
Comput. complex. 8 (1999), 50 – 98
1016-3328/99/010050–49 $ 1.50+0.20/0

c© Birkhäuser Verlag, Basel 1999

computational complexity

QUANTIFYING KNOWLEDGE
COMPLEXITY

Oded Goldreich

Erez Petrank

Abstract. One of the many contributions of the paper of Goldwasser,
Micali and Rackoff is the introduction of the notion of knowledge com-
plexity. Knowledge complexity zero (also known as zero-knowledge) has
received most of the attention of the authors and all the attention of
their followers. In this paper, we present several alternative definitions
of knowledge complexity and investigate the relations between them.
Key words. Zero-Knowledge, Interactive Proofs, Knowledge Complex-
ity, Randomness.
Subject classifications. 68Q15.

1. Introduction

One of the many contributions of the seminal paper of Goldwasser, Micali and
Rackoff [18] is the introduction of the notion of knowledge complexity. Know-
ledge complexity is intended to measure the computational advantage gained
by interaction. Hence, something that can be obtained without interaction
is not considered knowledge. The latter phrase is somewhat qualitative and
supplies the intuition underlying the definition of zero-knowledge (i.e., know-
ledge complexity zero) given in [18]. Quantifying the amount of knowledge
gained by interaction in case it is not zero is more problematic.1 We stress
that the definition of zero-knowledge does not depend on the formulation of
the AMOUNT of knowledge gained since this definition addresses the case in
which NO knowledge is gained.

1.1. Motivation for the study of knowledge complexity. Whatever
a party can compute in solitude is a function of the information it has and
its computing power. However, when two (or more) parties interact, their
individual computing abilities may increase as a result of information they

1It seems that, in general, quantitative notions are harder to handle than qualitative ones.

cc 8 (1999) Quantifying Knowledge Complexity 51

receive from other parties. Knowledge complexity is intended to capture this
increase in computing ability. Thus, knowledge complexity is a fundamental
measure of interaction between parties, and it differs from other measures of
interaction such as information entropy [27], [9] and communication complexity
[28], [24]. The following examples may help to illustrate what we mean. In all
these examples we assume that Bob is restricted to probabilistic polynomial-
time (in the parameter n), whereas no computation restrictions are placed on
Alice. We also assume throughout this discussion that integer factorization is
an unfeasible task (i.e., cannot be performed in probabilistic polynomial-time).

Example 1 Suppose that Alice uniformly selects a string r ∈ {0, 1}n and
sends it to Bob. From an information-theoretic point of view, Bob has received
n bits (of maximum entropy) and the same holds with respect to the point
of view of communication complexity. However, from the computational com-
plexity point of view, Bob has received nothing, as he could have generated r
by himself. Thus, Alice’s message carries knowledge complexity zero (i.e., is
zero-knowledge).

Example 2 Suppose that Alice just sends Bob the string 1n. Still, n bits
are communicated, but both information theory and computational complex-
ity view the interaction as having zero contents. Again, Alice’s message has
knowledge complexity zero since again Bob might have produced the received
message in solitude.

Example 3 Suppose that Alice sends Bob the prime factorization of an n-bit
composite number which is given to both of them from the outside. Again,
information theory says that Bob has gained nothing from Alice’s message
(since the prime factorization is determined by the composite number known
to Bob). However, from the point of view of computational complexity, Bob
has gained a lot: he can now perform many tasks which he could not have
done before receiving the factorization (e.g., extract square roots modulo the
composite number).

The above examples are well known and so is their analysis which has been
focused at the qualitative question of whether or not Alice’s behavior (in these
examples) is zero-knowledge. However, as is the case in information theory and
communication complexity, the spectrum of possible behaviors is wider than
being binary (i.e., carrying zero-knowledge or not). The following examples are
aimed at demonstrating this point.

52 Goldreich & Petrank cc 8 (1999)

Example 4 Both Alice and Bob are given a composite number, denoted
N , which is the product of two primes each congruent to 3 mod 4. Let QNR+

N

denote the set of quadratic non-residues mod N with Jacobi Symbol +1. Recall
that one fourth of the elements of Z∗N are in QNR+

N and that it is considered
unfeasible to distinguish elements of QNR+

N from quadratic residues mod N
[17]. Suppose that Alice uniformly selects a y ∈ QNR+

N and sends it to Bob. It
seems that Bob has gained some knowledge (as we don’t know how to uniformly
sample QNR+

N in polynomial-time when only given N). On the other hand,
it seems that Bob did not gain much knowledge. In particular, he still cannot
factor N (i.e., with the help of y). To see that an element of QNR+

N adds little
knowledge towards the factorization ofN (or any other NP-task), note that Bob
can uniformly select a residue with Jacobi Symbol +1 mod N . Suppose that
Bob does so, and let y denote the residue produced by Bob. With probability
1/2, y ∈ QNR+

N (and otherwise y is a quadratic residue modulo N). Bob
does not know whether y is in QNR+

N , but if elements in QNR+
N facilitate the

factorization of N , then Bob may try to factor N and succeed whenever y is
indeed in QNR+

N (which as we said happens with probability 1/2). Thus, the
message sent by Alice seems to yield knowledge but not much (especially when
compared to Alice’s message in Example 3).

Another point worth noting is that repeated executions of Alice’s step do not
increase the knowledge gained by Bob. This holds since given any y ∈ QNR+

N ,
Bob can easily generate (by himself!) uniformly distributed elements of QNR+

N

(e.g., by uniformly selecting r ∈ Z∗N and outputting y · r2 (mod N)).

Example 5 Let N be as in Example 4. Suppose that Alice agrees to provide
Bob with the least significant bit of the square root (mod N) of any quadratic
residue mod N of Bob’s choice. By [20], [3] such an answer (by Alice) does
yield knowledge to Bob and furthermore |N | answers of this form allow Bob to
factor N . Thus, although each answer yields little knowledge (as can be argued
analogously to Example 4), many answers yield substantial knowledge.

Examples 3, 4 and 5 demonstrate that there is more to knowledge com-
plexity than merely determining whether a protocol is zero-knowledge or not.
Following Goldwasser, Micali and Rackoff [18], we suggest that the knowledge
gained by interaction can be quantified. The analogy to information theory and
communication complexity is telling: none of these stops at a binary distinction
between zero and positive.

Goldwasser, Micali and Rackoff have suggested characterizing languages
according to the knowledge complexity of their interactive proof systems [18].

cc 8 (1999) Quantifying Knowledge Complexity 53

The lowest class consists of languages having knowledge complexity zero. This
class, also known as zero-knowledge, has received much attention in recent
years. The following example may serve as a teaser for the low (non-zero)
levels of the knowledge complexity hierarchy:

Example 6 composing zero-knowledge languages. Consider, for example, the
union of two languages each having a (perfect) zero-knowledge interactive proof
system. One can certainly prove membership in the union by proving mem-
bership in one of these languages, but this, in general, seems to leak some
knowledge (yet not much). Likewise, consider the language consisting of pairs
so that exactly one of the elements in the pair belongs to a specific language
having a (perfect) zero-knowledge proof system. These composed languages are
not known to be (perfect) zero-knowledge (in general) and yet seem to have
low perfect knowledge complexity (especially when compared to the perfect
knowledge complexity of PSPACE-complete languages).

To summarize, we believe that the concept of knowledge complexity is a
fundamental one and that it may play an important role in complexity theory.
Before this can happen, an adequate definition of knowledge complexity has
to be supplied. In this paper we explore several alternative ways of defining
knowledge complexity and investigate the relations between them. But before
we start, let us recall some of basic notions and frameworks regarding zero-
knowledge.

1.2. Background on zero-knowledge. Loosely speaking, an interactive
proof system for a language L is a two-party protocol, by which a powerful
prover can “convince” a probabilistic polynomial time verifier of membership
in L, but will fail (with high probability) when trying to fool the verifier into
“accepting” non-members. An interactive proof is called zero-knowledge if the
interaction of any probabilistic polynomial time machine with the predeter-
mined prover, on common input x ∈ L, can be “simulated” by a probabilistic
polynomial time machine (called the simulator). Thus, the definition considers
two types of probability ensembles, where each ensemble associates a distribu-
tion to each x ∈ L. The two different distribution associated to each x ∈ L
are:

1. The distribution of the view of a probabilistic polynomial time machine
with the prover on common input x ∈ L.

2. The output distribution of a probabilistic polynomial time machine (the
simulator) on the same input x.

54 Goldreich & Petrank cc 8 (1999)

It is required that for every distribution ensemble of type (1), there is a dis-
tribution ensemble of type (2) such that these two distribution ensembles are
similar. Similarity is interpreted in three possible ways, yielding three different
definitions of zero-knowledge.

1. The most conservative interpretation is that the ensembles are identical.
The resulting definition is called perfect zero-knowledge. An example of
a language having a perfect zero-knowledge interactive proof is Quadratic
Non-Residuosity [19].

2. Slightly more liberal is the requirement that the ensembles are statistic-
ally close, namely that their variation distance (Norm-1 difference) is
negligible (i.e., smaller than any polynomial fraction in the length of the
common input). The resulting definition is called statistical (or almost
perfect) zero-knowledge. For example, the results of Fortnow [10] and of
Aiello and H̊astad [2] on the “complexity of zero-knowledge” refer to this
definition.

3. Most liberal is the requirement that the ensembles are indistinguishable
by all probabilistic polynomial time tests. The resulting definition is
called computational zero-knowledge. For example, the result of [13] as-
serting that “all languages in NP have zero-knowledge proofs provided
that commitment schemes exist” refers to this definition.

1.3. Defining knowledge complexity. Unless otherwise indicated, the fol-
lowing discussion refers to the definitions of knowledge complexity in which
the simulated conversations are close to the real one in the statistical sense.
Namely, we consider the hierarchy of knowledge complexity extending statist-
ical zero-knowledge (as the zero level). Here we consider knowledge complexity
in the context of interactive proof systems. The actual definitions apply to any
pair of interactive machines.

A first attempt. An attempt to formalize the “amount of knowledge” (in
case it is not zero) has appeared in the preliminary version of [18] but was
omitted from the later version of this work [19] since the authors themselves
found it inadequate (Micali, private communication). By the preliminary for-
mulation of [18], the knowledge complexity of an interactive proof (P, V) is said
to be k(|x|) if there exists a simulator which can generate a distribution M(x)

cc 8 (1999) Quantifying Knowledge Complexity 55

such that the variation distance2 of M(x) and (P, V)(x) is bounded above by
1 − 2−k(|x|) + |x|−c for all constants c > 0 and sufficiently long x’s. Hence,
any prover which, with probability 1

2 sends nothing, leaks (by this definition)
at most 1 bit of knowledge. In particular, a prover who with probability 1

2
reveals a Hamiltonian path in the input (Hamiltonian) graph (and otherwise
reveals nothing) is considered to leak only one bit of knowledge (contradict-
ing our feeling that this prover gives away a lot). However, the same analysis
applies to a prover who merely tells the verifier whether the input graph is
Hamiltonian or not. Thus, this measure does not distinguish between these
provers, and this contradicts our feelings that the former prover gives away
much more knowledge. Furthermore, by this definition, all protocols have
knowledge complexity bounded by k(|x|) = log(|x|)

o(1) ; the reason for this is that
one can simulate them by any distribution, since the variation distance (of any
distribution) towards the real interaction is at most 1 which, in turn, is smaller
than 1 − 2−k(|x|) + |x|−O(1) = 1 − |x|−1/o(1) + |x|−O(1). In particular, it follows
that all languages in the class IP (i.e., all languages having interactive proof
systems) have knowledge complexity log(|x|)

o(1) . This contradicts our feeling that
one may give away more knowledge; see below. We mention that, prior to our
work, the notion of knowledge complexity (apart from zero-knowledge) has not
been investigated any further.

Suggested criteria. Our search for a definition of knowledge complexity is
guided by the intuitive discussion in Subsection 1.1. In particular, we postulate
that the knowledge complexity of a protocol must be bounded above by its
communication complexity. We also believe that this upper bound should be
obtainable, by some protocols, for every possible value of the communication
complexity. Thus, knowledge complexity should range between zero and a
polynomial.

We suggest several definitions of knowledge complexity and discuss them in
light of the above criteria. Our definitions utilize well-established frameworks
such as oracle machines, communication complexity, conditional probability
spaces and machines which accepts hints. Among the definitions of knowledge
complexity presented below, we find the following most intuitive.

Knowledge as communication in an alternative interaction (or sim-
ulation with the help of an oracle). A prover P is said to yield at most

2Recall that the variation distance between the random variables Y and Z is
1
2

∑
α |Prob(Y = α)− Prob(Z = α)|.

56 Goldreich & Petrank cc 8 (1999)

k(|x|) bits of knowledge if, whatever can be efficiently computed through an
interaction with P on input x (in the language), can also be efficiently com-
puted on input x through an interaction with an alternative machine which
sends at most k(|x|) bits. Hence, the computational advantage gained by the
interaction with the prover who may send much more than k(|x|) bits can
be simulated by an interaction with a machine which only sends k(|x|) bits.
In some sense, this approach reduces knowledge complexity to communica-
tion complexity. Clearly, knowledge complexity as defined here is bounded
above by the communication complexity, and we show (in Section 5) that the
bound may be met in some cases. We note that, without loss of generality,
the “knowledge-giving-machine” can be made memoryless and deterministic
by supplying it with all previous messages and with coin tosses. Hence, the
“knowledge-giving-machine” is merely an oracle (and we may think of the sim-
ulation as being performed by an oracle machine and count the number of its
binary queries).

We present three variants of the above definition. These variants are ana-
logous to common variants of probabilistic communication complexity. The
most conservative (or “strict”) approach is to consider the worst-case number
of bits communicated on an input x. The most liberal approach is to consider
the average case (the average is taken only on the coin tosses of the simulator,
the input x is fixed). In between and (in light of our results) much closer to
the worst-case variant is a relaxation of the worst case variant in which the
simulator is only required to produce output with probability at least one half
(i.e., this is a Las Vegas variant). This last variant is hereafter referred to as
the oracle definition of knowledge complexity.

The above definition corresponds to our intuition that Alice’s behavior in
Examples 4 and 5 gives away very little knowledge (in each message). This
seems clear with respect to Example 5 where only one bit is communicated
and in Example 4 (when one uses the intermediate oracle definition).3 On the
other hand, Alice’s behavior in Example 3, as well as in repeated executions
of the protocol in Example 5, seem to have knowledge complexity which grows
with the length of the prime factors. This corresponds to our intuition that a
lot of knowledge may be gained by Bob in these cases.

Knowledge as the measure of a good conditional probability space.
An alternative approach to knowledge complexity is to provide the simulator
(of the interaction between the prover and the verifier) no help, but rather

3Using the strict oracle measure of knowledge complexity, we only establish a super-
logarithmic upper bound; see results below.

cc 8 (1999) Quantifying Knowledge Complexity 57

relax the requirement concerning its output distribution. Instead of requiring,
as in the zero-knowledge case, that the output distribution of the simulation
be similar to the distribution of the “real interaction,” we only require that the
former distribution contains a (good) subspace which is similar to the distribu-
tion of the “real interaction.” Knowledge complexity is defined to reflect the
density of this good subspace in the output distribution. Specifically, know-
ledge complexity is defined as (minus) the logarithm of the density of this good
subspace in the entire probability space (i.e., the output distribution). Again,
knowledge complexity as defined here is bounded above by the communication
complexity, and we show (in Section 5) that the bound may be met in some
cases. Also note that Alice’s behavior in Example 4 is clearly of knowledge
complexity 1 according to the definition here. Interestingly, the definition of
knowledge complexity as a “logarithm of the good fraction” agrees with the
informal discussion in [18] (although the formal definition presented there was
different – see above). In fact, Micali (private communication) has independ-
ently discovered the “fraction” definition.

We show that knowledge complexity as per the fraction measure approxim-
ates (up to an additive constant) the oracle measure of knowledge complexity.
The fact that these intuitive but seemingly different approaches to knowledge
complexity yield very close measures adds to our feeling that these definitions
are the adequate ones.

Knowledge as the length of a hint. Our last interpretation of knowledge
complexity is as the length of the shortest hint which allows an efficient machine
to simulate the real interaction. Unlike in the oracle approach to knowledge
complexity, this hint is a predetermined function of the input and, in particular,
does not depend on the coin tosses of the simulator (or even the verifier). Hence,
the amount of knowledge (in the hint sense) leaked by two executions of the
same protocol on the same input always equals the amount of knowledge leaked
by a single execution. We note that the hint-length measure was suggested in
[6], and seems adequate in the information-theoretic model discussed there.

We have several reasons for objecting to the last measure of knowledge com-
plexity (i.e., the hint-length measure). Firstly, knowledge complexity by the
hint-length measure is not bounded by the communication complexity; this is
shown explicitly in Section 5. In particular, we present a protocol in which Alice
sends a single bit, but no polynomial-length hint can enable us to compute this
bit and so simulate this protocol (let alone in polynomial-time). Furthermore,
we conjecture that the protocols in Examples 4 or 5 (even when executed once)
have knowledge complexity which grows with the length of the prime factors,

58 Goldreich & Petrank cc 8 (1999)

which puts them in the same category as the protocol of Example 3 (whereas
our intuition is that the latter yields much more knowledge). Nevertheless, the
hint-length measure can be used to satisfactory bound the knowledge complex-
ity of the languages in Example 6 (i.e., 1-bit long hint suffices there). This
may raise hopes that, although too conservative as a measure for protocols,
the hint-length measure may be adequate for defining the knowledge complex-
ity classes of languages (i.e., by considering the knowledge complexity of the
cheapest interactive proof). These hopes should be abandoned if one believes,
as us, that all languages in IP must have at most polynomial knowledge com-
plexity: In Section 6 we extend the work of Aiello and H̊astad [2], who in turn
follow Fortnow’s ideas [10], showing that languages having polynomial know-
ledge complexity in the hint sense are in AM[2].4 Thus, languages having
polynomial knowledge complexity by the hint measure are unlikely to contain
all of IP.

1.4. Relating the various definitions of knowledge complexity. In or-
der to summarize our results concerning the relations between the various defin-
itions, we present the following unsound notations.5 Let kcstrict

oracle(Π), kcoracle(Π)
and kc1/2

oracle(Π) denote the knowledge complexity of a protocol Π = (P, V) ac-
cording to the strict, average and “intermediate” (i.e., output with probability
1/2) variants of the oracle approach. Likewise, kcfraction(Π) and kchint(Π) de-
note the knowledge complexity of Π according to the “fraction” and “hint”
approaches. In the following lines, we informally summarize our results con-
cerning the relations between the various definitions:

1. Obvious inclusions between the various oracle measures: For every protocol
Π,

kcoracle(Π)− 2 ≤ kc1/2
oracle(Π) ≤ kcstrict

oracle(Π) ≤ kchint(Π) .

2. Closeness of the oracle and the fraction measures: For every protocol Π,

kcfraction(Π)− 1 ≤ kc1/2
oracle(Π) ≤ kcfraction(Π) + 4 .

4We also show that languages having logarithmic knowledge complexity in the hint-length
sense are in coAM[2].

5The notations below suggest that knowledge complexity is a functional which assigns
each protocol a unique function (i.e., upper bound). This is inaccurate since actually each
protocol is assigned a (countable) set of functions; see Section 2. Still, we urge the reader
to ignore this point for the time being, and think of the knowledge complexity of a protocol,
according to each measure, as of a single function. The formal interpretation of the results
below can be derived by using the notational conventions of Section 2.

cc 8 (1999) Quantifying Knowledge Complexity 59

3. The strict oracle measure versus the oracle measure: For every protocol Π
and any unbounded function g : N → N ,

kcstrict
oracle(Π) ≤ kc1/2

oracle(Π) + log(log(|x|)) + g(|x|) .

On the other hand, for any c > 0 and for any polynomial p : N → N ,
there exists a protocol Π such that

kc1/2
oracle(Π) = p(|x|) and kcstrict

oracle(Π) ≥ kc1/2
oracle(Π) + log(log(|x|)) + c.

(Here and throughout the rest of the paper, all logarithms are to base 2.)

4. The average oracle measure may be much smaller than the oracle meas-
ure: For every polynomial p(|x|), there exists a protocol Π such that
kcoracle(Π) ≤ 1

p(|x|) and kc1/2
oracle(Π) ≥ p(|x|).

5. The hint-length measure may be much larger than the oracle measure:
There exists a protocol Π such that kcstrict

oracle(Π) = 1 and kchint(Π) > p(|x|)
for any polynomial p.

6. Each measure gives rise to a strict hierarchy: For every polynomial-time
computable function k(·), there exists an protocol Π such that kc(Π) ≤
k(|x|) by all the measures suggested in this paper, yet it also holds that
kc(Π) > k(|x|)− 3 by all these measures.

The last result asserts that the knowledge complexity hierarchy of protocols
(classified by their knowledge complexity) is “rich.” We remark that an ana-
logous result for the knowledge complexity of languages would separate BPP
from PSPACE .

Among our proofs of the above results, we find the proof which upper
bounds the fraction measure by the oracle measure (i.e., the proof of Pro-
position 4.3) to be the most interesting one.

1.5. Subsequent works. Following the conference publication of this paper,
subsequent work has been done in two directions.

The first direction, pursued in [7], [15] and [26], focuses on the oracle (or,
equivalently fraction) measure of knowledge complexity and is aimed at relat-
ing the knowledge complexity of languages to their computational complexity.
The first step was taken by Bellare and Petrank [7] who showed that any
language having a r(·)-round interactive proof of (statistical) knowledge com-
plexity k(·), where k(n) · r(n) = O(log n), resides in BPPNP . Subsequently,

60 Goldreich & Petrank cc 8 (1999)

Goldreich, Ostrovsky and Petrank [15] showed that all languages that have log-
arithmic (statistical) knowledge complexity are in BPPNP . This was done by
providing a refined analysis of a procedure in [7] and by relating the hierarch-
ies of statistical and perfect knowledge complexity with respect to the honest
verifier6. In particular it was shown how to transform an interactive proof of
statistical knowledge complexity k(·) (w.r.t. the honest verifier) into an inter-
active proof of perfect knowledge complexity k(·) +O(log(·)) (w.r.t. the honest
verifier). Petrank and Tardos [26] extended [2] and [15] and showed that lan-
guages with logarithmic knowledge complexity are in AM ∩ coAM. Thus,
unless the polynomial time hierarchy collapses, NP-complete languages have
super-logarithmic knowledge complexity. They also discussed the connection
between the knowledge complexity, k(·), of an interactive proof and its error
probability,7 ε(·), and showed that if ε(n) < 2−3k(n), then the language proven
has to be in the third level of the polynomial-time hierarchy.

The second direction, pursued by Aiello, Bellare and Venkatesan [1], focuses
on knowledge complexity under the average oracle measure. First, they intro-
duced a more refined definition of average knowledge complexity and related it
to the notion defined in this paper. Secondly, they showed that the perfect and
statistical average knowledge complexity hierarchies of languages are close up to
a negligible additive term. This provides an alternative characterization of the
class of Statistical Zero-Knowledge (i.e., as languages having negligible-on-the-
average perfect knowledge complexity). Thirdly, they showed that languages
with average logarithmic knowledge complexity reside in BPPNP . This res-
ult, which suggests that as far as languages are concerned, average knowledge
complexity is not very far from knowledge complexity (in the non-average or-
acle sense), stands in contrast to our results in which there are protocols for
which the average knowledge complexity is vastly smaller than the non-average
version.

1.6. Organization. In Section 2 we present the formal definitions of the vari-
ous knowledge complexity measures. We also state some simple connections
between the various measures. In Section 3 we further discuss these defin-
itions. We proceed in Section 4 by showing inclusion relations between the
various measures. This section includes the assertion that the oracle measure
and the fraction measure are equal up to an additive constant. In Section 5 we
present some separating protocols, i.e., protocols for which the various measures

6 See Subsection 3.5.
7 Note that reducing the error probability via repetition is not free in our context: it may

increase the knowledge complexity.

cc 8 (1999) Quantifying Knowledge Complexity 61

assign different knowledge complexity functions. These protocols demonstrate
why we cannot achieve tighter inclusion relations between the measures (tighter
than the relations shown in Section 4). In Section 5 we also demonstrate the
strictness of the hierarchy of protocols classified by their knowledge complex-
ity. In Section 6, we discuss the hint-length measure of knowledge complexity
and prove properties of this measure which indicate that it is an inadequate
measure.

2. Definitions of knowledge complexity
and some basic results

In this section we present the various definitions of knowledge complexity.
In each of the various definitions, knowledge complexity zero coincides with
the (known) concept of zero-knowledge. For sake of brevity, we present only
the definitions of knowledge complexity that extend statistical zero-knowledge.
Analogue definitions can be derived to extend perfect zero knowledge and com-
putational zero-knowledge. All the analogous results (presented in this paper)
hold, except for the perfect knowledge complexity analogue of Proposition 4.7
and the computational knowledge complexity analogue of Section 6.

For simplicity, we define knowledge complexity only in the context of in-
teractive proof systems where we are interested in the knowledge given away
by the prover. However, these definitions apply to any interaction and to the
knowledge given away by any of the interactive parties. Also, for simplicity, we
consider in all our definitions only machines (verifiers and simulators) which
run in strict polynomial time. Analogue definitions and results for machines
which run for expected polynomial time, can be derived (although, in some
cases, the proofs are slightly more involved).

Interactive proof systems: The definition of interactive proof systems are
quite robust under the choice of error probability, as long as it is bounded
away from 1/2. The reason for this is that the error probability can be easily
decreased up to an exponentially vanishing function (of the input length), by
using sequential (or parallel) repetitions of the proof system. Things become
less robust when zero-knowledge is involved, since the latter is not known to
be preserved under parallel repetitions (see negative results in [12]). Still,
zero-knowledge (w.r.t. auxiliary-input) is preserved under sequential repetitions
(see [14]). However, not all measures of knowledge complexity defined below are
preserved under sequential repetitions. Thus, when talking about an interactive
proof of certain knowledge complexity, we must specify the error probability of

62 Goldreich & Petrank cc 8 (1999)

the system. Below, we adopt the convention by which (unless stated otherwise)
the error probability of an interactive proof is a negligible function of the input.
That is, (P, V) is an interactive proof system for L if for some function ε: N→
(0, 1], where for every positive polynomial p, ε(n) < 1/p(n) holds for all but
finitely many n’s, it holds that

Completeness: For every x ∈ L, the verifier V accepts with probability at least
1− ε(|x|) when interacting with P on common input x.

Soundness: For every x 6∈ L and any prover strategy P ′, the verifier V accepts
with probability at most ε(|x|) when interacting with P ′ on common input
x.

Some Standard Notation: Let (P, V)(x) be a random variable representing
V ’s view of the interaction of P and V on input x. This includes V ’s coin tosses
and the (the transcript of) the interaction. The probability space is that of all
possible outcomes of the internal coin tosses of V and P . We will be interested
in probability ensembles which associate a distribution (equivalently, a random
variable) to each x ∈ L ⊆ {0, 1}∗. Specifically, we will consider ensembles of the
form {(P, V ′)(x)}x∈L and {M ′(x)}x∈L, where V ′ is an arbitrary polynomial-time
interactive machine and M ′ is a simulator. When we say that two ensembles,
{D1(x)}x∈L and {D2(x)}x∈L, are statistically close, we mean that the variation
distance between them is a negligible function in the length of x. That is, for
every positive polynomial p and for all sufficiently long x’s,∑

α

|Prob(D1(x) = α)− Prob(D2(x) = α)| < 1/p(|x|)

A Non-standard Notation: The knowledge complexity measures defined
below are upper bounds. Each measure associates with each protocol a (count-
able) set of upper bound functions rather than a single function.8 This raises
a problem when we want to compare two different measures. To this end, we
adopt the following notational convention regarding inequalities between sets
of functions. All functions we consider map strings to real numbers, and by
f ≤ g, we mean that f(x) ≤ g(x) for all x ∈ {0, 1}∗. For sets of functions F
and G and a function h, the notation F ≤ G+h means ∀g ∈ G∃f ∈ F so that
f ≤ g + h. Consequently, F ≥ G + h means ∀f ∈ F∃g ∈ G so that f ≥ g + h
(F ≥ h means that ∀f ∈ F so that f ≥ h), and F = h means ∃f ∈ F so that

8The reason is that each simulator gives rise to such an upper bound function, and it is
not clear whether an infimum exists.

cc 8 (1999) Quantifying Knowledge Complexity 63

f = h. This notational convention is consistent with the intuitive meaning
of upper bounds; for example, F ≤ G suggests that upper bounds in F are
not worse than those in G, which indeed means that for every g ∈ G, there
exists an f ∈ F so that f ≤ g. Thus, when considering inequalities of the type
F ≤ G, the reader may get the spirit of the statement by thinking of both F
and G as of functions.

In the following, we shall use functions over the integers to describe the
knowledge complexity of a protocol. Some of our results require that this
function be polynomial-time computable in the following (liberal) sense:

Definition 2.1. We say that the knowledge complexity bound, k : N → N ,
is polynomial time computable if there exists a probabilistic polynomial time
algorithm that, on input 1n, outputs k(n) with probability at least 2

3 (equival-
ently, at least 1− 2−n).

This definition is more liberal than the standard one, in which the input
(n) is given to the machine in binary representation, thus allowing the machine
to run only for poly(log(n)) number of steps.

2.1. The hint measure. In the first definition, knowledge is interpreted as
a function of the input x.

Definition 2.2. (knowledge complexity – hint version): Let k : N → N
be a function over the integers.

◦ We say that an interactive proof system Π = (P, V) for a language L can
be simulated using a hint of length k, if for every probabilistic polynomial
time verifier V ′, there exists a probabilistic polynomial (in |x|) time ma-
chine MV ′ (simulator), such that for every x ∈ L, there exists a string
h(x) of length at most k(|x|) such that the ensembles {MV ′(x, h(x))}x∈L
and {(P, V ′)(x)}x∈L are statistically close.

◦ The knowledge complexity in the hint sense is an operator, denoted kchint,
which assigns each interactive proof system Π the set of functions, de-
noted kΠ, so that for every k ∈ kΠ, the protocol Π can be simulated
using a hint of length k.

◦ The class KChint(k(·)) is the set of languages having interactive proofs
with knowledge complexity (in the hint sense) bounded above by k(·).

64 Goldreich & Petrank cc 8 (1999)

A subtle point regarding the above definition, concerns the convention of feed-
ing the hint to the simulator. We adopt the convention by which, the hint (a
binary string) is given to the machine on a special “hint tape”. The hint string
is located on the left side of the tape and is padded to its right by infinitely
many zeros. The alternative convention, by which the padding is by a spe-
cial symbol (“blank” 6∈ {0, 1}), provides implicit knowledge (i.e., the length of
the hint) and is not compatible with the other definitions (presented below).
Nevertheless, in case the knowledge complexity bound (i.e., the function k(·))
is polynomial-time computable, the difference between the two conventions is
at most a single bit.9 In any case, for knowledge complexity zero, there is no
difference.

2.2. The oracle measures. The second definition widens the interpretation
of knowledge to a stochastic one. Namely, the knowledge gained from the pro-
tocol depends on the random coins of the machine M (or the verifier V), rather
than being fixed in advance. The formalization is by use of oracle machines.
There are three variants of oracle knowledge complexity. In all versions we ad-
opt the standard complexity theoretic convention by which each oracle query
is answered by a single bit.

Definition 2.3. (knowledge complexity—strict oracle version): We
say that an interactive proof Π = (P, V) for a language L can be strictly simu-
lated using k oracle queries, if for every probabilistic polynomial time verifier V ′,
there exists a probabilistic polynomial time oracle machine MV ′ and an oracle
A such that:

1. On input x ∈ L, machine MV ′ queries the oracle A at most k(|x|) times.10

2. The ensembles {MA
V ′(x)}x∈L and {(P, V ′)(x)}x∈L are statistically close.

The knowledge complexity in the strict oracle sense, denoted kcstrict
oracle (also kc1

oracle),
and the class KCstrict

oracle (also KC1
oracle) are defined analogously to Definition 2.2.

9The following encoding scheme allows us to tell where the the hint string ends at the
cost of only one extra bit. Encode the hint string h by concatenating the bit 1 to its end.
Namely, h is encoded as h ◦ 1. Decoding relies on the fact that we have an upper bound on
the length of h. Let k be this bound. To decode, consider the first k + 1 bits on the hint
tape and truncate the string 10∗ from its right side. Namely, scan the k + 1 bits from right
to left and truncate all zeros found until encountering a 1. Truncate this 1 too, and you are
left with the decoded hint string.

10Here and throughout the paper we adopt the standard convention by which each oracle
query is answered by a single bit.

cc 8 (1999) Quantifying Knowledge Complexity 65

Accessing the bits of the oracle sequentially, we can easily emulate a hint,11

and so we get:

Proposition 2.4. For every interactive proof Π, kcstrict
oracle(Π) ≤ kchint(Π).

The second variant of oracle knowledge complexity allows the simulator to
announce failure in half of its runs.

Definition 2.5. (knowledge complexity—oracle version): This defini-
tion is the same as the previous one, except that condition (2) is substituted
by:

2’. For each x ∈ L, machine MA
V ′ produces an output with probability at

least 1/2. Let DV ′(x) denote the output distribution of MA
V ′ (condition

that it produces an output at all). Then the ensembles {DV ′(x)}x∈L and
{(P, V ′)(x)}x∈L are statistically close.

The knowledge complexity in the oracle sense, denoted kc1/2
oracle (also kcoracle), and

the class KC1/2
oracle (also KCoracle) are defined similarly to the previous definitions.

Clearly,

Proposition 2.6. For every interactive proof Π, kc1/2
oracle(Π) ≤ kcstrict

oracle(Π).

The constant 1/2, used as a lower bound on the probability that the simulator
produces an output, can be substituted by any constant 0 < δ ≤ 1 to get
kcδoracle(Π). The relation of this definition to the original one is given in the
following two propositions:

Proposition 2.7. For every interactive proof Π, and every 0 < ε < 1
2 ,

kc1/2
oracle(Π) ≤ kcεoracle(Π) +

⌈
log
(

1
ε

)⌉
.

Proof. Given a simulator that produces an output with probability ε, we
build a new simulator that picks 2dlog(1

ε
)e − 1 random tapes for the original

simulator and sends them to the oracle. The oracle specifies the first random
tape on which the original simulator produces a conversation, or zero if no such
tape exists. In the first case, the new simulator runs the original simulator on
the selected tape, and refers its queries to the oracle. The probability that no
output is produced by the new simulator is (1− ε)2dlog(1

ε)e−1 < 1
2 . 2

11Here we capitalize on the convention that the machine in Definition 2.2 reads the hint
from an infinite tape and decides by itself when to stop reading.

66 Goldreich & Petrank cc 8 (1999)

Proposition 2.8. For every interactive proof Π, and every 0 < ε < 1
2 ,

kc1−ε
oracle(Π) ≤ kc1/2

oracle(Π) + dlogd1 + log(1
ε
)ee.

Proof. Similar to the proof of Proposition 2.7. This time the list is of length
dlog(1

ε
)e, the failure probability is (1

2)dlog(1
ε
)e ≤ ε, and a pointer to an element

in this list requires dlog(1 + dlog(1
ε
)e)e bits. 2

The third variant of the oracle knowledge complexity allows no failure, but
instead allows the simulator more flexibility in the number of queries. This is
done by considering the expected number of queries rather than the worst case
number.

Definition 2.9. (knowledge complexity—average oracle version): This
definition is the same as Definition 2.3, except that condition (1) is replaced
by:

1’. On input x, the average number of queries that machine MV ′ makes to
oracle A is at most k(|x|). (Here, the average is taken over the coin tosses
of the machine MV ∗.)

The average knowledge complexity in the oracle sense, denoted kcoracle, and the
class KCoracle are defined analogously to Definition 2.2.

2.3. The fraction measure. In the last definition the simulator is given no
explicit help. Instead, only a 1

2k fraction of its output distribution is being
considered.

Definition 2.10. (knowledge complexity—fraction version): Let
ρ: N → (0, 1]. We say that an interactive proof (P, V) for a language L can
be simulated at density ρ(|x|) if for every probabilistic polynomial time verifier
V ′, there exists a probabilistic polynomial-time machine MV ′ with the follow-
ing “good subspace” property. For any x ∈ L, there is a subset Sx of MV ′ ’s
possible random tapes such that:

1. The set Sx contains at least a ρ(|x|) fraction of all possible coin tosses of
M(x).

2. Let DV ′(x) denote the output distribution of MA
V ′ conditioned on the

event that MV ′(x)’s coins fall in Sx. Then the ensembles {DV ′(x)}x∈L
and {(P, V ′)(x)}x∈L are statistically close.

The knowledge complexity in the fraction sense, denoted kcfraction, assigns the
interactive proof Π a function kΠ so that Π can be simulated at density 2−kΠ.
The class KCfraction(k(|x|)) is defined analogously to the previous definitions.

cc 8 (1999) Quantifying Knowledge Complexity 67

3. Examples and Remarks

We call the reader’s attention to an interesting usage of knowledge complexity
(§3.3), to a discussion regarding the effect of sequential repetition (§3.4), and
to a variant of the definitional treatment in which one considers only honest
verifiers (§3.5).

3.1. Focusing on the statistical version. The presentation in this paper
focuses on statistical knowledge complexity measures. An analogous treatment
of the perfect and computational knowledge complexity measures (for proto-
cols) can be easily derived, except that we do not know whether the perfect
knowledge complexity analogue of Proposition 4.7 holds.

As per the knowledge complexity hierarchies of languages, under some reas-
onable assumptions, the hierarchy of computational knowledge complexity is
quite dull. That is, assuming the existence of secure bit commitment scheme
(i.e., the existence of one-way functions), all languages having interactive proofs
have interactive proofs of computational knowledge complexity zero [8], [23].

3.2. Analyzing the examples in the introduction. Alice’s behavior in
Examples 1 and 2 is zero-knowledge and thus of knowledge complexity zero
under all our definitions. In general, it is easy to see that zero-knowledge
coincides with knowledge complexity zero under all our definitions. As per
Example 3, we can bound the knowledge complexity (under each definition)
by the length of the prime factorization (save the last factor which is easy to
compute from the product and the other factors). We see no way to separate
the various measures using this specific example.

Examples 4 and 5 are more interesting. Starting with Example 4, we observe
that the discussion in Subsection 1.1 implies that the knowledge complexity by
the fraction measure is at most 1. The same holds with respect to the oracle
measure (cf., Proposition 4.3). An obvious bound with respect to the hint
measure is the length of the smallest element in QNR+

N (which under ERH has
length O(log |N |) [25]), and it is not clear if one can provide a better bound.

As per Example 5, Alice sends a single bit which can be easily simulated by
one oracle query (or by a good subspace of density 1/2). Thus, the knowledge
complexity of Alice’s message under both the oracle and fraction measures is
bounded by 1. In general, both the oracle and fraction measures are bounded
above by the communication complexity in the Alice-to-Bob direction. Again,
we don’t know if such a bound can be obtained with respect to the hint measure.
In this case the best bound we can offer is the length of the prime factorization
of N (again, save the last factor).

68 Goldreich & Petrank cc 8 (1999)

3.3. Another example: parallel repetitions of some protocols. Con-
sider the basic zero-knowledge interactive proof system (of soundness error 1/2)
for Graph Isomorphism [13]: On input x = (G1, G2), the prover generates a
random isomorphic copy, denoted H, of G1 and sends it to the verifier. The
verifier uniformly selects σ ∈ {1, 2} and the prover replies with the isomorphism
between H and Gσ.

Example 7. To obtain a zero-knowledge interactive proof system (with neg-
ligible error) for Graph Isomorphism, the basic protocol is repeated sequentially
for t(|x|) = ω(log |x|) times. In contrast, consider the protocol, denoted Πt

GI,
resulting from t(|x|) parallel repetition of the basic protocol. Indeed, Πt

GI is
also an interactive proof system (with negligible error) for Graph Isomorphism.
However, unless Graph Isomorphism is in BPP, protocol Πt

GI is unlikely to be
zero-knowledge [12]. Still, we can bound the knowledge complexity of Πt

GI by t.

Proposition 3.1. kcfraction(Πt
GI) ≤ t(·).

Proof. Use the obvious simulator (à la [13]): Uniformly select σ1, ..., σt ∈
{1, 2} and generate graphs H1, ...,Ht so that Hi is a random isomorphic copy
of Gσi . Send the sequence of graphs to the verifier. With probability 2−t, it
will reply with the sequence σ1, ..., σt, in which case we’ve produced a good
simulation.12 Otherwise, we output a “failure” symbol. 2

Comment: If t = O(log |x|), then we may invoke the simulator again until we
get a good simulation, but this is not feasible for t = ω(log |x|).

The above discussion applies to many other protocols. In particular, we men-
tion M. Blum’s zero-knowledge interactive proof system (of soundness error
1/2) for Hamiltonicity (cf., Chap. 6, Exer. 15 in [11]). Thus, assuming the
existence of one-way functions (as in [13]), there are constant-round interact-
ive proofs of super-logarithmic computational knowledge complexity for any
language in NP. Furthermore, these protocols are in the public coin (Arthur–
Merlin) model of Babai [5], and can be proven to have bounded knowledge com-
plexity by using a black box simulator. These protocols cannot be proven to be
in zero-knowledge using a black box simulator, unless NP ⊆ BPP (cf., [12]).

12As in [13], any inappropriate response is interpreted as a canonical response, say the
sequence 1, ..., 1.

cc 8 (1999) Quantifying Knowledge Complexity 69

3.4. The effect of sequential repetitions. Recall that zero-knowledge is
preserved under sequential repetitions, provided that the definition is augmen-
ted to allow for auxiliary inputs: See [12] for demonstration of the necessity of
an augmentation, and [14] for a definition of auxiliary-input zero-knowledge and
a proof that it is preserved under sequential repetitions. It should thus come
as no surprise that we start by augmenting our definitions in order to handle
auxiliary-inputs. Loosely speaking, the auxiliary input account for a priori
information that the verifier may have before entering the protocol. When de-
fining zero-knowledge protocols, we wish that the verifier gains nothing from
the interaction also in case it had such a priori information. In the actual
definitions, the simulator is given the same auxiliary input and is required to
simulate the interaction relative to the common input and this auxiliary in-
put. We require the same from the simulators in our definitions. For example,
extending Definition 2.3, we present a definition of auxiliary-input knowledge
complexity in the strict oracle sense:

Definition 3.2. (knowledge complexity with auxiliary input—strict
oracle version): An interactive proof Π = (P, V) for a language L can be
strongly simulated (in the strict sense) with k oracle queries, if, for every probab-
ilistic polynomial-time verifier V ′ there exists a probabilistic polynomial-time
oracle machine MV ′ and an oracle A such that:

1. On input x ∈ L and auxiliary input z, machine MV ′ queries the oracle A
at most k(|x|) times.

2. The ensembles {MA
V ′(x, z)}x∈L,z and {(P, V (z))(x)}x∈L,z are statistically

close.

We stress that when defining knowledge complexity with auxiliary input in
the hint sense, the hint remains a function of the common input (and is thus
independent of the auxiliary-input).13 This follows the motivation behind the
hint measure, intended to capture a (predetermined) function of the input
which may be leaked by the protocol.

The effect of sequential repetition on the hint measure: Knowledge
complexity in the hint sense is preserved under sequential repetitions: For every

13Alternatively, one may adopt a more liberal measure in which the hint may be a function
of both the common input and the auxiliary input. We do not know whether Proposition 3.3
holds under this alternative definition. Certainly, the alternative definition is at most additive
(as in Proposition 3.4).

70 Goldreich & Petrank cc 8 (1999)

interactive proof Π = (P, V), and every polynomial-time computable function
t : N 7→ N which is bounded by a polynomial, we let Πt denote the interactive
proof system in which, on input, x the system Π is repeated t(|x|) times and
the verifier accepts iff the V accepts in all t(|x|) runs.

Proposition 3.3. For every interactive proof Π = (P, V), if Π can be strongly
simulated using a hint of length k : N 7→ N, then so can Πt, for every function
t : N 7→ N as above.

Proof outline. The basic idea is to use the simulators guaranteed for Π in
order to construct simulators for Πt. This is easy when the possibly cheating
verifier (in Πt) “respects” the structure of Πt (i.e., its actions in the ith run of
Π are independent of previous runs). However, this may not be true in general,
and overcoming the difficulties is done by adapting the ideas in [14]. Suppose
that Π(x) can be strongly simulated on input x when given the hint h(x).
Given a cheating verifier V ′ for Πt, we convert it into t interactive machines,
V ′1 , ..., V

′
t . The ith machine, V ′i , handles the interaction with P during the ith

run. Given an auxiliary input, which will be set as the view of the (i − 1)st

machine, machine V ′i acts in the ith run as V ′ would. Clearly, the view of
V ′t is identical to the final view of V ′. To simulate V ′, we use the simulators
guaranteed for the V ′i ’s. Note that all V ′i ’s (except maybe the first) are actually
identical and so these simulators are actually identical. The desired simulator
(for V ′) is obtained by applying this simulator t times, feeding the output of
the (i− 1)st run into the ith run. The crucial observation is that all these runs
of the simulator use the same hint, which is a function of the common input,
and so the simulator for V ′ just needs the same hint. 2

The effect of sequential repetition on the other measures: In contrast
to the above, the other measures of knowledge complexity are not preserved
under sequential repetitions, see Proposition 5.7. However, in all measures,
knowledge complexity is (essentially) at most additive. That is, let Π=(P, V),
t :N 7→N and Πt be as above, then the knowledge complexity of Πt is (essentially)
at most t times the knowledge complexity of Π:

Proposition 3.4. For every interactive proof Π = (P, V) and every polyno-
mially bounded k, t :N 7→N,

1. (strict oracle sense): If Π can be strongly simulated in a strict sense with
k oracle queries, then Πt can be strongly simulated in a strict sense with
tk oracle queries.

cc 8 (1999) Quantifying Knowledge Complexity 71

2. (average oracle sense): If Π can be strongly simulated with k oracle quer-
ies on the average, then Πt can be strongly simulated with tk oracle
queries on the average.

3. (fraction sense): If Π can be strongly simulated at density 2−k, then Πt

can be strongly simulated at density 2−tk.

4. (oracle sense): If Π can be strongly simulated with k oracle queries then
Πt can be strongly simulated with t · (k + 1) + c oracle queries, where
c = 0 if t(n) = O(logn), and c = 4 otherwise.

Proof outline. We merely follow the outline of the proof of Proposition 3.3,
with the exception that here the same “help” cannot be used in all runs. Thus,
we need k bits of “help” per each round. The argument varies slightly depend-
ing on the measure in use. In Item 1 (resp., Item 2) we make k oracle queries
(resp., on the average) during the simulation of each run, and thus we have a
total of tk queries (resp., on the average). In Item 3 we merely note that the
good subspace is the Cartesian product of the good subspaces associated with
individual runs. Item 4 is slightly subtle: Following the above argument we
obtain a simulator which makes tk queries and produces output with probab-
ility at least 2−t. We need to convert this simulator into one which produces
output with probability at least 1/2. Towards this end we use the techniques
of the proof of Proposition 4.3. 2

3.5. Knowledge complexity with respect to the honest verifier. It is
possible to define knowledge complexity measures and knowledge complexity
classes with respect to any fixed verifier, i.e., not requiring the existence of
a simulation for all polynomial time verifiers but only for a specific one. An
important and natural case is when we only require that there exist a simulation
of the honest verifier (i.e., the verifier defined in the protocol). Intuitively,
stating a knowledge complexity bound k(·) only for the honest verifier means
that if the verifier follows his part in the protocol, then he gains at most k(|x|)
bits of knowledge. However, if the verifier deviates from the protocol, then
nothing is guaranteed and he may gain more than k(|x|) bits of knowledge.

All the above definitions of knowledge complexity can be stated for this
special case of the honest verifier simply by replacing the requirement that there
exist a simulator for any possible verifier V ′ with the requirement that there
exist a simulator only for the honest verifier. For example, the definition of the
oracle measure of knowledge complexity for the honest verifier (the analogue
of Definition 2.5) is as follows.

72 Goldreich & Petrank cc 8 (1999)

Definition 3.5. (knowledge complexity—Oracle version for honest
verifier): We say that an interactive proof Π = (P, V) for a language L has
an honest verifier simulation with k oracle queries, if there exists a probabilistic
polynomial time oracle machine MV and an oracle A such that:

1. On input x ∈ L, machine MV queries the oracle A at most k(|x|) times.

2. For each x ∈ L, machine MA
V produces an output with probability at

least 1/2. Let D(x) denote the output distribution of MA
V (condition

that it produces an output at all). Then the ensembles {D(x)}x∈L and
{(P, V)(x)}x∈L are statistically close.

The honest-verifier oracle knowledge complexity measure hvkcoracle and the
class HVKCoracle are defined analogously to Definition 2.2.

We stress that all the results in this paper hold also with respect to the
appropriate definitions for honest verifier. This holds since all our results are
obtained by making transformations on the simulator, and never by modifying
the protocol.

3.6. Remarks on the knowledge complexity function. Throughout the
paper we consider only knowledge complexity functions which are polynomially
bounded. This follows from the fact that we consider only simulators that
run in polynomial time. Thus, the simulator can use only polynomially many
oracle bits or hint bits. In the fraction measure, the good subspace Sx must
contain at least one string out of the (at most) exponentially many possible
coin tosses, and thus (minus) the logarithm of the density of the good subspace
is polynomially bounded.

Some of our results require that the knowledge complexity function be
polynomial-time computable (see Definition 2.1).

4. Inclusion results

For every interactive proof Π, kc1/2
oracle(Π) ≤ kcstrict

oracle(Π) ≤ kchint(Π) (see Pro-
positions 2.4 and 2.6). In the following subsections we prove further inclusion
relations between these definitions. We believe that the most interesting result
(and proof) in this section is that of Proposition 4.3.

4.1. The oracle and the fraction versions are equal up to a constant.
In this subsection, we prove equivalence up to an additive constant of the oracle
measure and the fraction measure of knowledge complexity. That is,

cc 8 (1999) Quantifying Knowledge Complexity 73

Theorem 4.1. (closeness of the oracle and fraction measures): For any inter-
active proof Π,

kcfraction(Π)− 1 ≤ kc1/2
oracle(Π) ≤ kcfraction(Π) + 4 .

Furthermore, for kc1/2
oracle(Π) = O(log(·))

kcfraction(Π)− 1 ≤ kc1/2
oracle(Π) ≤ kcfraction(Π)

Theorem 4.1 follows from Propositions 4.2 and 4.3 below.

Proposition 4.2. For any interactive proof Π, kcfraction(Π) ≤ kc1/2
oracle(Π) + 1.

Proof. Let k = kc1/2
oracle(Π). Suppose there is a simulator M that makes at

most k queries to the oracle and produces an output with probability at least
1
2 . We construct a new simulator M ′ which does not make oracle queries but
has a good subspace of density at least 2−(k+1). The simulator M ′ randomly
selects a random tape to the original simulator M and guesses (at random)
k bits representing the oracle answers. The new simulator M ′ runs M on
this random tape, and uses the k random bits to “reply to the queries” of M
instead of the oracle. With probability at least 2−k, the original simulator M
gets the correct oracle answers, and conditioned on this event, M produces an
output with probability at least 1/2. Thus, with probability at least 2−(k+1),
the original simulator M gets both the correct oracle answers and yields an
output. In this case, M ′ produces exactly the same output distribution as the
original simulator. 2

Proposition 4.3. For any interactive proof Π with polynomial time comput-
able knowledge complexity in the fraction sense,

kc1/2
oracle(Π) ≤ kcfraction(Π) + 4 .

(For perfect knowledge complexity we have kc1/2
oracle(Π) ≤ kcfraction(Π) + 5.)

Furthermore, if kcfraction(Π) = O(log(·)), then kc1/2
oracle(Π) ≤ kcfraction(Π).

Proof. Below (as well as in some other proofs), we transform a simulator
guaranteed by one definition into a simulator satisfying a second definition.
Our transformation assumes the “knowledge” of the value of the knowledge

74 Goldreich & Petrank cc 8 (1999)

complexity function on the specific input length. Thus, the constructed simu-
lator starts by computing this value (hence the condition that the knowledge
complexity function be polynomial-time computable).

Let k = kcfraction(Π). Our purpose is to pick uniformly at random r ∈ Sx
and run the original simulator on r. The problem is how to sample Sx. The
naive solution of asking the oracle to pick an r ∈ Sx uniformly is not good, since
r might be much longer than k(|x|). A better suggestion that works for k =
O(log |x|) follows. Pick a list of 2k−1 random strings for the original machine,
and ask the oracle to specify one of them that belongs to Sx. The oracle
answers with the index of the first string which belongs to Sx, if such exists,
and otherwise returns the all-zero string. The length of the list is polynomial
in |x| because k = O(log |x|). The probability of failing (not having any good
string in the list) is (1− 1

2k)2k−1 ≤ 1
2 (with equality holding for k = 1). Hence

in this case (i.e., for k = O(log |x|)), we have kc1/2
oracle(Π) ≤ kcfraction(Π).

Dealing with k = log |x|
o(1) is somewhat more complicated. We would like to

do the same as before, but the problem is that the list of length 2k − 1 is
not polynomial (in |x|), and thus cannot be given explicitly. In the rest of this
proof, we are going to show that by somewhat sacrificing the “full” randomness
of the list, we can still follow a procedure similar to the above in polynomial
time. Namely, we will use a “pseudorandom” list of 2k+2 − 1 strings so that:

(1) the list can be succinctly represented and the representation enables effi-
cient retrieval of its elements (i.e., given the succinct representation and
an index i into the list, we can efficiently find the ith string in the list);

(2) uniformly selecting such a representation yields a sequence which is suf-
ficiently random in the sense that, with constant probability, the list
intersects Sx;

Combining items (1) and (2), we get an efficient procedure for sampling Sx using
k+ 2 oracle queries. The procedure consists of selecting at random a (succinct
representation of a) list L and sending it to the oracle which replies with the
index of an element in L which resides in Sx (if such exist). A reasonable
implementation of this procedure is likely to output each of the elements in Sx
with some probability (say between O(1)/|Sx| and 1/O(|Sx|)), but is unlikely
to sample Sx uniformly. Let us stress that it is important that the procedure
uniformly samples Sx the reason for this is that we will use the output of the
procedure for running the original simulator which is guaranteed to produce
the correct output only when bit is run with coins uniformly selected in the

cc 8 (1999) Quantifying Knowledge Complexity 75

good set Sx. We thus need an alternative procedure, which, using k + O(1)
oracle queries, samples Sx uniformly:

(3) There exists an oracle such that the following procedure samples uniformly
in Sx. The procedure picks a random list L and sends the representation
of the list to the oracle. The oracle returns k+2 bits which either provides
an index to an element in the list or indicates failure. In the first case, the
procedure outputs the string pointed to by the index, and in the second
case, there is no output. We require that with constant probability the
procedure yields output, and that in case an output is produced, it is
uniformly distributed in Sx.

A natural way for generating a random list satisfying items (1) and (2) above
is to use a sequence of pairwise independent random variables. Actually, our
analysis becomes even easier if we use a sequence of 3-wise independent random
variables. It will be most convenient to use the construction given in Alon
et. al. [4] which works in the field GF (2m), since this field corresponds naturally
to the set of m-bit strings. The construction uses t < 2m arbitrary elements
of the field, denoted α1, α2, ..., αt. A sequence of t elements is represented by a
triplet of field elements, denoted (u, v, w), and the ith element in the sequence is
u+αi ·v+α2

i ·w (where all operations are in the field). Clearly, this construction
satisfies item (1) above. It is also well-known that a uniformly selected triplet
(u, v, w) induces a t-long sequence which is 3-wise independent, so that each
element is uniformly distributed in GF (2m).14 For t = 2k+2 − 1, it follows (by
Chebyshev’s inequality) that any set S ⊆ {0, 1}n of cardinality at least 2m−k

is hit with constant probability. Thus, item (2) is satisfied as well. Before
proceeding, let us remark that we may assume, without loss of generality, that
2k+2 − 1 < 2m (as otherwise we can use the trivial procedure of asking the
oracle for a (random) element in Sx).

We are left with the task of satisfying item (3). A natural implementation
of the above sampling procedure is to ask the oracle for a random15 element in
the intersection of the list and the subset Sx. The intersection is expected to
have size (2k+2 − 1) · |Sx|2m ≈ 4 (assuming16, for simplicity, that |Sx| = 2m−k). If

14This can be seen by considering the equalities which relate to any three elements in the
sequence (i.e., the elements in positions i, j and k). These equations form a non-singular
transformation of the triplet (u, v, w) to the values of these three elements. (Thus, all possible
23m outcomes are possible and appear with the same probability.)

15The oracle can be made to take “random” moves by supplying it with coin tosses (by
appending them to the query).

16Recall that we are only guaranteed that |Sx| ≥ 2m−k).

76 Goldreich & Petrank cc 8 (1999)

the intersection of a uniformly chosen sequence and Sx always had size equal
to its expectation, then we would have been done. However, this is unlikely
to be the case. We can only be guaranteed that, with high probability, the
size of the intersection is close to its expectation and sometimes even this does
not hold (i.e., with small probability the size of the intersection is far from the
expectation). Our solution uses two natural ideas. First, we ignore the unlikely
cases in which the intersection is far from the expectation. Secondly, we skew
the probabilities to compensate for the inaccuracy. To be more specific, let I
denote the intersection (of the list and Sx) and let e denote the expected size
of the intersection. In case |I| > 2e, the oracle indicates failure. Otherwise,
it indicates failure with probability 1− |I|2e and outputs each element in I with
probability exactly 1

2e . This skewing is not sufficient, since some elements
in Sx may tend to appear, more often than others, in lists which have too
large intersection with Sx. Yet, we can correct this problem by a more refined
skewing. A detailed description follows.

Recall that we are given an (original) simulator which simulates the protocol
with density 2−k(·). Fix an input x to the protocol, define k = k(|x|), and denote
by m = m(|x|) the length of the random tape used by the original simulator
on input x. Set ρ = |Sx|/2m and t = 2k+2 − 1. We are going to build a new
simulator which uses k + O(1) oracle queries and runs the original simulator
as a subroutine (see Step (4)). The new simulator will produce an output
with constant probability and its output will be distributed identically to the
distribution produced by the original simulator when its coins are taken from
the “good sub space.” Thus, the new simulator is a good one (i.e., it simulates
the original prover-verifier interaction).

The new simulator (for the oracle definition of knowledge):

1. The simulator picks uniformly a triplet (u, v, w) so that u, v, w ∈ GF (2m).
This triplet is a succinct representation of the t-long sequence

L = L(u, v, w) def= (u+ αiv + α2
iw)1≤i≤t

The simulator sends (u, v, w) to the oracle.

2. The oracle answers as follows:

(a) If either |L ∩ Sx| = 0 or |L∩ Sx| > 2 · (t · ρ), then the oracle returns
“failure” (i.e., 0k+2).
Here and below L ∩ Sx is a multi-set, and so

|L(u, v, w) ∩ Sx| = |{i : u+ αiv + α2
iw ∈ Sx}| .

cc 8 (1999) Quantifying Knowledge Complexity 77

(b) Otherwise, the oracle picks at random r ∈ L ∩ Sx.
Actually, it picks uniformly an element in {i : u+ αiv + α2

iw ∈ Sx}.
(c) With probability Px,i,L (to be specified below), the oracle returns

the index i chosen in Sub-step (b) above.

(d) Otherwise (with probability 1− Px,i,L), the oracle returns “failure”.

3. If the oracle returns “failure”, then the simulator stops with no output.

4. Otherwise, upon receiving answer i (1≤ i≤ t), the simulator computes
r ← u+αiv+α2

iw, and runs the original simulator using r as its random
tape.

Motivation: Let us first assume, for simplicity, that |Sx| = 2m+2/t ≈ 2m−k and
that the cardinality of L∩ Sx always equals its expected value (i.e., |L∩ Sx| =
2m+2

t
· t2m = 22). This means that the oracle never answers “failure” in Step (2a).

Setting Px,r,L = 1, the oracle never answers “failure” in Step (2d) either. Since
each element of the list is uniformly distributed, it follows that each r ∈ Sx
is selected with probability 22

|Sx| ·
1
22 = 1

|Sx| . However, this simple analysis does
not suffice in general, since the “uniform behavior” of the cardinality of L∩Sx
cannot be guaranteed. Instead, an approximate behavior can be shown to
occur.

Analysis: We call a list L bad if either |L ∩ Sx| = 0 or |L ∩ Sx| > 2 · (t · ρ).
Otherwise, the list is called good. Thus, the oracle answers “failure” in Step (2a)
if and only if it is presented with a bad list. For every r ∈ Sx and every i ≤ t,
we denote by Li,r the set of lists in which r appears in the ith position; namely

Li,r
def= {(u, v, w) : r = u+ αiv + α2

iw}

Clearly, |Li,r| = 2−m · 23m (as each element in a random list is uniformly dis-
tributed). Now let Gi,r denote the subset of good lists in Li,r (i.e., L ∈ Gi,r

iff L is good and in Li,r). Using the fact that lists are 3-wise independent, we
show (see Lemma 4.4 below) that at least 1

2 of the lists in Li,r are in Gi,r. We
now list a few elementary facts regarding any fixed r ∈ Sx

1. The probability that r is used in Step (4) of the simulator is the sum
over all i’s of the probabilities that the oracle returns i in Step (2c) and
r = u+ αiv + α2

iw holds.

78 Goldreich & Petrank cc 8 (1999)

2. The probability that the oracle returns i and r = u + αiv + α2
iw holds

equals p1 · p2 · p3, where

p1
def= Prob(L ∈ Li,r)

p2
def= Prob(L ∈ Gi,r|L ∈ Li,r)

p3
def=

∑
L∈Gi,r

1
|Gi,r|

·
(

1
|L ∩ Sx|

· Px,i,L
)

where the probabilities (in the first two definitions) are taken uniformly
over all possible choices of L. Recall that p1 = 2−m and that (we’ll show)
p2 >

1
2 .

3. Setting Px,i,L
def= |L∩Sx|

2tρ · qi,r, where r is the ith element in L (and qi,r will
be determined next), we get p3 = qi,r

2tρ . Note that qi,r ≤ 1 guarantees that
Px,i,L ≤ 1 (since |L ∩ Sx| ≤ 2tρ).

4. Knowing that p2 = |Gi,r |
|Li,r | ≥

1
2 , we set qi,r

def= 1/2
p2

(which guarantees qi,r ≤
1). We conclude that the probability that the oracle returns i and r =
u+ αiv + α2

iw holds equals

2−m · p2 ·
qi,r
2tρ

= 2−m · 1/2
2tρ

.

Consequently, the probability that r is used in Step (4) of the simulator
equals

t ·
(

2−m · 1/2
2tρ

)
=

1
4
· 1

2mρ

=
1
4
· 1
|Sx|

.

This means that with probability 1/4 our simulator produces an output
and that this output is produced by invoking the original simulator using
a coin sequence uniformly chosen in Sx.

A few minor things require attention. First, in the above description we
have required the oracle to make random choices, an action which it can-
not do. To overcome this problem, we simply let the simulator supply the
oracle with extra coin tosses which the oracle uses for implementing its ran-
dom choices. (This works well if it suffices to approximate the probabilities

cc 8 (1999) Quantifying Knowledge Complexity 79

in question, as is the case when treating statistical knowledge complexity; we
will remark about handling perfect knowledge complexity at a later stage).
Another minor difficulty is that the simulator described above outputs conver-
sations with probability 1

4 (and outputs nothing otherwise). Hence, we only
proved kc1/4

oracle(Π) ≤ kcFraction(Π)+2. Yet, using Proposition 2.7,17 the current
proposition follows. We now turn to prove the following

Lemma 4.4. For every i ≤ t and every r ∈ Sx,

Prob(L ∈ Gi,r|L ∈ Li,r) ≥
5
9
− 2−k >

1
2
.

Proof. Using the hypothesis that the sequence is 3-wise independent, it
follows that fixing the ith element to be r leaves the rest of the sequence pairwise
independent (and uniformly distributed over {0, 1}m). Assume, without loss of
generality, that i = t and let s = t−1. Define random variables ζj representing
whether the jth element of the (s-long) sequence hits Sx. Recall that ρ =
|Sx|/2m and thus ζj = 1 with probability ρ, and ζj = 0 otherwise. Now, the
event that we are interested in is rewritten as

∑s
j=1 ζj > 2tρ− 1, where the −1

is due to the fact that the tth element in the t-long sequence is assumed to be
in Sx. Thus, using Chebyshev’s inequality, we get

Prob(L 6∈ Gi,r|L ∈ Li,r) = Prob(
s∑
j=1

ζj > 2tρ− 1)

< Prob(|
s∑
j=1

ζj − sρ| > sρ− 1)

≤ s · ρ(1− ρ)
(sρ− 1)2 .

Using sρ ≥ (2k+2 − 2) · 2−k = 4 − 2−k+1, the above expression is bounded by
4
9 +2−k and the lemma follows (since we may assume k > 5 or else k = O(log n)).

2

The proposition now follows (for statistical knowledge complexity). For the case
of perfect knowledge complexity, we are left with one problem; namely, imple-
menting the random choices required of the oracle with exactly the prescribed

17We will ask the oracle to indicate which of three uniformly chosen random tapes (for
the 1

4 -simulator) is going to produce an output. This requires two additional queries and the
probability that none of the three random tapes produces an output is at most (3/4)3 < 1

2 .

80 Goldreich & Petrank cc 8 (1999)

probability. To this end, we slightly modify the procedure as follows. First, we
observe that the two random choices required of the oracle can be incorporated
into one. Indeed, an alternative description of the oracle’s choices is that, given
a good list L (i.e., |L∩Sx| ≤ 2tρ) which contains r ∈ L∩Sx as its ith element,
the oracle answers i with probability 1

|L∩Sx| · Px,i,L = qi,r · 1
2tρ . Replacing 2tρ

by the next power of 2 (i.e., 2dlog2 2tρe) maintains the validity of the procedure
(since the decrease in the probability of using r ∈ Sx is equal for all such r’s)
while possibly decreasing the probability of output by up to a factor of 2 (see
Fact 4 in the list of elementary facts above). The advantage of this modification
is that the oracle can easily handle probabilities which are of the form q/2l for
integers q and l. So given a good list L (i.e., |L∩Sx| ≤ 2dlog2 2tρe), we can select
each index i corresponding to an r ∈ L ∩ Sx with probability 2−dlog2 2tρe. We
are left with the problem of implementing the additional “sieve” corresponding
to probability qi,r which equals 1/2

|Gi,r|/|Li,r | = |Li,r |
2|Gi,r | . This probability is not of

the “admissible” form, yet we observe that the very same probability needs
to be implemented for every L ∈ Gi,r. So, instead, we may designate |Li,r |

2
(≤ |Gi,r|) of the lists in Gi,r, and modify the oracle so that it returns the index
i (corresponding to r) only when presented with these lists. To summarize, the
modified oracle procedure for the case of perfect knowledge complexity is as
follows:

(notation) Let L = L(u, v, w) be the list indicated in the query and D
def=

2dlog2(2·(t·ρ))e. For every i and r, let Di,r be an arbitrary subset of Gi,r

having cardinality |Li,r |2 .

(a′) If |L ∩ Sx| > D, then the oracle returns “failure.”

(b′) Otherwise, the oracle uniformly selects j ∈ {1, 2, ...,D}. If j > |L ∩ Sx|,
then the oracle returns “failures;” otherwise, i is defined as the index
in L of the jth element in L ∩ Sx and r is the element itself (i.e., r =
u+ αiv + α2

iw).

(c′) If L ∈ Di,r, then the oracle returns the index i chosen above.

(d′) Otherwise (i.e., L ∈ Gi,r −Di,r) the oracle returns “failure.”

Using the modified oracle, our simulator produces an output with probability
at least 1/8 (and the output distribution is identical to the output distribution
of the original simulator when run on a random tape uniformly selected in Sx).

cc 8 (1999) Quantifying Knowledge Complexity 81

Using Proposition 2.7,18 the current proposition follows. 2

Remark 4.5. Our original proof of Proposition 4.3 (cf., [16]) used a more com-
plicated construction of a “somewhat random” list with no apparent advantage.
Furthermore, the additive constant achieved there (i.e., 11) is worse.

4.2. The oracle vs. average oracle measure.

Proposition 4.6. For any interactive proof Π, kcoracle(Π) ≤ kc1/2
oracle(Π) + 2.

Proof. Suppose we have a probabilistic polynomial time oracle machine (a
simulator) that queries the oracle k(|x|) times, outputs a conversation with
probability at least 1

2 , and its output distribution is statistically close to Π. We
construct a new simulator which chooses random coin tosses for the original
simulator and asks the oracle whether these coins are “good,” i.e., whether on
this random string the original simulator (querying the original oracle) out-
puts a conversation (rather then nothing). If the oracle says “yes,” the original
simulator is run on these coin tosses, and its k(|x|) queries are answered by
the oracle. Otherwise the new simulator tries again. In order not to allow
infinite runs, we let the new simulator make up to p(|x|) tries, where p is a
polynomial bounding the length of the conversations in Π. If all tries fail, the
new simulator asks the oracle for a conversation. The probability that the new
simulator succeeds in each try is at least 1

2 , and therefore if the simulator were
allowed to make infinite runs, we would have got that the expected number of
additional queries made by the new simulator would have been at most 2. Note
that forcing the simulator to stop after p(|x|) tries, and then making additional
p(|x|) queries does not increase the average number of additional queries. 2

In light of the results in Section 5, it is not possible to bound the opposite
direction (i.e., it is not even possible to prove that kc1/2

oracle(Π) ≤ kcoracle(Π) +
p(|x|) for some polynomial p and all Π’s).

4.3. The oracle and the strict oracle versions are close. Clearly, as
stated in Proposition 2.6, kcstrict

oracle(Π) ≥ kc1/2
oracle(Π). Proposition 4.7 gives us a

complementary relation.

Proposition 4.7. For any interactive proof Π and any unbounded function
g : N→ N,

kcstrict
oracle(Π) ≤ kc1/2

oracle(Π) + log(log(|x|)) + g(|x|) .
18This time we use 7 random-tapes (and (7/8)7 < 1/2) and this requires three additional

queries.

82 Goldreich & Petrank cc 8 (1999)

Proof. Use Proposition 2.8 with ε = 1
|x|f(|x|) , where f(|x|) = min{2g(|x|), |x|}.

Note that ε is a negligible fraction and that Proposition 2.8 holds as long as
ε > 2−poly(|x|). We get a simulator which does not produce an output with
probability at most ε. We modify this simulator so that it always produces
an output. (Note that since we are using the statistical version of knowledge
complexity, it doesn’t matter what the output is in this case, which happens
with a negligible probability). 2

In light of the results in Section 5, the above result cannot be improved in
general.

5. Separation results

In this section we provide separation results for the knowledge complexity of
specific protocols. We stress that these results do not necessarily translate
to a separation of languages according to their knowledge complexity (which
would have implied a separation between BPP and PSPACE). As mentioned
in Subsection 3.6, we consider only knowledge complexity functions which are
polynomially bounded. This fact is required in all the proofs of this section.

5.1. Strictness of the hierarchies. We first show a separation in each of
the knowledge complexity hierarchies. Namely, we show that each of these
hierarchies (of protocols) is strict.

Theorem 5.1. (strictness of hierarchies): Let k : N→ N be a polynomial-time
computable function. Then there exists an interactive proof system (P, V) (for
the language {0, 1}∗) satisfying:

1. (P, V) has knowledge complexity at most k(|x|) in the hint sense (and
also in all other senses considered in this paper).

2. (a) (P, V) has knowledge complexity at least k(|x|) in the oracle sense,
provided k(n) = O(logn).

(b) (P, V) has knowledge complexity at least k(|x|) − 1 in the oracle
sense.

(c) (P, V) has knowledge complexity at least k(|x|) in the strict oracle
sense.

cc 8 (1999) Quantifying Knowledge Complexity 83

3. For any polynomial p, the interactive proof system (P, V) has knowledge
complexity greater than k(|x|)− 1

p(|x|) in the fraction sense.

4. For any polynomial p, the interactive proof system (P, V) has knowledge
complexity greater than k(|x|)− 2− 1

p(|x|) in the average oracle sense.

A lower bounds of k(|x|) hold also for the hint measure, since kcstrict
oracle(Π) ≤

kchint(Π) for every interactive proof Π. We believe that Part (2) can be im-
proved so that it holds that (P, V) has knowledge complexity at least k(|x|) in
the oracle sense, for any k : N→ N.

Overview of the proof: We consider a generic (artificial) interactive proof
(for the language {0, 1}∗) in which, on input x, the prover sends to the verifier
a single string, denoted K(x), to be specified later. The function K : {0, 1}∗ →
{0, 1}∗ will satisfy |K(x)| = k(|x|), for every x ∈ {0, 1}∗, and will be chosen
so as to fail all simulators which violate the lower bounds of Parts (2)–(4).
Part (1) follows easily by using a trivial hint version simulator which merely
outputs its hint.

To prove Parts (2)–(4), we use the diagonalization technique. We will show
that it is possible to choose the function K(·) such that all Turing machines
fail to simulate this protocol unless they receive the help that is stated in the
theorem (i.e., enough hint bits, enough oracle bits, or the possibility to output
a small enough “good” subspace Sx). Specifically, each part of the theorem
asserts a lower bound on the help needed to simulate the protocol properly.
We are going to select the function K(·) so that all lower bounds hold. For
each lower bound and each possible Turing machine, M , which may serve as
a simulator, we select a different input x and set the function K at x such
that the machine M on input x does not simulate the transcript K(x), unless
it gets enough help as stated in the lower bound. Actually, this description,
adopted in the rest of the proof, suffices only for foiling perfect simulations
(and thus establishing perfect knowledge complexity lower bounds). To foil
statistically close simulations (and establish statistical knowledge complexity
lower bounds), we need to select a (different) infinite sequence of inputs per
each possible machine (since any two finite sequences of random variables may
be said to be statistically close).

For simplicity, we discuss each lower bound separately, and foil all machines
that do not get enough help, as stated in the specific lower bound. However,
one should keep in mind that we are building a single function K which satisfies
all the lower bounds simultaneously.

84 Goldreich & Petrank cc 8 (1999)

Our proof proceeds as follows. We first prove Part (3) of the theorem, next
Part (2), and conclude the proof of the theorem by proving Part (4).

Proof of Part 3. Here we show that, for an appropriate choice of a function
K, the above interactive proof has knowledge complexity greater than t(|x|) def=
k(|x|)− 1

p(|x|) in the fraction sense for any given polynomial p. The function K
is constructed using the diagonalization technique. Consider an enumeration
of all probabilistic polynomial time machines. For each machine M , select
a different input x, and consider the output distribution M(x). Machine M
simulates the interactive proof with density 2−t, if it outputs the string K(x) on
input x with probability at least 1

2t(|x|) · (1− ε), where ε is a negligible fraction.
Note that 1

2t(|x|) ·(1−ε) >
1

2k(|x|) , since ε is smaller than any polynomial fraction.
By a pigeon hole argument, there is a string y of length k(|x|) that appears in
M(x) with probability at most 1

2k(|x|) , and setting K(x) = y foils the simulation
of M on x.19 Part (3) follows. 2

Proof of Part 2. Here we show how to foil all oracle machines that never
ask more than k(|x|)−1 queries (and must produce an output with probability
at least 1

2). We consider an enumeration of all probabilistic polynomial time
oracle machines, and select a different input x for each machine M . As a
mental experiment, consider the output distribution of machine M on input x
and access to a random oracle α. Let us denote by p the probability that, on
input x and access to a random oracle, machine M produces output. Again,
by a pigeon hole argument, there is a string y of length k(|x|) that appears in
this distribution with probability less or equal to 2−k(|x|) · p. We show that for
any specific oracle α, the probability that this string y appears in the output
distribution of machine M on input x and access to the oracle α is p

2 at the
most. Let k = k(|x|) and let m = m(|x|) be a bound on the running time
of machine M on input x (and therefore, a bound on the number of its coin
tosses). Denote by r ∈ {0, 1}m the coin tosses of machine M , and by A(x, r, α)
the k− 1 answers that oracle α gives machine M on input x and random tape
r. Note that x, r and A(x, r, α) completely determine the behavior of machine
M . Also note that the random oracle α is chosen independently of r. Let us
denote the output of machine M on input x, random string r and access to

19Note that we did not use the fact that M is a polynomial time machine. It is indeed
true that we can set the function K such that this protocol cannot be simulated with density
2−t(|x|) even by a (non-restricted) Turing machine. A similar observation is valid for all the
lower bounds in this theorem.

cc 8 (1999) Quantifying Knowledge Complexity 85

oracle α by Mα
r (x). The probability that the string y appears in the output

distribution of machine M with access to a specific oracle α0 is

Probr(Mα0
r (x) = y) = Probr,α(Mα

r (x) = y|A(x, r, α) = A(x, r, α0))

≤ Probr,α(Mα
r (x) = y)

Probr,α(A(x, r, α) = A(x, r, α0))
.

The numerator is at most 2−k · p (by the choice of y). We now show that the
denominator is equal to 1

2k−1

d
def= Probr,α(A(x, r, α) = A(x, r, α0))

=
1

2m
∑

r∈{0,1}m
Probα(A(x, r, α) = A(x, r, α0))

Since r (and x) are fixed inside the summation, a random choice of k−1 oracle
answers agrees with the answers of the specific oracle α0 with probability 1

2k−1

and we get:

d =
1

2m
∑

r∈{0,1}m

1
2k−1 =

1
2k−1 .

Thus, for any specific oracle α0, the string y appears in the output distribution
of Mα0(x) with probability at most p

2 . SelectingK(x) = y, causesM to produce
K(x) with probability at most p

2 (no matter which oracle is being used). But
what does this mean? We consider two cases:

Case 1: p > 1 − 2−(k+1). We claim that in this case, for any specific oracle,
machine M produces (some) output with probability at least 3

4 . This
holds since otherwise p < 2−(k−1) · 3

4 + (1 − 2−(k−1)) · 1 = 1 − 2−(k+1).
Thus, for any α, the probability that Mα(x) = K(x) conditioned on
Mα(x) producing output is at most p/2

3/4 ≤
2
3 , which means that M fails

to simulate (P, V)(x) properly.

Case 2: p ≤ 1−2−(k+1). In this case, for any α, the probability that Mα(x) =
K(x) is at most p

2 ≤
1
2 − 2−(k+2).

Thus, if k(n) = O(logn), then the simulator fails with noticeable probability in
both cases, and so the Item (2-a) follows. item (2-c) follows merely by Case 1,
since for strict simulation we have p = 1. Item (2-b) follows by carrying out the
entire argument, assuming that the simulator makes only k − 2 queries. The
conclusion will be that the simulator produces the right answer with probability
at most p

4 ≤
1
4 , which is a clear failure. Part (2) follows. 2

86 Goldreich & Petrank cc 8 (1999)

Proof of Part 4. Here we show how to foil all oracle machines which make
at most k(|x|)− 2− 1

p(|x|) queries on the average for any polynomial p. Again,
consider an enumeration of all probabilistic polynomial time oracle machines,
and select a different input x for each machineM . Let k = k(|x|) and p = p(|x|).
Let µα denote the random variable that represents the number of queries that
M makes on input x and oracle α. To show that E(µα) is “big,” (i.e., bigger
than k − 2− 1

p
), we will first show that if Mα(x) simulates the protocol then:

(1) For all log(k · p) ≤ i < k, Prob(µα < k − i) < 1
k·p

and

(2) For all 0 ≤ i ≤ log(k · p), Prob(µα < k − i) < 2−i.

Finally, we will show that these two properties of µα imply E(µα) > k− 2− 1
p
.

We begin by showing Property (1). Assume, by way of contradiction, that there

exists an i such that log(k ·p) ≤ i < k and Prob(µα < k−i) ≥ 1
k·p . Consider the

behavior of M after making k− i− 1 queries to the oracle α. Machine M may
either query more, or halt outputting a string without making further queries.
By hypothesis, the later happens with probability at least 1

k·p . We use this
polynomial fraction of the output distribution to foil the simulation; namely, we
show that for an appropriately chosen K(x), half of this (polynomial) fraction
of the output distribution is different from K(x) no matter what the oracle set
is. Again, consider the output distribution of M on input x and access to a
random oracle α′. By the pigeon hole principle, there is a string y of length k
that appears in this distribution with probability less or equal to 2−k. Again,
a random choice of k − i − 1 answers agrees with the answers of any specific
oracle set α with probability 1

2k−i−1 . Therefore, for any specific oracle α, the
string y appears in the output distribution of Mα(x) with probability at most
2−k · 2k−i−1 = 2−i−1. Selecting K(x) = y, we get that, for every oracle α, the
probability that Mα(x) does not output K(x) is at least 1

k·p − 2−i−1. Using
i ≥ log(k · p) we get

Prob(Mα(x) 6= K(x)) ≥ 1
k · p − 2−1−log(k·p) =

1
2 · k · p =

1
poly(n)

′
, ,

which implies that M fails to simulate Π on x. Thus, if M simulates the
transcript of the protocol properly, then Property (1) must hold. A similar
argument for 0 ≤ i ≤ log(k · p) shows that we can choose K(x) = y so that M
fails to simulate on input x with probability at least 2−i−2−i−1 = 2−i−1. Using

cc 8 (1999) Quantifying Knowledge Complexity 87

i ≤ log(k · p), we again get Prob(Mα(x) 6= K(x)) ≥ 1
2k·p = 1

poly(n) , which
implies that M fails to simulate Π on x. Thus, if M simulates the transcript
of the protocol properly, then Property (2) must hold too.

Clearly,

E(µα) ≥
k∑
j=0

Prob(µα = j) · j

= k −
k∑
i=1

Prob(µα = k − i) · i

= k −
k∑
i=1

Prob(µα ≤ k − i)

= k −
k−1∑
i=0

Prob(µα < k − i) .

Using Properties (1) and (2) we get:

E(µα) ≥ k −
log(k·p)−1∑

i=0

Prob(µα < k − i)−
k−1∑

i=log(k·p)

Prob(µα < k − i)

> k −
log(k·p)−1∑

i=0

2−i −
k−1∑

i=log(k·p)

1
k · p

> k − 2− 1
p
.

Part (4) follows. 2

5.2. Gaps between some measures. In this subsection, we present proto-
cols which demonstrate the difference between the various measures. Specific-
ally, we investigate the gap between the oracle and the average oracle measures,
between the hint and the strict oracle measures, and between the oracle and
the strict oracle measures. Finally, we consider the variant of the oracle defin-
ition in which the simulator is required to produce an output with probability
at least δ for some 0 < δ < 1, which is not necessarily 1/2. This variant was
related to the oracle measure in Propositions 2.7 and 2.8. We present protocols
which demonstrate that the relations shown in Propositions 2.7 and 2.8 are
(almost) tight.

88 Goldreich & Petrank cc 8 (1999)

Let us begin by showing that the gap between the average oracle and the
other oracle versions, cannot be bounded, even by a polynomial.

Proposition 5.2. (the average oracle measure may be much lower than
the strict one): For every polynomial time computable k(|x|) and every non-
negligible (and polynomial-time computable) fraction p(|x|) (i.e., ∃c > 0 such
that p(|x|) > 1

|x|c) there exists an interactive proof system (for {0, 1}∗) satisfy-
ing:

1. (P, V) has knowledge complexity at most p(|x|)·k(|x|) < 1 in the average
Oracle sense.

2. (P, V) has knowledge complexity greater than k(|x|)− 2− log 1
p(|x|) in the

Oracle sense.

Proof. We consider an interactive proof in which, on input x, with probabil-
ity p(|x|) the prover sends K(x) to the verifier (and otherwise sends nothing).
Clearly, for |K(x)| ≤ k(|x|), this interactive proof has average knowledge com-
plexity at most p(|x|) · k(|x|) (i.e., in the average Oracle sense). We now show
that for an appropriate choice of K, the above interactive proof has know-
ledge complexity greater than t(|x|) def= k(|x|) − 2 − log 1

p(|x|) in the Oracle
sense. As in the proof of Theorem 5.1, we make a mental experiment consid-
ering the output of an arbitrary oracle machine M on input x and access to
a random oracle α. We set K(x) = y, where y is a k(|x|)-bit string satisfying
Prob(Mα(x) = y) ≤ 2−k(|x|) (for a random oracle α). As each oracle α has
probability 2−t(|x|) to coincide with t(|x|) random answers, it follows that for
any specific oracle set α, we have

Prob(Mα(x) = y) ≤ 2t(|x|) · 2−k(|x|) = 2−2−log2(1/p(|x|)) =
p(|x|)

4
.

On the other hand, the protocol (P, V) outputs y with probability at least
p(|x|). Since p(|x|) is a non-negligible fraction, it follows that M (even when
allowed to produce no output with probability 1/2) fails to simulate the protocol
(P, V) (no matter which oracle is used to answer M ’s queries). The proposition
follows. 2

cc 8 (1999) Quantifying Knowledge Complexity 89

Interestingly, we can upper bound the knowledge complexity of the protocol
appearing in the above proof by k(|x|)+1− log

(
1

p(|x|)

)
even in the strict oracle

measure. The simulator (for the strict oracle version) guesses the first log 1
p(|x|)

bits of K(x) and sends them to the oracle, which replies whether this guess is
correct or not. In case it is not, the simulator outputs nothing. Otherwise, it
queries the oracle for the remaining k(|x|) − log 1

p(|x|) bits of K(x). Thus, the

simulator makes at most k(|x|)− log
(

1
p(|x|)

)
+1 queries, and output K(x) with

probability p(|x|) as it should.

The following proposition shows a huge gap between the hint version and
the strict oracle version of knowledge complexity.

Proposition 5.3. (the hint measure may be much higher than the oracle
measure): There exists an interactive proof Π that has knowledge complexity
1 in the strict Oracle sense, yet for any polynomial p, it holds that kchint(Π) >
p(|x|).
Proof. The protocol Π is the following: V sends a random string r in {0, 1}|x|
to P , which responds with a single bit K(x, r). Clearly, for any K, this protocol
yields one bit of knowledge in the strict oracle sense. Let n = |x|. We build
a function K(x, r) such that any probabilistic polynomial time machine that
uses a hint of length less than t(n) def= 1

10 ·2n fails to simulate Π. We consider an
enumeration of all probabilistic polynomial time “hint machines,” and for each
machineM , we select a different input x, on which M fails to simulate Π. Let us
consider the distributions M(x, h) for all possible hints h ∈ {0, 1}t(n). For each
h ∈ {0, 1}t(n), define a function f (h) : {0, 1}n → {0, 1} so that f (h)(r) = σ iff
Prob(M(x, h) = (r, σ)) ≥ Prob(M(x, h) = (r, σ̄)) (set σ = 0 if the probabilities
are equal). Clearly, M(x, h) does not simulate the protocol properly if f (h)(·)
is not “close” to K(x, ·). We show that there is a function that is not close to
any f (h) (h ∈ {0, 1}t(|x|)), and thus, by selecting this function for K(x, ·), we
foil the simulation of M on x (no matter which h is used as a hint). We say
that a function f is close to a function g if they disagree on less than 1

6 of their
possible inputs. Using this notation, if f (h)(·) is not close to K(x, ·), then for
at least 1

6 of the r ∈ {0, 1}n, it holds that

Prob (M(x, h) 6= (r,K(x, r)) | M(x, h) = (r, ·)) ≥ 1
2
.

Since (P, V) outputs (r,K(x, r)) for a uniformly selected r, we get that the
statistical difference between the distributions M(x, h) and (P, V)(x) is at least
1
12 . Thus, M does not simulate (P, V) properly (with hint h).

90 Goldreich & Petrank cc 8 (1999)

We use a counting argument to show that there exists a function K(x, ·) :
{0, 1}n → {0, 1} which is not close to any of the possible f (h)’s. The number
of possible f (h)’s is 2t(n) (this is the number of possible h’s), and the number of
functions that agree with a specific f (h) on at least 5

6 of the r’s is bounded by

l(n) def=
(

2n
2n
6

)
· 2 2n

6 . Therefore, the total number of functions that are close

to f (h) for some h ∈ {0, 1}t(n) is less than l(n) · 2t(n) < 22n , and we can select a
function K(x, ·) to foil the simulation of M on x. 2

It was asserted in Proposition 4.7 that for any interactive proof Π, and any
unbounded g : N → N, kcstrict

oracle(Π) ≤ kc1/2
oracle(Π) + log(log(|x|)) + g(|x|). The

following proposition shows that we cannot do better in general.

Proposition 5.4. (tightness of Proposition 4.7): For every polynomial time
computable function k : N → N and for any constant c > 0, there exists an
interactive proof Π such that kc1/2

oracle(Π) = k(|x|)+1 and kcstrict
oracle(Π) ≥ k(|x|)+

log(log(|x|)) + c.

Proof. Suppose, first, that k(|x|) = 0. Let Sx ⊆ {0, 1}|x| be a set of cardinal-
ity 1

2 · 2|x|. Consider a protocol, Π, in which the prover P sends V a uniformly
chosen y ∈ Sx. A simulator of the oracle type can choose a string uniformly
in {0, 1}|x|, and ask the oracle whether y ∈ Sx. Thus, for any Sx, the simu-
lator outputs a conversation of the right distribution with probability 1

2 . We
use again the diagonalization technique, and show that for each strict oracle
simulator M , which makes at most log(log(|x|)) + c queries to the oracle, there
exists a set Sx such that M cannot simulate Π(x) properly. In particular, we
show that even if Sx is uniformly chosen among the subsets of {0, 1}|x| which
have cardinality 1

2 · 2|x|, the probability that M does not output an element of
Sx is non-negligible (no matter which oracle is used to answer M ’s queries).
Thus, there exist such an Sx which M fails to simulate. As before, we denote
by Mα

r (x) the output of M on input x, coin tosses r and oracle α. First, we
show that for a randomly chosen set Sx and any fixed random string r, the
probability that M does not output an element of Sx is non-negligible no mat-
ter what the oracle answers are. It follows that the probability that M does
not output an element of Sx, when Sx is random as before, is non-negligible
also when the string r is uniformly chosen.

First, note that (for a fixed r) the set {Mα
r (x)}α contains only O(log(|x|))

different strings. This follows from the fact that the behavior of Mr is com-
pletely determined by the log(log(|x|)) + c bits which it gets from the oracle,
and there are only O(log(|x|) possible different sequences of answers. Therefore,

cc 8 (1999) Quantifying Knowledge Complexity 91

the probability that all the strings in {Mα
r (x)}α are not in Sx (for a randomly

chosen Sx) is at least
(

1
2

)O(log(|x|)) = 1
|x|O(1) . In other words, the probability

that machine M does not output an element of Sx is greater than a polynomial
fraction. Since the argument holds for any r, it certainly holds for a random r,
leading to the conclusion that, for any oracle α (and a random Sx), the prob-
ability that M does not output an element in Sx is greater than a polynomial
fraction. Thus, there exists such Sx, and we can use it to foil M on x.

To extend the proof for any polynomial computable function k(|x|), we
compose (sequentially) the above protocol with the protocol used in the proof of
Theorem 5.1. It seems intuitively clear that this composition yields the desired
assertion and this intuition is indeed valid. A complete proof has to combine
both proofs into a single diagonalization argument. The straightforward details
are omitted. 2

Propositions 2.7 and 2.8 state the relations between the oracle measure,
and the measures we get by changing the constant 1/2 (the lower bound on the
probability that the simulator produces an output) to any constant 0 < δ < 1.
The following propositions show that we cannot get tighter relations in general.

Proposition 5.5. (tightness of Proposition 2.8): For any polynomial com-
putable function k : N → N , and for each constant 0 < ε < 1

2 , there ex-
ists a protocol Πε, such that kc1/2

oracle(Πε) = k(|x|) + 1 and kc1−ε
oracle(Πε) ≥

k(|x|) + log(log
(

1
ε

)
).

Proof. By the same construction as in the previous proof. 2

Proposition 5.6. (tightness of Proposition 2.7): For every interactive proof
Π, and every 0 < ε < 1

2 , kcεoracle(Π) ≤ 1 + max{kc1/2
oracle(Π)− blog

(
1
2ε

)
c, 0}. In

particular, for every polynomial time computable function k : N → N which
is bounded by some fixed polynomial, there exists an interactive proof Π such
that kcεoracle(Π) = k(|x|) and kc1/2

oracle(Π) ≥ k(|x|) + log
(

1
2ε

)
− 2.

The second part of the above proposition is actually the one which asserts the
tightness of Proposition 2.7.
Proof. We show how to transform a simulator which produces output with
probability at least 0.5 into one which uses less queries but produces output
with probability at least ε < 0.5. The existence of the protocol Π mentioned in
the second assertion follows by applying the above transformation to a protocol
of knowledge complexity at least k(|x|) + blog

(
1
2ε

)
c − 2 and at most k(|x|) +

92 Goldreich & Petrank cc 8 (1999)

blog
(

1
2ε

)
c − 1 in the oracle sense. (Such a protocol exists by the strictness of

the oracle hierarchy, see Theorem 5.1.)
Given a simulator which produces output with probability at least 0.5, we

construct a new simulator, as follows. The new simulator produces a random
string of coins, denoted r, for the original simulator, and guess at random
the first blog

(
1
2ε

)
c answers, denoted α, that the original oracle would have

provided (the original simulator running under these coins). Next, it queries
the (augmented) oracle on whether this prefix of the oracle answers (i.e., α) is
correct for the chosen random string (i.e., r) and whether the original simulator
produces an output on this random string. That is, the query is a pair (r, α)
and the answer is one bit. If the answer is yes, then the new simulator invokes
the original simulator on coins r, answering the first |α| queries by the bits
of α and referring the subsequent queries to the oracle. Otherwise, the new
simulators halts with no output.

With probability at least 1
2 , the original simulator produces an output when

given access to a good oracle. The new simulator correctly guesses the first⌊
log
(

1
2ε

)⌋
responses of this oracle with probability at least 2ε. Thus, the prob-

ability that the new simulator produces an output is at least 1
2 · 2ε = ε .

2

5.3. Knowledge complexity is not preserved under sequential repeti-
tions. Recall that knowledge complexity in the hint sense is preserved under
sequential repetitions (cf., Proposition 3.3). In contrast, we note that know-
ledge complexity in any of the other measures discussed above is not preserved
under sequential repetitions. This holds even if we restrict our attention only
to honest verifiers (see Subsection 3.5). For example:

Proposition 5.7. There exists an interactive proof Π which has knowledge
complexity 1 in the (strict) oracle sense, while Π2 has knowledge complexity at
least 2− 1/poly(n) in the fraction sense as well as in the average oracle sense
(even when restricting attention to the honest verifier).

It follows that Π2 has has knowledge complexity 2 in the oracle sense. Recall
that Π2 denotes the interactive proof system in which the system Π is repeated
twice.

Proof outline. We use a proof system Π analogous to the one in the proof
of Proposition 5.3: Specifically, the verifier randomly selects a bit r ∈ {0, 1},
sends it to the prover which responds with a single bit K(x, r), where K :
{0, 1}∗ × {0, 1} 7→ {0, 1} is defined below. Clearly, kcstrict

oracle(Π) ≤ 1 (as well as

cc 8 (1999) Quantifying Knowledge Complexity 93

kcstrict
oracle(Π

2) ≤ 2). To establish the lower bound, we use again the diagonaliza-
tion technique. Specifically, using the average oracle measure, we need to fail
all simulators which with some noticeable (i.e., 1/poly(n)) probability makes
only a single query. Note that with probability 1/4 the honest verifier sends the
bit 0 in the first run and the bit 1 in the second. Thus, the situation reduces to
the one analyzed in the proof of Theorem 5.1, and so we may apply the same
arguments here (i.e., to the function K(x) def= (K(x, 0),K(x, 1))). 2

6. Knowledge complexity of languages in the hint sense

In this section we investigate the “hint-knowledge complexity” hierarchy of
languages and establish two results:

KChint(poly(|x|)) ⊆ AM[2], and KChint(O(log(|x|)) ⊆ coAM[2].

These results are obtained by extending the result proven for zero-knowledge by
Fortnow [10] and Aiello and H̊astad [2]. In the sequel, we follow the construction
of [2]20. One doesn’t have to master the techniques used in that work in order
to understand our proofs. Yet, some properties of these techniques, explicitly
stated below, are essential to the validity of our proofs.

The construction in [2] considers the interactive proof (P, V) for L and the
simulator M of (P, V) guaranteed by the hypothesis21. They use the simulator
to build a new interactive proof (P ′, V ′) for L which is of constant number of
rounds. A simple enhancement in the construction (see [2], [22]) produces also
an interactive proof (P ′′, V ′′) for L (the complement of L) which also has a
constant number of rounds. (Employing [21] and [5] they get that L and L are
in AM[2].)

We first note that the use of M in these proof systems is limited. The proof
considers only the function fM,x, which is defined so that fM,x(r) is the output
of M on input x and random string r. The simulator is not considered on other
inputs, and the algorithm by which fM,x(·) is computed is immaterial as long
as it runs in polynomial time in |x|.

20The AM[2] protocol built in [10] for a language L whose complement has a statistical
zero-knowledge interactive proof has a flaw (see Appendix A in [15] for further details).
However, the basic ideas in [10] were extended in [2] to construct an AM[2] protocol for a
language L that has a statistical zero-knowledge interactive proof. Furthermore, the addi-
tional machinery presented in [2] suffices also for proving Fortnow’s result (see [22] details of
how to use the machinery of [2] to prove Fortnow’s result). Alternatively, see [26].

21Note that though the zero-knowledge property implies the existence of many simulators
(one for each possible verifier), [2] use only the simulator for the original interactive proof
(P, V), where V is not cheating.

94 Goldreich & Petrank cc 8 (1999)

By the definition of the simulator M , there is no restriction on its behavior
when the input x is not in L (except for being polynomial time). Namely, when
x 6∈ L, the only property of fM,x(·) which is guaranteed by M being a simulator
is that fM,x(·) is computable in polynomial time (in |x|).

Returning to the proof systems in [10], [2], we get that when x 6∈ L, the
properties of these proof systems are maintained also in the case that they are
given access to any polynomial time (in the length of their input x) computable
function f(·) and not necessarily to fM,x(·). Thus, we get

Claim 6.1. Suppose the protocol (P ′, V ′) (resp. (P ′′, V ′′)) is given access to
some arbitrary probabilistic polynomial time machine M ′ instead of the simu-
lator M . Then, it still holds that for any x 6∈ L the protocol (P ′, V ′) accepts
(resp. (P ′′, V ′′) rejects) x with negligible probability (as it would have accepted
(resp. rejected) with access to the original simulator).

Comment. Both protocols require that the original interactive proof (P, V),
has an exponentially small error probability. This causes no difficulty when
using the honest verifier in the hint version. We can run several copies of
(P, V) in parallel without increasing the knowledge complexity, since all copies
of the simulation can use the same hint.

Theorem 6.2. Let L be a language that has an interactive proof with know-
ledge complexity k = poly(|x|) in the hint sense, then L ∈ AM[2].

Proof. We have a language L accepted by an interactive proof (P, V), and a
simulator M that on the input x, and the hint h(x), produces a conversation.
If M gets the right hint, it produces a good simulation of (P, V). Otherwise,
nothing is guaranteed about the behavior of M , except for polynomial running
time.

We use the interactive proof (P ′, V ′) for L given by [2] with a preliminary
step. In this step, P ′ sends V ′ the hint h(x) associated with the input x. After
this step, P ′ and V ′ build a machine M ′(x) def= M(x, h(x)) and proceed by
running the protocol (P ′, V ′) on the input x using the simulator M ′.

It is clear that if both prover and verifier act according to the protocol, then
completeness is ensured. Claim 6.1 implies the soundness of the protocol. The
number of rounds is a constant, and using [5] and [21], we get L ∈ AM[2], as
desired. 2

cc 8 (1999) Quantifying Knowledge Complexity 95

Theorem 6.3. Let L be a language that has an interactive proof with know-
ledge complexity k = O(log(n)) in the Hint sense, then L ∈ coAM[2].

Proof: Let us define 2k(|x|) new simulators. For each α ∈ {0, 1}k, let M ′
α(x) def=

M(x, α), where M is the hint machine which simulates the original interactive
proof (P, V). Obviously, M ′

h(x) is a good simulating machine for (P, V). The
interactive proof we build runs (P ′′, V ′′), the protocol constructed in [2] for L̄,
for 2k times in parallel. The ith copy uses M ′

i as its black box simulator. Our
new verifier will accept the input x iff all the sub-protocols end up accepting.

Completeness: Suppose x ∈ L̄ (i.e., x 6∈ L). The construction of [2] guarantees
that (P ′′, V ′′) accepts x with probability at least 1−µ(|x|) when P ′′ and V ′′ are
given access to a proper simulator and where µ : N → [0, 1] is some negligible
fraction. However, by Claim 6.1, (P ′′, V ′′) accepts x with this probability also
when P ′′ and V ′′ are given access to any probabilistic polynomial time machine
(and not necessarily to a simulator for (P, V)). Therefore, each copy of the
protocol (P ′′, V ′′) rejects x with a negligible probability, and the probability
that at least one of these copies rejects x is bounded by 2k(|x|) · µ(|x|). Since
k(|x|) = O(log |x|) and since µ(|x|) is negligible, this probability is also negli-
gible.

Soundness: If x 6∈ L̄ (i.e. x ∈ L), then the copy of (P ′′, V ′′) which uses M ′
h(x)

rejects x with probability almost 1, and since our verifier accepts only if all the
copies end up accepting, it will reject x with probability almost 1. 2

Acknowledgements

We are grateful to Benny Chor, Johan H̊astad, Hugo Krawczyk, and Eyal
Kushilevitz for helpful discussions.

Most of this work was done while the authors were at the Computer Sci-
ence Department of the Technion, Israel Institute of Technology. An extended
abstract of this paper appeared in the 32nd Annual IEEE Symposium on the
Foundations of Computer Science (FOCS91) held in San Juan, Puerto Rico,
October 1991.

96 Goldreich & Petrank cc 8 (1999)

References

[1] W. Aiello, M. Bellare, and R. Venkatesan, Knowledge on the Average –
Perfect, Statistical, and Logarithmic. Proc. 27th STOC, 1995, 469–478.

[2] W. Aiello and J. Håstad, Perfect Zero-Knowledge Languages can be Recog-
nized in Two Rounds. JCSS 42 (1991), 327–345.

[3] W. Alexi, B. Chor, O. Goldreich, and C.P. Schnorr, RSA/Rabin Func-
tions: Certain Parts are As Hard As the Whole. SIAM J. Comp. 17:2 (1988), 194–209.

[4] N. Alon, L. Babai, and A. Itai, A Fast and Simple Randomized Algorithm
for the Maximal Independent Set Problem. J. of Algorithms 7 (1986), 567–583.

[5] L. Babai, Trading group theory for randomness. Proc. 17th STOC, 1985, 421–
429.

[6] R. Bar-Yehuda, B. Chor, and E. Kushilevitz, Privacy, Additional Inform-
ation, and Communication. 5th IEEE Structure in Complexity Theory, July 1990,
55–65.

[7] M. Bellare and E. Petrank, Making Zero Knowledge Provers Efficient. Proc.
24th STOC, 1992, 711–722.

[8] M. Ben-Or, O. Goldreich, S. Goldwasser, J. Håstad, J. Kilian, S.

Micali, and P. Rogaway, Everything Provable is Provable in Zero-Knowledge.
Advances in Cryptology–Crypto88 (proceedings), Springer-Verlag, Lecture Notes in
Computer Science, 403 (1990), 37–56.

[9] T.M. Cover and G.A. Thomas, Elements of Information Theory. John Wiley
& Sons, Inc., New York, 1991.

[10] L. Fortnow, The Complexity of Perfect Zero-Knowledge. Advances in Com-
puting Research: a research annual, Vol. 5 (Randomness and Computation, S. Micali,
ed.), 1989 327–343.

[11] O. Goldreich, Foundations of Cryptography – Fragments of a Book. De-
partment of Computer Science and Applied Mathematics, Weizmann Institute
of Science, Israel, February 1995. Available from http://theory.lcs.mit.edu/
∼oded/frag.html and http://www.eccc.uni-trier.de/eccc/.

[12] O. Goldreich and H. Krawczyk, On the Composition of Zero-Knowledge
Proof Systems. SIAM Journal on Computing 25:1 (1996), 169–192.

cc 8 (1999) Quantifying Knowledge Complexity 97

[13] O. Goldreich, S. Micali, and A. Wigderson, Proofs that Yield Nothing
But their Validity or All Languages in NP Have Zero-Knowledge proof Systems.
Jour. of ACM. 38 (1991), 691–729.

[14] O. Goldreich and Y. Oren, Definitions and Properties of Zero-Knowledge
Proof Systems. Jour. of Cryptology 7 (1994), 1–32.

[15] O. Goldreich, R. Ostrovsky, and E. Petrank, Computational Complex-
ity and Knowledge Complexity. SIAM J. on Comput., 27:4 (1998), 1116–1141. Ex-
tended Abstract in Proc. 26th ACM Symp. on Theory of Computation, May 1994,
534–543.

[16] O. Goldreich and E. Petrank, Quantifying Knowledge Complexity. Proc.
32nd FOCS, 1991, 59–68.

[17] S. Goldwasser and S. Micali, Probabilistic Encryption. JCSS 28:2 (1984),
270–299.

[18] S. Goldwasser, S. Micali, and C. Rackoff, The Knowledge Complexity
of Interactive Proofs. Proc. 17th STOC, 1985, 291–304.

[19] S. Goldwasser, S. Micali, and C. Rackoff, The Knowledge Complexity
of Interactive Proof Systems. SIAM Jour. on Computing 18 (1989), 186–208.

[20] S. Goldwasser, S. Micali, and P. Tong, Why and How to Establish a
Private Code on a Public Network. Proc. 23rd FOCS, 1982, 134–144.

[21] S. Goldwasser and M. Sipser, Private Coins vs. Public Coins in Interactive
Proof Systems. Advances in Computing Research: a research annual, Vol. 5 (Ran-
domness and Computation, S. Micali, ed.), 1989, Vol. 5, 73–90.

[22] J. Håstad, Perfect Zero-Knowledge in AM ∩ coAM. Unpublished (2-page)
manuscript explaining the underlying ideas behind [2]. Available from the author,
1994.

[23] R. Impagliazzo and M. Yung, Direct Minimum-Knowledge Computations.
Advances in Cryptology - Crypto87 (proceedings), Springer-Verlag, Lectures Notes
in Computer Science, Vol. 293, 1987, 40–51.

[24] E. Kushilevitz and N. Nisan, Communication Complexity. Cambridge Uni-
versity Press, 1996.

[25] G.L. Miller, Riemann’s Hypothesis and Tests for Primality. JCSS, 13 (1976),
300–317.

98 Goldreich & Petrank cc 8 (1999)

[26] E. Petrank and G. Tardos, On the Knowledge Complexity of NP. Proc.
37th FOCS, 1996, 494–503,

[27] C.E. Shannon, A mathematical theory of communication. Bell Sys. Tech. J.
27 (1948), 623–656.

[28] A.C. Yao, Some complexity questions related to distributive computing. Proc.
11th STOC, 1979, 209–213,

[29] A.C. Yao, Theory and Application of Trapdoor Functions. Proc. 23rd FOCS,
pages 80–91, 1982.

Manuscript received 22 July 1997

Oded Goldreich

Department of Computer Science
Weizmann Institute of Science
Rehovot, Israel
oded@wisdom.weizmann.ac.il

Erez Petrank

IBM – Haifa Research Laboratories
MATAM, Haifa, Israel
erez@cs.princeton.edu

