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Abstract
We prove that iterated spaces of directions of a limit of a noncollapsing
sequence of manifolds with lower curvature bound are topologically
spheres. As an application we show that for any finite dimensional
Alexandrov space Xn with n ≥ 5 there exists an Alexandrov space Y
homeomorphic to X which cannot be obtained as such a limit.

1 Introduction

The study of Alexandrov spaces with curvature bounded from below while
being interesting as a subject in itself, has produced a lot of applications
to classical Riemannian geometry. (See [BuGP] for the basics of the theory
of Alexandrov spaces). One of the major sources of these applications
is provided by the combination of the following by now well-known facts
[BuGP]:
1. Let Mn,D

k be the class of n-dimensional Riemannian manifolds with
sectional curvatures bounded below by k and diameter ≤ D. Then
this class is precompact in the Gromov–Hausdorff topology.

2. The property of a metric space to have curvature bounded from below
is stable under taking Gromov–Hausdorff limits.

Suppose we have a sequence of manifolds Mn
i ∈ Mn,D

k converging to a
boundary space X. It is not hard to see that the Hausdorff dimension of X
cannot be greater than n. If it is equal to n we say that the sequence Mn

i

converges without collapse and if it is less than n we say that this sequence
collapses.

The first case is understood fairly well at least topologically due to the
stability theorem by Perelman [P1], which says that for sufficiently large
indices, Hausdorff approximations Mi → X are close to homeomorphisms.
(Moreover, Perelman proved that these homeomorphisms can be chosen to
be bi-Lipschitz but the proof of this statement has never been published.)

This result immediately implies the following finiteness theorem due to
Grove–Petersen–Wu which was originally proved by other means.
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Theorem 1.1 [GrPW]. The class of n-dimensional Riemannian manifolds
with sectional curvature ≥ k, diameter ≤ D and volume ≥ v has only
finitely many topological (differentiable if n �= 4) types of manifolds.

LetMn
k denote the class of all compact n-dimensional Alexandrov spaces

which can be obtained as limits of compact n-dimensional Riemannian
manifolds with sectional curvatures bounded below by k. Let Sn

k be the
subclass of Mn

k consisting of spaces that can be approximated by standard
n-spheres with Riemannian metrics with curvatures bounded below by k.

Definition 1.2. Let Xn be an Alexandrov space of curv ≥ k. We say
that the metric on Xn is smoothable if X belongs to Mn

k′ for some real
number k′.

Notice that according to Perelman’s stability theorem a smoothable
Alexandrov space is a topological manifold.

Peterson conjectured in [Pe] that for any point p in a smoothable space
X the space of directions at p is homeomorphic to a sphere. Note that this
does not follow from the Perelman’s result since there exist Alexandrov
spaces that are topological manifolds with spaces of directions at some
points different from the spheres (see Example 1.5 below).

In this paper we prove the following strengthened version of Petersen’s
conjecture:

Theorem 1.3. Suppose Xn is a smoothable Alexandrov space. Then for
any x0 ∈ Xn the space of directions Σx0X belongs to Sn−1

−1 . In particular
Σx0X is homeomorphic to a sphere of dimension n− 1.

Notice that since Sn−1
−1 ⊂ Mn−1

−1 , an obvious induction immediately
yields

Corollary 1.4. Suppose Xn is a smoothable Alexandrov space. Then
for any x0 ∈ Xn, x1 ∈ Σx0X, . . . , xi ∈ Σxi−1 . . .Σx0X the iterated space
of directions ΣxiΣxi−1 . . .Σx0X belongs to Sn−i−1

−1 . In particular every
iterated space of direction is a topological sphere.

It is not hard to construct examples of Alexandrov metric on S
n that

do not satisfy the conclusion of 1.4 provided n ≥ 5.

Example 1.5. Let Σ3 be the Poincaré homology sphere with the metric
of constant curvature 1. By taking multiple spherical suspensions of this
metric space we obtain metrics of curvature ≥ 1 on SmΣ3 for any m ≥ 1.
On the other hand Σ3 is a homology sphere and hence, by the result of
Edwards (cf. [D]) for m ≥ 2 the space SmΣ3 is known to be homeomor-
phic to Sm+3. Corollary 1.4 implies that the above metric on SmΣ3 is
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nonsmoothable.
We use metrics constructed in 1.5 to show that in fact nonsmoothable

metrics are fairly common:
Corollary 1.6. For every Alexandrov space Xn with n ≥ 5 there exists
a nonsmoothable Alexandrov space Y n which is homeomorphic to X.

Remark 1.7. In light of this corollary it would be interesting to know how
generic nonsmoothable metrics are among all Alexandrov metrics on X .
To this end we show (see Corollary 5.3 below) that if n = 4m + 1 ≥ 5
then for any Alexandrov space Xn there exists a nonsmoothable Alexan-
drov space Y which is homeomorphic to X and such that for any fixed
k ∈ R all n-dimensional spaces of curv ≥ k sufficiently close to Y are
also nonsmoothable. On the other hand, the author suspects that if X is
homeomorphic to a smooth manifold nonsmoothable metrics are not dense
among all Alexandrov metrics on X with a fixed lower curvature bound.
For example, it seems likely that every Alexandrov space of curvature ≥ 1
sufficiently Gromov–Hausdorff close to the round sphere of constant cur-
vature 1 is smoothable. Here is an indication why this might be true.
An easy volume comparison argument shows that all iterated spaces of di-
rections for such space have volumes almost equal to the volume of the
round spheres of curvature 1 of appropriate dimension and therefore are
topologically spheres. Thus no examples of the kind used in the proof of
Corollary 1.6 are possible here.

Theorem 1.3 naturally leads to the following
Question 1.8. Does the converse to Theorem 1.3 hold? In other words,
suppose Mn is an Alexandrov space such that for any point x ∈ M the
space of directions Σx0X belongs to Sn−1

−1 . Is it true that the metric on M
is smoothable?

One can ask an even more ambitious question:
Question 1.9. Does any n-dimensional Alexandrov manifold with all it-
erated spaces of directions homeomorphic to spheres belong to Mn

k?

The author suspects that this is probably false but certainly no coun-
terexamples are known at this point.
Remark 1.10. Note that Theorem 1.3 might possibly give a little more
than just topological restrictions on the spaces of directions of smoothable
Alexandrov spaces. Namely, suppose there exists an exotic sphere Σn−1

with a Riemannian metric of sec ≥ 1. Then its spherical suspension SΣn−1

is not smoothable and thus provides a counterexample to 1.9.
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Indeed, suppose SΣn−1 is smoothable. Then the space of directions at
any of the two cone points is isometric to Σn−1, hence, by Theorem 1.3
we have Σn−1 ∈ Sn−1

−1 . But this means that Σ
n−1 is a limit of standard

(n − 1)-spheres with smooth metrics of sectional curvature bounded be-
low and hence, by the result of Yamagucci [Y], this implies that Σn−1 is
diffeomorphic to a standard sphere.

In view of Corollary 1.6 one would also like to know what happens
in dimensions 2, 3 and 4. By an old result of Alexandrov [AZ], every
Alexandrov space of dimension 2 is smoothable. In dimension n = 3 it is
reasonable to expect that every Alexandrov manifold is smoothable as well.
However, for n = 4 the situation is much less clear since it is not even known
whether every four-dimensional manifold admits an Alexandrov metric of
curvature bounded from below. This is most likely false because as was
observed by Perelman, a positive answer would provide a counterexample
to the three-dimensional Poincaré conjecture.

Indeed, Perelman’s stability theorem implies that a small neighborhood
of a point in an Alexandrov space is bi-Lipschitz homeomorphic to an open
ball in the tangent cone at this point. Since a Lipschitz structure on an n-
dimensional manifold is unique for any n �= 4 ([S]), this easily implies that
an Alexandrov space homeomorphic to S3 is in fact bi-Lipschitz homeo-
morphic to S3 with the canonical metric of constant curvature 1.

Now let X4 be any 4-dimensional manifold that does not admit a Lip-
schitz structure (such manifolds exist according to [DoS]). Suppose X
admits an Alexandrov metric. It is easy to see that for any p ∈ X its space
of directions ΣpX is a simply connected manifold and hence is a homo-
topy sphere. Therefore there must exist a p ∈ X such that ΣpX is not
homeomorphic to S3 since otherwise by above argument X would admit a
Lipschitz structure.

Another interesting problem is the finiteness of the number of differen-
tiable types in Theorem 1.1 for n = 4. Differentiable finiteness for n �= 4
in Theorem 1.1 is derived from topological finiteness using the fact that a
compact topological manifold of dimension �= 4 admits only finitely many
smooth structures (cf. [KS]). Theorem 1.3 seems to indicate that a more
direct geometric argument might help to prove differentiable finiteness or
even differentiable stability for n = 4.

In this regard let us also mention that it is currently not known if
there exist Lipschitz 4-manifolds that admit nonequivalent smooth struc-
tures. If no such manifolds exist then Perelman’s stability theorem implies
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differentiable finiteness for n = 4.

The author is grateful to Karsten Grove and Luis Guijarro for many
helpful conversations during the preparation of this paper.

2 Approximation Results

Let us establish some basic properties of the class Sn−1
−1 . First of all, observe

that from its definition it is obvious that Sn−1
−1 is closed with respect to the

Gromov–Hausdorff topology among all n-dimensional Alexandrov spaces of
curv ≥ −1, i.e if Xn is a Gromov–Hausdorff limit of spaces from Sn−1

−1 then
X ∈ Sn−1

−1 . We will use this simple observation repeatedly throughout the
rest of this paper.

A basic example of a space from Sn−1
−1 is given by the following lemma

(cf. [B]):

Lemma 2.1. Let Mn be a complete Riemannian manifold of sec ≥ −1.
Let f : U → R be a proper strictly convex function on a domain U ⊂ M .
Then for any t �= minU f the level set {f = t} with the induced inner metric
belongs to Sn−1

−1 .
The proof of 2.1 is simple modulo the following two technical results

that we will state here in detail for reader’s convenience.

Theorem 2.2 [GW]. Let Mn be a Riemannian manifold and suppose
f : U → R is a proper strictly δ-convex function on some domain U ⊂M .
Then there exists a sequence of smooth functions fm : U → R such that
for any compact subset K ⊂ U we have
1. fm is strictly δ/2-convex on K for large m, and
2. fm −→

m→∞ f uniformly on K.

Another technical tool is the following special case of the metric con-
vergence theorem by Petrunin ([Pet, Theorem 1.2])

Theorem 2.3. Let Xn
m

G−H−→
m→∞ X

n be a convergent sequence of Alexandrov

spaces with boundaries. Then ∂Xn
m

G−H−→
m→∞ ∂X

n with respect to the induced

inner metrics.

Remark 2.4. Note that it is still unknown whether a level set of a convex
function on an Alexandrov space taken with the induced inner metric is
again an Alexandrov space. Thus the level sets in the above theorem in
general are not known to be Alexandrov spaces.
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Proof of 2.1. By Theorem 2.2 we can find a sequence of strictly convex
smooth functions fm uniformly converging to f on compact sets. Fix a t
satisfying conditions of 2.1. Clearly {fm ≤ t} is a sequence of n-dimensional
Alexandrov spaces of curv ≥ −1 converging to the n-dimensional Alexan-
drov space {f ≤ t}. By Petrunin’s Theorem 2.3 their boundaries taken
with the induced inner metrics also converge, i.e.

{fm = t} G−H−→
m→∞ {f = t} .

By Gauss’ formula, the level sets {fm = t} are smooth manifolds of sectional
curvature ≥ −1. As level sets of proper strictly convex smooth functions
they are obviously diffeomorphic to S

n−1 and therefore {f = t} ∈ Sn−1
−1 . ✷

3 Concavity of Distance Functions on Alexandrov Spaces

In [P2] Perelman introduced the following definition.
Definition 3.1. A function f : U → R defined on a domain U in an
Alexandrov space X is called λ-concave if for any unit speed shortest
geodesic γ ⊂ U the function t �→ f(γ(t)) + λt2 is concave.

Example 3.2. A basic example of λ-concave functions on an Alexandrov
space is given by the distance functions. Indeed, Toponogov triangle com-
parison implies that distance functions in a space of curvature ≥ k are more
concave than distance functions in the model space of constant curvature
k and therefore it is easy to see that the following property holds:

Let p, q ∈ X be two points in an Alexandrov space X of curv ≥ k. Let
d = d(p, q) and ε < d/2. Then f(·) = d(·, q) is λ-concave in B(p, ε) where
λ depends only on d and the lower curvature bound k.

Here are some obvious basic properties of λ-concave functions.

• Just as for concave functions, a positive linear combination and an
infimum of a family of λ-concave functions are again λ-concave.

• A pointwise limit of λ-concave functions is λ-concave.
Example 3.3. The class of examples of λ-concave functions given by
Example 3.2 can be enlarged using the following simple observation from
[P2]: If f is λ-concave with λ < 0 and φ : R → R+ is a concave C2 function
satisfying 0 ≤ φ′ ≤ 1 then φ(f) is again λ-concave. Indeed, it is clearly
enough to consider f : R → R. If f is C2 then λ-concavity of f is equivalent
to the inequality f ′′ ≤ −λ. Computing the second derivative of φ(f) we
observe

φ(f)′′ = φ′′(f)(f ′)2 + φ′(f)f ′′ ≤ f ′′ ≤ −λ .
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The general case immediately follows from this one since any λ-concave
function on R can be approximated by C∞ λ-concave functions.

4 Proof of Theorem 1.3

The goal of this section is to prove Theorem 1.3 stated in the Introduction.
Let us describe the strategy of the proof.

First of all, we can quickly reduce the situation to the case of pointed
convergence of Riemannian manifolds with curvature bounded below to
Tx0X where x0 is any fixed point in the limit space X.

In [P2] Perelman carried out a construction of strictly convex func-
tions in a neighborhood of a point p of a given Alexandrov space Xn of
curv ≥ k by using a special kind of averaging procedure for distance func-
tions. This construction has a remarkable property: it is stable under
Gromov–Hausdorff approximation of Xn by spaces of the same dimension
(cf. [PP93, Lemma 4.3]). More precisely, if Y n is an Alexandrov space of
curv ≥ k Gromov–Hausdorff close to Xn, then we can lift the distance
functions used in the construction of f and construct a function f̃ on Y
which will be uniformly close to f and strictly convex in a neighborhood of
p̃. We use a modification of Perelman’s construction to obtain a sequence
of strictly convex functions fm on Tx0X satisfying the following conditions:

(i) Each fm can be lifted to a strictly convex function f̃ i
m on Mn

i .
(ii) Properly rescaled level sets of fm converge to the space of directions

Σx0X.

Now level sets of f̃ i
m belong to Sn−1

−1 by 2.1 therefore level sets of fm belong
to Sn−1

−1 by 2.3, and finally Σx0X belongs to Sn−1
−1 as a limit of rescaled

level sets of fm.

Proof of Theorem 1.3. Recall that we start with a sequence of mani-
folds Mn

m with sectional curvatures bounded below by k converging to an
Alexandrov space Xn. Let x0 ∈ Xn be any point. Let us first of all show
that we can assume that X is isometric to the tangent cone Tx0X and the
lower curvature bounds for Mn

m’s converge to 0.
Indeed, denote εm = dG−H(Mm,X). By assumption εm −→

m→∞ 0. For
each m there exists a 2εm-Hausdorff approximation hm : X → Mm and a
2εm-Hausdorff approximation gm :Mm → X such hm ◦ gm and gm ◦hm are
uniformly 4εm close to the identity maps of X and Mm respectively. Let
xm = gm(x0).
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Lemma 4.1. Under the above assumptions we have the following conver-
gence (

1√
εm
Mm, xm

)
G−H−→
m→∞ (Tx0X, o) (1)

where o is the cone point of Tx0X.

Proof. By the definition of a tangent cone(
1√
εm
X,x0

)
G−H−→
m→∞ (Tx0X, o) .

Denote by dm, d and d̄ the intrinsic metrics on Mm,X and Tx0X respec-
tively.

For any fixed R we know that δm(R) = dG−H(Bd/
√

εm
(x0, R), Bd̄(o,R))

→ 0 as m→ ∞. Using the triangle inequality this yields
dG−H

(
Bdm/

√
εm
(xm, R), Bd̄(o,R)

) ≤ √
εm + δm(R)→ 0 as m→ ∞ ,

which proves the desired convergence (1). ✷

From now on we will assume that to begin with (Mm, xm)
G−H−→
m→∞ (Tx0X, o)

and sec(Mm) ≥ εm where εm −→
m→∞ 0.

Let us proceed with the construction of fm. Fix a small δ > 0 and let
δ′ � δ. Throughout the rest of the proof we will denote by c(n) various
constants depending only on n. We will denote by ci or c various constants
depending on n, δ and X but not on δ′.

Choose a collection {qα}α∈A to be a maximal δ-separated net in Σx0X.
For each qα choose {qαβ}β=1,...,Nα be a maximal δ

′-net in B(qα, δ). The ball
here is taken in Σx0X. Note that Nα can be estimated from below by

Nα ≥ c(n) vol(Σx0X)(δ/δ
′)n−1 . (2)

Indeed, by the absolute volume comparison for Alexandrov spaces [BuGP]
we have that

volB(qαβ, δ
′) ≤ c(n)(δ′)n−1

and by the relative volume comparison
volB(qα, δ) ≥ vol(Σx0X)c(n)(δ/π)

n−1 .
But since the net is taken to be maximal, the balls {B(qαβ, 2δ′)}β=1,...,Nα

cover B(qα, δ). Hence
Nα · c(n)(δ′)n−1 ≥ vol(Σx0X)c(n)(δ/π)

n−1

and therefore
Nα ≥ c(n) vol(Σx0X)(δ/δ

′)n−1

which proves (2). We will use this estimate later in the proof.
Let φδ′ : R → R be the continuous function uniquely determined by the

following properties:
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(1) φδ′(0) = 0;
(2) φ′δ′(t) = 1 for t ≤ 1− δ′;
(3) φ′δ′(t) = 1/2 for t ≥ 1 + δ′;
(4) φ′′δ′(t) = −1/(4δ′) for 1− δ′ < t < 1 + δ′.
Now define fδ′α by the following formula:

fδ′α(x) =
1
Nα

Nα∑
β=1

φδ′
(
d(x, qαβ)

)
.

Then according to Lemma 3.6 from [P2] (cf. [PP93, Lemma 4.3]) the func-
tion fδ′α is strictly c/δ′-concave in B(o, δ′/2) for all sufficiently small δ′

(we will reprove this statement in Lemma 4.2 below). Finally, define fδ′ as
fδ′(x) = minα fδ′α(x). Then it is clear that fδ′ is strictly c/δ′-concave in
B(o, δ′/2).

Let us examine this function more carefully. First, observe that for all α
we get fδ′α(o) = φδ′(1) and hence fδ′(o) = φδ′(1). Moreover, we claim that
o is a point of a strict local maximum of fδ′ . Indeed, let x ∈ B(o, δ′) be a
point sufficiently close to o with d(o, x) = t. Without too much abuse of
notation we can write x = tξ for some ξ ∈ Σx0X. By our construction there
exists an α0 such that �ξqα ≤ δ. Then clearly �ξqαβ ≤ 2δ, and therefore by
the first variation formula d(ξ, qαβ) ≤ 1 − t cos(3δ) for sufficiently small t.
Hence, by monotonicity of φδ′ we immediately get

fδ′(tξ) ≤ φδ′
(
1− t cos(3δ)) < φδ′(1) = fδ′(o) .

We will give a more accurate estimate for fδ′(tξ) later.
Let us lift fδ′ to the elements of the sequence (Mm, xm) in a natural way.

More precisely, according to (1) there exists a µm-Hausdorff approximation
hm : B(o, 2) → BMm(xm, 2), where µm −→

m→∞ 0 and hm(o) = xm. Let

qmα = hm(qα) and qmαβ = hm(qαβ) for all α and β. Then we put

fm
δ′α(y) =

1
Nα

Nα∑
β=1

φδ′
(
d(y, qmαβ)

)

and
fm

δ′ (y) = minα
fm

δ′α(y) .

The most important technical part in the proof of Theorem 1.3 is the
following modification of Lemma 3.6 from [P2].

Lemma 4.2. For µm � δ′ we have that fm
δ′ is c/δ

′ concave inBYm(xm, δ
′/2)

where the constant c is independent of δ′ but it does depend on X and δ.
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Remark 4.3. Let us mention that the statement of 4.2 is essentially con-
tained in the proof of [PP93, Lemma 4.3]. However, since the proof there is
omitted and the proof of [P2, Lemma 3.6] is not very detailed, we present
a complete proof here.

Here is the informal idea of the proof. Fix a sufficiently large m and let
γ(t) be a geodesic in BYm(xm, δ

′/2) and let uαβ(t) = d(γ(t), qmαβ).
Suppose for a moment that uαβ(t) is smooth it t for all indices αβ.

By 3.3 (φδ′(uαβ))(t) is c1-concave for any δ′ > 0 where c1 depends only
on the lower curvature bound for Mm ( recall that d(γ(t), qmαβ) ≈ 1) and
therefore (φδ′(uαβ))′′(t) ≤ −c1.

On the other hand a volume comparison argument shows that for any
fixed t we have |u′αβ(t)| > c2 for vast majority of indices αβ. For all
such indices we have (φδ′(uαβ))′′(t) = φ′′δ′(uαβ)(u′αβ(t))

2+φ′δ′(uαβ)u′′αβ(t) ≤
− 1

δ′ (c2)
2 + c1. Thus for all indices satisfying |u′αβ(t)| > c2 we can make

(φδ′(uαβ))′′(t) be as negative as we like by taking δ′ to be sufficiently small
and since for the remaining indices (φδ′(uαβ))′′(t) ≤ c1, the same is true for
the average of (φδ′(uαβ))′′(t).
Remark 4.4. Our proof will also show that fδ′ is strictly c/δ′-concave in
B(o, δ′).

Proof of Lemma 4.2. Since the minimum of a family of concave functions is
again concave it is certainly enough to prove the desired concavity property
for each fm

δ′α.
First observe the following: Let Γ ⊂ Σn−1 be any subset in a space of

curv ≥ 1. Consider the set Uε = {x ∈ Σ | π/2 − ε ≤ d(x,Γ) ≤ π/2 + ε}.
Then vol(Uε) ≤ c(n)ε. This is a direct corollary of the volume comparison
for Alexandrov spaces (cf. [BuGP, Lemma 8.2]). Therefore, if {zi}i=1,...,N

is a maximal δ′-net in Uε, then

N ≤ εc(n) vol(Σ)(δ′)1−n . (3)

Now let xz ⊂ BYm(xm, δ
′/2) be a shortest curve and let y be its mid-

point. Let t = d(xy). Consider the set of indices I ′α such that for any
αβ ∈ I ′α we have | cos�qαβyx| > ν. And let I ′′α be the set of indexes for
which | cos�qαβyx| ≤ ν. Here �qαβyx stands for the minimal possible
angle between yx and a shortest geodesic connecting y and qαβ.

Denote N ′
α = |I ′α| and N ′′

α = |I ′′α|.
Note that for small µm and for β1 �= β2 we certainly have �qmαβ1

xqmαβ2
≥

δ′/2. Hence, by (3) it follows that N ′′
α ≤ νc(n)(δ′)1−n. On the other

hand, according to (1) the total number of points Nα = N ′
α +N ′′

α satisfies
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Nα ≥ c(δ′)1−n. Therefore
N ′′

α/Nα ≤ ν/c and N ′
α/Nα ≥ 1− ν/c . (4)

Fix a small ν satisfying
ν/c ≤ 1/2 . (5)

Now we are going to give two separate concavity estimates for fm
δ′αβ

along xz: one for αβ ∈ I ′α and the other one for αβ ∈ I ′′α.
First, choose any αβ ∈ I ′α. In this case, we have the following estimate:

2fm
δ′αβ(y)− fm

δ′αβ(x)− fm
δ′αβ(z) ≥ (c(δ′)−1ν2)d(xz)2 . (6)

Indeed, by construction of I ′α, we have | cos�qαβyx| > ν. Consider, for
example, the case when cos�qαβyx > ν. (The other case is treated similarly
by reversing the roles of x and z.) By the triangle comparison we obtain

d(xq) ≤ d(yq)− νt+ c1t2 and d(zq) ≤ d(yq) + νt+ c1t2
where c1 depends only on the lower curvature bound for Mm (Recall that
d(xy) ≈ 1.) Next observe that by construction, φδ′(t) is monotone for all
t and is strictly 1/4δ′ concave with constant second derivative for 1− δ′ <
t < 1 + δ′. Hence,
φδ′(d(yq)−νt+c1t2) = φδ′(d(yq))−φ′δ′ (d(yq))(νt−c1t2)−1/(8δ′)(νt−c1t2)2
which for sufficiently small t implies

fm
δ′αβ(x) ≤ φδ′

(
d(yq)− νt+ c1t2

)
≤ φδ′(d(yq)) − φ′δ′(d(yq))(νt) − (c2ν2/δ′ − c1)t2.

Similarly,
fm

δ′αβ(z) ≤ φδ′(d(yq)) + φ′δ′(d(yq))(νt) − (c2ν2/δ′ + c1)t2.
Adding these two inequalities we immediately obtain (6). So we have a
good concavity estimate for fm

δ′αβ along xz for any αβ ∈ I ′α. For the rest of
the indices 3.3 implies that fm

δ′αβ is c3-concave and therefore

2fm
δ′αβ(y)− fm

δ′αβ(x)− fm
δ′αβ(z) ≥ −c3d(xz)2 (7)

for some c3 independent of δ′. Combining (6) and (7) we get
2fm

δ′α(y)− fm
δ′α(x)− fm

δ′α(z) ≥ N ′
α/Nαc2(δ′)−1ν2d(xz)2 −N ′′

α/Nαc3d(xz)2 .
Hence, using (4) we obtain

2fm
δ′α(y)− fm

δ′α(x)− fm
δ′α(z) ≥

(
(1− ν/c)c2(δ′)−1ν2 − ν/cc3

)
d(xz)2 .

Finally, by (5) this last inequality implies that for δ′ � δ we have
2fm

δ′α(y)− fm
δ′α(x)− fm

δ′α(z) ≥ c4(δ′)−1d(xz)2. �

Lemma 4.5. For any t < δ′/4 the level set (fδ′ = φδ′(1 − t)) belongs
to Sn−1

−1 .
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Proof. By Lemma 4.2, fm
δ′ is

1
2cδ

′ concave in BMm(xm, δ
′/2). Recall that

sec(Mm) ≥ εm where εm −→
m→∞ 0. Therefore sec(Mm) ≥ −1 for large m,

and by Lemma 2.1, level sets fm
δ′ = φδ′(1 − t) belong to Sn−1

−1 for any

0 < t < δ′/2. By construction of fm
δ′ we obviously have that f

m
δ′

unif=⇒
m→∞ fδ′ .

By Theorem 2.3 this implies that (fm
δ′ = φδ′(1− t)) G−H−→

m→∞ (fδ′ = φδ′(1− t))
where the metrics on the level sets are taken to be the induced inner metrics.
Hence (fδ′ = φδ′(1− t)) ∈ Sn−1

−1 as claimed. ✷

Remark 4.6. Our proof of Lemma 4.5 actually shows that the level sets
of fδ′ belong to Sn−1

−ε for any positive ε.

Lemma 4.7. The following estimate holds for all 0 < t� δ′:
dH

(
1
t {fδ′ = φδ′(1− t)} ,Σx0X

) ≤ 1
cos(3δ) − 1

where dH means the Hausdorff distance between subsets of Tx0X and we
identify Σx0X with the unit sphere at o in Tx0X and

1
t {fδ′ = φδ′(1 − t)}

with the homothetic image of {fδ′ = φδ′(1 − t)} under the 1/t-homothety
of Tx0X.

Proof. Let x = tξ for some ξ ∈ Σx0X as before. First of all observe
that by the triangle inequality d(x, qαβ) ≥ 1 − t for any αβ and therefore
φδ′(1− t) ≤ fδ′(x).

On the other hand, as we have seen there exists an α0 such that�ξqα0≤δ.
Clearly, �ξqα0β ≤ 2δ for any β. By the cosine law we have

d2(x, qα0β) = 1 + t2 − 2t cos(�ξqα0β) ≤ 1 + t2 − 2t cos(2δ) .
For t� δ this implies d(x, qα0β) ≤ 1− t cos 3δ and therefore

fδ′α0
(x) ≤ φδ′(1− t cos 3δ) . (8)

Since fδ′(x) ≤ fδ′α0(x) we obtain
φδ′(1− t) ≤ fδ′(x) ≤ φδ′(1− t cos 3δ) (9)

for any x with d(x, o) = t and t-sufficiently small.
Now let t be sufficiently small and let us look at the level set

{fδ′(x) = φδ′(1− t)}. By inequality (9) we have
φδ′

(
1− d(x, o)) ≤ φδ′(1− t) ≤ φδ′

(
1− d(x, o) cos 3δ)

which by monotonicity of φδ′ implies
d(x, o) cos 3δ ≤ t ≤ d(x, o) .

Therefore
1 ≤ d(x, o)/t ≤ 1/(cos 3δ)

and the conclusion of Lemma 4.7 follows. ✷
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Now we can finally finish the proof of Theorem 1.3. Let us choose a
sequence of positive numbers δk −→

k→∞
0. Then by Lemma 4.7 we can choose

tk � δ′k such that

dH

(
1
tk

(
fδ′k = φδ′k(1− tk)

)
,Σx0X

)
≤ 1
cos(3δk)

− 1
where dH stands for the Hausdorff distance between subsets of Tx0X.
Hence, by Theorem 2.3 we have that

1
tk

(
fδ′k = φδ′k(1− tk)

) G−H−→
k→∞

Σx0X

in the induced inner metrics. But by Lemma 4.5 we already know that
each level set fδ′k = φδ′k(1 − tk) belongs to Sn−1

−1 . Hence Σx0X ∈ Sn−1
−1 as

well. ✷

Remark 4.8. Since the proof of Theorem 1.3 is local the theorem remains
true in case of pointed convergence of noncompact manifolds with sec ≥ k
to a limit space of the same dimension.

5 Applications of Theorem 1.3

As mentioned in the introduction, the basic example of an Alexandrov
metric on a topological manifold that does not satisfy the conditions of
Corollary 1.4 is as follows. Let Σ3 be the Poincaré homology sphere. Recall
that it can be constructed as a quotient of S3 with the canonical metric of
constant curvature 1 by a free isometric action of the icosahedral group I∗.
Therefore it is a manifold of constant curvature 1. By taking multiple
spherical suspensions of this metric space we obtain metrics of curvature
≥ 1 on SmΣ3 for any m ≥ 1. On the other hand, since Σ3 is a homology
sphere, by the result of Edwards (cf. [D]) the space SmΣ3 is known to be
homeomorphic to Sm+3 for any m ≥ 2. Since some of the iterated spaces
of directions for SmΣ3 are isometric to Σ3 this space is nonsmoothable by
Corollary 1.4.

This construction can be used to prove Corollary 1.6 which says that
nonsmoothable metrics are fairly common.
Proof of Corollary 1.6. Let Xn be an Alexandrov space of dimension
n ≥ 5. If X is not homeomorphic to a smooth manifold the statement of
Corollary 1.6 is obvious by Perelman’s stability theorem.

Now suppose that that X is homeomorphic to a smooth manifold Mn.
Let (Σn, dΣ) = Sn−3Σ3 be the n-sphere with the nonsmoothable metric

constructed above. By construction the metric on Σn is smooth away from
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Σn−4 ⊂ Σn. Let x ∈ Σn\Σn−4. We can find a small neighborhood U of x
which is a Riemannian manifold. It is clear that we can use U to construct
a metric on the connected sum M#Σn which is Riemannian away from
Σn−4 and coincides with dΣ on Σn\U . This metric is obviously Alexandrov
and it still contains points with some of the iterated spaces of directions
isometric to Σ3 and thus it is nonsmoothable.

Since M#Σn is homeomorphic to X the conclusion of Corollary 1.6
follows. ✷

The proof of Theorem 1.3 can be easily modified to prove the following
Theorem 5.1. LetMn

m be a sequence of n-dimensional Alexandrov spaces
converging without collapse to an Alexandrov space Xn with ∂X = ∅. Let
x0 ∈ Xn be any point. Then for all sufficiently large m there exist points
pm ∈Mn

m such that Σx0X is homeomorphic to ΣpmM
n
m.

To prove the statement of Theorem 5.1 we have to utilize the following
general lemma:
Lemma 5.2. Let X be an Alexandrov space without a boundary and let
f : U → R be a proper strictly concave function in some domain U ⊂ X.
Let p ∈ U be the point of strict maximum of f . Then ΣpX is homeomorphic
to any nonempty level set {f(x) = c} provided c < f(p).
Proof. Let us first prove Lemma 5.2 in the special case when f satisfies the
following extra condition:

f(x) ≤ f(p)− L · d(x, p) (10)
for all x sufficiently close to p and some fixed constant L.

First let us note that by Perelman’s stability theorem we immediately
obtain that different superlevel sets {f ≥ c} are homeomorphic to each
other for c < f(p), and since homeomorphisms of Alexandrov spaces send
boundaries to boundaries (cf. [P1, Thm 4.6]), the level sets {f(x) = c} are
homeomorphic to each other as well.

Now take any sequence of numbers λn → o. Then we know that
the pointed sequence of spaces

(
1

λn
X, p

)
Gromov–Hausdorff converges to

(TpX, o) as n→ ∞. Let us denote 1
λn
X by Yn. Without a loss of generality

we can assume that f(p) = 0. Consider gn = 1
λn
f : Yn → R. It is clear

that this family of functions is uniformly Lipschitz and uniformly bounded
in balls BYn(o,R). Therefore, by Arzela–Ascoli we can find a subsequence
gnk

uniformly converging to g : TpX → R (one can think of g as the ‘dif-
ferential’ of f). Then, obviously, g is convex and condition (10) guarantees
that it has a strict maximum at o. Now it is clear that the radial projection
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along the rays emanating from o will provide a homeomorphism between
a nonmaximal level set of g and S(o, ε) which is homothetic (and hence
homeomorphic) to ΣpX. On the other hand, by Perelman’s stability theo-
rem we know that level sets of g are homeomorphic to the level sets of gnk

for large k. Now we can conclude the proof by noticing that level sets of
gnk

are just rescaled level sets of f .
Next let us look at the general case when we do not assume that f

satisfies (10). Notice that in the proof of Lemma 4.7 we never used the fact
that X was a topological manifold. We can use the same construction to
show that for any Alexandrov space X and any point x ∈ X there exists
a Lipschitz function h which is strictly concave in a neighborhood of x
and has its maximum at x (cf. [PP93, Lemma 4.3]). The only difference
from the situation of Lemma 4.7 in constructing such a function is that we
should choose points qα and qαβ on a small metric sphere S(x, r) centered
at x. It is also easy to see that if r is chosen to be sufficiently small, the
constructed strictly concave function will satisfy the inequality similar to
inequality (8) from the proof of Lemma 4.2 above and hence it will satisfy
condition (10).

Now suppose f is a strictly concave function on U and let p be its point
of maximum. By above there exists a function h which is strictly concave on
a small neighborhood of p such that h has a maximum at p and it satisfies
condition (10). Consider the family of functions fε = f + εh where ε ≥ 0.
It is obvious that there exists an open set U ′ containing p such that each fε
is strictly concave in U ′ and has a maximum at p. It is also obvious that fε
satisfies condition (10) for any ε > 0. Thus almost maximal level sets of fε
are homeomorphic to ΣpX for any ε > 0. On the other hand fε

unif
=⇒
ε→0

f and

therefore level sets of fε are homeomorphic to level sets of f by Perelman’s
theorem. ✷

Proof of Theorem 5.1. As mentioned above the proofs of Lemma 4.1 and
Lemma 4.2 never used the fact that elements of the sequence were Rieman-
nian manifolds. Therefore, proceeding as in the proof of Theorem 1.3, we
can construct families of functions fδ′ on Tx0X and their liftings fm

δ′ on
Mm. Then, as before, we know

(1) fδ′ is strictly c/δ′ concave in B(o, δ′/2) and has a strict maximum at o.
(2) For all sufficiently large m we have that fm

δ′ is 1
2c/δ

′ concave in
BMm(xm, δ

′/2).

(3) fm
δ′

unif
=⇒

m→∞ fδ
′ .
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Perelman’s stability theorem combined with (3) implies that superlevel
sets of fδ′ and fm

δ′ are homeomorphic for all large m, and therefore, the
level sets of fδ′ and fm

δ′ are homeomorphic for all large m as well. Now let
us look at superlevel sets of fδ′ . By construction, o is the point of strict
maximum of fδ′ . Hence level sets of fδ′ are homeomorphic to Σx0X by
Lemma 5.2. By the same lemma, level sets of fm

δ′ are homeomorphic to
ΣpmYm where pm is the point of strict maximum of fm

δ′ and by transitivity
Σx0X is homeomorphic to ΣpmMm. ✷

As an immediate corollary of Theorem 5.1 we show that, for n=4l+1≥5,
Corollary 1.6 can be strengthened in the following way:

Corollary 5.3. Let Xn be an Alexandrov space of dimension n =
4l + 1 ≥ 5. Then there exists a nonsmoothable Alexandrov space Y which
is homeomorphic to X and which satisfies the following property:

For any fixed k ∈ R there exists an ε > 0 such that any Alexandrov
space Zn of curv ≥ k with dG−H(Y,Z) ≤ ε is nonsmoothable.

Proof. As before we only have to consider the case whenX is homeomorphic
to a smooth manifold Mn. Consider the diagonal action of the icosahedral
group I∗ on R

4 × · · · × R
4︸ ︷︷ ︸

l

. This action is obviously free when restricted to

S4l−1. Let Σ = S4l−1/I∗. By the same argument as in the proof of 1.6,
we observe that S2Σ is homeomorphic to Sn. Again proceeding in the
same way as in the proof of 1.6 we can construct an Alexandrov metric on
Y =Mn#S2Σ such that there is a point p ∈ Y with ΣpY isometric to SΣ.

Fix any k ∈ R. By Theorem 5.1, any Alexandrov space Zn of curv ≥ k
sufficiently close to Y has a point with a space of directions homeomor-
phic to SΣ. Since SΣ is obviously not homeomorphic to a sphere, Y is
nonsmoothable by Theorem 1.3. ✷

Remark 5.4. As pointed out to the author by the referee, it should be
possible to show that in the setting of Theorem 5.1 any iterated space of
directions of X is homeomorphic to an iterated space of directions of Mm

for large m. ( Notice that this would imply that Corollary 5.3 holds for any
n ≥ 5.)

However, to carry out the proof one has to use a refined version of
Perelman’s stability theorem the proof of which goes beyond the intent of
the present paper.
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