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1 Introduction

1.1 Summary. One of the special features of 4-dimensional differential
geometry is the existence of objects with self-dual (SD) or anti-self-dual
(ASD) curvature. The objects in question can be connections in an auxil-
iary bundle over a 4-manifold, leading to the study of instantons in Yang–
Mills theory [DK], or as in this paper, Riemannian metrics or conformal
structures. Although such ASD conformal structures give absolute min-
ima of the functional c �→ ‖W (c)‖22, where W (c) denotes the Weyl tensor
of the conformal structure c, variational methods are not well suited to
the study of this problem, essentially because of its conformal invariance.
For this reason, gluing theorems provide a very important source of infor-
mation about ASD conformal structures. Our purpose in this paper is to
give some new and rather general gluing theorems for ASD and Hermitian-
ASD conformal structures, following the method suggested by Floer in [F].
The prototypical gluing theorem takes a pair (Xj , cj) (j = 1, 2) of com-
pact conformally ASD 4-manifolds and analyzes the problem of finding an
ASD conformal structure c on X = X1�X2 that is ‘close to’ cj in suitable
subsets Xj\Bj ⊂ X1�X2. In this situation there exist finite-dimensional
vector spaces (the obstruction spaces) H2

cj(Xj) whose vanishing is sufficient
to guarantee the existence of c with the desired properties. (If H2

cj(Xj) �= 0,
then the gluing theorem yields a map from another finite-dimensional vec-
tor space into H2

c1(X1)⊕H2
c2(X2), the zeroes of which yield ASD conformal

structures on X1�X2.)
The result just stated (gluing for compact conformally ASD spaces)

was proved by Donaldson and Friedman [DF] and in a very special case by
Floer [F]. The approach of [DF] was to exploit the twistor description [P],
[AtHS] of conformally ASD spaces, to translate the gluing problem into one
of deformation theory of complex singular spaces. Floer, on the other hand,
worked directly with the 4-manifolds and used some tools from the theory
of elliptic operators on non-compact manifolds with cylindrical ends.
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One of the motivations for the present work was the desire to extend the
basic gluing theorem to handle the case where the (Xj , cj) are conformally
ASD orbifolds with isolated singular points. Such an extension opens up the
possibility of obtaining new examples of conformally ASD spaces by desin-
gularizing conformally ASD orbifolds within the ASD category. Indeed, the
process of resolution of orbifold singularities amounts to taking a (gener-
alized) connected sum with a suitable standard orbifold with precisely one
singular point, and examples of such standard orbifolds are now known for
many of the finite subgroups of SO4 [Kr], [L1], [GL]. The simplest possible
case of Z2-singularities was studied in [LS2], where the methods of [DF]
were extended to give gluing theorems for these orbifolds. The method
was further extended to cover cyclic singularities, by Jian Zhou [Z], but
becomes increasingly complicated owing to the singularities developed by
the corresponding twistor spaces.

On general grounds, however, one should expect that Floer’s analytical
approach might provide a simpler framework for such generalized gluing
theorems. Indeed, in that approach the first step is to blow up Xj at the
marked point 0j at which the gluing takes place. This blow-up results in
a manifold with an infinite cylindrical end, or more-or-less equivalently,
a compact manifold with boundary, equipped with a b-metric [Me]. The
cross-section of the cylinder is diffeomorphic to the added boundary compo-
nent, both being the link in Xj of 0j , and the singularity has disappeared
completely. Having reached this point, it is quite reasonable to take 4-
manifolds with boundary, equipped with conformally ASD b-metrics as the
basic entities to glue, regarding compact manifolds and orbifolds as special
cases. Our main result here is indeed a gluing theorem for pairs of confor-
mally ASD b-manifolds (Xj , cj), the connected sum being replaced by the
‘join’ X = X1 ∪Y X2 of X1 and X2 across Y ⊂ ∂Xj , where Y is a common
piece (union of connected components) of the boundaries of the Xj. The
precise statement involves a considerable notational overhead in the defi-
nition of the obstruction spaces and is deferred to §6; suffice it to say that
once the obstruction spaces have been correctly defined, the result is pre-
cisely analogous to the prototype mentioned before. It should perhaps be
emphasised that this theorem genuinely operates in the b-category, in that
∂X can be non-empty, in which case the gluing theorem produces a con-
formally ASD b-metric on X or, in more traditional language, a complete
conformally ASD metric on X\∂X with cylindrical asymptotics.

Such a gluing theorem immediately poses questions about the existence
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of conformally ASD b-metrics. The first observation is that near each com-
ponent Y of the boundary, the metric must be asymptotic to a conformally
ASD product metric on Y × R. Thus Y must have constant sectional cur-
vature [Be], so the new possibilities (not arising from orbifolds) are Y =
the 3-torus T 3 or Y = a hyperbolic 3-manifold. It seems that not much
is known about the existence of conformally ASD b-metrics on manifolds
with such boundary components, so we argue in §7 that Taubes’ method
[T1], [T2] can be adapted to yield conformally ASD b-metrics on X�NCP 2

for large enough N , if (X, g) is any Riemannian b-manifold such that g
is conformally flat near ∂X. In a companion paper [KoS], we also give a
simple example of a conformally ASD (in fact hyperKähler) b-metric on a
manifold with boundary equal to T 3.

In this paper we also study Hermitian-ASD conformal structures on
complex surfaces. These are particularly interesting because of their rela-
tion to scalar-flat Kähler geometry [L2], [LS1], [KLP], [L3]. Such Kähler
metrics with zero scalar curvature are of interest from the point of view
of Calabi’s extremal metric programme [Be], and even for complex sur-
faces there is no systematic existence theory. It is fortunate, then, that for
surfaces, scalar-flat Kähler metrics can be approached through Hermitian-
ASD conformal structures, and hence through gluing theorems. As for the
full ASD equations, we consider the general gluing problem for conformally
Hermitian-ASD b-metrics on compact complex surfaces with boundary, and
obtain similar results. We also illustrate our general results with a simple
application, showing that the blow-up of C

2 at an arbitrary set of points pj
admits scalar-flat Kähler metrics that are asymptotic to the Euclidean met-
ric at ∞. This generalizes LeBrun’s explicit construction [L2, Theorem 1]
of S1-invariant scalar-flat Kähler metrics on this blow-up when the pj lie
on a complex line in C

2.

It should perhaps be remarked that the ASD condition requires that an
orientation be chosen on the underlying 4-manifold, and accordingly some
care has to be taken with the construction of X1 ∪Y X2 to ensure that this
has an orientation that is compatible with the given orientations on the Xj .
This is particularly true for gluing complex surfaces: a moment’s reflection
will convince the reader that the connected sum of 2 complex surfaces never
has a complex structure compatible with the given complex structures on
the summands. One will, however, be able to glue the asymptotic region
of a suitable non-compact surface to the complement of a neighbourhood
of a point in a compact surface. In this way one gets gluing theorems that
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give sufficient conditions for the blow-up of a compact scalar-flat Kähler
metric to admit a scalar-flat Kähler metric or more generally results about
resolution of orbifold singularities of scalar-flat Kähler metrics within the
scalar-flat Kähler category.

1.2 Strategy. Gluing theorems have been pursued vigorously in many
different contexts over the last 10 or so years, and there are many ap-
proaches to the problem. For nonlinear problems like the ones studied in
this paper, involving the construction of connections or metrics with pre-
scribed curvature, the strategy is always the same: construct a family of
‘approximate solutions’ on the join of the two spaces, and then use some
variant of the implicit function theorem to obtain a nearby genuine solu-
tion. In the notation of the rest of this paper, this family of solutions will
depend on a large parameter ρ, essentially the length of the neck joining
the two spaces. As ρ → ∞, the approximate solution gets better and bet-
ter. In particular, the implicit function theorem needs to be applied when
ρ is very large, and for this some good control of the linearization of the
problem is needed in this limit. For this reason a good deal of the work
concerns the behaviour of linear operators on manifolds with long necks.
These linear problems are of interest in their own right in the context of
gluing formulae in index theory and for η-invariants: recent work in this
direction, from a point of view that is close to that of this paper, can be
found for example in [MM], [HMM]. For a more leisurely description of
gluing theorems of this type, the reader is referred to [DK, Chapter 7], [F]
or to [T2] for a recent survey of gluing problems for instantons and ASD
conformal structures. Some other geometric (nonlinear) gluing problems
are surveyed in [MP].

Having given these pointers to the literature, we shall concentrate in
the rest of this paper on the technical details of our particular problems,
without too much further motivation.

1.3 Contents. In more detail, the remaining sections of the paper are
as follows:

§2: The b-category is introduced, Fredholm properties of b-differential
operators are described, and gluing of b-metrics is explained in detail.

§3: Conformal geometry is recalled, with special reference to the ASD
equations in 4 dimensions. The relevant PDE aspects of these equations
are described.

§4: Linear aspects of our problem are discussed here, including a rather
general account of the behaviour of the kernel and cokernel of elliptic oper-
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ators on manifolds with long necks. The application of these general results
to the ASD problem is also treated along with ‘comparison theorems’ which
allow us to compare the linearization of the ASD equations on a compact
orbifold with the linearization on the corresponding ‘blown-up’ b-manifold.

§5: Nonlinear aspects of the analysis appear here, centring around the
application of the implicit function theorem to obtain a weak solution of the
ASD equations, and elliptic regularity arguments to show that this solution
is C∞ (and has optimal behaviour at the boundary, if there is one).

§6: The main gluing theorems are summarized here, both for confor-
mally ASD and conformally Hermitian-ASD metrics. The construction of
scalar-flat Kähler metrics on an arbitrary blow-up of C

2 also appears here.
§7: The b-version of Taubes’ existence theorem is given here.
§8: A number of vanishing theorems for the obstruction space H2

c (X)
are collected here.

1.4 Acknowledgements. We acknowledge useful conversations and en-
couragement from David Calderbank, Dominic Joyce, Claude LeBrun, Rafe
Mazzeo, Richard Melrose and Mario Micallef. Both authors were supported
by EPSRC while most of this work was carried out. Partially supported by
The European Contract Human Potential Programme, Research Training
Network HPRN-CT-2000-00101.

Finally our approach owes much to the work of Andreas Floer [F]. We
hope to honour this exceptional mathematician with the present work, by
bringing his insights about gluing ASD conformal structures to a wider
audience.

2 Gluing b-manifolds

In this section we recall Richard Melrose’s approach to spaces with cylin-
drical ends, and explain the relevance of these ideas in conformal geometry.
This centres around the notion of conformal blow-up by means of which a
compact Riemannian manifold (or orbifold) with a marked point is changed
into a manifold with a conformally related b-metric. There is an analogous
notion of conformal blow-down for weakly asymptotically locally Euclidean
(WALE) spaces (§2.1.3).

We also give the elements of the Fredholm theory of b-elliptic operators.
The latter involves us in a short account of the notion of ‘polyhomogeneous’
functions: such functions arise naturally and inevitably in the study of b-
differential operators and should be thought of as an extension of the idea
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of a function that is smooth up to the boundary.
Finally in this section, we give a careful description of the process of

gluing a pair of Riemannian b-manifolds, and the construction of a suitable
b-metric on their join. Thus all the material in this section is well known
to the right people; it is necessary to summarize it here in the interests of
making the present paper self-contained and fixing notation that will be
used throughout.

2.1 The b-category. We begin with the basic definitions, and then
provide some motivation. The reader can find a detailed account in [Me].

Let X be a compact n-manifold with smooth boundary ∂X; neither X
nor ∂X are assumed connected. When working near ∂X it is convenient to
fix a function x ∈ C∞(X) with values in [0, 2], such that x(p) = 0 if and only
if p ∈ ∂X and dx(p) �= 0 for all p with x(p) ∈ [0, 1]. Such a function is often
called a boundary defining function. Here and subsequently, f ∈ C∞(X)
means that f is smooth up to the boundary of X.

Near a boundary point p, one can introduce adapted coordinate systems
(x, y1, . . . , yn−1), where the yj are local coordinates near p in ∂X. Using
such coordinates we can define the b-tangent and cotangent bundles bTX
and bT ∗X. These are smooth bundles of rank n over X; over the inte-
rior Xo = X\∂X they are equal to TXo, T ∗Xo respectively, but at the
boundary, near p, bTX is spanned by the elements

x ∂
∂x ,

∂
∂y1
, . . . , ∂

∂yn−1
(2.1)

and dually bT ∗X is spanned by the elements
dx
x , dy1, . . . , dyn−1 .

It is easy to see that bTX and bT ∗X are smooth up to the boundary of X;
the basic idea of the b-category is to use these bundles in place of TX and
T ∗X in the development of differential geometry and analysis for manifolds
with boundary.

A basic example is the notion of a Riemannian b-metric. By definition,
this is just a positive-definite inner product on bTX, smooth up to the
boundary. We shall not need the most general such metric, but only ‘exact’
b-metrics, which take the form

bg = dx2

x2 + h(x, y) , (2.2)

where h(x, y) is a symmetric tensor such that bg is everywhere positive-
definite. To begin with we assume that h(x, y) is C∞ up to ∂X, but we
shall soon need to allow h to be merely polyhomogeneous (see §2.2.5).
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We now give some examples to explain how b-metrics arise naturally in
conformal geometry.

Example 2.1.1: conformal blow-up. Let (X, g) be a compact
n-dimensional Riemannian manifold without boundary, let 0 ∈ X be any
point. In geodesic polar coordinates centred at 0, we have

g = dr2 + r2
(
dω2 + r2η(r, ω)

)
where r is geodesic distance from 0, dω2 is the standard round metric
on Sn−1 and η(r, ω) is a family of symmetric tensors on Sn−1, uniformly
bounded as r → 0. By multiplying g by a constant, we can assume that
these coordinates are defined for 0 < r < 2, say. The (oriented) blow-up X
of X at 0 is a smooth manifold with boundary ∂X canonically identified
with the unit sphere-bundle of 0 in X. The pull-back x of r is then a
boundary defining function and the pull-back of g = r−2g is the b-metric

g = dx2

x2 + dω2 + x2η

where η is smooth up to ∂X. We call (X, g) the conformal blow-up of X
at 0.

2.1.2 Generalization: conformal blow-up of orbifolds. Recall
[B] that an n-dimensional orbifold X is defined analogously to a manifold,
but a neighbourhood Up of p ∈ X is homeomorphic to R

n/ap, where ap :
Γp×R

n → R
n is an effective action of the finite group Γp (the ‘local isotropy

group’) on R
n. The covering map R

n → Up is called a local uniformizing
chart centred at p.

If Γp = {1} then p is a smooth point of X, otherwise p is a singular
point. The set of all singular points of X is denoted Xsing.

In this paper we shall use the term ‘orbifold’ to mean‘orbifold with iso-
lated singular points’. Then for each point p, ap(γ) only fixes 0 for each
γ �= 1 in Γp.

A Riemannian metric g on X\Xsing is called a smooth orbifold metric,
and (X, g) is called a Riemannian orbifold, if the pull-back of g to a local
uniformizing chart extends smoothly to 0 ∈ R

n and ap acts by isometries.
In particular ap gives a representation of Γp in On, the orthogonal group
of T0Rn.

By working in a local uniformizing chart one sees that the conformal
blow-up (X, g) of a singular point p of X can be defined as in §2.1.1. The
only difference is that ∂X is canonically identified with the spherical space-
form Sn−1/ap.
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Example 2.1.3: conformal blow-down of asymptotically Eu-

clidean spaces. Let (M,g) be a Riemannian manifold that is weakly
asymptotically locally Euclidean (WALE). By this we mean that there exists
a compact subset K ⊂ M and a diffeomorphism φ : (Rn\B)/a∞ → M\K
(where B is some closed ball in R

n and a∞ : Γ× R
n → R

n is an action of
the finite group Γ) such that

|g − g0| = O(r−k) , |∇j
0g| = O(r−j−k) ,

where g0 is the Euclidean metric, r is the distance from the origin of R
n and

∇0 is the covariant derivative of the Euclidean metric. This definition is
mainly of interest when k ≥ 2. The term ‘asymptotically locally Euclidean’
(ALE) has become standard for the very strong decay with k = 4. Writing
the metric in polar coordinates again, we have

g = dr2 + r2(dω2 + r−kη)
where |∇j

0η| = O(r−j−k) for j = 0, 1, 2, . . . and η is again a family of
symmetric 2-tensors on Sn−1/a∞. Set x = r−1 and we obtain

x2g = dx2

x2 + dω2 + xkη ,

a b-metric on the radial compactification of M . We refer to this process as
conformal blow-down of a WALE space.

Remark 2.1.4. Observe that from this ‘b’ point of view, the conformal
blow-up of a point and the conformal blow-down of the infinity of a WALE
space both look exactly the same; a manifold with boundary a spherical
space-form, equipped with an exact b-metric which is the standard metric
of constant curvature at the boundary.

Remark 2.1.5. By the change of variables t = ± log x , dt = ±dx/x,
the interior of a b-manifold with b-metric becomes a manifold with a cylin-
drical end diffeomorphic to ∂X × (t0,∞) or ∂X × (−∞, t0) (t0 some con-
stant), depending on the sign chosen. In these coordinates, a b-metric be-
comes a metric which approaches a Riemannian product metric on ∂X×R

at an exponential rate in t, with similar estimates on all derivatives of the
metric. We shall use this change of variables to describe the process of
gluing arbitrary b-manifolds in §2.3. We shall also often confuse a manifold
with cylindrical ends with a b-manifold (even though this runs counter to
the idea of the b-category, which is to replace non-compactness by degen-
eracy at the boundary!).

In this section we have tried to show that there is a precise sense in
which the b-category unifies orbifolds andWALE spaces. Equally important



Vol. 11, 2001 COMPLETE ANTI-SELF-DUAL SPACES 1237

is that there is a good Fredholm theory for partial differential operators
naturally associated to b-metrics. This will now be outlined.

2.2 On b-differential operators. Throughout this section, X is a C∞

manifold with boundary ∂X, x ≥ 0 is a boundary defining function, t =
− log x, and Xo = X\∂X.

Definition 2.2.1. A C∞ b-differential operator P : C∞(X,E) →
C∞(X,F ), where E and F are two vector bundles over X, is a differential
operator which can be written locally in the form P = p(x, y;x∂x, ∂y) where
p is smooth in (x, y) and polynomial in x∂x and ∂y (cf. (2.1)).

Any operator ‘naturally associated to’ a b-metric – for example the
Laplacian or Dirac operator – will automatically be a b-differential operator.
Fredholm theory for such operators has been developed by Lockhart and
McOwen [LoM], and in much more detail by Melrose and Mendoza [Me]
and is the main technical tool needed to prove our gluing theorems.

Given a b-differential operator P , there is a canonically associated indi-
cial operator I(P ) which is given locally by I(P ) = p(0, y; ∂t, ∂y), regarded
as a t-invariant differential operator on the cylinder ∂X × R. In terms of
the cylindrical model of Xo, all coefficients of P −I(P ) decay exponentially
as t→ ∞.

Definition 2.2.2. Let P : C∞(X,E) → C∞(X,F ) be a b-differential
operator of order m. Then
specb(P ) =

{
λ ∈ C : there exists u(y) �= 0 such that I(P )(eiλtu(y)) = 0

}
.

In other words specb(P ) is the set of complex numbers λ for which I(P )
has a non-trivial exponential solution with exponent iλ. Notice that here
E and F have implicitly been trivialized in the t direction along the infinite
cylinder ∂X ×R: to be precise, E and F have been identified with bundles
pulled back from ∂X by the projection ∂X × R → ∂X.

2.2.3 It is a basic fact that if P is elliptic over Xo, then specb(P )
is a discrete set which meets every horizontal strip {a < Im (λ) < b} in a
finite number of points. For the translation-invariant operator I(P ), real
elements of specb are obstructions to its invertibility in Lp spaces:
Proposition 2.3. The elliptic operator I(P ) extends to a bounded map

Lpk(∂X × R, E) → Lpk−m(∂X × R, F )
for each p and k. This map is invertible if and only if specbI(P ) ∩ R = ∅.

Here and below Lpk(X) is the Sobolev space of functions u such that
Pu ∈ Lp for every b-differential operator of order ≤ k and the measure used
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to define Lp is that defined by any C∞ b-metric on X. For the cylinder
∂X × R an example of such a metric would be a (t-invariant) Riemannian
product metric.

2.2.4 Fully elliptic b-differential operators. The b-differential
operator P is said to be fully elliptic if P is elliptic over Xo and
specb(P ) ∩ R = ∅. In view of Proposition 2.3, the latter is saying that
P is ‘invertible at ∞ (or at ∂X)’. It turns out that an elliptic b-differential
operator is Fredholm in Lp if and only if it is fully elliptic. Before stat-
ing the theorem which summarizes the mapping properties of fully elliptic
b-differential operators, we need to introduce polyhomogeneous functions.

2.2.5 Polyhomogeneity. If X is the conformal blow-up at a point
of X , then the pull-back u to X of a C∞ function on X is smooth and in
particular has an asymptotic expansion u ∼ ∑∞

j=0 uj(y)x
j near the bound-

ary, where uj ∈ C∞(∂X) for each j.
A polyhomogeneous (phg) function is C∞ in Xo and has a similar

asymptotic expansion near ∂X, but more general powers of x can appear,
as well as polynomials in log x. The set of powers that can occur is called
an index set I and must be a discrete subset of C having the additional
property that if zj ∈ I and |zj | → ∞, then Re (zj) → +∞. Given an index
set I, u ∈ C∞(Xo) is called polyhomogeneous (with respect to I) if

u ∼
∑
z∈I

xzuz(y, log x) (2.4)

where for each z, uz(y, t) is C∞ in y and polynomial in t. The symbol ∼
in (2.4) is meant in the following strong sense: if

uN =
∑

z∈I,Re (z)≤N
xzuz(y, log x) ,

then u − uN ∈ CN (X) and all derivatives of order ≤ N of u − uN vanish
at ∂X. For more details, see [Me, §5.10]; there, however, a more refined
notion of index set is used, designed to keep track of the degrees of the
polynomials uz(y, ·). We have chosen to ignore this refinement here.

We are now ready to summarize the essential properties of fully elliptic
operators on X.

Theorem 2.5. Let P : C∞(X,E) → C∞(X,F ) be a fully elliptic b-
differential operator of order m. Then

(i) P extends to a Fredholm map Lpk(X,E) → Lpk−m(X,F ) for every p
and k, with index independent of p and k.
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(ii) If u ∈ ker(P ) then u is C∞ in Xo and is phg relative to the index set
I = ispecb(P ) ∩ {Re z > 0}.

(iii) The cokernel of P can be identified with the Lp kernel of P ∗, where P ∗

is the L2-adjoint of P with respect to a b-metric on X. In particular
PLpk(X,E) can be complemented by phg sections of F .

For a proof see [Me] or [LoM].

2.2.6 Conjugation and weights. Let δ be a real number and let
P (δ) = xδPx−δ = e−δtPeδt. Then specb(P (δ)) = specb(P ) − iδ and so if P
is elliptic, then P (δ) will be fully elliptic for all δ �∈ Im specb(P ). By the
remark at the beginning of §2.2.3, P (δ) is fully elliptic for all but a discrete
set of real values δ. The index of P (δ) is locally constant in δ and jumps as
δ passes through a point in Im specb(P ).

An equivalent formulation of this observation is that an elliptic b-operator
P defines a Fredholm operator between weighted Sobolev spaces

eδtLpk(X,E) → eδtLpk−m(X,F )
for all δ �∈ Im specb(P ). Note carefully, however, that the weighted Fred-
holm alternative (analogue of Theorem 2.5 (iii)) identifies the cokernel of
this map with the kernel of the map

e−δtLpk(X,F ) → e−δtLpk−m(X,E) .
We shall need to make use of these ideas, for 0 ∈ specb for the lineariza-

tion of the conformal ASD equations.
Remark 2.2.7. If ∂X = Y1 ∪ . . .∪ Yn where the Yj are connected then

specb = spec(1)b ∪. . .∪spec(n)b where spec(j)b is the contribution from Yj. Then
one can shift these pieces independently of each other by conjugating by a
function which is equal to eδjtj near Yj . We shall not develop a systematic
notation for this situation.

2.2.8 Polyhomogeneous b-differential operators. Since poly-
homogeneous functions are at least as natural on a manifold with boundary
as functions that are C∞ up to the boundary, it is natural to widen the
class of operators we consider by allowing their coefficients to be polyho-
mogeneous relative to some index set J and continuous up to the bound-
ary. Such operators arise naturally as operators canonically associated to
a phg b-metric, i.e. a metric bg of the form (2.2) where h(x, y) is phg and
continuous up to the boundary. The results of this section, in particular
Theorem 2.5, go through in this case, the only difference being in part (ii)
where u will now have a phg expansion relative to the index set I ∪ J , I
being as before.
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2.3 On gluing b-manifolds. We shall now explain how to glue b-
manifolds across (a part of) their boundaries. The construction is com-
plicated slightly by the need to keep track of orientations. The main points
of the discussion are contained in §2.3.2, §2.3.5 and §2.3.6.

2.3.1 Data. For j = 1, 2 let Xj be a smooth, oriented, compact n-
manifold with boundary and suppose that an oriented boundaryless mani-
fold Y occurs in ∂Xj with each orientation:

Y ⊂ ∂X1 , −Y ⊂ ∂X2 .

(In what follows, we shall not indicate the orientation of Y unless orienta-
tion issues are being discussed.) Let xj be defining functions for Y ⊂ ∂Xj
and assume that xj = 1 near ∂Xj\Y . Let t1 = − log x1, t2 = log x2; then
there exist open sets Uj ⊂ Xo

j diffeomorphic to cylinders

U1 = Y × {0 < t1 <∞} , U1 = Y × {−∞ < t2 < 0} ,
such that a sequence of points tending towards Y corresponds to |tj | → ∞.
It is important to notice that Uj inherits from Xj orientation dtj ∧ orY
where orY is a given orientation of Y .

Definition 2.3.2. The manifold Xρ is defined by truncating the Uj
at ±tj = ρ and identifying the boundaries Y ×{t1 = ρ} and Y ×{t2 = −ρ}.

After the remarks of the previous paragraph, it is clear that Xρ is ori-
ented, this orientation agreeing with the given orientations on the Xj. Fur-
thermore Xρ contains a neck of length 2ρ given by {0 < t1 ≤ ρ} ∪ {−ρ ≤
t2 ≤ 0}.

2.3.3 Notation. On Xρ the function t is defined so that t = t1 − ρ
for 0 ≤ t1 ≤ ρ and t = t2 + ρ for −ρ ≤ t2 ≤ 0, and extended smoothly to
−ρ on the rest of X1 and to equal ρ on the rest of X2. The central slice of
the neck then corresponds to t = 0. See Figure 1.

Example 2.3.4. Suppose that X1 is the conformal blow-up at a
point 0, say, of a compact orbifold X . In particular a neighbourhood of
0 in X is homeomorphic to the quotient R

4/a, where a : Γ × R
4 → R

4

is an action of the finite group Γ on R
4. Suppose further that X2 is the

conformal blow-down of the asymptotic region of a WALE space X̂ , where
a neighbourhood of ∞ is homeomorphic to a neighbourhood of ∞ in R

4/a.
Then ∂X1 = Y = S3/a and ∂X2 = −Y and the construction of §2.3.1 can
be applied. The result is a generalized blow-up of 0 ∈ X , where a small ball
centred at 0 is replaced by the complement of a neighbourhood of infinity
in X̂ .
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Figure 1: The manifold Xρ with a long neck constructed by gluing the b-manifolds
X1 and X2. (Adapted from a drawing by F.N. Singer.)
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2.3.5 Gluing Riemannian b-metrics. Let X be a b-manifold. A
C∞ Riemannian metric on Xo is called a polyhomogeneous b-metric on X
if and only if it has the form (2.2) where h(x, y) is continuous up to ∂X
and has a polyhomogeneous expansion relative to some index set. Assume
now that the Xj in §2.3.1 are equipped with such phg b-metrics gj and
that near Y , h1(0, y) = h2(0, y) =: h(y), say. In terms of the cylindrical
parameters tj, the gj both approach the metric

g0 = dt2 + h(y) on X0 := R × Y

as |tj| → ∞.
We construct a Riemannian metric gρ on Xρ by picking once and for all

a standard non-increasing cut-off function β : R → [0, 1], such that β(t) = 1
for t ≤ −1/2 but β(t) = 0 for t ≥ 1/2 and using it to define new metrics

g̃1,ρ = β(t1 − ρ+ 1)g1 +
(
1− β(t1 − ρ+ 1)

)
g0

on X1 and
g̃2,ρ = β(ρ− 1− t2)g2 +

(
1− β(ρ− 1− t2)

)
g0

on X2. These formulae cut off the exponentially decreasing terms in the
asymptotic expansions of the gj leaving the standard t-independent metric
g0 for |tj| ≥ ρ. In particular the identification used in the construction of
Xρ is now an isometry and we define gρ on Xρ to be equal to g̃1,ρ for t ≤ 0
and to be equal to g̃2,ρ for t ≥ 0.

2.3.6 First properties of g�. It is clear from the construction that
gρ is equal to g1 or g2 for |t| ≥ 2 and is equal to g0 for |t| < 1/2. Even in
the damage zone {−1/2 ≤ |t − 1| ≤ 1/2}, gρ is exponentially close to g0.
By this we mean that there exists η > 0 such that

sup
K

|gρ − g0| = O(e−ηρ) as ρ→ ∞ , (2.6)

where K = {−1/2 ≤ |t− 1| ≤ 1/2} and the pointwise norm is that induced
by g0. In fact, (2.6) holds for K = {|t| ≤ T}, for any fixed T > 0, and
similar estimates hold for all derivatives of g − g0; such estimates follow
from the assumed polyhomogeneous expansions of the gj near Y .

In particular if Pj and Pρ are differential operators canonically associ-
ated to the metrics gj and gρ then Pρ is exponentially close to the Pj and
hence also to P0 on {|t| < T} for any fixed T , as ρ→ ∞.

3 The Anti-self-duality Equations

In this section we first review Riemannian and conformal geometry, pass-
ing in §3.2 to the special case of 4 dimensions where we stay for most of
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the rest of the paper. In particular, the relevant analytical aspects of the
ASD equations are given here, the main facts being summarized in Propo-
sition 3.14. In §3.3 we study the Hermitian version of the ASD equations
from the same point of view, listing the main points in Proposition 3.19.
Thus experts in 4-dimensional geometry may well be able to move straight
to these propositions, referring back if necessary to the earlier parts of this
section.

3.1 Preliminaries on metrics and conformal structures.

3.1.1 Metrics and curvature. Let (X, g) be a Riemannian n-
manifold and let h be a g-symmetric endomorphism of TX. Then the
bilinear form

gh(ξ, η) := g(ξ, η) + g(hξ, η) (ξ, η ∈ C∞(X,TX)) (3.1)

is symmetric and defines a Riemannian metric if |h| := (tr (h2))1/2 < 1 at
each point of X. Let ∇ and ∇h denote respectively the metric connections
of g and gh. Then we have

∇hξ = ∇ξ +Q
(
(1 + h)−1,∇h)ξ (3.2)

for any section ξ of TX, where Q(u, v) is an endomorphism-valued 1-form,
bilinear in (u, v).

Hence the curvature Rh of gh has the form

Rh = R0 + d∇Q
(
(1 + h)−1,∇h) +Q

(
(1 + h)−1,∇h) ∧Q(

(1 + h)−1,∇h) .
(3.3)

where R0 is the curvature of g and d∇ is the covariant exterior derivative
defined by ∇. Separating the linear and nonlinear terms in (3.3), we obtain

Rh = R0 +R′
0[h] + ε1(1 + h,∇h ⊗∇h) + ε2(1 + h, h⊗∇∇h) (3.4)

where R′
0 is a linear differential operator and each εj is real-analytic in the

first variable and linear in the second variable, with coefficients depending
only upon g and its derivatives.

3.1.2 Convention. From now on we shall use ε(u, v), ε1(u, v),
ε2(u, v), etc., generically for ‘error terms’ with the properties just men-
tioned. That is, they are real-analytic in the 0-jet of u near u = 1 and
linear in the 0-jet of v. For example, the εj in (3.13) below are not identi-
cal to those in (3.4). The point is that in order to estimate these non-linear
terms later on, all we shall need to know is their qualitative dependence
upon h and its derivatives.



1244 A. KOVALEV AND M. SINGER GAFA

3.1.3 Conformal structures. We adopt a ‘modern’ approach to
conformal structures for which we claim no originality. For more details of
this approach, the reader could consult, for example, [CP].

Let X be a C∞ manifold and let Ω = |ΛnT ∗X| be the bundle of den-
sities on X ([Hö1, p. 148]). Since Ω is an R+-bundle, Ωw has a canonical
meaning for any real w. By a Riemannian conformal structure c on X
we shall mean a suitably normalized positive-definite C∞ section of the
bundle S2T ∗X ⊗Ω−2/n. Since the top exterior power of Ω1/nTX is canon-
ically trivial a possible normalization is the condition det c = 1, but we
shall make a different choice in §3.1.5. (Here we have written Ω1/nTX for
Ω1/n ⊗ TX. We continue to omit such tensor product signs below.) Note
that c can also be viewed as a normalized metric on the weightless tangent
bundle Ω1/nTX.

A positive trivialization or choice of length-scale µ of Ω−1/n determines
a compatible Riemannian metric gµ = µ−2c on TX; any two such are
conformally related in the sense that

gµ′ = (µ′/µ)2gµ (3.5)

where µ′/µ is a positive C∞ function, so that any two compatible metrics
are related by conformal rescaling. In particular, the present approach is
equivalent to the more traditional one in which a conformal structure is
taken as a conformal equivalence class of Riemannian metrics. We shall
occasionally write g ∈ c to mean that g is compatible with c, i.e. that g
arises from c by a choice of scale µ or say that g belongs to the conformal
class of c.

The length-scale µ also defines a metric | · |µ on the tensor bundle
Ω−w/nTX⊗j ⊗ T ∗X⊗k (and any sub- or quotient bundle) by the formula

|s|µ := |µ−w−j+ks|c (3.6)

(generalizing (3.5)). This bundle is therefore said to have conformal weight
w + j − k, because of the formula

|s|µ′ = (µ′/µ)w+j−k|s|µ . (3.7)

A conformal structure c determines an identification Ω1/nTX → Ω−1/nT ∗X,
the conformal version of index-lowering. Similarly indices are raised
with c−1. Note that these operations preserve conformal weight.

Definition 3.1.4. A bundle E of conformal weight 0 is called a weight-
less bundle.

If E is a weightless bundle then a conformal structure c defines a genuine
metric on E. It is clear that any bundle associated to the tangent bundle of
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X can be written uniquely in the form Ω−a/nE, where E is weightless. We
shall frequently write bundles in this way in situations where it is necessary
to keep track of conformal weights.

3.1.5 Parameterization of conformal structures. Let (X, c) be
a conformal n-manifold with det c = 1. If h is a c-symmetric endomorphism
of TX, we define

ch(ξ, η) := c(ξ, η) + c(hξ, η)
(
ξ, η ∈ C∞(X,TX)

)
. (3.8)

For suitable h (in particular if |h| < 1 at each point) then ch will be positive-
definite. We choose to normalize ch by the requirement that h be trace-free,
rather than det ch = 1. To first order in h, these conditions agree.

Denote by E1 the bundle of c-symmetric trace-free endomorphisms of
TX; then E1 is weightless and using c can be identified with Ω−2/nS2

0T
∗X,

where S2
0 = trace-free part of the symmetric square.

In terms of E1, we can summarize this paragraph as follows: there is
an open neighbourhood B of the zero-section in C∞(X,E1), containing all
h with supX |h| < 1, such that h �→ ch is a diffeomorphism between B and
the set of all conformal structures on X.

3.1.6 Conformal invariance. It is well known in conformal ge-
ometry that certain differential operators, which a priori depend upon a
Riemannian metric, are unchanged by conformal rescaling. If such a con-
formally invariant operator P : C∞(Ω−a/nE) → C∞(Ω−b/nF ) is of order k,
say, where E and F are weightless bundles, then its symbol provides a map

Ω−a/nSkT ∗X ⊗ E = Ω−a/n+k/nSk(Ω−1/nT ∗)⊗ E → Ω−b/nF

which must be weightless. Accordingly we must have b = a− k.
The formal adjoint of a conformally invariant operator defines a con-

formally invariant operator but the conformal weights may change. Indeed
it is a familiar fact in the analysis literature (e.g. [Hö2, p. 93] that a dif-
ferential operator P : C∞(Ω1/2E) → C∞(Ω1/2F ) has a formal adjoint
P ∗ : C∞(Ω1/2F ∗) → C∞(Ω1/2E∗) independent of any metric. If we replace
Ω1/2E and Ω1/2F by Ω−a/nE and Ωk/n−a/nF where E and F are now as-
sumed weightless, then using c to identify E with E∗ and F with F ∗, we
obtain

P ∗ : C∞(Ω(1+(a−k)/n)F ) → C∞(Ω(1+a/n)E)

which is conformally invariant if P is conformally invariant.

3.2 Background to 4-dimensional geometry. 4-dimensional Rie-
mannian geometry is enriched by the existence of the special isomorphism
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so(4) = so(3) ⊕ so(3). The geometric counterpart of this algebraic fact is
the decomposition

Λ2 = Λ+ ⊕ Λ− (3.9)

for 2-forms on a 4-dimensional vector space equipped with a metric and
orientation. As far as the present work is concerned, the main consequence
of this is the presence of the anti-self-duality equations for curvatures on
an oriented 4-manifold. We start, however, with some basic algebra.

3.2.1 Algebraic preliminaries. Consider Euclidean space R
4 with

its standard metric and orientation dx0 ∧ dx1 ∧ dx2 ∧ dx3. The purpose of
this paragraph is to explain the invariant isomorphism S2

0R
4 = Λ+ ⊗ Λ−,

which will often be used below.
Consider the standard bases

e1 = dx0 ∧ dx1 + dx2 ∧ dx3 , e2 = dx0 ∧ dx2 + dx3 ∧ dx1 ,
e3 = dx0 ∧ dx3 + dx1 ∧ dx2 ,

of Λ+ and

e1 = dx0 ∧ dx1 − dx2 ∧ dx3 , e2 = dx0 ∧ dx2 − dx3 ∧ dx1 ,
e3 = dx0 ∧ dx3 − dx1 ∧ dx2 ,

of Λ−. Using the metric, er and er operate on R
4 as orthogonal complex

structures Ir and Ir, respectively, corresponding to the left and right action
of the quaternions i, j and k. In particular

I21 = I22 = I23 = I1I2I3 = −1
but

IrIs = IsIr for all r and s .

Now let A be an endomorphism of R
4. The irreducible components of

A consist of

• tr (A) ∈ R,
• ∑

tr (IrA)er ∈ Λ+,
• ∑

tr (IrA)er ∈ Λ−,
• ∑

tr (IrIsA)er ⊗ es ∈ Λ+ ⊗ Λ−,

and the maps implied by these formulae are equivariant. It is easy to see,
using standard properties of the trace, that the last of these is indeed an
isomorphism of the space of symmetric trace-free endomorphisms of R

4

with Λ+ ⊗ Λ−.
For the rest of this section, (X, c) will be an oriented conformal 4-

manifold, and g will be a Riemannian metric in the conformal class c.
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3.2.2 The anti-self-duality equation for conformal structures.
The curvature R of g, viewed as a symmetric endomorphism of Λ2 decom-
poses as

R =
(
W+ + s/12 Φ

Φt W− + s/12

)
:
(
Λ+

Λ−

)
→

(
Λ+

Λ−

)
(3.10)

where Φ is the trace-free part of the Ricci tensor of g, viewed as a section
of Λ− ⊗ Λ+ as in §3.2.1, s is the scalar curvature and W+ and W− are
respectively the self-dual and anti-self-dual parts of the Weyl curvature W .
The metric g is said to be conformally ASD if W+(g) = 0. Since W =
W+ +W− and (3.9) are conformally invariant, we also write W+(c) = 0
and call c an ASD conformal structure.

3.2.3 The deformation complex. IfW+(c) = 0 then to first order
in h the condition W+(ch) = 0 is equivalent to a conformally invariant
differential equation which will be denoted Dch = 0. This operator is part
of the deformation complex for the conformal ASD equations,

C∞(X,Ω−1/4E0) Lc−→ C∞(X,E1) Dc−→ C∞(X,Ω1/2E2) , (3.11)

of conformally invariant operators, where

Ω−1/4E0 = TX , E1 = Ω−1/2S2
0T

∗X , E2 = Ω−1S2
0Λ

+T ∗X . (3.12)

In particular each of the Ej is weightless. As we have said, Dc is the
linearization of the map h �→ W+(ch) and is a second-order operator; Lc
gives the action of infinitesimal diffeomorphisms on conformal structures,
so that Lcξ is equal to the trace-free part of the Lie derivative of c along ξ.

The operator Dc is easier to understand after use of the isomorphism
S2
0(Ω

−1/4T ∗X) = Λ−(Ω−1/4T ∗X) ⊗ Λ+(Ω−1/4T ∗X) described in §3.2.1.
Suppressing powers of Ω for the moment, recall the existence of a natu-
ral second-order elliptic operator d+d∗ : C∞(Λ−) → C∞(Λ+). This can
be coupled to any vector bundle V with connection A to yield an operator
d+Ad

∗
A : C∞(Λ− ⊗ V ) → C∞(Λ+ ⊗ V ). Then the second-order part of Dc is

the composite of this map (with V = Λ+) and projection Λ+⊗Λ+ → S2
0Λ

+.
Dc also has a zeroth-order term given by multiplication by the trace-free
part of the Ricci tensor.

The composite DcLc vanishes if c is ASD and then the deformation co-
homology groups H∗

c are defined and have a standard role [KiK] in describ-
ing the local properties of the moduli space of ASD conformal structures
near c. (3.11) is an elliptic complex, so the H∗

c (X) are finite-dimensional
vector spaces if X is a compact manifold (or orbifold) without boundary.
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3.2.4 The full ASD equations. The self-dual Weyl tensor W+
h :=

W+(ch) is obtained by orthogonal projection of Rh onto Ω1/2E2
h =

Ω−1/2S2
0Λ

+
h , where Λ

+
h is the bundle of self-dual 2-forms for ch. Since this

orthogonal projection depends real-analytically upon the 0-jet of (1 + h),
we have a formula analogous to (3.4):

W+
h =W+

0 +Dch+ ε1(1 + h, h⊗∇∇h)
+ ε2(1 + h,∇h⊗∇h) + ε3(1 + h, h ⊗ h) (3.13)

(Recall the convention regarding the εj explained in §3.1.2.)
It is convenient to remove the dependence of the target space upon

h by projecting orthogonally from E2
h onto E2 (recall that both E2 and

E2
h are subbundles of Ω−1S2Λ2). In this way we obtain a nonlinear map

F (h) : B → C∞(X,Ω1/2E2), such that F (h) = 0 if and only if ch is
conformally ASD. Summing up,
Proposition 3.14. Let (X, c) be an oriented conformal 4-manifold
and let the Ej be as in (3.12). Then there exists a C∞ map F : B →
C∞(X,Ω1/2E2), where B := {h ∈ C∞(X,E1) : supX |h| < 1}, with an
expansion of the form

F (h) =W+
0 +Dch+ ε1(1 + h, h ⊗∇∇h)

+ ε2(1 + h,∇h⊗∇h) + ε3(1 + h, h ⊗ h) (3.15)
such that F (h) = 0 if and only if ch is ASD. In (3.15), W+

0 is the self-dual
Weyl tensor of c, Dc is the linearization of h �→ W+(ch), and the εj are
nonlinear terms which conform to Convention 3.1.2.

3.3 Hermitian-ASD conformal structures. Let (X,J) be a com-
plex surface and let c be a J-Hermitian conformal structure. We shall
repeat our discussion of deformations of ASD conformal structures now
preserving the J-Hermitian condition.

3.3.1 Hermitian deformations of c. In the parameterization of
deformations of c by endomorphisms h (§3.1.5) it is easily checked that
ch is J-Hermitian if and only if [h, J ] = 0. Working equivalently with
Λ−⊗Λ+ (and forgetting about conformal weights for now) the J-Hermitian
deformations correspond to elements of the form u⊗ ω where u ∈ Λ− and
ω is the fundamental 2-form defined by c and J .

3.3.2 The conformal weight of J. For reasons that will emerge
in a moment, it is convenient to regard ω not as weightless but as a section
of the bundle Ω−1/4E2

J := Ω−3/4Λ+. Then J defines not an endomorphism
of TX but a map Ω−w/4TX → Ω−(w+1)/4TX. (In the presence of c, ω
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and J are interchangeable.) Given c and ω ∈ Λ+ such that ω is nowhere
0 in X, there is a unique choice of gauge such that Jµ := µ−1ω satisfies
J2µ = −1, so there is no loss in giving ω this strange conformal weight.
Having done so, we are forced to take u ∈ C∞(Ω1/4E1

J := Ω−1/4Λ−) so
that h = u⊗ ω is weightless. We now explain why this choice of conformal
weight is advantageous.

3.3.3 Scalar-flat Kähler metrics. It is well known [Bo], [V] that a
Kähler metric g on a complex surface (X,J) is conformally ASD if and only
if its scalar curvature is 0; we refer to such g as scalar-flat Kähler. For any
Kähler metric g, we have ∇J = 0; the complex structure is parallel for the
metric connection. An alternative characterization is that the associated
Kähler form ω should satisfy the twistor equation

Tω = 0, Tω = (∇ω)0 (3.16)

where the subscript 0 denotes trace-free part, that is, the image by the
projection

Λ1 ⊗ Λ+ → (Λ1 ⊗ Λ+)0
(whose kernel is Λ1). Indeed, a short calculation shows that if Tω = 0 and
|ω| = 1, then ∇ω = 0.

On the other hand, T is a conformally invariant operator

T : C∞(Ω−1/4E2
J) → C∞(

(Ω−3/4Λ1 ⊗ Λ+)0
)

so that we can regard a pair (c, ω) where c is a conformal structure and
ω is a nowhere-vanishing solution of the twistor equation (3.16), as being
a conformally invariant description of a Kähler metric on a 4-manifold.
Furthermore, c is ASD if and only if the Kähler metric is scalar-flat Kähler.

As in §3.3.2, the Kähler representative of c is fixed by the unique scale
which gives ω constant length equal to 1 at each point of X.

Finally we note that any Hermitian-ASD conformal structure on a com-
pact complex surface X of Kähler type (equivalently b1(X) even) is confor-
mally equivalent to a scalar-flat Kähler metric [Bo], [V]. Thus looking for
Hermitian-ASD conformal structures is, under suitable topological condi-
tions, equivalent to looking for scalar-flat Kähler metrics. We shall apply
this observation to construct scalar-flat Kähler metrics on multiple blow-
ups of C

2 in Theorem F.

3.3.4 Deformation theory of Hermitian-ASD conformal struc-
tures. Since Hermitian deformations are parameterized by a bundle of
rank 3, it might be expected that the ASD equations are now overdeter-
mined. This is not the case: it is shown in [Bo] that if c is Hermitian, then
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W+(c) lies in the image of the map

Ω3/4E2
J

ω⊗−→ Ω1/2E2
J ⊗ E2

J → Ω1/2E2

(recall that E2
J is our shorthand for the weightless version of Λ+). In

other words, 2 of the 5 components of W+ are automatically zero in the
Hermitian case. Accordingly the linearization of the ASD equations is given
by a second-order operator

Dc,J : C∞(Ω1/4E1
J) → C∞(Ω3/4E2

J)
where (ω ⊗Dc,Ju)0 = Dc(ω ⊗ u). If ω satisfies the twistor equation, then
Dc,J simplifies to a conformally invariant operator which we shall denote
by S

S : C∞(X,Ω1/4E1
J) → C∞(X,Ω3/4E2

J ) (3.17)
which depends only upon c and not upon ω. This S-operator was studied
in detail in [LS1]; it has the form d+d∗ +Φ where Φ : Ω1/4E1

J → Ω3/4E2
J is

defined by regarding the trace-free part of the Ricci tensor as a section of
Hom(Ω1/4E1

J ,Ω
3/4E2

J). The operator Dc,J or S has the same role, in the
study of Hermitian-ASD conformal structures, as the deformation complex
(3.11) for ASD conformal structures. In particular if we put

H1
c,J(X) = ker(S) , H2

c,J(X) = coker S = kerS∗ (3.18)
then H1

c,J is formally the tangent space to the moduli space of Hermitian-
ASD deformations of c, while H2

c,J is an obstruction space.

3.3.5 Nonlinear terms. The analysis of nonlinear terms in the
Hermitian-ASD equations is the same as for the full ASD equations and
leads to the following, which is the analogue of Proposition 3.14:
Proposition 3.19. Let (X, c, J) be a conformal Hermitian surface, let ω
be the (conformal) fundamental 2-form, and let

E1
J = Ω−1/2Λ− , E2

J = Ω−1/2Λ+. (3.20)

Then there exists a C∞ map FJ : BJ → C∞(X,Ω3/4E2
J), where BJ is an

open neighbourhood of the zero-section in C∞(X,Ω1/4E1), with an expan-
sion of the form

FJ(u) =W+
0 +Dc,Ju+ ε1(1 + u, u⊗∇∇u)

+ ε2(1 + u,∇u⊗∇u) + ε3(1 + u, u⊗ u) . (3.21)
such that FJ(u) = 0 if and only if cω⊗u is Hermitian-ASD. In (3.21), W+

0 is
the self-dual Weyl tensor of c, Dc,J is the linear operator mentioned above
and the εj are nonlinear terms which conform to Convention 3.1.2. Finally
if ω satisfies the twistor equation, so that (c, ω) is conformal to scalar-flat
Kähler, then Dc,J can be replaced by the operator S of (3.17).
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This completes our study of the PDE aspects of the two problems of
interest in this paper. We have seen that when regarded as ‘perturbation
problems’, both have elliptic linearizations (in the case of the full ASD equa-
tions it is necessary to divide by the action of the diffeomorphism group).
We are going to apply Propositions 3.14 and 3.19 on the manifold Xρ to
expand the ASD equations about the approximate solution gρ constructed
in §2.3. In the next section the behaviour of the linearizations Dc and Dc,J
will be studied, leading to an application of the implicit function theorem
to solve the equations in §5.

4 Linear Theory on X�

This section is devoted to a discussion of the linear aspects of our gluing
problems. The first part includes the ‘main estimate’ (Proposition 4.2)
which is one of the key technical results needed for all our gluing theorems.
This proposition states, roughly speaking, that whenever a fully elliptic
operator Pρ on Xρ is obtained by gluing fully elliptic operators Pj on Xj
then kerPρ and cokerPρ are well approximated by kerP1 ⊕ kerP2 and
cokerP1⊕ cokerP2, and that Pρ induces a uniformly bounded isomorphism
between suitable complementary subspaces.

In §4.2 we discuss the linearized operator that arises in the deformation
complex and note that it is never fully elliptic on a b-manifold. This entails
a discussion of the linearization over cylinders which is taken further than
is strictly needed for most of the gluing theorems.

In §4.3 we consider b-manifolds that are conformal blow-ups and blow-
downs of compact or WALE spaces and compare the ‘Hodge’ version of
the deformation complex for a b-manifold with the analogous definitions in
terms of the compact or WALE models. Here conformal invariance is an
essential tool.

Finally in §4.4 we give comparison results for the operator S that arises
in the Hermitian-ASD problem.

4.1 Stretching the neck. In this section we consider the behaviour of
linear elliptic operators on Xρ as ρ → ∞, under the assumption that the
corresponding operators over X0, X1 and X2 are fully elliptic. The main
points of the argument are based closely on Floer’s paper, but with several
simplifications and generalizations. Because the analysis presented here is
also needed in other geometric applications [Ko], [KoS], we work here in
some generality.
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4.1.1 Notation. The geometric set-up and notation used will be as
in §2.3. In particular X1 and X2 will be b-manifolds and Y a piece of ∂Xj
at which the gluing is taking place.

Now suppose that for j = 1, 2,
Pj : C∞(Xj , Ej) → C∞(Xj , Fj)

are fully elliptic phg b-differential operators of order m. Suppose that
over the cylindrical subset Uj of §2.3.1 we have identifications Ej = π∗E0,
Fj = π∗F0, where π : Uj → Y is the obvious projection. Suppose further
that with these identifications we have Pj = pj(xj , y;xj∂xj , ∂y) and the
indicial operators agree in the sense

P0 := p1(0, y; ∂t, ∂y) = p2(0, y;−∂t, ∂y).
(The sign in p2 is to take care of the sign convention in the definition of
the tj .) Then we can glue the Pj across ±tj = ρ to obtain bundles Eρ, Fρ
and a fully elliptic b-operator

Pρ : C∞(Xρ, Eρ) → C∞(Xρ, Fρ)
in exactly the same way that the metric gρ was constructed from the gj in
§2.3.5. We have analogous estimates to those of §2.3.6:

sup
|t|≤T

|Pj − P0| = O(e−ηρ) , sup
|t|≤T

|Pρ − P0| = O(e−ηρ) as ρ→ ∞ , (4.1)

for any fixed T , where η > 0 is some constant. Here we have written
|Pj −P0| for the sum of the moduli of the coefficients of Pj −P0. Note that
in our application, the Pj arise as operators canonically associated to some
geometric data (a metric or conformal structure). Then by cutting off and
gluing these data and then constructing the corresponding P -operator one
will get a slightly different operator from Pρ, constructed by gluing the Pj
directly. Since in either case we shall have estimates like those of (4.1), this
difference is not important, and will be ignored in the sequel.

4.1.2 Definition of asymptotic kernels and cokernels. Accord-
ing to Proposition 2.3,

P0 : Lpm(X0, E0) → Lp(X0, F0)
is an isomorphism and by Theorem 2.5, the Pj are Fredholm in Lp for
every p, with index independent of p. Let the Lp null-space of Pj be denoted
by Nj and the Lp null-space of the L2 adjoint P ∗

j be denoted by Mj . By
part (ii) of Theorem 2.5, Nj and Mj consist of phg sections. In particular,
these sections are exponentially decreasing as t1 → ∞ or t2 → −∞, and
the same is true of all derivatives of these sections. Because of this,

N1,ρ = β(t1 − ρ/2)N1 , M1,ρ = β(t1 − ρ/2)M1
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and
N2,ρ = β(−t2 + ρ/2)N2 , M2,ρ = β(−t2 + ρ/2)M2

obtained by cutting off at distance ρ/2 will be very good approximations if
ρ is large. Moreover, we can regard Nj,ρ as a subspace of Uρ = Lpm(Xρ, Eρ)
and Mj,ρ as a subspace of Vρ = Lp(Xρ, Eρ). Define U ′

ρ = N1,ρ ⊕ N2,ρ to
be the asymptotic kernel of Pρ and V ′

ρ = M1,ρ ⊕M2,ρ to be its asymptotic
cokernel. Finally denote by U ′′

ρ (resp. V ′′
ρ ) the L

2-orthogonal complement
of U ′

ρ (resp. V ′
ρ) in Uρ (resp. Vρ).

4.1.3 The main estimate.

Proposition 4.2. There exists ρ∗ > 0 such that for all ρ > ρ∗, the
induced map P ′′

ρ : U ′′
ρ → V ′′

ρ is an isomorphism and the operator norm of
Gρ = [P ′′

ρ ]
−1 is bounded independent of ρ.

Proof. We shall prove that there exists ρ∗ and a constant ε > 0 such that
if ρ > ρ∗, then

‖P ′′
ρ u‖ ≥ ε‖u‖ for all u ∈ U ′′

ρ . (4.3)
Such an estimate shows that Pρ is injective, with a uniform estimate for a
left-inverse V ′′

ρ → U ′′
ρ . Our set-up is symmetric under adjoints, however,

so by the analogous estimate with Pρ replaced by P ∗
ρ , we see that P ′′

ρ

is surjective, and the left-inverse is a true inverse, with norm bounded
independent of ρ.

The proof of (4.3) goes by contradiction. If it fails, there exists a se-
quence ρn → ∞ and un ∈ U ′′

n such that
‖un‖ = 1 (4.4)

but
‖P ′′

nun‖ → 0 (4.5)
as n → ∞. (Here we begin to use obvious notational simplifications, re-
placing ρn by n wherever this is unambiguous.) From the definition of P ′′

ρ ,

there exist further sequences v(j)n ∈ V ′
j,n such that

‖Pnun − v(1)n − v(2)n ‖ → 0 (4.6)
as n→ ∞. The main step in the proof is contained in the following:
Lemma 4.7. There exists a subsequence of un (which by abuse of notation
we continue to denote by un), such that

‖un‖Lp
m(|t|≤2) → 0 as n→ ∞ .

(We shall see from the proof that 2 could be replaced by any larger
positive real number.)
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Proof of Lemma 4.7. Multiply un by a bump-function so that it is cut
off to zero at t = ±ρn/2 − 1 Denote by u(0)n the resulting section over X0.
Clearly the Lpm-norm of u(0)n is uniformly bounded as n→ ∞, so by passing
to a subsequence we may assume that

u(0)n → u(0) weakly in Lpm .

Over any fixed compact K ⊂ X0, we have by (4.6)

‖P0u(0)n ‖Lp(K) ≤
∥∥(P0 − Pn)un

∥∥
Lp(K)

+ ‖Pnun‖Lp(K) → 0 as n→ ∞
since the support of v(1)n + v

(2)
n does not meet K. Now the seminorm

u �→ ‖P0u‖Lp is continuous with respect to the Lpm-norm, so by lower-
semicontinuity of weak limits, ‖P0u(0)‖Lp(K) = 0. Since this is true for
every compact set K, P0u(0) = 0 over X0 and hence u(0) = 0 because P (0)

is an isomorphism in Lp.
To complete the proof of the lemma, recall that weak convergence in

Lpm(K) implies strong convergence in Lp(K) if K is compact. The lemma
now follows by taking K = {|t| ≤ 2} and applying the elliptic estimate

‖un‖Lp
m(K) ≤ C

(‖Pnun‖Lp(K) + ‖un‖Lp(K)

)
.

Proof of Proposition 4.2. Replace un by the subsequence in Lemma 4.7
and construct sequences u(j)n over Xj by cutting off un in the intervals
ρn − 2 < t1 < ρn − 1 and 1 − ρn < t2 < 2 − ρn. More precisely, we have
u
(j)
n = β

(j)
n un, say, where β

(j)
n is a suitable translation of a standard cut-off

function. We have

Pju
(j)
n = β(j)n Pnun + [Pj , β(j)n ]un

since Pn = Pj where β
(j)
n �= 0. Therefore

‖Pju(j)n − v(j)n ‖ ≤ ‖Pnun − v(1)n − v(2)n ‖+ ∥∥[Pj , β(j)n ]un
∥∥

and the first term here tends to zero by (4.6), the second by Lemma 4.7, for
[Pj , β

(j)
n ] is a differential operator of order ≤ m which vanishes outside of

{|t| ≤ 2}. Since Pju
(j)
n and v(j)n lie in complementary subspaces, it follows

that
‖Pju(j)n ‖ → 0 and ‖v(j)n ‖ → 0 .

On the other hand u(j)n lies in a subspace on which Pj is injective, so u
(j)
n → 0

in Lpm as n→ ∞.
Finally we combine these estimates with (4.4) to obtain

1 = ‖un‖ ≤ ‖β(1)n un‖+ ‖β(2)n un‖+
∥∥(1− β(1)n − β(2)n )un

∥∥ → 0 .

This contradiction completes the proof of Proposition 4.2.
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4.2 Application to ASD problem. Let X be a compact oriented
4-manifold with a b-metric g. Let

D = (Dg, L∗
g) : C

∞(X,E1) → C∞(X,E2)⊕ C∞(X,E0) (4.8)

so that if ∂X = ∅ and g were conformally ASD we should have

H1
c = kerD , H2

c ⊕H0
c = cokerD

the direct-sum decomposition of the cokernel corresponding to the direct-
sum decomposition in (4.8). We wish to apply the main estimate to Dρ
obtained by gluing Dj . Therefore we need to check whether Dg is fully
elliptic when g is a b-metric. For this we must examine the indicial operator
I(D) or equivalently the operator D0 corresponding to the cylinder X0 =
Y × R, where g0 = h(y) + dt2 is a product metric. We assume that g0 is
conformally ASD, hence conformally flat (consider the reflection isometry
t �→ −t). Since dt2 + h(y) is conformally flat if and only if h is a metric of
constant curvature we assume this from now on. Then the section (dt⊗dt)0
of E1 is parallel so D0(dt⊗ dt)0 = (Φ0 · (dt⊗ dt)0 where Φ0 is the trace-free
part of the Ricci tensor of g0 (which is itself a multiple of (dt ⊗ dt)0) and
(· · · )0 denotes the projection into S2

0Λ
+. Hence this term is 0 and it follows

that Dg is never fully elliptic.
We can however apply the conjugation trick of §2.2.6 to obtain nearby

operators that are fully elliptic. To this end, denote by D±
g the operator

Dg : x±δL2
2(X,E

1) → x±δ
(
L2(X,E2)⊕ L2

1(X,E
0)

)
(4.9)

and set
kerD±

g = H1,±
c , cokerD±

g = H2,±
c ⊕H0,±

c ,

the direct-sum decomposition of the cokernel corresponding, as before, to
that of the target of D. Here we assume

δ > 0 , quad
{
0 < |Imλ| ≤ δ

} ∩ specb(Dg) = ∅ . (4.10)

It follows that D± are Fredholm and that the Hj,± are independent of the
choice of Sobolev spaces in (4.9) and of the choice of δ satisfying (4.10).

From the definitions,

H1,+
g ⊂ H1,−

g , H2,−
g ⊂ H2,+

g , H0,−
g ⊂ H0,+

g .

We are now in a situation in which Proposition 4.2 can be applied. We take
this up in §5 and the reader who wants to see at once how this leads to
gluing theorems for ASD conformal structures can now start reading there.

The remainder of this section is however taken up with a more detailed
discussion of the indicial operator D0.
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4.2.1 D on a cylinder. With (X0, g0) the cylinder Y × R with
product metric g0 = h(y) + dt2, where h is a metric of constant curva-
ture, we wish to study the non-vanishing Hj,±

c (Y × R), viz. H0,+
c (Y × R),

H1,−
c (Y × R), H2,+

c (Y ×R). By definition, these are respectively the parts
of the null-spaces of L, D, D∗, that consist of t-invariant or t-periodic
sections. An index theorem gives

dimH0,+
c (Y × R)− dimH1,−

c (Y × R) + dimH2,+
c (Y × R) = 0

for these spaces can be identified with cohomology groups for an asso-
ciated elliptic complex over Y . Furthermore, it is not hard to see that
H0,+
c (Y × R) = R ⊕ Isom(Y ), where the summand R corresponds to trans-

lations of the cylinder.

4.2.2 Geometric interpretation of H1;�
c

(Y ×R). IfH1,−
c (Y ×R)

�= 0, then there exists a t-periodic or t-invariant solution of D0u = 0. In
particular, we can consider u to be a solution on Y × S1, where the length
of the circle is determined by the period of the solution. Thus u gives an
infinitesimal conformally flat deformation of the product conformally flat
structure on Y × S1. Now there is an obvious space of deformations of
this structure: constant-curvature deformations of the constant-curvature
metric on Y plus isometries of Y used to change the way in which the
two copies of Y are identified when making Y × S1 from Y × I (I is an
interval). Such deformations correspond to t-invariant solutions u, and in
the cases which are understood, when the curvature of Y is non-negative,
all solutions are of this form.

4.2.3 Positive curvature: Y = S3/Γ. According to the pre-
vious paragraph, the t-invariant part of H1,− contains R ⊕ soΓ4 . The R

summand corresponds to homotheties of h(y) (or to (dt ⊗ dt)0) while soΓ4
is the space of infinitesimal isometries of S3/Γ. Recall that homotheties
are the only constant-curvature deformations of the round metric on S3.
Floer has shown, moreover, that this is the whole of H1,−

0 (S3 × R) [F, §5].
Summing up,

H0,+
c (S3/Γ× R) = H1,−

c (S3/Γ× R) = R ⊕ soΓ4 , H2,+
0 (S3/Γ× R) = 0

by the index formula in §4.2.1.
4.2.4 The case Y = T 3. The metric on Y×R is in this case flat and

it follows from Du = 0 that ∆2u = 0. If u is also bounded, then u must be
parallel. In particular, every solution is t-invariant and H1,−

c (T 3×R) = R
9.

(This also agrees with the geometric interpretation of §4.2.2.) Similarly we
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have
H0,+
c (T 3 × R) = R

4 , H2,+
c (T 3 × R) = R

5 .

4.2.5 The case Y is hyperbolic. In this case, §4.2.2 would predict
that H1,−

0 (Y × R) = R because of the rigidity of hyperbolic structures. In
fact, by following Floer’s calculations through one can verify that if Y
is a hyperbolic rational homology 3-sphere, then the t-invariant part of
H1,−

0 (Y × R) is indeed 1-dimensional. We have not been able to eliminate
the possibility of periodic solutions in this case, but make the following
Conjecture 4.11. If Y is a hyperbolic rational homology 3-sphere, then
H1,−

0 (Y × R) = R.

In any case, we have H0,+(Y × R) = R. If the conjecture is true, then
we should also have H2,+

0 (Y × R) = 0.
This concludes our digression on the properties of D0.

4.3 Comparison theory. We now turn to b-manifolds that arise by
conformal blow-up or blow-down (cf. §2.1.1, §2.1.3). The main results of
this section are the following ‘comparison theorems’:
Theorem 4.12. Let (X, g) be the conformal blow-up at the point 0 of the
compact conformally ASD orbifold (X, g). Then the framed cohomology
groups H∗

c (X, 0) of the framed deformation complex

C∞
(0)(X,Ω

−1/4E0) → C∞(X,E1) → C∞(X,Ω1/2E2) ,
where

C∞
(0)(X,V ) =

{
v ∈ C∞(X,V ) : v(0) = 0

}
,

agree with the kernel and cokernel of D+
g :

Hj
c (X, 0) = Hj,+

g (X), for j = 0, 1, 2 .
Moreover,

H2,+
c (X) = H2

c (X) = ker
(
D

∗ : C∞(X,Ω1/2E2) → C∞(X,ΩE1)
)
.

This result was stated and partly proved by Floer [F, §3]. The following
is the analogue for comparison with a WALE space:
Theorem 4.13. Let (X, g) be the conformal blow-down at ∞ of the
conformally ASD, WALE space (X̂, ĝ). Assume that ĝ is such that g is a
smooth b metric. Then the cohomology groups H∗

bc (X̂) of the complex

C∞(X̂,Ω− 1
4E0)∩O(1) → C∞(X̂,E1)∩O(R−1) → C∞(X̂,Ω

1
2E2)∩O(R−3) ,

where

C∞(X̂, V ) ∩O(R−a) =
{
v ∈ C∞(X̂, V ) : |∇jv| = O(R−a−j),

as R→ ∞, for all j
}
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agree with the kernel and cokernel of D−
g :

Hj
bc (X̂) = Hj,−

g (X), for j = 0, 1, 2 .
Moreover,

H2,−
c (X) = H2

bc (X̂) = ker
(
D̂∗ : C∞(X̂,Ω1/2E2)∩O(R−4) → C∞(X̂,ΩE1)

)
.

Note that the decay conditions used to define the Hj
bc are the natural

ones on a WALE space. In particular, a differential operator of order m
canonically associated with ĝ will automatically map O(R−a)-sections to
O(R−a−m)-sections.
Proof. Recall first the relation between the cylindrical metric, and the
Euclidean metrics g0 and g∞ (near 0 and ∞, respectively):

dt2 + dω2 = r−2(dr2 + r2dω2) = R−2(dR2 +R2dω2) (4.14)
where

t = e−r = e−x , t = eR , R = r−1 . (4.15)
Here we are assuming that 0 is a smooth point, or if not, we pass to a
uniformizing chart centred at 0. It will be clear that Γ-equivariance is
preserved throughout, so we can afford to ignore singularities from now on.
Denoting the pointwise norms that correspond to the different choices of
conformal gauge in (4.14) by | · |b, | · |0 and | · |∞ respectively, we have by
(3.5) and (3.6),
(i) If ξ ∈ Ω−1/4E0, then |ξ|b = r−1|ξ|0 = R−1|ξ|∞;
(ii) If h ∈ E1, then |h|b = |h|0 = |h|∞;
(iii) If ψ ∈ Ω1/2E2, then |ψ|b = r2|ψ|0 = R2|ψ|∞.
We compare first H0 and H2. By the weighted Fredholm alternative, we
have

H0,±
c (X) = ker

(
x∓δLpk(X,Ω

1/4E0) L−→ x∓δLpk−1(X,E
1)

)
and

H2,±
c (X) = ker

(
x∓δLpk(X,Ω

1/2E2) D∗−→ x∓δLpk−1(X,ΩE
1)

)
,

the formal adjoint being taken with respect to the b-metric g. Therefore
by conformal invariance of these differential operators and the rescaling
formulae (i) and (iii) above,
H0,± =

{
ξ ∈ C∞(X\{0},Ω−1/4E0) : Lξ = 0, |ξ|0 = O(r1∓δ) as r → 0

}
,

and
H2,± =

{
ψ ∈ C∞(X\{0},Ω1/2E2) : D∗

ψ = 0, |ψ|0 = O(r−2∓δ) as r → 0
}
.

We argue next that the singularity at 0 is removable in all cases except
H2,+. First note that in all cases, ξ and ψ admit extensions as distributional
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sections to the whole of X [Hö1, §3.2]. Denoting these extensions by the
same symbols, we obtain equations of the form Lξ = α, D∗

ψ = β, where
α and β are linear combinations of derivatives of the Dirac distribution δ0.
Thus α and β are sums of terms homogeneous of degree −4 −m for m =
0, 1, . . . , and this is not compatible with the orders of L and D∗ and the
growth conditions on ξ and ψ that appear in H0,± and H2,−. So in these
three cases, α = 0 and β = 0, and since D∗ and L are overdetermined
elliptic the solutions are actually smooth. Hence we obtain

H0,+ =
{
ξ ∈ C∞(X,Ω−1/4E0) : Lξ = 0, ξ(0) = 0

}
(4.16)

H0,− =
{
ξ ∈ C∞(X,Ω−1/4E0) : Lξ = 0, ξ(0) = 0,∇ξ(0) = 0

}
(4.17)

=
{
ξ̂ ∈ C∞(X̂,Ω−1/4E0) : L̂ξ̂ = 0

} ∩O(1) , (4.18)

the last following from the formula (i) relating the lengths of an element of
Ω1/4E0 in the compact and WALE models. We also have

H2,− =
{
ψ ∈ C∞(X,Ω1/2E2) : D∗

ψ = 0
}

(4.19)

=
{
ψ̂ ∈ C∞(X̂,Ω1/2E2) : D̂∗ψ̂ = 0

} ∩O(R−4) . (4.20)

In order to overcome the problem encountered with H2,+ we note a result
of Biquard [Bi] which provides exact comparisons of b-Sobolev spaces of
X with ordinary Sobolev spaces on X for a good choice of weight δ and
exponent p. The version we need states that the obvious map on compactly
supported functions extends to an isomorphism

λ : xδLp2(X,E
1) � Lp2(X, 0;E

1) :=
{
h ∈ Lp2(X,E1) : h(0) = 0

}
provided that

0 < δ = 2− 4/p < 1 . (4.21)

Note that the vanishing condition makes sense because Lp2 ⊂ C0 for
2− 4/p > 0 in 4 dimensions and that Biquard’s result for functions ap-
plies here because E1 is weightless (and so behaves conformally like the
trivial bundle). By direct calculation (in which the factor Ω1/2 is crucial)
we see also that there is an isomorphism

µ : xδLp(X,Ω1/2E2) � Lp(X ; Ω1/2E2)

if δ and p are related as in (4.21). Using conformal invariance of D we have
D+ = µ−1Dλ and in particular

H2,+ = coker
(
D : Lp2(X, 0;E

1) → Lp(X,Ω1/2E2)
)

It follows that H2
c (X) = H2,+

g if

D
(
Lp2(X,E

1)
)
= D

{
h ∈ Lp2(X,E1) : h(0) = 0

}
.
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To prove this, it is enough to show that given h ∈ Lp2(X,E1), there exists
ξ ∈ Lp3(X,E0) such that h(0)−Lξ(0) = 0. Working in normal coordinates
xa near 0 (a = 1, . . . , 4), we have the formula

(Lξ)ab = ∂aξb + ∂bξa − [∂cξc]gab/2 at 0

just as in R
4 with the Euclidean metric. Then L(β habxa)(0) = 2hab if hab

is constant and β = 1 in a neighbourhood of 0. This completes the proofs
of all statements pertaining to H0 and H2 in Theorems 4.12 and 4.13.

4.3.1 Comparison of H1. Fix p and δ as in (4.21). Then by Bi-
quard’s result and conformal invariance, there is a natural map H1,+ →
H1
c (X, 0) given by mapping h ∈ H1,+

c to the cohomology class [h] of the
image of h in Lp2(X, 0;E

1). We claim first that this map is injective. In-
deed, if h = Lξ for some ξ with ξ(0) = 0, then transferring back to X we
obtain ξ, such that |ξ|b = O(1) as t → ∞ and satisfying Lξ = h. But
h ∈ H1,+

c implies that L∗Lξ = 0 and since h is in L2, we may integrate by
parts, getting h = Lξ = 0. This establishes the injectivity.

To prove surjectivity, we need to show that if h represents a class in H1
c ,

then we can find ξ ∈ C∞(E0), such that ξ(0) = 0 and

L∗(Lξ + h) = 0 .

By a previous argument we may assume h(0) = 0 so that L∗h ∈ xδLp2(X,E1).
It is straightforward to show

L∗L
(
xδLpk(X,E

0)
)
= L∗(xδLpk+1)

by adapting standard Hodge-theory arguments. In particular, we can solve
the equation and transfer to X, getting a section ξ which vanishes at 0.
This completes the comparison of H1 for conformal blow-ups, and so the
proof of Theorem 4.12. The comparison of H1 in Theorem 4.13 follows very
similar lines, using an analogue of Biquard’s theorem to compare weighted
Sobolev spaces on X with Sobolev spaces on X̂. The details are omitted. ✷

4.4 Linear theory for the Hermitian-ASD problem. In §3.3, we
saw that the operator

S : C∞(X,Ω1/4E1
J) → C∞(X,Ω3/4E2

J) ,

where E1
J and E2

J are the weightless versions of Λ− and Λ+ respectively,
controls the deformation theory of conformally scalar-flat Kähler metrics.
In contrast to D, it turns out that S is fully elliptic on a b-manifold X if
each component of ∂X is a spherical space-form. This makes for substantial
simplifications, particularly for the comparison theorems for this problem.
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Proposition 4.22. Let X0 = S3 × R, g0 = h(y) + dt2, where h is the
round metric on S3, S0 the S-operator associated to g0. Then if for some
u(y), we have S0(u(y)eiλt) = 0, it follows that iλ ∈ Z\0.
Proof. Use the conformal isometry S3 ×R → R

4\0 given by r = et and the
conformal invariance of S. Because of the conformal weights, we have if u
is a section of Ω1/4E1

J

|u|cylinder = r|u|Euclidean
so that a solution Su = 0 in R

4\0, homogeneous of degree λ, translates into
an exponential solution with factor e(λ+1)t on the cylinder. In particular
the constant solution in R

4 gives rise to a solution that goes like et along
the cylinder.

We use a ‘removable singularities’ argument like the one in the proof of
Theorem 4.12. If Su = 0 in R

4\0 and u has homogeneity λ in r, then Su
is a distribution supported at {0} and homogeneous of degree λ− 2. If this
distribution vanishes at 0, then by elliptic regularity, u is smooth near 0
and hence λ is a non-negative integer. If the distribution is non-vanishing,
then Su must be a multiple of some derivative of δ0, hence λ− 2 = −4−m
for some integer m ≥ 0. Hence λ = −2−m and so λ = −1 cannot occur. ✷

Remark 4.4.1. On T 3×R, however, the existence of non-trivial parallel
sections obstructs the full ellipticity of S on a b-manifold some of whose
boundary components are tori.

4.4.2 Comparison theory for S. Consider now the situation of
§4.3. We have:

Theorem 4.23. Let (X, g) be a conformally ASD manifold with smooth
b metric, and suppose that (X, g) is the conformal blow-up at 0 in (X, g)
and the conformal blow-down of ∞ ∈ (X̂, ĝ). Let H1

c,J(X), H2
c,J(X) be

respectively the kernel and cokernel of

Sg : L
p
k(X,Ω

1/4E1
J) → Lpk−2(X,Ω

1/4E2
J) ,

let H1
c,J(X), H2

c,J(X) be respectively the kernel and cokernel of S = Sg,
and let

H1
bc,J(X̂) = ker(Ŝ) ∩O(R−2) , H2

bc,J(X̂) = ker(Ŝ∗) ∩O(R−2) ,

(where the adjoint is taken relative to the WALE metric ĝ). Then

H1
c,J = H1

c,J = H1
bc,J and H2

c,J = H2
c,J = H2

bc,J .

Proof. If Su = 0, u ∈ Lpk(X,E1
J ), then from Proposition 4.22, u has a phg

expansion where the index set is just the positive integers. Translating to
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X and remembering the conformal weight, we get u which satisfies Su = 0
and |u|g = O(1) near 0. Hence by elliptic regularity, the Lp-null space of
S on X agrees with the standard null-space of S on X . The argument for
H2 is the same, for H2

c,J can be identified with the Lp null-space of S∗ and
this is conformally invariant as an operator between bundles with the same
conformal weights as for S (cf. §3.1.6).

The argument for comparison with X̂ is also closely analogous. ✷

5 Nonlinear Theory

We come now to the problem of finding an exactly conformally ASD b-
metric on Xρ as a perturbation of the metric gρ constructed in §2.3.5. More
precisely, assume that (Xj , gj) in §2.3 are conformally ASD b-manifolds so
that gρ is conformally ASD except in the damage zone {−1/2≤|t− 1|≤1/2}
near the middle of the neck. Using the conformal class cρ of gρ as the
reference point c in Proposition 3.14 we need to find a small (supXρ

|h| < 1),
smooth h satisfying (3.15),

0 = Fρ(h) =W+
ρ +Dρh+ ε1(1 + h, h ⊗∇∇h)

+ ε2(1 + h,∇h ⊗∇h) + ε3(1 + h, h⊗ h) (5.1)

where W+
ρ :=W+(cρ), Dρ := Dcρ .

The strategy is to solve this equation in a suitable Banach space by use
of a version of the implicit function theorem (IFT). Then the solution will
be proved to be C∞ and polyhomogeneous near ∂Xρ. For both parts of the
argument it is useful to supplement (5.1) with the gauge-fixing condition

L∗
ρh = 0 (5.2)

(the ∗ denoting L2 adjoint with respect to gρ). Then the linearization of
the map

h �→ (Fρ(h), L∗
ρh) (5.3)

is equal to the elliptic operator Dρ.
5.1 Weak solution. In the next few paragraphs we explain how to
arrange matters so that this strategy can be successfully pursued. We
shall need to choose Banach spaces so that Fρ extends to a C∞ map with
uniform behaviour as ρ → ∞. This involves estimating certain Sobolev
norms of the nonlinear terms in Fρ. But we begin by adjusting Fρ so that
the neck-stretching analysis of §4.1 can be applied to its linearization.
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5.1.1 Introduction of weights. The main estimate, Proposition 4.2
does not apply directly to Dρ because, as we saw at the start of §4.2, this
operator does not arise by gluing a pair of fully elliptic operators. Therefore
we replace (5.3) by

u �→ (
Fwρ (u), w

−1L∗
ρ(wu)

)
where Fwρ (u) := w−1Fρ(wu) , (5.4)

where w := wρ is a suitable weight-function on Xρ.

5.1.2 Definition of w�. For j = 1, 2, let wj be equal to a generi-
cally chosen positive power of a boundary defining function for ∂Xj\Y . We
assume 0 ≤ wj ≤ 1 on Xj , with xj = 0 only at ∂Xj\Y and wj = 1 near Y .
Extend the neck parameter t smoothly to Xρ (and denote the extension
also by t) so that the range of t is [−ρ − 1, ρ + 1] and t = −ρ − 1 near
∂X1\Y and t = ρ+ 1 near ∂X2\Y . Now for δ satisfying the conditions of
(4.10), we put

wρ = w1w2e
−δ(t+ρ+1).

If ρ is fixed, we have 0 ≤ wρ ≤ 1, with wρ = 0 only at ∂Xρ; wρ is a power of
a boundary defining function near ∂Xρ and decreases exponentially along
the neck.

The linearization of (5.4) is Pρ := w−1
ρ Dρwρ which is obtained by gluing

the fully elliptic operators

P1 = (w1x
δ
1)

−1D1(w1x
δ
1)

and
P2 = (w2x

−δ
2 )−1D1(w2x

−δ
2 )

as in §4.1.1. According to the main estimate we can now invert Pρ in
a controlled way in Sobolev spaces over Xρ. The next task is to choose
Sobolev spaces such that (5.4) extends to a smooth map between them.

5.1.3 Choice of Sobolev space. Because Dρ is a second-order op-
erator, it is natural to take u ∈ Lp2(Xρ, E

1) for some p. If p > 2 we have
the estimate

sup
Xρ

|u| ≤ C‖u‖Lp
2(Xρ) (5.5)

and we can assume C is independent of ρ. This uniformity of C (and also
(5.6)) follows from standard Sobolev embedding theorems for the complete
Riemannian manifolds X0, X1 and X2, by a partition of unity argument
[Au, §2.23]. We chose w < 1 so that (5.5) implies that if the Lp2-norm of u
is sufficiently small, then the pointwise norm of h = wu is everywhere < 1
and cρ(1 + h) defines a genuine (C0) conformal structure.
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So Lp2, for any p > 2, will take care of the linear term in (5.1). The
nonlinearities in Fw are much easier to control, however, if we take p > 4
so that (5.5) can be strengthened to

sup
Xρ

(|u|+ |∇u|) ≤ C‖u‖Lp
2(Xρ) (5.6)

for some other constant C that is independent of ρ. Therefore we fix p > 4
and show next that u �→ Fw(u) extends to a smooth map from a neigh-
bourhood of 0 in Lp2(Xρ, E

1) to Lp(Xρ, E2).

5.1.4 Estimation of the nonlinearities. From (5.1) and the prop-
erties of the εj (§3.1.2) we obtain(

Fwρ (u), w
−1L∗(wu)

)
= w−1W+

ρ + Pρu+Q(u) (5.7)
where

Q(u) := wε1(1 + wu, u ⊗∇w∇wu)
+ wε2(1 + wu,∇wu⊗∇wu) + wε3(1 + wu, u⊗ u)

and ∇wu = w−1∇(wu). (In the interests of legibility we have dropped the
notational dependence of the weight w upon ρ. There seems little danger
of confusion.) We can now state the main result:
Proposition 5.8. For any fixed p > 4, the map

fρ : u �→ (
Fwρ (u), w

−1L∗
ρ(wu)

)
extends to a smooth map from the ball Bρ of radius r in Uρ = Lp2(Xρ, E

1)
to Vρ where

Vρ = Lp(Xρ, E2)⊕ Lp1(Xρ, E
0) .

Moreover for a suitable choice of the parameters in the definition of w, fρ
has the following properties:

(i) ‖fρ‖ → 0 as ρ→ ∞;
(ii) There exist decompositions Uρ = U ′

ρ ⊕ U ′′
ρ , Vρ = V ′

ρ ⊕ V ′′
ρ , where U

′
ρ

and V ′
ρ are finite-dimensional, U ′′

ρ and V ′′
ρ are closed and the map

P ′′
ρ : U ′′

ρ → V ′′
ρ induced by Pρ has a uniformly bounded inverse Gρ :

V ′′
ρ → U ′′

ρ .
(iii) The nonlinearity Q(u) satisfies∥∥Q(u)−Q(v)

∥∥ ≤ C
(‖u‖+ ‖v‖)‖u− v‖ (5.9)

for every u, v in Bρ, where C is bounded independent of ρ.

Proof. (i) Note first by the discussion in §2.3.6 that the Lp-norm of W+
ρ

is O(e−ηρ) for some η > 0. Taking 0 < δ < η, ‖fρ(0)‖ = O(e−(η−δ)ρ) → 0
as ρ → ∞. To check that the map is smooth, it evidently suffices to show
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that the nonlinear terms define a smooth map. Note first by the properties
of w that ‖∇wu‖Lp

k
≤ C‖u‖Lp

k+1
where C is independent of ρ. Hence from

(5.6) we have

‖u∇w∇wu‖Lp ≤ (sup |u|)‖∇w∇wu‖Lp ≤ C‖u‖2Lp
2
.

Similarly

‖∇wu⊗∇wu‖Lp ≤ C sup(|u|+ |∇u|)‖u‖Lp
1

≤ C sup(|u|+ |∇u|)‖u‖Lp
1
≤ C‖u‖2Lp

2

and
‖u⊗ u‖Lp ≤ C‖u‖2Lp

2
.

(Here C is a generic constant bounded independent of ρ but possibly varying
from line to line.) This is not quite enough because the εj also have a real-
analytic dependence on the 0-jet of u. However, this is convergent for all
u with sup |u| < 1 and by multiplication properties of elements of Lp2 with
p > 4, these extend to define smooth maps from a fixed ball B ⊂ Uρ into Vρ.
Combining these observations with the previous estimates for the terms in
the derivatives of u, we obtain part (i).

(ii) This follows from the main estimate (Proposition 4.2) and the fact
that Pρ is obtained by gluing fully elliptic operators.

(iii) This is deduced by a simple modification of the arguments used to
prove fρ smooth. The details are omitted. ✷

5.1.5 Implicit function theorem. Relative to the decompositions
of Proposition 5.8, write u = (u1, u2), f(0) = (f1(0), f2(0)), P = (Pij) and
Q = (Q1, Q2). The equation to be solved becomes the pair

f1(0) + P11u1 + P12u2 +Q1(u1, u2) = 0 , (5.10)
f2(0) + P21u1 + P22u2 +Q2(u1, u2) = 0 . (5.11)

By the proposition, P22 is invertible, while from construction of the asymp-
totic kernels and cokernels in §4.1, the operator norms of the other Pij tend
to zero as ρ→ ∞. Thus for each fixed u1, (5.11) can be reformulated as a
fixed-point problem

u2 = Tu1(u2) := −P−1
22 f2(0)− P−1

22 P21u1 − P−1
22 Q2(u1, u2) .

From Proposition 5.8 it is easy to show that if ρ is sufficiently large and
‖u1‖ is sufficiently small, then Tu1 is a contraction mapping on a sufficiently
small neighbourhood of 0 in U ′′

ρ . To be more precise there exist r1 > 0,
r2 > 0 independent of ρ assumed large, and a function

ϕρ :
{
u1 ∈ U ′

ρ : ‖u1‖ ≤ r1
} → {

u2 ∈ U ′′
ρ : ‖u2‖ ≤ r2

}
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such that every solution (u1, u2) of (5.11) with ‖uj‖ ≤ rj is of the form
(u1, ϕρ(u1)).

Thus we have solved an ‘infinite-dimensional component’ of the confor-
mal ASD equations (5.11); these are reduced to finding zeros of the nonlin-
ear map between finite dimensional spaces got by substituting u2 = ϕ(u1)
into (5.10): put

ψρ(u1) = f1(0) + P11u1 + P12ϕρ(u1) +Q1

(
u1, ϕ(u1)

)
and let σρ(u1) be the component of this in V ′

ρ ∩ Lp(E2). To summarize:
Proposition 5.12. For sufficiently large ρ, there exists a nonlinear map
σρ from a ball in U ′

ρ to V ′
ρ whose zeros correspond to Lp2 conformally ASD

metrics near cρ. In particular if V ′
ρ = 0 such conformally ASD metrics on

Xρ always exist.

5.2 Considerations of regularity. Our final task is to establish that
the weak (Lp2) solution found in the previous section is actually smooth.
In fact we prove both interior regularity and that the resulting metric has
optimal boundary regularity – in other words that it is polyhomogeneous
(relative to an index set that we do not specify). In this section ρ is large
but fixed and we drop it from the notation.
Proposition 5.13. Let u ∈ Lp2(X) satisfy

Fw(u) = a, w−1L∗(wu) = b (5.14)
where a and b are C∞, polyhomogeneous and vanish at the boundary.
Then if supX |u| is sufficiently small, u ∈ C∞(Xρ) and is polyhomogeneous
at ∂Xρ.

Proof. Combine the equations in the form
Puu = wQ(u,∇wu) + θ (5.15)

where θ is a polyhomogeneous section which is a linear combination ofW+
0 ,

a and b,
Q(u,∇wu) = ε2(1 + wu,∇wu⊗∇wu) + ε3(1 + wu, u ⊗ u)

and
Puv = Pv − wuε1(1 + wu,∇w∇wv) .

(i) Interior regularity. That u is C∞ in Xo now follows from standard
regularity results, which are applicable because u is already C1,α,
where α = 1− 4/p [ADN].

(ii) Boundary regularity. The method we use is closely analogous to that
used by Mazzeo in [M]; we are indebted to him for useful discussions
on this point.
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Near the boundary, w = xα, where α > 0 and θ = xαθ′, say, where θ′

has a phg asymptotic expansion. Then (5.15) takes the form

Puu = Pu− xαε1(1 + xαu,∇∇u) = xαQ(u,∇u) + xαθ′ (5.16)

and we already know that sup(|u| + |∇u|) is uniformly bounded as x→ 0.
Now if we had the indicial operator I(P ) in place of Pu on the LHS of
(5.16), we could use the fact that I(P ) has an inverse which behaves well
on the b-Sobolev spaces to conclude that u ∈ xαLpk for every k and some
fixed p. It would follow that |(x∂x)j∂βy u| is continuous at ∂X for all j and
all multi-indices β. Continuing with the argument under the simplifying
assumption that I(P ) not Pu is on the LHS of (5.16), we can now use
the fact that I(P ) and its inverse also preserve spaces of polyhomogeneous
functions. To do so, assume by induction that u has a phg expansion up
to some order N , say. Then because of the factor xα on the RHS of (5.16),
I(P )u has an expansion to orderN+α, and so u also has such an expansion.
Hence u has a complete phg expansion at the boundary.

The result with Pu replacing I(P ) comes from a suitable approximation
argument. The details of this are straightforward but lengthy, and are
omitted. ✷

6 Main Theorems

6.1 Gluing ASD b-manifolds. We now summarize our work so far by
giving statements of the main theorems. For the reader’s convenience we
gather first the relevant notation.

6.1.1 Notation. For j = 1, 2, Xj is a 4-manifold with boundary
and gj is a conformally ASD polyhomogeneous b-metric. A piece (union
of compact connected components) Y of ∂Xj is given, such that the gj
approach isometric cylindrical metrics near Y . Weights wj are chosen as
in §5.1.2 and a real number δ is chosen as in (4.10) and finite-dimensional
‘cohomology spaces’ are defined by the exactness of the sequence

0 → H1,±
j → wjx

±δ
j Lpk(Xj , E

1) →
wjx

±δ
j

[
Lpk−2(Xj , E

2)⊕ Lpk−1(Xj , E
0)

] → H2,±
j ⊕H0,±

j → 0 .

For large real ρ, Xρ is constructed by gluing the Xj across Y and the
approximately conformally ASD b-metric gρ is constructed onXρ as in §2.3.
Theorem A. Let the notation be as in §6.1.1. Then for all sufficiently
large ρ, there exists a map σρ from a neighbourhood of 0 in H1,+

1 ⊕H1,−
2
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into H2,+
1 ⊕ H2,−

2 such that σ−1
ρ (0) parameterizes the set of conformally

ASD metrics g̃ρ sufficiently close to gρ. Here ‘sufficiently close’ means in
particular that

sup
Xρ

|g̃ρ − gρ| → 0 as ρ→ ∞

and that g̃ρ has a polyhomogeneous expansion near ∂Xρ, such that g̃ρ
coincides with gρ at ∂Xρ.

Remark 6.1.2. The term ‘parameterizes’ is used in a loose sense here.
The family of conformally ASD metrics given by σ−1

ρ (0) is complete in the
sense that every diffeomorphism class of conformally ASD metrics suffi-
ciently close to gρ appears in the family. However the gauge action of
the diffeomorphism group has only been fixed up to a finite dimensional
residual gauge freedom and correspondingly the true moduli-space will in
general be got by dividing σ−1

ρ (0) by a suitable compact Lie group. Further
details of this are omitted.

Proof. Combine Propositions 5.12 and 5.13. The estimate on g̃ρ−gρ follows
from the fact that the Lp2-norm of u2 in §5.1.5 is of the same order of magni-
tude as ‖W+

ρ ‖ = O(e−(η−δ)ρ) and the estimate (5.5). The completeness of
the family of metrics constructed comes directly from the implicit function
theorem. ✷

When the boundary components are spherical space-forms, this theorem
can be combined with our comparison results to give the following ‘ASD
desingularization theorem’:
Theorem B. Let (M,g) be a compact conformally ASD orbifold, and let
0 ∈ M be a point with a neighbourhood modelled on R

4/a, where a is
an action of the finite group Γ with isolated fixed-point set. If (N,h) is a
conformally ASD, WALE space whose asymptotic region is also modelled
by R

4/a, then there exists a smooth map σ from a neighbourhood of 0 in
H1
c (M)⊕H1

c (N) into H2
c (M)⊕H2

c (N) whose zeroes give conformally ASD
metrics on the connected sumM�N obtained by joining the asymptotic re-
gion of N to a neighbourhood of 0 inM . Here the deformation cohomology
groups are as in Theorems 4.12 and 4.13.

Proof. Combine Theorem A with Theorems 4.12 and 4.13. ✷

Another variant covers the case of a connected sum of compact confor-
mally ASD orbifolds.

Theorem C. For j = 1, 2, let (Mj , gj) be a compact conformally ASD
orbifold, and let 0j ∈Mj be a point with a neighbourhood modelled on the
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origin in R
4/aj . Suppose further that a1 and a2 define complementary sin-

gularities in the sense that there is an orientation-reversing linear isometry
φ of R

4 which intertwines a1 and a2. Then there is a smooth map σ from a
neighbourhood of 0 inH1

c (M1)⊕R⊕(so4)a⊕H1
c (M2) intoH2

c (M1)⊕H2
c (M2)

whose zeroes give conformally ASD metrics on the connected sum M1�M2

obtained by joining at 01 and 02.

Proof. Take X1 to be the conformal blow up at {01, 02} of M1 ! M2.
Take X2 to be the b-manifold obtained by gluing (−∞, 0] × (S3/a1) to
(−∞, 0]× (S3/a2) by identifying 0×S3/a1 with 0×S3/a2 by φ. Then X2,
viewed as a b-manifold, has boundary equal to −Y !Y , while the boundary
of X1 is Y ! −Y . Applying Theorem A to X1 and X2 now gives the con-
clusion, in view of the calculations of the deformation cohomology groups
for a cylinder given in §4.2.3 and Theorem 4.12. (We have denoted by a
the action induced by a1 or a2 on S3 × R.) ✷

Remark 6.1.3. The domain of σρ in this case has a natural interpreta-
tion, the three summands corresponding to deformations of the conformally
ASD structures of theMj together with deformations of the ‘gluing map’ φ.

Remark 6.1.4. Clearly Theorems A, B and C give existence theorems
for conformally ASD metrics if the indicated obstruction spaces vanish. On
the other hand, it is sometimes possible to calculate the leading term in
the map σ in terms of the given data, as in [DF], and so obtain existence
results even in the presence of obstructions.

6.2 Gluing Hermitian-ASD b-manifolds. The results are very sim-
ilar to those for ASD conformal structures, and will follow in the same
way (from the methods of §5) once it has been explained how to glue
Hermitian-ASD manifolds. This will be done in the next few paragraphs.
For simplicity we deal only with the case that the metrics being glued are
scalar-flat Kähler.

6.2.1 Notation and assumptions. For j = 1, 2, let (Xj , Jj) be
complex b-manifolds of (real) dimension 4, and let Y ⊂ ∂Xj be a piece of the
boundary. We make the assumption that the cylindrical neighbourhoods
Uj of Y in Xj (cf. §2.3.1) are biholomorphic. This will be the case, for
example, if X1 is the conformal blow-up of a point in a compact surface
and X2 is obtained by conformal blow-down of ∞ in an asymptotically
Euclidean space.

Now introduce b-metrics gj on Xj and assume as in §2.3 that in Uj ,
gj approaches a standard cylindrical metric g0. Assume that the isometry
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also preserves the complex structures, so that g0, g1, g2 are all Hermitian
with respect to the given complex structure.

Then we can construct (Xρ, gρ, Jρ) by gluing just as before. Note that Jρ
is a genuine integrable complex structure onXρ and that gρ is Jρ-Hermitian.

The Riemannian product metric on the cylinder is not necessarily Kähler,
but if we assume that (Xj , cj , ωj) is conformally Kähler as in §3.3.3, so that
ωj is a solution of the twistor equation (3.16), then when we glue, we get gρ
as before and ωρ which still defines an integrable complex structure when
rescaled to unit length. However ωρ is only an approximate solution of
the twistor equation defined by the conformal class of gρ. We can now
introduce weights and repeat the work of §5 for the nonlinear map FJ of
Proposition 3.19. This yields the Hermitian analogue of Theorem A:
Theorem D. For j = 1, 2, let (Xj , gj , ωj) be conformally Hermitian-ASD
b manifolds, where ωj satisfies the twistor equation defined by gj . Choose
weights wj as in §5.1.2 and define finite-dimensional vector spaces Hr,±

j,J by
the exactness of the sequence

0 → H1,±
j,J → wjx

±δ
j Lpk(Xj ,Ω

1/4E1
J)

→ wjx
±δ
j Lpk−2(Xj ,Ω

3/4E2
J) → H2,±

j,J → 0 .
Suppose further that there is a piece Y of ∂Xj such that cylindrical neigh-
bourhoodsUj of Y inXj are biholomorphic. Then for all sufficiently large ρ,

there is a map σρ from a neighbourhood of 0 inH1,+
1,J ⊕H1,−

2,J intoH2,+
1,J ⊕H2,−

2,J

whose zeroes parameterize the conformally Hermitian-ASD metrics near gρ.
Moreover these metrics have the same boundary behaviour as the metrics
constructed in Theorem A.

Restricting to orbifolds and using the comparison theorem (4.23), we ob-
tain a result about desingularization (or just blow-up) of compact Hermitian-
ASD orbifolds.
Theorem E. Let (M,g) be a compact scalar-flat Kähler metric and let
0 ∈M be a point with a neighbourhood biholomorphic to a neighbourhood
of 0 in C

2/a, where a is an action of the finite group Γ with isolated fixed-
point set. If (N,h) is a scalar-flat Kähler, WALE space whose asymptotic
region is biholomorphic to a neighbourhood of ∞ in C

2/a, then there exists
a smooth map σ from a neighbourhood of 0 in H1

c,J(M) ⊕ H1
c,J(N) into

H2
c,J(M) ⊕ H2

c,J(N) whose zeroes give scalar-flat Kähler metrics on the
connected sum M�N obtained by joining the asymptotic region of N to a
neighbourhood of 0 in M . Here the deformation cohomology groups are as
in Theorem 4.23.
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Proof. It is clear that Theorem D combined with Theorem 4.23 gives a
Hermitian-ASD conformal structure c on M�N . However it is obvious
that M�N is Kälerian, so by [Bo], there is a Kähler representative of the
conformal class c and this must necessarily be scalar-flat. ✷

6.3 Weakly asymptotically Euclidean scalar-flat Kähler metrics
on the blow-up of C

2. Finally we give a simple application of Theo-
rem D which is not quite included in Theorem E.

Theorem F. Let p1, . . . , pn be a collection of n distinct points in C
2. Then

the (complex) blow-up M of C
2 at the pj admits weakly asymptotically

Euclidean scalar-flat Kähler metrics.

Proof. Recall first the Burns metric (B, gB) [L2], a weakly asymptotically
Euclidean scalar-flat Kähler metric on the blow-up B of C

2 at the origin.
The complement of the exceptional divisor in B is biholomorphic to C

2\0,
so we can construct the multiple blow-up M , with its standard complex
structure, by gluing a copy of B at each of the pj . More precisely, let (B̌, ǧB)
denote the conformal blow-down of B. Then H2

c,J(B̌) = 0 by Theorem 8.4
and Theorem 4.23. So let X1 stand for the b-manifold obtained from C

2 by
conformal blow-up of each of the pj and conformal blow-down of ∞. By
Theorem 4.23,

H2
c,J(X1) = H2

c,J(C
2) ∩O(R−2)

and this is zero, because if Su = 0 in Euclidean space then every component
of u satisfies ∆2u = 0 and so u = 0 by the growth condition at ∞. We
take X2 to be n copies of B̌ and apply Theorem D, taking all weights
equal to 1 since all boundary components are spherical (Proposition 4.22).
The conclusion is that M admits a Hermitian-ASD conformal structure
with good asymptotic behaviour at the boundary. It remains to verify that
there is a weakly asymptotically Euclidean Kähler representative of this
conformal class.

The fundamental 2-form ω of the metric constructed by Theorem D has
the form dt ∧ e1 + e2 ∧ e3 + O(e−t), where the ej form a standard basis
of left-invariant 1-forms on S3. Following the method of [Bo], introduce a
1-form β which measures the failure of ω to be Kähler:

dω + β ∧ ω = 0 .

From the asymptotic formula for ω, β = 2dt+β′ where β′ is a 1-form whose
length decays exponentially as t → ∞. It is a local calculation that on a
Hermitian-ASD manifold dβ is ASD hence β is harmonic. Because dβ = dβ′

and β′ is in L2, we conclude by the standard integration-by-parts argument
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that dβ = 0. Hence β′ is closed and decaying and so by [Me, Ch. 6] rep-
resents an element of the relative cohomology group H1(M,∂M) = 0. By
other results in [Me, Ch. 6], β′ = du where du is also exponentially decay-
ing. It follows that d(eu+2tω) = 0 and this is the conformal factor that
yields the Kähler representative. ✷

7 Existence of ASD Conformal Structures for Manifolds
with Boundary.

Let (M,gM ) be an oriented Riemannian 4-manifold without boundary.
Taubes [T1] has shown that there exists N > 0 such thatMN :=M�NCP 2

admits a conformally ASD metric. In this section we shall sketch the adap-
tations of his argument that are needed to prove the analogous result in
the b-category:

Theorem G. Let X be a compact oriented 4-manifold with boundary,
g0 an exact b-metric that is conformally flat near each component of ∂X.
Then there exists N > 0 such that X�NCP 2 admits a conformally ASD
b-metric g, such that |g − g0| → 0 at ∂X.

The strategy of the proof of this result for manifolds without boundary
is summarized in [T2, Ch. 7]. The proof can be divided into three steps,
each of which is substantial:

Step 1 Show that forN > 0 there is a way to construct a Riemannian met-
ric gN on MN with the property that ‖W+(gN )‖ → 0 as N → ∞.

Step 2 Apply the implicit function theorem (IFT) to find a small per-
turbation g′ = gN1 + h(gN ) that is conformally ASD modulo the
vanishing of a set of constraint functions (essentially the map σ
of Proposition 5.12). Interpret the constraint functions as a finite
number of nonlinear conditions upon gN .

Step 3 Show that by replacing MN by MN+n, a metric gN+n can be con-
structed with small ‖W+(gN+n)‖ and vanishing constraint func-
tions. Apply the IFT in Step 2 to obtain a perturbation of gN+n

that is conformally ASD.

Another way of interpreting Step 3 is to say that one can reduce to
an unobstructed deformation problem by forming the connected sum with
sufficiently many copies of CP 2, this number depending only upon the
original data (M,gM ). An important technical point is that the norm used
in Step 1 is not a standard Sobolev norm; it is scale-invariant (like L2) but
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a little stronger. This means that the IFT used in Step 2 is to be applied
in non-standard Banach spaces; this in turn requires the development of
other non-standard estimates for linear elliptic operators.

7.1 Sketch Proof I. Now let us turn to the b-manifold (X, g0) of Theo-
rem G. We start by applying Taubes’ theorem to the double (M,gM ) of X .
That is, regarding X as a non-compact manifold with a cylindrical end, we
cut off the cylinder and glue the resulting manifold to another copy of itself
(with opposite orientation). The closed manifold M then contains a neck
Y × [−ρ, ρ]t on which the metric is a conformally flat Riemannian product
metric. Here the double is used for definiteness only. Any closed, oriented
4-manifold containing the subset {t ≤ ρ} of X would do just as well.

An examination of Step 1 above reveals that ‖W+‖ can be decreased by
gluing copies of CP 2 onto Supp(W+(gM )). In particular for our double M ,
we can construct (MN , gN ) such that ‖W+(gN )‖ → 0 as N → ∞, but
leaving the cylindrical neck in M untouched.

Now we take Steps 2 and 3 to obtain a conformally ASD metric g′, say,
on MN+n. We claim that near the middle (t = 0) of the neck, g′ will be a
very small perturbation of the product metric. Now return to a b-manifold
X ′ by cutting the middle of the neck and gluing on a semi-infinite cylinder
Y × [0,∞) to produce a manifold with an end Y × (−ρ,∞). Glue g′ to
the product metric by means of a cut-off function to obtain a metric g′′ on
X ′ with the property that W+(g′′) �= 0 only in a small neighbourhood of
t = 0. We can moreover assume that a suitable weighted Sobolev norm of
W+(g′′) is as small as we please.

Thus we are now in the same framework as for the deformation theory in
the rest of this paper. So we invoke once more the IFT to find a conformally
ASD b-metric g′′′ as a small perturbation of g′′. We claim that arguments
analogous to those of Step 3 allow us to overcome the obstructions that
could arise here.

The inelegant double use of the IFT in this argument is intended to
avoid the need to adapt to b-manifolds the non-standard norms mentioned
above. This completes our sketch of a proof of Theorem G.

7.2 Sketch Proof II. It is also possible to argue slightly differently:
apply Step 1 as outlined above, and then pass back to a b-manifold X ′ by
cutting at t = 0 and gluing in Y ×[0,∞). Now adapt Steps 2 and 3 to apply
to b-manifolds with small ‖W+‖. This direct approach is attractive con-
ceptually and several of the main steps go through without major changes.
However, it is technically subtle as we have already indicated because of
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the non-standard norms used throughout Taubes’ argument. In particular,
Taubes’ analysis makes heavy use of the spectral theory of (bundle-valued)
Laplacians ∇∗∇: for some estimates it is necessary to expand sections as a
linear combination of eigensections of ∇∗∇, and spectral projection is used
to define finite-dimensional subspaces corresponding to ‘small eigenvalues’.
Because ∇∗∇ has continuous spectrum on a b-manifold, it is not simple
to extend such arguments to b-manifolds. However we claim that one can
satisfactorily glue Taubes’ estimates over the compact piece t ≤ 0 of X ′

onto standard weighted Sobolev space estimates for a product metric on
the cylindrical end Y × (0,∞). This gives another approach to the proof
of Theorem G.

8 Vanishing Theorems

This section is summarizes some vanishing theorems for the obstruction-
spaces that arise in the main gluing theorems. They apply to conformally
ASD b-manifolds that are either obtained by conformal blow-up or blow-
down of a conformally ASD manifold whose metric has additional geometric
properties, for example, Einstein or scalar-flat Kähler.

The analysis of the Einstein cases rests on the use of Weitzenböck for-
mulae for D∗, while the analysis of the scalar-flat Kähler story was done
in [LS1] in the compact case and is a modification of this in the ALE case.

8.1 D� and Dirac operators. In §3.2.3 we have described D in terms
of a coupled version of the operator d+d∗. There is a useful alternative
description using spinors, which we now explain. Spinors cannot be in-
troduced globally on a 4-manifold unless the second Stiefel–Whitney class
vanishes, but we shall only ever need tensor products of an even number of
spin-bundles, and these always exist globally. Indeed the link between our
two accounts of the operator Dg is obtained precisely by carrying through
the necessary identifications of tensor products of spin-bundles with certain
bundles of tensors (associated to the tangent bundle) [PR].

On an oriented Riemannian 4-manifold, the spin-bundles V ± are natu-
rally SU(2)-bundles and that the Dirac operators interchange + and −:

∂/+ : C∞(V −) → C∞(V +) ∂/− : C∞(V +) → C∞(V −) .
Again there are coupled versions of these, ∂/±E : C∞(V ∓⊗E) → C∞(V ±⊗E),
for any vector bundle E equipped with a unitary connection. In partic-
ular, there is a second-order operator C∞(S2V −) → S2(V +) given by
composing the Dirac operators C∞(V − ⊗ V −) → C∞(V + ⊗ V −) and
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C∞(V + ⊗ V −) → C∞(V + ⊗ V +). Up to a constant factor, this can be
identified with d+δ, using the natural isomorphisms S2V ± = Λ±. Now
ignoring conformal weights,

E0 = V + ⊗ V − , E1 = S2V + ⊗ S2V − , E2 = S4V + .

(Here the canonical symplectic forms on V ± have been used to eliminate
all appearances of dual spin spaces.)

Then D∗
g can be written in terms of coupled Dirac operators D1 and D2

where
D1 : C∞(V − ⊗ S3V +) → C∞(V − ⊗ V − ⊗ S2V +)

and
D2 : C∞(S4V +) → C∞(V − ⊗ S3V +) ;

namely D∗
g = S(D1D2) + Φ. The operator S is the algebraic operation of

symmetrization: V − ⊗ V − ⊗ S2V + → S2V − ⊗ S2V +. There is a similar
formula for Dg, which we do not write down.

The above formula for D∗
g has an important simplification if g is ASD.

This is that the symmetrization is unnecessary. The reason is that the
skew part of D1D2 is an algebraic operator S4V + → Λ2V − ⊗ S2V + =
S2V +, given by partial contraction with some component of the curvature
tensor. In general, the only component that could provide such a map is
W+ ∈ C∞(S4V +), which we have assumed is zero. The conclusion is as
follows: if g is ASD, then D∗

g can be identified with the operator

D1D2 +Φ : C∞(S4V +) → C∞(S2V − ⊗ S2V +) .

8.2 Vanishing theorems when X is the conformal blow-up of
a compact ASD-Einstein orbifold. To simplify notation, let us drop
the bars which have been used to distinguish a compact manifold from its
conformal blow-up; this should cause no confusion since the latter will not
be used in this section. Our first result is the following:
Proposition 8.1. Let (X, g) be a compact 4-orbifold such that g is ASD
and Einstein with positive scalar curvature s. Then H2

c (X) = 0. If instead
(X, g) is ASD and Ricci-flat, then H2

c (X) consists of parallel sections of E2.

This is a folklore theorem, but we reproduce the short proof.
Proof. If X is Einstein, we can identify D∗

g with the composite D1D2 of
Dirac operators as above. To prove the proposition, it is enough to note
the Weitzenböck formulae

D∗
1D1 = ∇∗∇+ 5

12s , D∗
2D2 = ∇∗∇+ 1

2s ,

which hold whenever Φ = 0 and W+ = 0. (The verification of these is
left to the reader.) Suppose D∗

gψ = 0; set χ = D2ψ, so that D1χ = 0. If
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s > 0 then D∗
1D1 is invertible, so χ = 0, i.e. D2ψ = 0. Similarly D∗

2D2 is
invertible, so ψ = 0. This completes the proof of the first part.

Suppose now that s = 0. With χ and ψ as before, we deduce first that
χ is a parallel section. In particular, D∗

2χ = 0. But χ also lies in the image
of D2 (by definition), so χ must be zero, by the Fredholm alternative. Thus
D2ψ = 0 and, applying the Weitzenböck formula, ψ is parallel. Thus we
have identified the kernel of D∗

g with the space of parallel sections of S4V +

in the Ricci-flat case. ✷

Of course compact ASD-Einstein manifolds with s ≥ 0 are rather rare.
A well-known result of Hitchin states that the only examples with s > 0
are the complex projective plane (with the opposite orientation) and the
4-sphere. And when s = 0, one has only (quotients of) the K3-surface or
the flat 4-torus. Since the former is simply connected and the latter has
trivial holonomy, we have dimH2

c = 5 in each of these cases.
When the class of spaces is widened to compact, ASD–Einstein orbifolds

with s > 0, many more examples appear. These include the weighted
projective spaces of Galicki–Lawson [GL].

The next class of examples consists of the compact scalar-flat Kähler
surfaces. Here there is a fundamental dichotomy according as the Ricci ten-
sor does or does not vanish. Since the Ricci-flat case was already analyzed,
we may as well suppose that the surface is not Ricci-flat. Then we have
the vanishing theorem of [KLP] to the effect that H2

c (X) = 0 whenever
the scalar-flat Kähler surface is non-minimal; that is to say, whenever it
contains at least one rational curve of self-intersection −1. We shall not
repeat the argument (though the reader will see many of the details in our
discussion below of the case of non-compact but ALE scalar-flat Kähler
surfaces).

Remark. Although we do not give a formal statement, it also often
possible to compute H2

c when c is conformally flat. Indeed, in this case the
ASD deformation theory is essentially the same as the conformally flat de-
formation theory; in particular if the latter is unobstructed, then so is the
former. On the other hand, the conformally flat deformation theory is given
by a flat complex (de Rham complex with twisted coefficients). The coho-
mology groups can sometimes be computed by topological methods. For ex-
ample, for generic conformally flat structures, H2

c (S1 × S3� · · · �S1 × S3)=0
by a Meyer–Vietoris argument.

8.3 Vanishing theorems for WALE spaces. In this subsection we
consider the case that the cylindrical-end model has a conformal blow-up



Vol. 11, 2001 COMPLETE ANTI-SELF-DUAL SPACES 1277

that is WALE and either Ricci-flat or scalar-flat Kähler. Once again, we
shall not have any use for the b-manifold here and therefore drop the use
of hats.

Recall from previous discussion that we are interested in the part of the
kernel of D∗

g that is O(R−2) near ∞.

Proposition 8.2. Suppose (X, g) an ALE space that is ASD and Ricci-
flat. Then H2

g (X) = 0.

Proof. Recall the formula D∗ = D1D2 from the previous proposition. Let
ψ ∈ H2

g and let χ = D2ψ. Then |χ| = O(R−3) as R→ ∞, and so

0 =
∫
R≤R0

(χ,D∗
1D1χ) =

∫
R≤R0

(χ,∇∗∇χ) =
∫
R≤R0

|∇χ|2 +O(R−4
0 )

and letting R0 → ∞ we conclude as before that χ is parallel. Since |χ| → 0
at ∞, moreover, χ = 0. Hence D2ψ = 0. We make the same argument
as above using the Weitzenböck formula. This time the boundary term is
O(R−2

0 ) but we still conclude that ψ is parallel and hence 0, since 0 at ∞. ✷

Now let us take up the Kähler story. By definition a non-compact Kähler
surface (X, g, J) is said to be ALE if g is ALE and Kähler with respect to
J and if the chart at infinity φ can be chosen to be a biholomorphic map
X − K → (C2 − B)/Γ. We shall now show that in this case H2

g (X) = 0.
Our method is to analyze D∗

g in terms of holomorphic data on X, decaying
at ∞. This is helpful because of the following lemma:

Lemma 8.3. Suppose that X is an ALE Kähler surface and suppose that
T is a holomorphic tensor field on X, |T | → 0 at ∞. Then T = 0.

Proof. Transfer T to (C2−B)/Γ and pull back to C
2−B. Then T becomes a

holomorphic section of a trivial vector bundle and so each component of T is
a holomorphic function that decays at ∞. But by the removable singularity
theorem of Hartogs, each component extends uniquely to a holomorphic
function on C

2 and by the maximum principle must therefore be identically
zero. This argument shows that T is identically zero on X −K. But then
by uniqueness of analytic continuation, T is identically zero on X. ✷

Now the main theorem of this subsection can be given:

Theorem 8.4. Suppose that (X, g, J) is an ALE scalar-flat Kähler surface.
Then H2

g (X) = H2
g,J(X) = 0.

Proof. Recall first that

Λ+ ⊗ C = K ⊕ 1⊕K−1 , Λ− ⊗ C = Λ(1,1)
0 .
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Here K is the canonical-bundle of X, and the trivial bundle 1 is embedded
in Λ+ by multiplication by ω. Let us for the moment write K ⊕K−1 = E
so that Λ+ = 1 ⊕ E. This decomposition is preserved by the connection
since J is parallel, so that D∗ decomposes as a pair of operators

S∗ = d−δ +Φ : C∞(Λ+) → C∞(Λ−) (8.5)

(taking the component of ω) and

d−EδE +Φ : Ω+(E) → Ω−(E) . (8.6)

Now we shall decompose the other factor of Λ+. If ψ is a section of E2,
write its components as follows(

ψ0 ψ1
ψ1 ψ11

)
∈ C∞

(
1 1⊗ E

E ⊗ 1 E ⊗ E

)
.

Now the condition D∗
gψ = 0 may be written as the two equations

d−dcψ0 + ρψ0 + d−δψ1 = 0 (8.7)

and

dE−(d
E)cψ1 + ρψ1 + dE−δ

Eψ11 = 0 (8.8)

The vanishing theorem will be proved according to the following scheme:

(i) H0(X,Θ) ∩O(R−2) = 0 implies ψ0 = 0;
(ii) H0(X,O(K)) ∩O(R−2) = 0 implies ψ1 = 0;
(iii) H0(X,Ω1⊗K)∩O(R−2) = 0 andH0(X,O(K2))∩O(R−2) = 0 implies

ψ11 = 0.

In other words, relative to S2
0Λ

+ = K−2⊕K−1⊕ 1⊕K⊕K2, we eliminate
first the component in the trivial bundle, next the components in K±1,
finally those in K±2. Remark that complex conjugation carries Kr into
K−r so it is enough to deal with the components in 1, K and K2.

Proof of (i). As in [LS1], the real function ψ0 satisfies Lichnerowicz’s
differential equation; on a compact manifold it follows that ∇1,0ψ0 is a
holomorphic vector field. The argument requires integration by parts but
in our situation we have sufficient decay at ∞ so that the conclusion holds.
In fact, ∇1,0ψ0 is holomorphic and decays at ∞, so by Lemma 8.3 ψ0 is
constant. Finally ψ0 is O(R−2) so ψ0 = 0; the proof of (i) is complete.

Proof of (ii). Referring to (8.7), ψ1 satisfies the equation d−δψ1 = 0. As
in the compact case, this implies dδψ1 = 0 (cf. the proof of the existence
of the conformal factor). In particular ψ1 is harmonic. Because the Hodge
and ∂-Laplacians agree (up to a factor of 2) we infer that ∂∗∂γ = 0 where
ψ1 = γ+γ is the decomposition of according to components in K and K−1.
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Integration-by-parts is applicable now to show that γ is holomorphic. The
proof is completed by applying Lemma 8.3 to γ.

Finally we consider implication (iii). Since ψ0 = 0 and ψ1 = 0, ψ11 =
α + α, say, where α is a section of K2, and (8.8) gives d−KδKα = 0. These
operators are the usual Hodge-de Rham operators, coupled to the holomor-
phic line bundle K and α lies in the space Ω2,0(K). For reasons of degree,
and using the Kähler identity ∂∗ = i[Λ, ∂],

dKd
∗
Kα = idKΛ∂Kα = ωλ+ µ

where λ is a section of K and µ is a section of K2. More precisely,

i∂KΛ∂Kα = ωλ . (8.9)

Since ∂2K = 0 (the curvature is of type (1, 1)), we obtain ω ∧ ∂Kλ = 0 and
hence λ is a holomorphic section of K. Since λ decays at ∞, we have λ = 0.
Two more steps, each involving an application of Lemma 8.3 complete
the proof. For with λ = 0, equation (8.9) says that Λ∂Kα is a decaying
holomorphic section of Λ1,0(K), hence zero. Since Λ : Ω2,1 → Ω1,0 is an
isomorphism, it follows that α is a decaying, holomorphic section of K2.
This completes the proof of (iii) and hence the vanishing theorem. ✷
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