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c© Birkhäuser Verlag, Basel 2002

GAFA Geometric And Functional Analysis

STABILITY OF THE LIPSCHITZ EXTENSION
PROPERTY UNDER METRIC TRANSFORMS

Yu. Brudnyi and P. Shvartsman

Abstract
We show that the linear and nonlinear Lipschitz extension properties
of a metric space are not changed when the original metric is replaced
by a new metric obtained by composition with an arbitrary concave
function.

1. In what follows (M, d) stands for a metric space and X denotes
a Banach space with the norm ‖ · ‖. One introduces the Lipschitz space
Lip(M,X) as a linear space of mappings f : M → X defined by finiteness
of the seminorm

|f |Lip(M,X) := sup
x �=y

‖f(x) − f(y)‖
d(x, y)

.

Definition 1. (a) A metric space M satisfies the Lipschitz extension
property with respect to X, if there is a constant λ > 0 such that for
every M′ ⊂ M there exists an extension operator EM′ : Lip(M′,X) →
Lip(M,X) with the norm ≤ λ.

(b) M satisfies the linear Lipschitz extension property with respect to
X, if the operator EM′ can be chosen to be linear.

The optimal choice of λ is denoted by e(M,X) in case (a) and by
el(M,X) in case (b).

Now let ω : R+ → R+ be a concave non-decreasing function equaling
0 at 0. (In the sequel ω will stand for such a function.) The operation of
superposition dω := ω ◦d defines a new metric space (M, dω). This space is
called the metric transform of M by ω and denoted by the symbol ω(M).
Theorem 2. (a) e(ω(M),X) ≤ C e(M,X)2;

(b) The same inequality holds for el.
Hereafter C stands for an absolute constant.
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Remark 3. A partial case of Theorem 2 (a), for ω(t) = tα, 0 < α < 1, and
X being a dual Banach space was independently proved by A. Naor [N] in
another way.

Theorem 2 plays the role of an “amplifier” which allows us to extend
and generalize Lipschitz extension theorems previously known only for spe-
cial metrics. Thus part (a) of Theorem 2 can be applied to generalize many
extension theorems which have been proved since the classical McShane
[M] and Kirzsbraun [K] theorems appeared in 1934, see, e.g. [WW] and the
recent paper [LS] and references therein. In contrast to this intensive devel-
opment there are only few results related to the linear extension problem.
One of them, which is easily obtained by the Whitney extension method,
states that a doubling metric space has the linear Lipschitz extension prop-
erty, see, e.g. [G, p. 432]. As an example of a non-doubling metric space
possessing this property one singles out the classical Beltrami-Lobachevski
space Ln. It was proved in [BrS, Section 4] that el(Ln,R) ≤ C(n).

2. The crucial step of the proof of Theorem 2 is the following basic result
of Interpolation Space Theory (see [BL] or [BrK] for main notions of this
theory). Let �X := (X0,X1) be a Banach couple and let K(·, x; �X) be the
K-functional of an element x ∈ Σ( �X) := X0 + X1.
Theorem 4 (on K-divisibility of �X , see [BrK, Theorem 3.2.7]). Assume
that ω is a sum of concave functions ωi : R+ → R+, i ∈ N,

ω =
∞∑
i=1

ωi (pointwise convergence) (1)

and for every t > 0 the following inequality

K(t, x; �X) ≤ ω(t) (2)
is true. Then there exists a decomposition x =

∑∞
i=1 xi (convergence in

Σ( �X)) such that K(t, xi; �X) ≤ γωi(t) for all t > 0 and i ∈ N. Here γ > 0
is an absolute constant.

For the formulation of a “linear” version of this result recall the follow-
ing:
Definition 5. A Banach couple �X is said to be K-linearizable if there
exist a positive constant λ and two families of linear bounded operators
{Ut : Σ( �X) → X0 : t > 0} and {Vt : Σ( �X) → X1 : t > 0} such that
Ut + Vt = IdΣ( �X) for all t > 0 and for every x ∈ Σ( �X) and t > 0

‖Utx‖X0 + t‖Vtx‖X1 ≤ λK(t, x; �X) .
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We set λ( �X) := inf λ.

Theorem 6. Suppose �X is K-linearizable and condition (1) holds. Then
there exists a family of linear operators {Ti : Σ( �X) → Σ( �X) : i ∈ N} such
that

IdΣ( �X) =
∞∑
i=1

Ti (pointwise convergence)

and for every element x ∈ Σ( �X) satisfying (2) and every t > 0, i ∈ N

K(t, Tix; �X) ≤ γλ( �X)ωi(t) .

The proof of this result literally follows the proof of Theorem 3.2.7 in
[BrK]. The only change is required in the definition of elements x0(t), x1(t)
of that proof, see (3.2.30), p. 327 of [BrK]. Instead of that we now use
operators Ut, Vt of Definition 5 to set x0(t) := Utx and x1(t) := Vtx. ✷

3. We apply these results to the Banach couple �L:=(l∞(M,X),Lip(M,X)).
Here l∞(M,X) is the space of bounded mappings f : M → X equipped
with the norm ‖f‖l∞(M,X) := sup{‖f(m)‖ : m ∈ M}. The K-functional of
this couple is related to the modulus of continuity of a mapping f : M → X,
i.e.

Ω(t, f) := sup
{‖f(m) − f(m′)‖ : d(m,m′) ≤ t

}
.

The least concave majorant of Ω will be denoted by
�
Ω.

Proposition 7. For every f ∈ Σ(�L) and t > 0
1
2

�
Ω (t, f) ≤ K(t, f ; �L) ≤ 3e(M,X)

�
Ω (t, f) . (3)

Proof. Given ε > 0 and t > 0 choose a decomposition f = f0 +f1 such that

‖f0‖l∞ + t‖f1‖Lip ≤ K(t, f ; �L) + ε .

Here and below we omit M and X from notations writing, e.g. ‖f‖l∞
instead of ‖f‖l∞(M,X). Then we have

Ω(t, f) ≤ Ω(t, f0) + Ω(t, f1) ≤ 2‖f0‖l∞ + t|f1|Lip ≤ 2K(t, f ; �L) + 2ε .

Since the K-functional is concave and ε > 0 is arbitrary, this implies the
left inequality in (3).

Fix now t > 0 and choose a maximal t-net Nt in M, i.e. (i) d(x, y) ≥ t
for different x, y in Nt, and (ii) for every x ∈ M there is x̂ ∈ Nt such that
d(x, x̂) < t.

Estimate the norm of f |Nt in Lip(Nt,X). For every x, y ∈ Nt, x �= y we
have ∥∥f |Nt(x) − f |Nt(y)

∥∥ =
∥∥f(x) − f(y)

∥∥ ≤�
Ω

(
d(x, y), f

)
.
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Since
�
Ω is concave, the function

�
Ω (t)/t is non-increasing so that by (i)

|f |Nt |Lip(Nt,X) ≤ sup
{�

Ω (d(x, y), f)
d(x, y)

: x, y ∈ Nt , x �= y

}
≤

�
Ω (t, f)

t
.

Now let e(M,X) < ∞. Given ε > 0 choose an extension f1 : M → X
of f |Nt such that

|f1|Lip ≤ (
e(M,X) + ε

)�
Ω (t, f)

t
. (4)

Set f0 := f − f1 and estimate ‖f0‖l∞ . To this end given x ∈ M choose
x̂ ∈ Nt satisfying d(x, x̂) < t. Since

‖f0(x)‖ ≤ ∥∥f(x) − f(x̂)
∥∥ +

∥∥f(x̂) − f1(x)
∥∥

and f(x̂) = f1(x̂), one gets for the left-hand side the bound Ω(d(x, x̂), f) +
|f1|Lip d(x, x̂). Together with (4) this implies

‖f0‖l∞ ≤�
Ω (t, f) +

(
e(M,X) + ε

) �
Ω (t, f) ≤ (

2e(M,X) + ε
) �

Ω (f, t) . (5)
From this inequality and (4) it follows that

K(t, f ; �L) ≤ ‖f0‖l∞ + t|f1|Lip
≤ (

2e(M,X) + ε
) �

Ω (t, f) +
(
e(M,X) + ε

) �
Ω (t, f) . �

In the “linear” case the following is true.
Proposition 8. If el(M,X) < ∞, then the couple �L is K-linearizable
and λ(�L) ≤ 6el(M,X).

Proof. Let Nt be as in Proposition 7. Consider a linear extension operator
Et from Lip(Nt,X) into Lip(M,X) with the norm ‖Et‖ ≤ el(M,X) + ε.
Now define the required operator Vt of Definition 5 by Vtf := Et(f |Nt).
Similarly to (4) and (5) we then obtain the inequalities

|Vtf |Lip ≤ (
el(M,X)+ε

)�
Ω (t, f)

t
, ‖f−Vtf‖l∞ ≤ (

2el(M,X)+ε
) �

Ω (f ; t) .

Using these and the left inequality in (3) we get

‖f − Vtf‖l∞ + t|Vtf |Lip ≤ (
3el(M,X) + 2ε

) �
Ω (f, t)

≤ 2
(
3el(M,X) + 2ε

)
K(t, f ; �L) .

Hence λ(�L) ≤ 6el(M,X). ✷

As a consequence of Theorem 4 and Proposition 7 one has
Corollary 9. Let e(M,X) < ∞ and ω, ωi be as in Theorem 4. If
f∈Lip(ω(M),X), then there exists a sequence of mappings fi∈Lip(ω(M),X),
i ∈ N, such that f =

∑∞
i=1 fi (pointwise convergence) and, in addition,

|fi|Lip(ωi(M),X) ≤ Ce(M,X)|f |Lip(ω(M),X) . (6)
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Proof. Since by (3)

K(t, f ; �L) ≤ 3e(M,X)
�
Ω (t, f) ≤ 3e(M,X)|f |Lip(ω(M),X)ω(t) ,

one can apply Theorem 4 to �X=�L and ω replaced by 3e(M,X)|f |Lip(ω(M),X)ω.
By this theorem there exists a decomposition f =

∑∞
i=1 fi with convergence

in Σ(�L) = l∞(M,X)/{const} such that for every t > 0 and i ∈ N

K(t, fi; �L) ≤ Ce(M,X)|f |Lip(ω(M),X)ωi(t) .
From here it easily follows that

∑∞
i=1 fi converges to f + c where c is a

suitable constant. Thus we can redefine f to preserve the equality f =∑∞
i=1 fi with the pointwise convergence. According to the left inequality

in (3) this implies (6). ✷

Now applying Theorem 6 and Proposition 8 we obtain in the very same
fashion the following
Corollary 10. Let el(M,X) < ∞, and ω, ωi be as in Theorem 4. Then
there exists a family {Ti : Lip(ω(M),X) → Lip(ωi(M),X) : i ∈ N} such
that

IdLip(ω(M),X) =
∞∑
i=1

Ti (pointwise convergence)

and, in addition, supi ‖Ti‖ ≤ Cel(M,X).

4 Proof of Theorem 2. According to Lemma 3.2.8 in [BrK]

ω(t) ≈
∞∑
i=1

min(λi, µit) , t ∈ R+ (7)

with suitable λi, µi > 0 and absolute constants of equivalence. Thus it
is natural to prove first the required result for “atoms” min(λi, µit). In
turn, the latter follows from the corresponding result for α(t) := min(1, t),
t ∈ R+.
Lemma 11. (a) e(α(M),X) ≤ 3 e(M,X); (b) The same is true for el.

Proof. Let M′ ⊂ M and let f ∈ Lip(α(M′),X) be such that |f |Lip(α(M′),X)

≤ 1. Denote A = {x ∈ M : d(x,M′) ≥ 1}. Then fix x0 ∈ M′ and
define a mapping g : M′ ∪ A → X by setting g(x) := f(x), x ∈ M′ and
g(x) := f(x0), x ∈ A.

Clearly, |g|Lip(M′∪A,X) ≤ 1, so that given ε > 0 we can extend g to
a Lipschitz mapping g̃ : M → X with constant K := e(M,X) + ε. In
particular, g̃ extends f . If x, y ∈ M\A, then we can find x′, y′ ∈ M′ with
d(x, x′) ≤ 1 and d(y, y′) ≤ 1. Hence∥∥g̃(x) − g̃(y)

∥∥ ≤ ∥∥g̃(x) − g̃(x′)
∥∥ +

∥∥f(x′) − f(y′)
∥∥ +

∥∥g̃(y′) − g̃(y)
∥∥
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≤ Kd(x, x′) + α
(
d(x′, y′)

)
+ Kd(y, y′) ≤ 2K + 1 .

Similarly, if x ∈ A and y ∈ M \ A find y′ ∈ M′ with d(y, y′) ≤ 1. Hence∥∥g̃(x) − g̃(y)
∥∥ ≤ ∥∥f(x0) − f(y′)

∥∥ +
∥∥g̃(y′) − g̃(y)

∥∥ ≤ 1 + K .

Thus for all x, y ∈ M∥∥g̃(x) − g̃(y)
∥∥ ≤ min

{
Kd(x, y), 2K + 1

} ≤ (2K + 1)α
(
d(x, y)

)
≤ (

3 e(M,X) + 2ε
)
α
(
d(x, y)

)
and the statement (a) follows. The corresponding modification of the proof
for the “linear” case is obvious. ✷

Let M′ ⊂ M and f ∈ Lip(ω(M′),X). We have to find an extension
f̃ ∈ Lip(ω(M),X) of f satisfying

|f̃ |Lip(ω(M),X) ≤ Ce(M,X)2 |f |Lip(ω(M′),X) . (8)

In the second part of the theorem we also have to define f̃ linearly de-
pending on f . Using decomposition (7) and Corollary 9 with ωi(t) :=
min(λi, µit), i ∈ N, we represent f as a sum f =

∑∞
i=1 fi (pointwise con-

vergence) with fi : M′ → X satisfying
|fi|Lip(ωi(M′),X) ≤ Ce(M,X)|f |Lip(ω(M′),X) , i ∈ N .

Using this and Lemma 11, (a) we now obtain an extension f̃i : M → X
satisfying

|f̃i|Lip(ωi(M),X) ≤ 3Ce(M,X)2|f |Lip(ω(M′),X) , i ∈ N . (9)

Now set f̃ :=
∑∞

i=1 f̃i and show that f̃ is well defined and satisfies (8).
Given x ∈ M we choose a point x0 ∈ M′ and write∥∥∥∥

n∑
i=m

f̃i(x)
∥∥∥∥ ≤

n∑
i=m

∥∥f̃i(x) − f̃i(x0)
∥∥ +

∥∥∥∥
n∑

i=m

f̃i(x0)
∥∥∥∥.

Since f̃i(x0) = fi(x0), i ∈ N, this and (9) imply∥∥∥∥
n∑

i=m

f̃i(x)
∥∥∥∥ ≤ 3Ce(M,X)2|f |Lip(ω(M′),X)

n∑
i=m

ωi

(
d(x, x0)

)
+

∥∥∥∥
n∑

i=m

fi(x0)
∥∥∥∥.

But
∑∞

i=1 fi(x0) and
∑∞

i=1 ωi(d(x, x0)) are convergent, therefore the right-
hand side of this inequality tends to 0 as m,n → ∞. Thus f is well defined.
It remains to note that by (9) and (7)∥∥f̃(x) − f̃(y)

∥∥ ≤
∞∑
i=1

∥∥f̃i(x) − f̃i(y)
∥∥

≤ 3Ce(M,X)2|f |Lip(ω(M′),X)

( ∞∑
i=1

ωi

(
d(x, y)

))

≤ C1e(M,X)2|f |Lip(ω(M′),X)ω
(
d(x, y)

)
, x, y ∈ M ,
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with suitable C1. Thus part (a) of Theorem 2 is proved.
As for part (b) one should repeat word for word the proof of part

(a) replacing Corollary 9 by Corollary 10 and statement (a) of Lemma
11 by statement (b). If in this case Ei denotes the corresponding lin-
ear extension operator from Lip(ωi(M′),X) into Lip(ω(M),X) for which
‖Ei‖ ≤ 3 el(M,X), then the required extension operator is defined by
E =

∑∞
i=1EiTi. Here Ti are linear operators of Corollary 10.

The proof of Theorem 2 is complete. ✷
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