
comput. complex. 8 (1999), 99 – 126
1016-3328/99/020099–28 $ 1.50+0.20/0

c© Birkhäuser Verlag, Basel 1999

computational complexity

THE COMPLEXITY OF MATRIX RANK
AND FEASIBLE SYSTEMS
OF LINEAR EQUATIONS

Eric Allender, Robert Beals

and Mitsunori Ogihara

Abstract. We characterize the complexity of some natural and im-
portant problems in linear algebra. In particular, we identify natural
complexity classes for which the problems of (a) determining if a sys-
tem of linear equations is feasible and (b) computing the rank of an
integer matrix (as well as other problems) are complete under logspace
reductions.

As an important part of presenting this classification, we show that
the “exact counting logspace hierarchy” collapses to near the bottom
level. We review the definition of this hierarchy below. We further
show that this class is closed under NC1-reducibility, and that it consists
of exactly those languages that have logspace uniform span programs
(introduced by Karchmer and Wigderson) over the rationals.

In addition, we contrast the complexity of these problems with the
complexity of determining if a system of linear equations has an integer
solution.
Key words. Logspace counting, rank, linear algebra, #L, probabilistic
logspace.
Subject classifications. 68Q15, 65Y05, 68Q40, 68Q75, 94C10, 15A99.

1. Introduction
The motivation for this work comes from two quite different sources. The
first and most obvious source is the desire to understand the complexity of
problems in linear algebra; our results succeed in meeting this goal. The other,
less obvious, source is the desire to understand the power of threshold circuits
and enumeration problems. Although our results do not actually help much in
this regard, this motivation is responsible for some of the notation used later,
and thus we start by explaining this side of things.

100 Allender, Beals & Ogihara cc 8 (1999)

1.1. Complexity Classes for Counting and Enumeration. The count-
ing hierarchy (sometimes denoted CH) is the complexity class PP ∪ PPPP ∪
PPPPPP ∪ (Here, PP is unbounded-error probabilistic polynomial time,
Gill (1977).) Although the counting hierarchy was originally defined in order
to classify the complexity of various problems Wagner (1986), another reason
to study CH comes from the connection with threshold circuits. Using the
analogous correspondence between constant-depth circuits and the polynomial
hierarchy established by Furst et al. (1984), it is known that constructing an
oracle separating PSPACE from CH is essentially the same problem as showing
that NC1 properly contains TC0, the class of problems computable by constant-
depth threshold circuits of polynomial size.1 Similarly, the important question
of whether or not the TC0 hierarchy collapses is related to the question of
whether or not CH collapses.

Since PPP = P#P, an equivalent way to define CH is by P∪P#P∪P#P#P∪. . ..
In proving results about the complexity of PP, #P, and related classes, it has
often proved more convenient to use the related class of functions GapP of
Fenner et al. (1994), which is the set of functions that can be expressed as the
difference of two #P functions.

One final complexity class related to CH needs to be defined. A number
of authors (beginning with Simon (1975)) have studied the class now called
C=P (the set of all languages A with the property that there is an f in GapP
such that x ∈ A ⇔ f(x) = 0). Note that C=P can also be characterized in
terms of “exact counting”; a language A is in C=P if and only if there is an
NP machine M and a poly-time-computable g such that, for all x, x ∈ A if
and only if the number of accepting computations of M on input x is exactly
g(x). Since PP contains C=P and is contained in C=PC=P, it follows that a
third characterization of CH can be given in terms of C=P; i.e., CH = C=P ∪
C=PC=P ∪ C=PC=PC=P ∪

1.2. Logspace Counting Classes. There is no a priori reason to expect
that logspace analogs of the classes PP,#P,GapP, C=P should be interesting,
and in fact, with the exception of PL, the related logspace classes remained
uninvestigated until fairly recently, when independent discoveries by Vinay,
Toda, and Damm showed that #L actually characterizes the complexity of
the determinant quite well. More precisely, the following result is essentially
shown by Vinay (1991, Theorem 6.5), Toda (1991, Theorem 2.1), and Damm
(1991). (See also Mahajan & Vinay (1997) and Valiant (1979) (Valiant (1979),

1More precisely, there is a language in uniform NC1 that requires uniform TC0 circuits
of size greater than 2logO(1) n, if and only if there is oracle separating PSPACE from CH.

cc 8 (1999) Complexity of matrix rank 101

Theorem 2); further discussion may be found in Allender & Ogihara (1996).)

Theorem 1.1. A function f is in GapL if and only if f is logspace many-one
reducible to the determinant.

It follows immediately from this characterization that a complete problem
for PL is the set of integer matrices whose determinant is positive (originally
proved by Jung (1985)). Of course, checking if the determinant is positive is
not nearly as important a problem as checking if the determinant is exactly
equal to zero, and it is equally immediate from the foregoing that the set of
singular matrices is complete for the complexity class C=L.

The class C=L can be defined in any of a number of equivalent ways (see
Allender & Ogihara (1996)). We present two ways of defining the class.

Definition 1.2. A language A belongs to C=L if there exists a nondetermin-
istic logarithmic space-bounded machine M , such that for every x, x is in A if
and only if the machine has exactly the same number of accepting and rejecting
paths on input x.

For a nondeterministic logspace machine M , define gapM to be the function
that maps each x to the number of accepting computation paths of M on x
minus the number of rejecting computation paths of M on x. Define GapL to
be the class of all gapM for some nondeterministic logspace machine M .

Definition 1.3. A language A belongs to C=L if there exists a GapL function
f such that for every x, x ∈ A if and only if f(x) = 0.

Although the machine model for C=L is not as natural as some, the fact
that it exactly characterizes the complexity of the singular matrices makes this
a better motivated class than PL, for example.

Logspace versions of the counting hierarchy were considered in Allender &
Ogihara (1996). When defining classes in terms of space-bounded oracle Turing
machines, one needs to be careful how access to the oracle is provided. We
use the “Ruzzo-Simon-Tompa” access mechanism Ruzzo et al. (1984), which
dictates that a nondeterministic Turing machine must behave deterministically
while writing on its oracle tape. One consequence of using this definition is
that we may assume without loss of generality that the list of queries asked by
the machine depends only on the input x and not on the answers given by the
oracle Ruzzo et al. (1984).

This oracle access mechanism was used in Allender & Ogihara (1996) to
define the following hierarchies:

102 Allender, Beals & Ogihara cc 8 (1999)

◦ The Exact Counting Logspace Hierarchy, the C=L hierarchy, is defined
as:

C=L ∪ C=LC=L ∪ C=LC=LC=L ∪

◦ The Probabilistic Logspace Hierarchy, the PL hierarchy, is defined as:

PL ∪ PLPL ∪ PLPLPL ∪

◦ The Counting Logspace Hierarchy, the #L hierarchy, is defined as:

L#L ∪ L#L#L ∪ L#L#L#L

∪

Although the hierarchies defined in terms of C=P, PP, and #P all coincide
with CH, there seems to be little reason to believe that the hierarchies defined
in terms of C=L, PL, and #L are equal. The structures of these hierarchies
seem quite different than those of their polynomial time counterparts since
it is shown in Allender & Ogihara (1996) that these logspace hierarchies are
captured in terms of the AC0-reducibility closures of the base classes.

Here we define circuit-based reductions (see Cook (1985)). An oracle circuit
is one with a special type of gate called an oracle gate. An oracle gate takes a
number of inputs in some fixed order and outputs a number of bits. Evaluation
of an oracle circuit proceeds as in normal circuit evaluation, except that the
evaluation of an oracle gate is carried out by the function oracle associated
with the circuit, where the input bits to the gate are interpreted as a query
string to the oracle. A problem Q is logspace uniform AC0-reducible to F if
there exist a logspace machine M , a polynomial p, and a constant k such that
for every n ≥ 1, M on 1n outputs a description of an unbounded fan-in circuit
Cn of size (i.e., the number of gates) at most p(n) and of depth (i.e., the length
of the longest path from an input to an output with each gate contributing one
to the depth) at most k, and for every x of length n, Cn outputs Q(x) on input
x with oracle F . We say that a problem Q is logspace uniform NC1-reducible
to F if the circuit generated for inputs of length n has the following properties:

1. the circuit is a bounded fan-in circuit, i.e., the AND gates and the OR
gates have fan-in two; and

2. the depth of the circuit is at most k log n, where an oracle gate with m
inputs contribute logm to the depth.

cc 8 (1999) Complexity of matrix rank 103

Although there are a number of uniformity conditions that are studied (see,
e.g., Ruzzo (1981)), we will use only logspace uniformity in the present paper.
So, for a circuit class C and a class D, we write C(D) to denote the class of
problems that are logspace uniform C-reducible to problems in D. Now with
that notation, the equivalences that are shown in Allender & Ogihara (1996)
are stated as:

◦ The C=L hierarchy is equal to AC0(C=L).

◦ The PL hierarchy is equal to AC0(PL).

◦ The #L hierarchy is equal to AC0(#L).

Note that all of these classes contain NL and are contained in TC1 (and
hence are contained in NC2). Ogihara (1998) recently proved that the PL
hierarchy collapses to PL.

Cook (1985) defined DET as the class of things NC1-reducible to the de-
terminant. Note that his class DET contains the #L hierarchy.

1.3. Main results. We show that the exact counting logspace hierarchy col-
lapses to LC=L. It collapses all the way to C=L if and only if C=L is closed
under complement. We further show that NC1(C=L) = LC=L, and that this
class consists of exactly those languages with logspace uniform span programs
over the rationals (cf. Karchmer & Wigderson (1993)).

We show that testing feasibility of a system of linear equations is complete
for this hierarchy. Another complete problem for this class is computing the
rank of a matrix, or even determining the low order bit of the rank.

In contrast, verifying that a matrix has a particular rank is complete for a
level of the Boolean hierarchy over C=L.

This is the first time that the complexity of these well-studied problems in
linear algebra has been so precisely characterized. Santha & Tan (1998) stud-
ied these same computational problems using a coarser notion of reducibility
that blurred the distinctions between the various levels of the exact counting
logspace hierarchy and the Boolean hierarchy over C=L. The emphasis in San-
tha & Tan (1998) is on exploring the apparent difference in the complexity of
such problems as verifying det(M) = a and verifying that M−1 = A, although
the complexity of computing the determinant is equivalent to that of matrix
inversion.

It should be noted that there are several other classes C for which it has
been shown that NC1(C) is equal to LC. In particular, there is a superficial
resemblance between our result showing NC1(C=L) = LC=L, and the result

104 Allender, Beals & Ogihara cc 8 (1999)

of Ogihara (1995) that NC1(C=P) is equal to LC=P. Also, Gottlob (1996)
has recently studied the question of which classes C satisfy AC0(C) = LC.
(Our results imply that C=L has this property.) However the techniques of
Ogihara (1995) and Gottlob (1996) do not carry over to complexity classes
with small space bounds such as C=L, and thus our proofs are correspondingly
more complex.

2. Complexity of problems in linear algebra

We will focus mainly on the following problems concerning integer matrices:
verifying that the rank of a matrix is r, checking whether the rank of a matrix
is odd, computing the rank of a matrix, and determining if a system of linear
equations is feasible.

Ver .RANK = {(A, r) | A ∈ Zm×n, r ∈ N, rank(A) = r}.
Odd .RANK = {A | A ∈ Zm×n and rank(A) is an odd number }.

Comp.RANK = {(A, i, b) | A ∈ Zm×n, rank(A) = r, and bit i of r is b}.
FSLE = {(A, b) | A ∈ Zm×n, b ∈ Zm×1, and ∃x ∈ Qn×1 : Ax = b}.

(FSLE stands for Feasible Systems of Linear Equations.)

Remark: We have defined these problems for integer matrices. It is perhaps
worth mentioning that the corresponding problems for rational matrices are
equivalent to these integer matrix problems under logspace reducibility. This
follows easily from the observation that for any rational matrix A, with entries
given as pairs of integers, and for any integers a and b, det(A) = a/b if and
only if b(det(A)N) − aN = 0 where the integer N is the product of all the
denominators appearing in A. The function b(det(A)N) − aN is easily seen
to be in GapL; thus checking whether the determinant of a rational matrix
is equal to a given value is reducible to checking whether a zero-one integer
matrix is singular. We will not mention rational matrices in the remainder of
the paper.

We show that

◦ FSLE , Odd .RANK , and Comp.RANK are all complete for LC=L. Note
that all of these problems are thus complete for the entire Exact Counting
Logspace Hierarchy, AC0(C=L), since it collapses to this level.

◦ Ver.RANK is complete for the second level of the Boolean Hierarchy
above C=L (i.e., the class of all sets expressible as the intersection of a
set in C=L and a set in co-C=L).

cc 8 (1999) Complexity of matrix rank 105

2.1. Some Preliminaries. This section is largely a review and restatement
of earlier work, although it is not intended to be a detailed survey of parallel
computation for linear algebra. We refer the reader to the excellent survey
article by von zur Gathen (1993) for more detailed coverage. We include this
material since some of our constructions require an understanding of this pre-
vious work. In particular, we need Corollaries 2.3 and 2.4, which appear to be
new observations.

As we review below, computing the rank of a matrix is intimately connected
with computing the coefficients of the characteristic polynomial of a matrix.
This, in turn is no more difficult than iterated matrix multiplication, as can be
seen from the work of Berkowitz (1984).

Theorem 2.1. Berkowitz (1984) There is a logspace-computable reduction
that, given an r-by-r matrix B, constructs a sequence of m-by-m matrices
Di such that the coefficients c0, c1, ..., cr of the characteristic polynomial of B
appear in positions (1, r + 1), ..., (1, 1) of the matrix

∏
iDi.

It is important for our applications to note that this reduction holds not only for
integer matrices, but also for matrices over any ring with unity. In particular,
this reduction has the property that the entries of the Di’s are either taken from
B or taken from the constants −1, 0,+1; thus the reduction is also a reduction
in the sense of von zur Gathen (1993), and it is also a projection in the sense
of Valiant (1992).

There is also a reduction going the other way: iterated matrix multiplication
is no more difficult than the determinant. The following construction goes back
at least to Valiant (1992) and the exposition below is similar to that in Toda
(1991).

Proposition 2.2. There is a logspace-computable function that takes as in-
put a sequence of matrices Di and numbers (a, b), and produces as output a
matrix H such that entry (a, b) of

∏
Di is det(H).

As in Theorem 2.1, in addition to the entries of Di, the constants we need
are only −1, 0,+1; thus, this reduction holds for matrices over any ring with
unity. It is a reduction in the sense of von zur Gathen (1993), and a projection
in the sense of Valiant (1992).

Proof. Consider each matrix Di to be a bipartite graph on vertices arranged
into two columns, where entry c in position (k,m) denotes an edge labeled c
from vertex k in the first column to vertex m in the second column. The second

106 Allender, Beals & Ogihara cc 8 (1999)

column of Di corresponds to the first column of Di+1. Then entry (a, b) in
∏
Di

is simply the sum over all paths from vertex a in the first column to vertex b
in the last column of the product of the labels on the edges on that path.

Now modify this graph by replacing each edge from x to y labeled c by a
path of length two, consisting of an edge labeled 1 going from x to a new vertex
z, and an edge labeled c going from z to y. Note that this trivially makes the
length of all paths from a to b of even length, without changing the value of
the product of the values along any path.

Next, add a self-loop labeled 1 on all vertices except vertex b in the last
column, and add an edge from vertex b to vertex a, and label this edge with
1. Let H be the matrix encoding this digraph. In the polynomial for the
determinant of H, the only terms that do not vanish correspond to ways to
cover the vertices by disjoint collections of cycles. In this graph, cycle covers
one-to-one correspond to paths from a to b with other vertices covered by self-
loops, since the graph that results by deleting the self-loops and the edge from b
to a is acyclic. In any such cycle cover, the single non-trivial cycle in the cover
has odd length, and thus it is an even permutation. Thus det(H) is simply
the sum over all paths from vertex a in the first column to vertex b in the last
column of the product of the labels on the edges on that path, as desired.

We remark that a slightly more complicated construction given in Toda
(1991) provides a projection that does not make use of the constant −1, by
introducing cycle covers corresponding to odd permutations. �

Corollary 2.3. There is a logspace-computable function f such that if M is
a matrix of full rank, then so is f(M), and if M is a matrix with determinant
zero, then f(M) is a matrix of rank exactly one less than full.

Again, this holds over any ring with unity.

Proof. By Theorem 2.1, given M , there is a logspace reduction that pro-
duces sequence of matrices D1, . . . ,Dm such that entry (1, n) of

∏
iDi is the

determinant of M . The proof of Proposition 2.2 produces a graph H whose
determinant is equal to entry (1, n) of

∏
iDi, and thus the determinant of H

is equal to the determinant of M . Except for the edge (n, 1) and the self-loops
on vertices 1 through n− 1, the graph H is acyclic. Without loss of generality,
if (i, j) is an edge, then j > i. Thus the submatrix given by the first n−1 rows
and columns is upper triangular with 1’s along the main diagonal, and thus the
rank of H is at least n− 1. �

cc 8 (1999) Complexity of matrix rank 107

It will be useful in later sections to call attention to a few more properties
that follow from this same construction:

Corollary 2.4. There is a logspace-computable function f that takes an r-
by-r matrix M as input and outputs a sequence of n-vectors V = v1, . . . , vn−1

with the following properties:

◦ The vector (1, 0, 0, . . . , 0) is spanned by V if and only if M is singular.

◦ f is a projection, in the sense that for all r, i, j, and for any r-by-r matrix
M the jth coordinate of vector vi in f(M) is either 0, 1,−1, or Mk,l, and
this depends only on (r, i, j).

Again, this holds for any ring with unity.
Let us now review some aspects of Mulmuley’s algorithm for computing the

rank, from Mulmuley (1987).
Let A be an n-by-n matrix with entries from some ring K, and let A′ be

the matrix [
0 A
At 0

]
.

Let B = Y A′, where Y is the matrix with powers of indeterminate y on the
diagonal: Yi,i = yi−1 for 1 ≤ i ≤ 2n, Yi,j = 0 for i 6= j.

As explained in von zur Gathen (1993), the following statements are equiv-
alent:

1. rank(A) ≤ k,

2. rank(A′) ≤ 2k,

3. rank(B) ≤ 2k,

4. algebraic. rank(B) ≤ 2k (i.e., rank(B2n) ≤ 2k),

5. the first 2n− 2k coefficients of the characteristic polynomial of B are all
zero, and

6. the first 2n− 2k coefficients of the characteristic polynomial of B are all
zero mod y4n2,

where the entries in B, and hence the coefficients of the characteristic polyno-
mial of B, are all in K(y), the ring of polynomials over K in indeterminate y.
Using the reduction given by Theorem 2.1, it suffices to build a sequence of

108 Allender, Beals & Ogihara cc 8 (1999)

r-by-r matrices Di, where r is a polynomial in n, and where the elements of
the Di are polynomials of degree at most 4n2 in K(y) and determine if certain
entries of

∏
Di are all zero mod y4n2.

A polynomial in K(y) of degree at most d−1 can be represented by a d-by-
d Toeplitz matrix (see von zur Gathen (1993)), and the zero element in K(y)
corresponds to the all-zero matrix. Thus, determining if the rank of matrix A is
at most k can be performed by building a sequence of r(4n2 + 1)-by-r(4n2 + 1)
matrices D′i with entries from K, and determining if certain entries of

∏
D′i

are all zero.
For the particular case of integer matrices, we have the following proposi-

tion, which in some sense is implicit in von zur Gathen (1993); see also Santha
& Tan (1998).

Proposition 2.5. The set

{(M, r) |M ∈ Zn×n and rank(M) < r}

is complete for C=L.

Proof. Hardness for C=L follows from Theorem 1.1, even for the case r = n.
Containment in C=L follows from the preceding discussion, along with the
following observations:

◦ The problem of taking integer matrices Dl and indices i, j and determin-
ing if entry i, j of

∏
lDl is zero is in C=L. For details, see Toda (1991).

◦ Hence, the preceding discussion shows that the problem of determining
if the rank is at most r is logspace conjunctive-truth-table reducible to a
problem in C=L.

◦ C=L is closed under logspace conjunctive-truth-table reductions Allender
& Ogihara (1996).

�

2.1.1. A few comments regarding previous work. Von zur Gathen
(1993) considers the problem INDEPENDENCE, which is defined as the prob-
lem of determining if a given a set of vectors is linearly independent, and
specifically asks if INDEPENDENCE is reducible to SINGULAR (the set of
singular matrices). For rational matrices, these problems are easily seen to be

cc 8 (1999) Complexity of matrix rank 109

complete for co-C=L and for C=L, respectively, so von zur Gathen’s question
in that setting can be viewed as asking if C=L is closed under complement.

However, von zur Gathen (1993) is more interested in working in the al-
gebraic setting over a given field F , and his notion of “reduction” is more
restrictive than logspace reducibilities. More precisely, the reductions in von
zur Gathen (1993) are computed by constant-depth circuits with unbounded
fan-in OR and + gates, fan-in two AND and × gates, and unbounded fan-in
oracle gates. It is not made clear in von zur Gathen (1993) whether NOT gates
are also to be allowed in reductions. If NOT gates are allowed, then the restric-
tion of bounded fan-in AND gates can be side-stepped using unbounded fan-in
OR gates, via DeMorgan’s laws. On the other hand, some of the reductions in
von zur Gathen (1993), e.g., as in Theorem 13.8, explicitly make use of NOT
gates. Without using NOT gates at all, INDEPENDENCEF (the subscript F
indicates the language is the “field F”-version) is clearly many-one reducible
to the question of whether a matrix has rank greater than r.

We have seen in the discussion preceding Proposition 2.5 that this problem
in turn is many-one reducible to the question, given D1, . . . ,Dr, of whether
there is at least one non-zero value in certain positions of

∏
Di. Since each

of these values can be represented as the determinant of a matrix, again using
a reduction in the sense of von zur Gathen (1993), it follows that even with-
out using NOT gates in the reduction, INDEPENDENCEF is reducible to the
complement of SINGULARF using a reduction in the sense of von zur Gathen
(1993). If NOT gates are allowed, then these problems are clearly interre-
ducible; they are also interreducible to the problem SING .NONSINGF which
consists of two matrices, the first of which is singular, the second nonsingular.

In von zur Gathen (1993), the following are listed as open questions:

◦ Is INDEPENDENCEF reducible to SINGULARF?

◦ Is INDEPENDENCEF complete for RANK F ? Here, RANK F is the class
of problems reducible to the problem of computing the rank of a matrix.

The answer to these questions depends on whether NOT gates are allowed
in reductions. The comments in the preceding paragraph, together with the
reduction given in our Lemma 2.12, show that if NOT gates are allowed in
reductions, then all problems in RANK F are reducible to INDEPENDENCEF

and to SINGULARF , and thus both of these two questions from von zur Ga-
then (1993) have been answered positively. If NOT gates are not allowed in
reductions, the situation remains unclear.

Santha & Tan (1998) also considered complexity classes defined in terms of
reducibility to problems in linear algebra over some field F . The reducibilities

110 Allender, Beals & Ogihara cc 8 (1999)

considered by Santha and Tan differ from those of von zur Gathen (1993) in
at least two respects: (1) unbounded fan-in AND gates are explicitly allowed,
and (2) no path from input to output can encounter more than one oracle
gate. Thus these reductions are what are called AC0

1 reductions in Allender
& Ogihara (1996) and elsewhere. The classes in their study are DET , which
would be called AC0

1(#L) in our notational scheme, and V -DET , which by
definition is AC0

1(C=L), and which we show coincides with the exact counting
logspace hierarchy. Santha and Tan also consider problems that are many-one
reducible to computing and verifying the determinant, and obtain the classes
m-DET , which is the same as our class GapL, and m-V -DET which is the
same as our class C=L. Santha and Tan consider both Boolean and arithmetic
versions of these problems; an arithmetic circuit computing the rank of n-by-n
matrices must work correctly for all n-by-n matrices regardless of the size of
the entries, while a Boolean circuit takes the actual encodings of the entries
of the matrix as input, and thus a larger circuit will handle n-by-n matrices
with entries of 2n bits than the circuit that handles matrices with entries of
n bits. Our results show that in the Boolean model , for reductions to the
problem V -DET , restriction (2) in the reducibilities of Santha & Tan (1998) is
redundant; the same class of problems results if this restriction is dropped. In
the arithmetic case, however, this remains unknown even in the case when F
is the field of rational numbers.

Buntrock et al. (1992) studied algebraic problems over GF[p] for prime p.
The proof of Theorem 10 in Buntrock et al. (1992) states that, over the ring
of integers, computation of the determinant is NC1-reducible to computation
of the rank of a matrix, while in fact this remains an open question. However,
what is needed for the applications in Buntrock et al. (1992) is that these prob-
lems are interreducible over GF[pk], which is true. This is because computation
of the determinant can be reduced to checking if it is exactly equal to one of a
small number of values.

2.2. The Complexity of Rank. In this section we present our results con-
cerning the complexity of verifying the rank of integer matrices, building on
Proposition 2.5, which characterizes the complexity of verifying that the rank
of M is less than r.

A more interesting question than asking whether the rank of M is less than
r is asking whether it is equal to r; even more interesting is the problem of
computing the rank. In order to classify the problem of verifying the rank, it
is necessary to define some additional complexity classes.

It is not known whether C=L is closed under complement. Thus, just as

cc 8 (1999) Complexity of matrix rank 111

has been done with complexity classes such as NP (Cai et al. (1988, 1989)), one
can define the Boolean Hierarchy over C=L, defined as the class of languages
that can be formed by taking Boolean combinations of languages in C=L. Of
particular interest to us will be the class that contains all sets that are the
difference of two sets in C=L.

Definition 2.6. Let C=L ∧ co-C=L be the set of all languages A such that
there exist B ∈ C=L, and C ∈ co-C=L such that A = B ∩ C.

Theorem 2.7. The sets

{(M, r) |M ∈ Zn×n and rank(M) = r}

and
{M |M ∈ Zn×n and rank(M) = n− 1}

are complete for C=L ∧ co-C=L.

Proof. It follows easily from Proposition 2.5 that these problems are in
C=L ∧ co-C=L. Thus it suffices to show completeness.

Let A = B ∩ C where B ∈ C=L and C ∈ co-C=L. Since the set of singular
matrices is complete for C=L, on input x, we can compute matrices M1 and M2

such that x ∈ A if and only if det(M1) = 0 and det(M2) 6= 0. By Lemma 2.3,
we can compute matrices M3 and M4 such that x ∈ A if and only if rank(M3)
is one less than full and the rank(M4) is full. Note also that x 6∈ A if and only
if either rank(M3) is full or rank(M4) is one less than full. Thus x ∈ A if and
only if the matrix  M3

M4

M4


has rank one less than full. This completes the proof of the theorem. �

It will be useful later on to observe that the following fact holds.

Fact 2.8. The language

{(A,B, r) | r is the rank of both A and B}

is in C=L ∧ co-C=L.

Proof. This can easily be expressed as the intersection of sets checking (1)
rank(A) = r, and (2) rank(B) = r. Note that C=L ∧ co-C=L is easily seen to
be closed under intersection based on the fact that both C=L and co-C=L are
closed under intersection (see Allender & Ogihara (1996)). �

112 Allender, Beals & Ogihara cc 8 (1999)

2.3. Feasible Systems of Linear Equations. In this section we introduce
one of the complete languages for LC=L, and give some preliminary reductions.
The proof of completeness is in the next section. Recall that FSLE is the set
of all (A, b) such that A ∈ Zn×n, b ∈ Zn×1, and ∃x ∈ Qn×1 : Ax = b.

Proposition 2.9. The language FSLE is logspace many-one reducible to its
complement.

Proof. We claim that Ax = b is infeasible if and only if there exists y such
that ATy = 0 and bTy = 1. Let W be the subspace spanned by the columns of
A. The system is feasible if and only if b ∈W . From elementary linear algebra
we know that b can be written uniquely as b = v+w, where v is perpendicular
to W (i.e., vTA = 0) and w ∈ W . If v 6= 0, then, since vTw = 0, we have that
vT b = vTv > 0, and we may let y = (1/vTv)v. Thus if Ax = b is infeasible,
then there exists y such that ATy = 0 and bTy = 1. Conversely, if such a y
exists, then Ax = b is infeasible.

The claim is proved. Now note that the linear equations specifying y are
logspace-computable from A and b. So FSLE is logspace many-one reducible
to its complement. �

The above shows how to “negate” a system of linear equations. We remark
that other logical operations can in some sense be performed on systems of
linear equations. For example, suppose that we are given two systems, Ax = b
and Cy = d, and we wish to make a system that is feasible if and only if both
original systems are feasible (i.e., we wish to compute the logical AND of the
two systems). The system(

A 0
0 C

)(
x
y

)
=
(
b
d

)
is exactly what we want. To construct the logical OR of two systems, we note
that an OR gate can be built out of three negation gates and an AND gate.
It is useful to carry this observation a little further, for which we need the
following:

Definition 2.10. A logspace disjunctive truth-table reduction from A to B
is a function f , computable in logspace, such that for all x, f(x) produces a list
of strings (y1, y2, . . . , yr), with the property that x ∈ A if and only if at least
one of the yi is in B (“dtt” stands for “disjunctive truth table” reducibility).
Similarly, one defines “conjunctive truth table reducibility” (ctt reductions).
A more general type of reduction is the following: An NC1

1 reduction Balcázar

cc 8 (1999) Complexity of matrix rank 113

(1990) is a uniform sequence of circuits {Cn} of size nO(1) and depth O(log n),
consisting of fan-in two AND and OR gates, NOT gates, and “oracle gates”,
with the property that no path from input to output goes through more than
one oracle gate.

Expanding on the observations in the previous paragraph easily shows:

Lemma 2.11. The class of languages logspace many-one reducible to FSLE is
closed under NC1

1 reductions. �

We now give some relationships between FSLE and C=L, using the results
on rank from the previous section.

For an m × n matrix A and an m vector b, we write [Ab] to denote the
m× (n+ 1) matrix constructed by appending b to A as the (n+ 1)st column.
Also we write [bA] to denote the matrix constructed by inserting b in front of
A as a column vector.

Lemma 2.12. FSLE is logspace dtt reducible to the class C=L ∧ co-C=L.

Proof. Note that Ax = b is feasible if and only if the matrices A and [Ab]
have the same rank. So feasibility can be expressed as a disjunction, for all
0 ≤ r ≤ n, of the statement that A and [Ab] have rank r. The lemma now
follows by Fact 2.8. �

Lemma 2.13. Suppose A is logspace dtt reducible to C=L ∧ co-C=L. Then A
is logspace many-one reducible to FSLE .

Proof. Let M be a square matrix. Then M is nonsingular if and only if there
exists a square matrix X such that MX = I, where I is the identity matrix.
Observe that this is a system of linear equations in the entries of X. Since
testing singularity of a matrix is complete with respect to logspace many-one
reductions for C=L, Lemma 2.11 completes the proof. �

Theorem 2.14. FSLE is complete for the class of languages logspace dtt re-
ducible to C=L ∧ co-C=L. This class is closed under NC1

1 reductions.

Proof. Completeness follows from the preceding two lemmas. Closure under
NC1

1 reductions is by Lemma 2.11. �

114 Allender, Beals & Ogihara cc 8 (1999)

Corollary 2.15. Comp.RANK , Odd .RANK , and FSLE are equivalent un-
der logspace many-one reductions.

Proof. First we reduce FSLE to Odd .RANK . As noted above, the system
Ax = b is feasible if and only if A and [Ab] have the same rank. In addition, if
Ax = b is infeasible, then the rank of [Ab] is exactly one more than the rank of
A. Therefore, Ax = b is feasible if and only if the rank of(

A 0 0
0 A b

)
is even. Thus, FSLE is reducible to the complement of Odd .RANK , and by
Proposition 2.9 FSLE is also reducible to Odd .RANK , and this problem, in
turn, is trivially reducible to Comp.RANK .

Now we reduce Comp.RANK to FSLE . Given (A, i, b), let S = {j ≤ n | bit
i of j is equal to b}. Then (A, i, b) is in Comp.RANK if and only if

∨
j∈S(A, j) ∈

Ver .RANK . The result now follows by Lemma 2.13 and Theorem 2.7. �

2.4. Span programs. The span program model of computation was intro-
duced by Karchmer & Wigderson (1993). A span program on n-Boolean vari-
ables x1, . . . , xn consists of a target vector b in some vector space V , together
with a collection of 2n subspaces Uz ⊆ V , for each literal z ∈ {x1,¬x1, . . . , xn,
¬xn} (each subspace is represented by a possibly redundant generating set).
The language accepted by the span program is the set of n-bit strings for which
b lies in the span of the union of the Uz, for those true literals z. The complexity
of the span program is the sum of the dimensions of the Uz for all z.

For a language A, it is clear that if the n-bit strings of A are accepted by
a logspace computable span program over the rationals, then A is logspace
reducible to FSLE . We shall see that the converse is true as well. In what
follows, we will continue to use xi to denote the bits of a binary string which
may or may not be in some language A. We will use y1, . . . , y` to denote the
variables in a system My = b obtained from x, such that x ∈ A if and only if
My = b is feasible; so the matrix M is a function of the xi.

To begin with, let A be a language in C=L. Then A is logspace many-
one reducible to the set of singular matrices over the rationals. In fact, this
reduction has the properties outlined in Corollary 2.4. Thus, since the set
of singular matrices is complete for C=L under projections Toda (1991), we
have that there is a logspace-computable f such that f(x) is a system of linear
equations of the form My = b such that

1. x ∈ A if and only if My = b is feasible.

cc 8 (1999) Complexity of matrix rank 115

2. b is the vector (1, 0, 0, . . . , 0), and in particular, b depends only on |x|.

3. Each entry in M is either 0, 1,−1, or a literal xi or xi, and this also
depends only on |x|.

Using the construction in the proof of Proposition 2.9, we see that for any
A in co-C=L, an identical conclusion holds. (Note that x 6∈ A if and only if
[bM]T z = (1, 0, . . . , 0) is feasible.) For any problem B in C=L ∧ co-C=L, there
is thus a logspace-computable f such that f(x) is a system of linear equations
of the form My = b such that

1. x ∈ B if and only if My = b is feasible.

2. b is of the form (1, 0, 0, , 0, 1, 0, . . . , 0) (and in particular, b depends
only on |x|).

3. Each entry in M is either 0, 1,−1 or a literal xi or xi, and this also
depends only on |x|.

If C is any set that is logspace dtt reducible to a set in C=L ∧ co-C=L,
a corresponding system of linear equations can be constructed by two more
applications of the reduction of FSLE to its complement, and one application
of taking the AND of several systems of linear equations. Thus we have proved
the following:

Lemma 2.16. Suppose A is logspace dtt reducible to C=L ∧ co-C=L. Then A
is logspace many-one reducible to FSLE , and this reduction has the following
form: strings x1x2 . . . xn of length n are reduced to a system My = b, where
the vector b is constant (i.e., depends only on n) and the matrix entries are
either 0, 1, or a literal xi or xi, and this also depends only on n. �

To arrive at a span program for A, we need to pursue this a little further.
A span program is essentially a system My = b where b is a constant and each
column of M depends only on a single variable xi. The space Uxi is spanned by
the columns which depend on xi, evaluated at xi = 1, while U¬xi is spanned by
these same columns evaluated at xi = 0. We wish to obtain such a system by
modifying the systemMy = b from Lemma 2.16. Our construction will increase
the number of rows and columns polynomially: if M is an m× ` matrix, then
we will obtain a matrix M ′ with n` columns and m+ (n− 1)` rows.

For simplicity, we begin with the ` = 1 case of the construction, so assume
M is a single column. We can easily represent M as a sum M = v1+v2+. . .+vn,

116 Allender, Beals & Ogihara cc 8 (1999)

such that each vi depends only on xi. Then My = b is feasible if and only if b
is a linear combination of the vi with all coefficients equal . So we are trying to
solve the following system: ∑

yivi = b,

y1 = y2 = . . . = yn.

This amounts to adding n − 1 variables and n − 1 constraints to the original
system. This generalizes to the ` ≥ 1 case quite naturally: each column of M
is replaced by n columns, each variable in y is replaced by n variables, which
are constrained to be equal by appending n− 1 rows to the matrix.

We have shown:

Theorem 2.17. A language A ⊆ {0, 1}∗ has logspace uniform span programs
over the rationals if and only if it is logspace reducible to FSLE . �

Since the span program model is also studied in the setting of non-uniform
circuit complexity, we should say a few words about non-uniform span pro-
grams. In particular, it is an important characteristic of the span program
model in the non-uniform setting that the only measure of interest is the num-
ber of vectors and the size of each vector is not counted. For instance, it is
shown in Karchmer & Wigderson (1993) that if “small” span programs exist
for a problem, then span programs having a certain very restricted form must
exist — but this restricted form uses vectors of exponential length. It is an im-
portant aspect of span programs that having extremely long vectors does not
provide additional computational power. Our Theorem 2.17 does not immedi-
ately draw a connection between non-uniform span programs and non-uniform
versions of LC=L. It is easy to see that the number of components in a vector
is not a source of difficulty since there are only a small number of rows in the
matrix that are linearly independent; a potentially more difficult problem is
posed by span programs with entries with large numerators and/or denomina-
tors. If we measure the size of a (non-uniform) span program over the rationals
as the sum of (1) the sum of the dimensions of the Uz for all z, and (2) the
maximum number of bits required to represent any single entry in the program,
then polynomial-size span programs over the rationals characterize LC=L/poly,
which is also equal to the class of languages reducible to the set of singular
matrices via non-uniform AC0 or NC1 reductions.

2.5. Span Programs and the Matching Problem. The span program
formalism was used recently in showing that, for every natural number k, the
Perfect Matching problem is in the complexity class ModkL/poly of Babai et

cc 8 (1999) Complexity of matrix rank 117

al. (1996). That is, they show that, for every prime p, there are polynomial-size
span programs over GF[p] recognizing the Perfect Matching problem. Vinay
(1995) has pointed out that Perfect Matching is also in the class co-C=L/poly ,
via essentially the same argument. Let us sketch the details here; the main
ideas stem from the work of Tutte (1947), Lovász (1979) and Schwartz (1980).

Given the adjacency matrix of a graph, replace the 1’s in the matrix with
indeterminates and negated indeterminates to obtain the Tutte matrix for the
graph. If there is no perfect matching, then the formal polynomial for the
determinant is identically zero, and if there is a matching, then the formal
polynomial is not identically zero. This polynomial has degree n. Consider
random algorithm that (1) picks integers at random in some (exponentially-
large) domain, (2) plugs them in for the indeterminates in several independent
copies of the matrix, and (3) accepts if and only if all of the resulting matrices
are non-singular. If the determinant is not identically zero, this algorithm has
probability exponentially close to 1 of finding a non-singular matrix, and thus
for each input size m, there is a sequence of random choices with the property
that, for all inputs of size m, the algorithm correctly solves the perfect matching
problem when that sequence of random choices is used. This algorithm has the
form of a nonuniform dtt reduction to the set of non-singular matrices.

Proposition 2.18. Perfect Matching is in co-C=L/poly .

We mention that a slightly better upper bound on the matching problem
was recently presented in Allender & Reinhardt (1998).

It is an empirical observation that most natural computational problems are
complete for some natural complexity class. The Perfect Matching problem is
one of the few important problems that has resisted all such attempts at being
pigeonholed in this way. The problem is hard for NL. The reduction from 0–1
Network Flow to Perfect Matching given by Karp et al. (1986) can be modified
to show that the Directed Connectivity problem is reducible to the Perfect
Matching problem. Since it is in ModkL for all k (at least nonuniformly), it
seems unlikely to be complete for any of the ModkL classes. Similarly, if we
assume for the moment that C=L is not contained in any of the ModkL classes,
then Perfect Matching would seem not to be hard for co-C=L. However, the
assumption that C=L is not contained in ModkL does not have much intuitive
clout. It is known that NL is contained in the ModkL/poly classes Wigderson
(1994) (and actually in UL/poly by Reinhardt & Allender (1997), where UL is
the class of languages accepted by nondeterministic logspace machines with at
most one accepting computation path for any input), and it is natural to ask
if similar techniques might also apply to C=L.

118 Allender, Beals & Ogihara cc 8 (1999)

3. Collapse of the hierarchy

In this section we prove the collapse of the C=L hierarchy by showing that
LC=L = NC1(C=L). We shall make use of the following:

Lemma 3.1. Let A ∈ co-C=L. Then there is a B ∈ co-C=L such that A is
logspace many-one reducible to B, and there is a machine N witnessing that
B ∈ co-C=L such that the input tape of N is one-way.

Proof. Let M be a logspace machine witnessing that A ∈ co-C=L, and let p
be a polynomial such that on inputs of length n, M scans the input tape p(n)
times. Let N be a one-way machine that takes an input x1#x2# . . .#xm#,
and simulates M , using xi for the ith scan of M ’s input tape. If the strings
xi do not all have the same length, or if m 6= p(|x1|), then N generates both
an accepting and rejecting computation. Otherwise, N accepts if and only if
the simulation of M does. Let B be the set of inputs for which N has nonzero
gap value. Then B ∈ co-C=L, and A is reducible to B via the reduction
x 7→ x#x# . . . x#, where the string x# is repeated p(|x|) times. �

Theorem 3.2. LC=L = NC1(C=L). FSLE is complete for this class.

Proof. Note that the class co-C=L can be viewed as the GapL version
of NL. Hemachandra (1989), and also Schöning & Wagner (1988) show how
the so-called Census Function Technique can be applied to prove collapsing
hierarchies whose base classes admit census counting. Actually, the latter paper
shows that NLNL collapses to LNL based on the generalized method. By careful
examination of the argument, one notices that the similarity of co-C=L to NL
allows one to prove C=LC=L = LC=L. This technique, however, does not apply
to collapse NC1(C=L) to C=L, since a path from an input gate to the output
gate in the NC1 reduction can contain more than a constant number of queries.
We employ here a more complicated counting technique, developed in Ogihara
(1995) to prove NC1(C=P) = LC=P. The technique, unfortunately, does not
simply carry over to C=L, due to the lack of space in logspace computation,
and thus, needs significant modifications to be applicable to C=L.

The forward inclusion is obvious since LC=L is easily contained in the C=L
hierarchy, and since every AC0 reduction is an NC1 reduction.

Let B be logspace-uniform NC1-reducible to a language A ∈ co-C=L. Let
N be a nondeterministic Turing machine, witnessing that A is in co-C=L. By
Lemma 3.1, we may assume that N has a one-way input tape.

cc 8 (1999) Complexity of matrix rank 119

Let {Cn}n≥1 be a logspace-uniform NC1-circuit family that reduces B to
A. For simplicity, let n be fixed and let x ∈ Σn be a string whose membership
in B we are testing. Without loss of generality, we may assume that constants
0 and 1 are given as input bits in addition to the actual input string x.

By definition of NC1(C=L), we may assume, without loss of generality,
that each Cn is a tree, except that, of course, different input gates may be
connected to the same input variable. It is also no loss of generality to assume
that the only strings of length at most 3 in the oracle are those in the set
{0, 001, 010, 011, 111}. Thus any AND gate with inputs g1, g2 can be replaced
by an oracle gate with inputs 1, g1, g2, each OR gate can be replaced by an
oracle gate with inputs 0, g1, g2, and each NOT gate is equivalent to a one-
input oracle gate. Thus we may assume that each gate of Cn is either an input
gate or an oracle gate. These assumptions do not affect logspace uniformity.

Now for each oracle gate g in Cn, we assign weight R(g) = 2m, where
m is the number of oracle gates in Cn between g and the root (the output
gate). Clearly, R(g) is bounded by some polynomial in n and thus the sum of
the weights is bounded by some polynomial in n. Let q(n) be a polynomial
bounding the sum of the weights.

Define M to be the machine which, on input (x,m), behaves as follows:
First, M sets variable s to m. Next M guesses the output of Cn. Then M
starts traversing the tree Cn by a depth first search. When M visits a new
node, say g, M guesses the output of g and does the following:

◦ If the guessed output of g is 1, then M subtracts R(g) from s and starts
simulating N on the input of g. Since N is one-way on the input tape,
the simulation is done by visiting the children of g from left to right.
When M proceeds to a new bit of g’s input, the subtree rooted at the
corresponding child of g is visited, and on returning to g, the guessed bit
is used in the simulation of N .

◦ If the guessed output of g is 0, then M traverses the trees corresponding
to the inputs of g, but does not simulate N .

◦ If g is an input gate or an additional constant gate, then g checks whether
the guessed bit for g is correct. If not, then M aborts all the simulations
and tree traversing and then guesses one bit r to accept if and only if
r = 0.

Also, M holds a one-bit parity counter par, which is set to 0 at the beginning.
When M finishes one simulation of N , if M ends up in a rejecting state, then
par is flipped. When M finishes traversing all the nodes in Cn, then if the

120 Allender, Beals & Ogihara cc 8 (1999)

counter s is not equal to zero, M flips one more bit b and accepts if and only if
b = 1. Otherwise, if s is equal to zero, then M accepts if and only if par is 0.

Note that M can be logspace bounded: the space required by the simulta-
neous simulation of several computations of N ’s is bounded by O(Depth(Cn));
only O(logn) many guessed bits have to be maintained, and traversing the tree
also requires only O(logn) many bits.

Define X1 to be the language in co-C=L defined by the gap function with
respect to M : (x,m) belongs to X1 if and only if M on (x,m) has a non-zero
gap. Let mx be the largest m such that (x,m) is in X1. Also, define M ′ to be
the machine which behaves as M does except for guessing 1 as the output of
Cn, and define X2 to be the language in co-C=L characterized by the gap of
M ′. Then we will see that x ∈ B if and only if (x,mx) ∈ X2, which implies
B ∈ LC=L.

Note that M can be viewed as a machine which, on input x,m, guesses a
collection H of oracle gates in Cn so that the sum of the weight of the gates in
H equal to m (the collection H is exactly the set of gates with guessed value
1). For a fixed H, the size of gap generated by M is gapN(y1) · · · gapN(ym),
where g1, . . . , gm is an enumeration of all the gates in H, and the string yi is
the string appearing in the gate gi if exactly those gates in H output 1.

Let Zx be the collection of all oracle gates of Cn that output 1 on input
x and let nx be the sum of the weights of all gates in Zx. We will show that
nx = mx.

If M guesses Zx as H, then the gap generated for H is non-zero, since all
of the yi will belong to A and therefore the factor gapN(yi) will be non-zero.
Let Z be a collection not equal to Zx whose weight sum is at least nx. By
construction, the weight of any gate is greater than the sum of the weights of
all its ancestors. Therefore, there is a gate g in Z \ Zx, such which for every
gate h below g, h is in Zx if and only if h is in Z. Let u be the string which is
assumed to be the input for the gate g in the simulation of N when M guesses
Zx as H. Clearly, u is the actual query string. So, gapN(u) = 0. On the other
hand, when M guesses Z as Zx, by the assumption that each oracle gate below
g is in (Z ∩ Zx) ∪ ((Z̄) ∩ (Z̄x)), the input string that M simulates is u. So,
the gap generated with respect to Z becomes 0 whether or not the traversal is
finished.

Thus nx = mx. Now the only difference between M and M ′ is that M ′

guesses 1 as the output of Cn. That is, Cn outputs 1 if and only if M ′ can
generate non-zero gap on input (x,mx). Therefore x ∈ B if and only if for
some m ≤ q(|x|), (x,m) ∈ X2 and (for all i > m, (x, i) 6∈ X1). Since X1 and
X2 are in co-C=L, and since co-C=L is closed under dtt reductions, this shows

cc 8 (1999) Complexity of matrix rank 121

that B is logspace dtt reducible to C=L ∧ co-C=L. Therefore, by Lemma 2.13,
B is logspace many-one reducible to FSLE . �

4. Integer Solutions

In contrast to the problems considered above, the problem of determining if
a system of linear equations has an integer solution (IFSLE) is not known to
have a parallel algorithm at all. This problem is at least as hard as determining
if two integers are relatively prime, since the equation ax + by = 1 has an
integer solution if and only if (a, b) = 1. In fact, Kaltofen (1995) has pointed
out to us that recent work by Giesbrecht (1995) can be used to show that
IFSLE is RNC-equivalent to the problem of determining if GCD(x1, . . . , xn) =
GCD(y1, . . . , yn).

In addition, it is not too hard to show that the problem of determining
if the determinant of an integer matrix is equivalent to i mod p is many-one
reducible to IFSLE . We only sketch a proof. First, consider the case i = 0. The
determinant of M is equivalent to 0 mod p if and only if the system of linear
equations Mx = b given in the proof of Corollary 2.4 has an (integer) solution
mod p, which is equivalent to the existence of integer vectors x, y such that
Mx−py = b, which can be posed as an instance of IFSLE . For i 6= 0, note that
there is a logspace transformation that takes (M,p, i) as input and produces
matrix M ′ as output, such that det(M ′) = det(M) + (p− i). Thus det(M) ≡ i
(mod p) if and only if (det(M ′) = 0 (mod p) and there exist integer matrices
X,Y such that MX − pY = I. This can be encoded as a many-one reduction
to IFSLE .) This reduction works as long as p is at most polynomially large.
Thus a P-uniform NC1 reduction can use Chinese Remaindering to compute
the exact value of the determinant (Beame et al. (1986)). This shows that
#L is P-uniform NC1-reducible to IFSLE . In contrast, we do not know of
any correspondingly efficient way to reduce computation of the determinant
(or other #L-hard problems) to the problem FSLE .

5. Open Questions

The most obvious open question is: Is C=L closed under complement? This
happens if and only if the set of singular matrices can be reduced to the set
of non-singular matrices. Just as the complementation results of Immerman
(1988), Szelepcsényi (1988) and Nisan & Ta-Shma (1995) have led to useful
insights, we believe that a positive answer to this question would be extremely
interesting.

122 Allender, Beals & Ogihara cc 8 (1999)

Does the #L hierarchy collapse? Given the collapse of the other two
logspace counting hierarchies, it is tempting to guess that this hierarchy also
collapses. Recall that this hierarchy is the class of problems AC0-reducible to
the determinant.

It is an intriguing question whether NC1(PL) = AC0(PL). The question
had been open at the time the conference version of the present paper was
written. Recently, the question has been answered affirmatively by Beigel &
Fu (1997), who also show that NC1(PP) = AC0(PP).

Acknowledgments

Research of the first author was supported in part by NSF grants CCR-9509603
and CCR-9734918. Part of this work was done while he was a visiting scholar
at the Institute of Mathematical Sciences, Madras, India, and at the Wilhelm-
Schickard Institut für Informatik, Universität Tübingen supported by DFG
grant TU 7/117-1. Research of the second author was conducted while visiting
the Institute for Advanced Studies and DIMACS, and was supported in part by
an NSF Mathematical Sciences Postdoctoral Fellowship. Research of the third
author was supported in part by NSF grants CCR-9701911, CCR-9725021, and
INT-9726724.

We wish to thank E. Kaltofen and L. Fortnow for insightful comments re-
lated to this paper. Dieter van Melkebeek gave useful feedback on an earlier
draft. Kousha Ettasimi gave us an exposition of the NL-hardness of the Perfect
Matching problem. The observation about the complexity of perfect matching
is due to V. Vinay, and occurred during stimulating conversations the first au-
thor had with M. Mahajan, V. Arvind, and V. Vinodchandran at the Institute
of Mathematical Sciences, in Chennai, India.

An extended abstract of this work appeared in the proceedings of the 1996
ACM Symposium on Theory of Computing.

References

E. Allender and M. Ogihara, Relationships among PL, #L, and the determi-
nant. Theoretical Informatics and Applications (RAIRO) 30(1) (1996), 1–21.

E. Allender and K. Reinhardt, Isolation, matching, and counting. In Pro-
ceedings of 13th Conference on Computational Complexity. IEEE Computer Society
Press, Los Alamitos, CA, 1998, 92–88.

cc 8 (1999) Complexity of matrix rank 123

L. Babai, A. Gál, and A. Wigderson, Superpolynomial lower bounds for mono-
tone span programs. Technical Report 96–37, DIMACS, 1996. To appear in Combi-
natorica.

J. Balcázar, Adaptive logspace and depth-bounded reducibilities. In Proceedings
of 6th Conference on Structure in Complexity Theory. IEEE Computer Society Press,
Los Alamitos, CA, 1990, 240–254.

P. Beame, S. Cook, and H. Hoover, Log depth circuits for division and related
problems. SIAM Journal on Computing 15(4) (1986), 994–1003.

R. Beigel and B. Fu, Circuits over PP and PL. In Proceedings of 11th Computa-
tional Complexity. IEEE Computer Society Press, Los Alamitos, CA, 1997, 24–35.

S. Berkowitz, On computing the determinant in small parallel time using a small
number of processors. Information Processing Letters 18 (1984), 147–150.

G. Buntrock, C. Damm, U. Hertrampf, and C. Meinel, Structure and impor-
tance of Logspace-MOD class. Mathematical Systems Theory 25 (1992), 223–237.

J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson,

K. Wagner, and G. Wechsung, The boolean hierarchy I: structural properties.
SIAM Journal on Computing 17(6) (1988), 1232–1252.

J. Cai, T. Gundermann, J. Hartmanis, L. Hemachandra, V. Sewelson,

K. Wagner, and G. Wechsung, The boolean hierarchy II: Applications. SIAM
Journal on Computing 18(1) (1989), 95–111.

S. Cook, A taxonomy of problems with fast parallel algorithms. Information and
Computation 64 (1985), 2–22.

C. Damm, DET = L#L? Informatik-Preprint 8, Fachbereich Informatik der
Humboldt-Universität zu Berlin, 1991.

S. Fenner, L. Fortnow, and S. Kurtz, Gap-definable counting classes. Journal
of Computer and System Sciences 48(1) (1994), 116–148.

M. Furst, J. Saxe, and M. Sipser, Parity, circuits, and the polynomial-time
hierarchy. Mathematical Systems Theory 17 (1984), 13–27.

J. von zur Gathen, Parallel linear algebra. In Synthesis of Parallel Algorithms,
ed. J. Reif, 574–615. Morgan Kaufmann, 1993.

M. Giesbrecht, Fast computation of the Smith normal form of an integer matrix.
In Proceedings of Symposium on Symbolic and Algebraic Computation. ACM Press,
1995, 173–186.

124 Allender, Beals & Ogihara cc 8 (1999)

J. Gill, Computational complexity of probabilistic Turing machines. SIAM Journal
on Computing 6(4) (1977), 675–695.

G. Gottlob, Collapsing oracle-tape hierarchies. In Proceedings of 10th Computa-
tional Complexity. IEEE Computer Society Press, Los Alamitos, CA, 1996, 33–42.

L. Hemachandra, The strong exponential hierarchy collapses. Journal of Computer
and System Sciences 39 (1989), 299–322.

N. Immerman, Nondeterministic space is closed under complementation. SIAM
Journal on Computing 17 (1988), 935–938.

H. Jung, On probabilistic time and space. In Proceedings of 12th Conference on Au-
tomata, Languages and Programming. Springer-Verlag Lecture Notes in Computer
Science 194, 1985, 310–317.

E. Kaltofen, 1995. Personal communication.

M. Karchmer and A. Wigderson, On span programs. In Proceedings of 8th
Conference on Structure in Complexity Theory. IEEE Computer Society Press, Los
Alamitos, CA, 1993, 102–111.

R. Karp, E. Upfal, and A. Wigderson, Constructing a perfect matching in
random NC. Combinatorica 6(1) (1986), 35–48.

L. Lovász, On determinants, matching, and random algorithms. In Fundamen-
tals of Computing Theory (Proceedings of Conference on Algebraic, Arithmetic and
Categorical Methods in Computation Theory, Berlin/Wendisch-Rietz, 1979), Berlin,
1979, Akademia-Verlag, 565–574.

V. Mahajan and V. Vinay, A combinatorial algorithm for the determinant.
Chicago Journal on Theoretical Computer Science 1997 (1997). Article 5.

K. Mulmuley, A fast parallel algorithm to compute the rank of a matrix over an
arbitrary field. Combinatorica 7(1) (1987), 101–104.

N. Nisan and A. Ta-Shma, Symmetric logspace is closed under complement.
Chicago Journal on Theoretical Computer Science 1995 (1995), Article 1.

M. Ogihara, Equivalence of NCk and ACk−1 closures of NP and other classes.
Information and Computation 120(1) (1995), 55–58.

M. Ogihara, The PL hierarchy collapses. SIAM Journal on Computing 27 (1998),
1430–1437.

cc 8 (1999) Complexity of matrix rank 125

K. Reinhardt and E. Allender, Making nondeterminism unambiguous. In Pro-
ceedings of 36th Symposium on Foundations of Computer Science. IEEE Computer
Society Press, Los Alamitos, CA, 1997, 244–253. To appear in SIAM Journal on
Computing.

W. Ruzzo, On uniform circuit complexity. Journal of Computer and System Sci-
ences 22 (1981), 365–383.

W. Ruzzo, J. Simon, and M. Tompa, Space-bounded hierarchies and probabilistic
computations. Journal of Computer and System Sciences 28 (1984), 216–230.

M. Santha and S. Tan, Verifying the determinant in parallel. computational
complexity 7 (1998), 128–151.

U. Schöning and K. Wagner, Collapsing oracle hierarchies, census functions,
and logarithmically many queries. In Proceedings of 5th Symposium on Theoretical
Aspects of Computer Science, 91–97. Springer-Verlag Lecture Notes in Computer
Science 294, 1988.

J. Schwartz, Fast probabilistic algorithms for verification of polynomial identities.
Journal of the Association for Computing Machinery 27 (1980), 701–717.

J. Simon, On some central problems in computational complexity. PhD thesis,
Cornell University, Ithaca, NY, 1975. Available as Cornell Department of Computer
Science Technical Report TR75-224.

R. Szelepcsényi, The method of forced enumeration for nondeterministic au-
tomata. Acta Informatica 26 (1988), 279–284.

S. Toda, Counting problems computationally equivalent to computing the determi-
nant. Technical Report CSIM 91-07, Department of Computer Science, University
of Electro-Communications, Tokyo, Japan, 1991.

W. Tutte, The factorization of linear graphs. Journal of the London Mathematical
Society 22 (1947), 107–111.

L. Valiant, Completeness classes in algebra. In Proceedings of 11th Symposium on
Theory of Computing. ACM Press, 1979, 249–261.

L. Valiant, Why is boolean complexity theory difficult? In Boolean Function
Complexity, ed. M. Paterson, 84–94. London Mathematical Society, Lecture Note
Series 169, Cambridge University Press, 1992.

V. Vinay, Counting auxiliary pushdown automata and semi-unbounded arithmetic
circuits. In Proceedings of 6th Conference on Structure in Complexity Theory. IEEE
Computer Society Press, Los Alamitos, CA, 1991, 270–284.

126 Allender, Beals & Ogihara cc 8 (1999)

V. Vinay, 1995. Personal communication.

K. Wagner, The complexity of combinatorial problems with succinct input repre-
sentation. Acta Informatica 23 (1986), 325–356.

A. Wigderson, NL/poly ⊆ ⊕L/poly. In Proceedings of 9th Conference on Struc-
ture in Complexity Theory. IEEE Computer Society Press, Los Alamitos, CA, 1994,
59–62.

Manuscript received 9 June 1997

Eric Allender

Department of Computer Science
Rutgers University
110 Frelinghuysen Road
Piscataway, NJ 08854-8019, USA
allender@cs.rutgers.edu

Robert Beals

Department of Mathematics
University of Arizona
Tucson, AZ 85712, USA
beals@math.arizona.edu

Mitsunori Ogihara

Box 270226, Department of Computer Science
University of Rochester
Rochester, NY, 14627-0226, USA
ogihara@cs.rochester.edu

