed that in this and in the
critical case, the n-dimensional unit sphere in R

n+1 collapses in finite time.
Moreover, one can consider “non-quadratic” functionals also, for in-

stance,
Fm,p(ϕ) =

∫
M

1 + |∇mν|p dµ when mp > n

(following the analogy with the Sobolev spaces), in particular,

F1,p(ϕ) =
∫
M

1 + |A|p dµ for p > n

which would give rise to a flow of order lower than the one of Fm when
n > 1.

In the same spirit another interesting functional is

Hp(ϕ) =
∫
M

1 + |H|p dµ for p > n .

In these cases the existence and regularity of the flow is a completely open
problem.

9.3 Smoothing Terms. From our analysis, it easily follows that for
all positive constants α and β the gradient flow of the functional

Fαβ
m (ϕ) =

∫
M

α + β|∇mν|2 dµ
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exists and is smooth for every positive time. Moreover, if we consider a
general positive geometric functional

G(ϕ) =
∫
M

f(ϕ, g, A, ν, . . . ,∇sA,∇lν) dµ ,

such that f is smooth and has polynomial growth, and choosing an integer
m large enough, the gradient flow of the perturbed functional with ε > 0

Gεm(ϕ) = G(ϕ) + εFm(ϕ)

does not develop singularities. This is achieved by choosing m so that the
rescaling order of |∇mν|2 is larger than the rescaling order of
f(ϕ, g, A, ν, . . . ,∇sA,∇lν), in this way the extra terms coming from G are
well controlled by the leading term in the first variation of εFm and do not
affect long time existence. Then we say that Fm is a smoothing term for
G.

Once we have a sufficiently general family of smoothing terms we can
study what happens when the parameters are varied, in particular when
the constant in front of them goes to zero.

This program, suggested by De Giorgi in [D1], [D2, Sec. 5], can be stated
in general as follows: given a geometric functional G defined on submani-
folds of the Euclidean space (or a more general ambient space),

• find a functional F such that the perturbed functionals Gε = G + εF
give rise to smooth flows;

• study what happens when ε → 0, in particular, the existence of a
limit flow and in such case its relation with the gradient flow of G (if
it exists and is smooth or singular).

Our work shows that the functionals Fm satisfy the first point when the
functional G has polynomial growth, provided we choose an order m large
enough (depending on G).

Concerning the second point, a first step would be to consider the pos-
sible limits when ε → 0 of the flows of

∫
M 1 + ε|∇mν|2 dµ when m > [n/2]

and their relation with the mean curvature flow. Even the simplest case of
the convergence of the family of flows of curves associated to the functionals

Fε
1 (γ) =

∫
S1

1 + εk2 ds

to the mean curvature flow is an open problem.

9.4 De Giorgi’s conjecture. Finally, we introduce the original smooth-
ing terms suggested by De Giorgi in [D1,2]. Given a smooth embedded
hypersurface M ⊂ R

n+1, we can consider the squared distance function
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ηM (x) = [d(x, M)]2 : R
n+1 → R which turns out to be smooth in a neigh-

borhood of the hypersurface M . Then we define the function

AM (x) =
|x|2 − ηM (x)

2
and its derivatives

AM
i1...im(x) =

∂mAM (x)
∂xi1 . . . ∂xim

whenever they exist, in particular for every x ∈ M .
The quantities AM

i1...im
(x) for x ∈ M are related to the second funda-

mental form A(x) of M and to its derivatives up to the order m − 3, for
instance

|AM
ijk(x)|2 =

∑
1≤i,j,k≤n+1

[AM
ijk(x)]2 = 3|A(x)|2 .

In general there is a one-to-one relation between the quantities AM
ijk(x) and

the second fundamental form of M at x (see [AmM]). In the case of an
immersed manifold, not necessarily embedded, the function AM (x) can be
defined using the property that every immersion is locally an embedding.

The relations of the distance function with the second fundamental form
make it a valuable tool in the study of the evolution by mean curvature (see
[AmS], [So]) and more generally of geometric functionals and flows (see for
instance [AmM], [DeZ1,2]).

De Giorgi suggested that the gradient flow of the functionals

DGm(ϕ) =
∫
M

1 + |AM
i1...im |2 dµ

when m is large enough, does not become singular. By analogy with our
work we expect that when m >

[
n
2

]
+ 2 we obtain regularity.

The first variations of these functionals have been studied by Ambrosio
and the author in [AmM, Sec. 5.3]: the leading term of the first variation
of DGm turns out to be a constant multiple of the leading term of Em−2

(see Theorem 3.7),

2m(−1)m
m− 2 times︷ ︸︸ ︷
∆∆ . . . ∆H ,

Moreover, the functional DGm has the same rescaling properties of Fm−2.
The difficult step in repeating our proof lies in controlling a priori Sobolev
and interpolation constants, or more precisely in obtaining inequalities of
kind

‖AM
i1...ik

‖Lp(µ) ≤ C‖AM
i1...ik+l

‖Lq(µ) ,
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since the integrals are done on M but the derivatives are taken along all
the directions of the ambient space R

n+1. At this moment the original
conjecture of De Giorgi remains open.

9.5 Asymptotic Behavior. Natural open problems are the uniqueness
and the classification of the possible limit hypersurfaces of these flows, or
equivalently of the critical points of the functionals Fm (actually, it is also
unknown to the author if the hypersurface can actually go to infinity when
t → +∞). In his work [Po1] Polden completely classifies the limit curves of
the flow of the functional (1.1). The analogous n-dimensional result seems
to be a much more difficult task.
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ysis Preprint Server – Univ. Tübingen, http://poincare.mathematik.uni-
tuebingen.de/mozilla/home.e.html, 1995.

[Po2] A. Polden, Curves and Surfaces of Least Total Curvature and Fourth–



182 C. MANTEGAZZA GAFA

Order Flows, Ph.D. thesis, Mathematisches Institut, Univ. Tübingen,
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