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1. Introduction

In this paper we are concerned with randomized two-party communication
complexity as defined by Yao (1979): Alice holds an input x, Bob holds an
input y, and they wish to compute a given function f(x, y), to which end they
communicate with each other via a randomized protocol. We allow them a
bounded, two-sided error.

We study very simple types of protocols which include only one round of
communication. These protocols were introduced by Yao (1979) and were later
studied by several authors (cf. Papadimitriou & Sipser (1984), Ablayev (1996),
Newman & Szegedy (1996); For a general survey on communication complexity
see Kushilevitz & Nisan (1996)). In a one-round protocol, Alice is allowed to
send a single message (depending upon her input x as well as her random coin
flips) to Bob who must then be able to compute the answer f(x, y) (using the
message sent by Alice, his input, y, and his random coin flips). We denote the
communication complexity of f (i.e., the number of bits of communication that
need to be transmitted by such a protocol that computes f) by RA→B(f). We
also consider the case where Alice and Bob have access to a public (common)
source of random coin flips, and call such protocols public coin. We denote
the public coin communication complexity of f by RA→B,pub(f). When f is
not symmetric, we also consider the case where the roles of Alice and Bob are
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reversed, and denote this complexity by RB→A(f). Finally, we consider an even
more restricted scenario, the “simultaneous” one, where both Alice and Bob
transmit a single message to a “referee”, Carol, who sees no part of the input
but must be able to compute f(x, y) just from these two messages. We denote
this complexity by R||(f).

In this paper we consider three main questions.

1.1. The VC-Dimension and a related Combinatorial Dimension.
We first observe the (surprising) fact that the VC-dimension (see Vapnik &
Chervonenkis (1971), Blumer et al. (1989)) of a function class, fX , defined by
the set of rows of the matrix associated with f (denoted by V C-dim(fX)),
provides a lower bound on RA→B(f). We then study the power of this lower
bound technique and show that it essentially characterizes the distributional
complexity of the worst case product distribution (denoted by RA→B,[](f).)

Theorem 3.2. RA→B(f) ≥ RA→B,[](f) = Θ(V C-dim(fX)).

For more general real valued functions, we get similar bounds on RA→B(f)
and RA→B,[](f) in terms of another combinatorial dimension which is a para-
meterized version of the pseudo-dimension (cf. Pollard (1984), Haussler (1992),
Kearns & Schapire (1994)).

We also present several applications of this theorem. These include an ex-
ample (the “greater than” function, GT ) for which there is a large gap between
RA→B(f) = Ω(n) and RA→B,[](f) = O(1), and an example (the “index func-
tion”, IND) for which there is an exponential gap between RA→B(f) and
RB→A(f).

1.2. Real Inner Product. In this problem Alice and Bob each get an n-
dimensional real valued vector, and they wish to compute the inner product
INP (~x, ~y) = ~x · ~y =

∑
i xiyi. We limit ourselves to cases where there is an

a priori bound on certain norms of ~x and ~y, a bound which will ensure that
|~x · ~y| ≤ 1. We consider two variants of these problems. In the first we ask
that the inner product be computed within some given additive error ε. In the
second we define a partial boolean function whose value is 1, if the value of
the inner product is above 2/3, and is 0, if it is below 1/3, and ask that this
function be computed. Clearly, the second variant is no harder than the first.

We first study the case in which ‖~x‖1 ≤ 1 and ‖~y‖∞ ≤ 1, where ‖~x‖1 =∑
i |xi| and ‖y‖∞ = maxi |yi|. (This of course ensures that |~x · ~y| ≤ 1.) In his

original paper, Yao (1979) actually defined the one-round randomized commu-
nication complexity of functions in terms of the inner product of such pairs



cc 8 (1999) One-round communication complexity 23

of vectors. If we denote the corresponding inner product function by INP1,∞,
and the related partial boolean function by INP par

1,∞, then we obtain:

Theorem 4.3. RA→B(INP1,∞) = O(log(n)), but RB→A(INP par
1,∞) = Ω(n).

Furthermore, INP par
1,∞ is complete for the class of (boolean) functions whose

one-round randomized complexity is polylog(n).
Here completeness is under rectangular reductions as introduced by Babai,
Frankl, and Simon (1986). It should be noted that the reduction we use was
implicit in Yao (1979).

The second case we consider is one in which ‖~x‖2 ≤ 1 and ‖~y‖2 ≤ 1, where
‖~x‖2 =

√∑
i xi2. Again, this ensures that |~x ·~y| ≤ 1. If we denote this problem

by INP2,2, then we show:

Theorem 4.4. RA→B,pub(INP2,2) = Θ(1), and RA→B(INP2,2) = Θ(log(n)).

The upper bound on RA→B,pub(INP2,2) also holds for R||,pub(INP2,2). This
follows from Theorem 4.4 stated above, and Theorem 5.1 which is stated in the
next subsection. However, when only private coins are allowed, the communica-
tion complexity of the problem changes dramatically. Recent results (Newman
& Szegedy (1996), Bourgain & Wigderson (1996), Babai & Kimmel (1997)),
which are briefly discussed in Subsection 1.3, imply that R||(INP2,2) = Ω(

√
n)

(and this bound is tight (Ambainis (1996), Naor (1994), Newman (1994),
Newman & Szegedy (1996))).

We also present an interesting application of the above theorems. Let Bn
1 ,

Bn
2 , and Bn

∞, be the sets of n-dimensional real vectors whose L1, L2, and L∞
norm, respectively, is bounded by 1. Then we prove the following theorem.

Theorem 4.6. (1) For every constant 0 < ε < 1, there exist mappings,
g2,1 : Bn

2 → Bn′
1 , and g2,∞ : Bn

2 → Bn′
∞, where n′ = poly(n), such that for every

pair of vectors, ~u,~v ∈ Bn
2 , |~u · ~v − g2,1(~u) · g2,∞(~v)| ≤ ε.

(2) For any given integer n′, there do not exist mappings, g1,2 : Bn
1 → Bn′

2 ,
and g∞,2 : Bn

∞ → Bn′
2 , such that for every pair of vectors, ~u ∈ Bn

1 , ~v ∈ Bn
∞,

|~u · ~v − g1,2(~u) · g∞,2(~v)| ≤ 1/6.

1.3. One-Round vs. Simultaneous. It is clear that R||(f) ≥ RA→B(f) +
RB→A(f). Can this inequality be sharp? It turns out that the analogous
question for deterministic communication is “no”: If f has a k-bit one-round
deterministic protocol in which Alice sends a message to Bob and another l-bit
one-round deterministic protocols in which Bob sends a message to Alice, then
f has a (k + l)-bit simultaneous deterministic protocol.
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We prove a similar statement for the randomized case if Alice and Bob are
allowed shared, public coins.

Theorem 5.1. R||,pub(f) = Θ(RA→B,pub(f) +RB→A,pub(f)).

Unfortunately, when only private coins are allowed, then the situation is
grimmer. Babai and Kimmel (1997) and Bourgain and Wigderson (1996)1 show

that R||(f) = Ω
(√

D||(f)
)

, where D||(f) is the deterministic simultaneous

complexity of f . In particular this implies a gap of Θ(
√
n) between R||,pub(f)

and R||(f) for any function f having D||(f) = Ω(n) and R||,pub(f) = O(1). An
example of a function which portrays such a gap is the equality function.2 As
noted previously, the same gap holds for INP2,2.

2. Preliminaries

A two-party communication problem is a problem in which two players, Alice
and Bob, wish to compute the value of a function f : X × Y → Z, on a given
pair of inputs, x ∈ X and y ∈ Y , where X, Y , and Z are arbitrary sets. The
difficulty in this problem is that only Alice knows x, and only Bob knows y.
However, they are allowed to communicate by sending messages (bits, or strings
of bits) between themselves according to some protocol P . The cost of P on a
given input (x, y) is the number of bits sent by Alice and Bob when given that
input. The cost of P is the worst case cost over all inputs. The communication
complexity of a function f is the minimum cost over all protocols that com-
pute f .

In this work we are primarily interested in one-round protocols (or one-
way protocols) which are composed of one round of communication. Namely,
Alice sends a single message to Bob, and then Bob computes the output of
the protocol. If f is not symmetric, then we also study the case in which
the communication is in the opposite direction, i.e., from Bob to Alice. We
are interested in the following two variants of randomized protocols. In the
first variant, Alice and Bob each have their own private coin as a source of
randomness, and they do not have access to the random string which is the
outcome of the coin flips of the other player. In the second variant, Alice and

1For details on Bourgain and Wigderson’s solution, see Section 5 in Babai & Kimmel
(1997).

2The lower bound of Ω(
√
n) on the private coin simultaneous communication complexity

of the equality function was also proved by Newman and Szegedy (1996) (prior to the results
of Bourgain and Wigderson (1996 and Babai and Kimmel (1997)) using different techniques.
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Bob have a common public coin. In other words, they have access to the same
random string.

We also study randomized simultaneous protocols. In a simultaneous pro-
tocol we have three players: Alice, Bob, and Carol. As in one-round protocols,
Alice and Bob each get a part of the input to the function. Carol does not
receive any input, and has access neither to Alice’s nor to Bob’s input. Instead
of communicating among themselves, Alice and Bob each send a single message
to Carol who then computes the output of the protocol.

For a function f : X × Y → {0, 1}, and 0 < ε < 1, we use the following
notations (exact definitions are given in Definition 2.1. All error probabilities
referred to below are of two-sided error.

◦ RA→B
ε (f) denotes the randomized private coin one-round communication

complexity of f with error probability ε.

◦ RA→B,pub
ε (f) denotes the randomized public coin one-round communication

complexity of f with error probability ε.

◦ R||ε (f) denotes the randomized simultaneous communication complexity of
f with error probability ε.

◦ For a probability distribution µ on X × Y , DA→B,µ
ε (f) denotes the

one-round µ-distributional complexity of f with error probability ε (i.e.,
DA→B,µ
ε (f) is the minimum cost taken over all deterministic protocols P

for which Prµ[P (x, y) 6= f(x, y)] < ε).

In the case where the communication is required to be in the opposite
direction (i.e., from Bob to Alice) we simply change the superscript in the
notations from A→ B to B → A.

We usually assume that ε is a constant (smaller than 1/3). In this case we
are not interested in the exact dependence of the communication complexity
on ε, and it is omitted from our notations (e.g., RA→B

ε (f) with constant ε, is
simply denoted by RA→B(f)).

When f is a real valued function, then we also allow the protocol an approx-
imation error ε2. In this case we simply adapt the notations above by adding
ε2 as a subscript (and referring to ε as ε1, e.g., RA→B

ε1,ε2
(f)). We usually assume

that ε2 is a constant (smaller than 1/6), and it is omitted from our notations.

The above is formalized in the following definition. The reader who is
familiar with the notions discussed may choose to skip this definition.
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Definition 2.1. Let X, Y , and Z be arbitrary sets, and let f : X × Y → Z
be an arbitrary function.

A deterministic one-round communication protocol P for f is a pair of func-
tions PA : X → {0, 1}c, and PB : {0, 1}c × Y → Z. The output of P on input
(x, y) is P (x, y) = PB(PA(x), y). The cost of P is c. Let µ be a probability
distribution on X × Y , and let 0 ≤ ε1, ε2 ≤ 1. The one-round (µ, ε1, ε2)-
distributional complexity of f , DA→B,µ

ε1,ε2
(f), is defined to be the cost of the best

deterministic protocol P for which Prµ[|P (x, y) − f(x, y)| > ε2] < ε1. When
Z = {0, 1}, we omit ε2, and DA→B,µ

ε (f), is defined to be the cost of the best
protocol P for which Prµ[P (x, y) 6= f(x, y)] < ε.

A randomized private coin one-round communication protocol is a pair of func-
tions PA : X × {0, 1}ρA → {0, 1}c, and PB : {0, 1}c × Y × {0, 1}ρB → Z.
The output of P on input (x, y), the (private) random coin tosses of Alice,
rA ∈ {0, 1}ρA, and the (private) random coin tosses of Bob, rB ∈ {0, 1}ρB ,
is P (x, y, rA, rB) = PB(PA(x, rA), y, rB). The cost of P is c. The randomized
private coin one-round communication complexity of f , RA→B

ε1,ε2
(f), is defined to

be the cost of the best randomized private coin one-round communication pro-
tocol P for which Pr[|P (x, y, rA, rB)−f(x, y)| > ε2] < ε1, where the probability
is taken over the random coin tosses rA and rB. When Z = {0, 1}, we omit
ε2, and RA→B

ε (f), is defined to be the cost of the best protocol P for which
Pr[P (x, y, rA, rB) 6= f(x, y)] < ε. A randomized public coin one-round commu-
nication protocol is defined similarly, but only the functions PA and PB are
defined on a common random string r. The randomized public coin one-round
communication complexity of a f is denoted by RA→B,pub

ε1,ε2
(f).

A randomized simultaneous communication protocol is a triplet of functions
PA : X × {0, 1}ρA → {0, 1}c1, PB : Y × {0, 1}ρB → {0, 1}c2, and PC :
{0, 1}c1×{0, 1}c2×{0, 1}ρC → Z. The output of P on input (x, y), the random
coin tosses of Alice, rA ∈ {0, 1}ρA, the random coin tosses of Bob, rB ∈ {0, 1}ρB ,
and the random coin tosses of Carol, rC ∈ {0, 1}ρC , is P (x, y, rA, rB, rC) =
PC(PA(x, rA), PB(y, rB), rC). The cost of P is c1 + c2. The randomized sim-
ultaneous communication complexity of f , R||ε1,ε2(f), is defined to be the cost
of the best randomized simultaneous communication protocol P for which
Pr[|P (x, y, rA, rB, rC)− f(x, y)| > ε2] < ε1, where the probability is taken over
the random coin tosses rA, rB and rC . The small variation in notation for the
case where Z = {0, 1} is similar to that introduced for one-round protocols. De-
terministic simultaneous communication protocols, and Randomized simultaneous
public coin communication protocols can be defined similarly, and the related
notations can be adapted as well, as in the one-round case.
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The following fundamental theorem proven by Yao (1983) characterizes pub-
lic coin complexity in terms of distributional (deterministic) complexity.

Theorem 2.2 (Yao (1983)). For every function f : X × Y → {0, 1}, and for
every 0 < ε < 1,

RA→B,pub
ε (f) = max

µ
DA→B,µ
ε (f),

where µ ranges over all distributions on X × Y .

We are sometimes interested in the following special case of distributional
complexity.

Definition 2.3. A distribution µ over X × Y is called a product distribution
(or a rectangular distribution) if for some distributions µX over X and µY over
Y , µ(x, y) = µX(x)µY (y), for every x ∈ X, y ∈ Y . Let RA→B,[]

ε (f) denote
maxµDA→B,µ

ε (f), where the maximum is taken over all product distributions.

Finally, we shall need the following (slight) variation of a theorem of New-
man (Newman (1991)), which gives an upper bound on private coin complexity
in terms of public coin complexity.

Theorem 2.4 (Newman (1991)). Let f : X × Y → Z, where X and Y are
arbitrary finite sets, and Z is an arbitrary (and not necessarily finite) set. For
every 0 < δ ≤ 1 and every 0 ≤ ε1, ε2 < 1/2,

RA→B
ε1+δ,ε2(f) ≤ RA→B,pub

ε1,ε2
(f) +O(log log(|X| · |Y |) + log(1/δ)) .

Sketch of Proof. Newman’s theorem as stated in Newman (1991) assumes
the function f is boolean. However, since we are essentially only varying the
definition of the correctness of a communication protocol on a given input
(x, y) ∈ X × Y (see details below), while the domain of the function remains
finite, his proof, with only slight variations, can be used to prove Theorem 2.4.
More precisely, Newman’s proof works by showing that if (a boolean function)
f has a public coin protocol P , whose probability of error is ε1 (and which uses
any amount of randomness), then f has a public coin protocol P ′ with error
ε1 + δ which uses only O(log(n/δ)) random bits. The existence of a private
coin protocol with error ε1 + δ, whose cost is O(log(n/δ)) larger than the cost
of P , directly follows: Define a corresponding private coin protocol in which
Alice first selects all O(log(n/δ)) random bits needed for executing P ′, sends
them to Bob, and then Alice and Bob execute P ′, using the “effectively public”
random bits.
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To prove the existence of such a protocol P ′, Newman views the public coin
protocol P as a distribution over deterministic protocols, where each determin-
istic protocol is defined by some fixed random string. He then shows that there
is a small set L of such deterministic protocols so that if we define a randomized
protocol P ′ which chooses a protocol randomly from L (using only O(log(n/δ))
random bits), and executes it, then the error of P ′ is at most ε1 + δ, and its
cost is the same as the cost of P . Thus the only modification needed is in
the definition of the set L of “good” deterministic protocols. We require that
for every input (x, y) ∈ X × Y , the fraction of deterministic protocols D in L
for which |D(x, y) − f(x, y)| ≤ ε2 is small. This relaxes the requirement that
for every input (x, y), the fraction of deterministic protocols D in L for which
D(x, y) 6= f(x, y) is small. With this and one additional very similar modific-
ation (in the definition of the sets A(x, y) of deterministic protocols which err
on (x, y)), the proof proceeds as in Newman (1991). 2

3. One-Round Randomized Communication Complexity
and Combinatorial Dimensions

Let f : X×Y → Z be a function whose randomized communication complexity
we are going to study. For x ∈ X, we define fx : Y → Z as follows: for every
y ∈ Y , fx(y) def= f(x, y). Let fX

def= {fx | x ∈ X }. Similarly, for y ∈ Y let
fy(x) = f(x, y), and fY

def= {fy | y ∈ Y }. In this section we show that if f is a
boolean function, then the Vapnik Chervonenkis (VC ) dimension of fX gives
both an upper and a lower bound on RA→B,[](f), and hence a lower bound on
RA→B(f). If f is a real valued function, then a related combinatorial dimension
which is a parameterized version of the pseudo-dimension gives similar bounds.

3.1. Boolean Functions. We start by recalling the definition of the VC-
dimension (see Vapnik & Chervonenkis (1971), Blumer et al. (1989)).

Definition 3.1. Let H be class of boolean functions over a domain Y . We
say that a set S ⊆ Y is shattered by H, if for every subset R ⊆ S, there exists a
function hR ∈ H such that ∀y ∈ S, hR(y) = 1 iff y ∈ R. The largest value d for
which there exists a set S of size d that is shattered by H is the VC-dimension
of H, denoted by V C-dim(H). If arbitrarily large finite sets can be shattered
by H, then V C-dim(H) =∞.

Then we have the following theorem.
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Theorem 3.2. For every function f : X ×Y → {0, 1}, and for every constant
error ε ≤ 1/8,

RA→B
ε (f) ≥ RA→B,[]

ε (f) = Θ(V C-dim(fX)).

Before proving this theorem, we discuss a simple example which illustrates
how this theorem can be applied.

Example 3.3. For x, y ⊆ {1, . . . , n}, DISJ(x, y) is defined to be 1 iff x
⋂
y =

∅. We apply Theorem 3.2 to show that RA→B(DISJ) = Ω(n). Let S be the
set of all singleton sets. It is easy to see that S is shattered by DISJX , since
for every subset R of the singletons, there exists a set x such that for each
y ∈ S, DISJx(y) = 1 iff y ∈ R, where x is simply the complement of the
union of all these singletons. It is interesting to note that though it is known
that even for multi-round communication complexity R(DISJ) = Ω(n), (see
Kalyanasundaram & Schnitger (1992), Razborov (1992)), the upper bound on
multi-round rectangular distributional complexity is lower (see Babai et al.
(1986)): R[](DISJ) = O(

√
n log(n)). Thus, our example shows a quadratic

gap between RA→B,[](f), and R[](f) (for f = DISJ).

Proof of Theorem 3.2. According to Yao’s theorem quoted in The-
orem 2.2, RA→B,pub

ε (f) = maxµDA→B,µ
ε (f), where the maximum is taken over

all distributions µ. RA→B,[]
ε (f), on the other hand, is defined to be the max-

imum of DA→B,µ
ε (f) taken over all product distributions µ. Clearly, RA→B

ε (f) ≥
RA→B,pub
ε (f), and hence RA→B

ε (f) ≥ RA→B,[]
ε (f). It thus remains to prove the

upper and lower bounds on RA→B,[]
ε (f).

RA→B,[]
ε (f) = Ω(d): In order to prove this lower bound we describe a product

distribution µ for which DA→B,µ
ε (f) = Ω(d), where d = V C-dim(fX). By

definition of the VC-dimension, there exists a set S ⊆ Y of size d which is
shattered by fX . Namely, for every subset R ⊆ S there exists xR ∈ X, such
that ∀y ∈ S, fxR(y) = 1 iff y ∈ R. For each R ⊆ S, fix such an xR. Let µ be
the uniform distribution over the set of pairs {(xR, y) | R ⊆ S, y ∈ S}.

Let P be a single round deterministic protocol for computing f(·, ·) whose
cost is at most d/15. Thus, P induces two mappings. P1 : {0, 1}d → {0, 1}d/15

determines which d/15 bits Alice should send to Bob for every given xR, and
P2 : {0, 1}d/15 → {0, 1}d determines the value of f computed by Bob for every
y ∈ S, given the d/15 bits sent by Alice. Combining these two mappings,
P induces a mapping P1,2

def= P1 ◦ P2 from {0, 1}d into a set U ⊂ {0, 1}d,
where |U | ≤ 2d/15. The expected error of P is 1/(d2d)

∑
z∈{0,1}d dist(z, P1,2(z)),
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where dist(·, ·) denotes the hamming distance between the vectors. If we define
dist(z, U) to be the minimum hamming distance between z and a vector u ∈ U ,
then the following lemma gives us the lower bound stated in the theorem.

Lemma 3.4. For every d ≥ 15, and for every set U ⊂ {0, 1}d, |U | ≤ 2d/15,
E[dist(z, U)] > d/8, where the expectation is taken with respect to the uniform
distribution over z ∈ {0, 1}d.

Proof. For each u ∈ U , let Nu = {z | dist(z, u) ≤ d/4}. We show that
|⋃uNu| ≤

∑
u |Nu| ≤ 2d−1, and hence E[dist(z, U)] > d/8. For each u,

|Nu| =
d/4∑
i=0

(
d

i

)
≤ (ed/(d/4))d/4 (3.1)

= 2d(log(4e)/4) < 2.861d . (3.2)

Thus, ∑
u

|Nu| < 2d/15+.861d < 2d · 2−d/15 . (3.3)

If d ≥ 15, then the claim follows. 2

RA→B,[]
ε (f) = O(d): For this claim we need the following theorem (Blumer et

al. (1989)), which is one of the most fundamental theorems in computational
learning theory.

Theorem (Blumer et al. (1989)). Let H be class of boolean functions over a
domain Y with VC-dimension d, let π be an arbitrary probability distribution
over Y , and let 0 < ε, δ < 1. Let L be any algorithm that takes as input a set
S ∈ Y m of m examples labeled according to an unknown function h ∈ H, and
outputs a hypothesis function h′ ∈ H that is consistent with h on the sample S.
If L receives a random sample of size m ≥ m0(d, ε, δ) distributed according to
πm, where

m0(d, ε, δ) = c0

(
1
ε

log
1
δ

+
d

ε
log

1
ε

)
for some constant c0 > 0, then with probability at least 1− δ over the random
samples, Prπ[h′(y) 6= h(y)] ≤ ε.

We next show that for every rectangular distribution µ, there exists a de-
terministic protocol whose (µ, ε)-distributional complexity is O(d/ε · log(1/ε)).

Let µ : X × Y → {0, 1} be a product distribution over X × Y , where for
every x ∈ X, y ∈ Y , µ(x, y) = µX(x)µY (y). Consider the following family of
deterministic protocols. For every set S = (y1, . . . , ym), of m = m0(d, ε/2, ε/2)
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points, where yi ∈ Y , and m0 is as defined in the theorem above, let PS be the
following protocol. For a given input (x, y), Alice sends Bob the value of fx(·)
on each point in S; Bob then finds a function fx′ ∈ fX that is consistent with the
labeling sent by Alice, and outputs fx′(y). We define the following probability
distribution, Π, on this family of deterministic protocols: Π(PS) = µm(S).
Then we have that

∀x ∈ X, PrΠ [PrµY [PS(x, y) 6= f(x, y)] > ε/2] < ε/2.

It directly follows that

PrΠ [Prµ[PS(x, y) 6= f(x, y)] > ε/2] < ε/2,

and hence
EΠ [Prµ[PS(x, y) 6= f(x, y)]] < ε.

Therefore, there exists at least one deterministic protocol whose error probab-
ility with respect to µ is bounded by ε, as required. 2

3.2. Non-boolean Functions. In the case where the range of f (and fX) is
not {0, 1}, we must consider the following generalization of the VC-dimension,
which is a parameterized version of what is known as the pseudo-dimension.
This definition follows works of Pollard (1984), Haussler (1992), Kearns and
Schapire(1994), and Alon et al. (1997).

Definition 3.5. Let H be class of functions over a domain Y into a range
Z ⊆ <, and let γ ≥ 0. We say that a set S = {y1, . . . , yk} ⊆ Y is γ-shattered
by H if there exists a vector ~w = 〈w1, . . . wk〉 ∈ Zk of dimension k = |S| for
which the following holds. For every subset R ⊆ S, there exists a function
hR ∈ H such that ∀yi ∈ S, if yi ∈ R, then hR(yi) > wi + γ, and if yi /∈ R,
then hR(yi) < wi − γ. The largest value d for which there exists a set S of
size d that is γ-shattered by H is the γ-pseudo-dimension of H and is denoted
by Pγ-dim(H). If arbitrarily large finite sets can be γ-shattered by H, then
Pγ-dim(H) =∞.

Similarly to the boolean case, we have the following theorem for [0, 1] valued
functions. As we shall see in the proof, the lower bound holds for functions
with any range, and we later discuss how to generalize the upper bound.

Theorem 3.6. For every function f : X×Y → [0, 1], every constant ε1 ≤ 1/8,
and every constant ε2 ≤ 1/6,

RA→B
ε1,ε2

(f) ≥ RA→B,[]
ε1,ε2

(f) = Θ̃(PΘ(1)-dim(fX)).
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More precisely,
RA→B,[]
ε1,ε2

(f) = Ω(Pε2-dim(fX))

and

RA→B,[]
ε1,ε2

(f) = O
(
PΘ((ε1ε2)2)-dim(fX) · log2(PΘ((ε1ε2)2)-dim(fX)

)
Proof. The inequality RA→B

ε1,ε2
(f) ≥ RA→B,[]

ε1,ε2
(f) follows the same argument

used for proving that RA→B
ε (f) ≥ RA→B,[]

ε (f) in Theorem 3.2. Here we apply
a straightforward generalization of Theorem 2.2, namely that RA→B,pub

ε1,ε2
(f) =

maxµDA→B,µ
ε1,ε2

(f). Though Yao’s theorem was stated only for the boolean case,
its proof remains correct in the more general real valued case. The reason is
that bounds are given in the proof on the probability that protocols succeed,
and whether success is defined as obtaining the exact value of the function or
a good approximation of it is irrelevant to the proof.

In order to prove the lower bound RA→B,[]
ε1,ε2

(f) = Ω(PΘ(1)-dim(fX)), we es-
sentially reduce the problem to the {0, 1}-valued case. In particular, we show
that there exists a product distribution µ and a {0, 1}-valued function f ′ such
that DA→B,µ

ε1,ε2
(f) ≥ DA→B,µ

ε1
(f ′), and DA→B,µ

ε1
(f ′) = Ω (Pε2-dim(fX)). By defini-

tion of Pε2-dim(fX), there exists a set S ⊆ Y of size d = Pε2-dim(fX) which is
ε2-shattered by fX . Namely, there exists a vector ~w = 〈w1, . . . , wd〉 ∈ Zd such
that for every subset R ⊆ S, there exists xR ∈ X, such that ∀yi ∈ S, if yi ∈ R,
then fxR(yi) > wi + ε2, and if yi /∈ R, then fxR(yi) < wi− ε2. Let f ′ be the par-
tial boolean function defined as follows on the pairs {(xR, yi) |R ⊆ S, yi ∈ S}:
f ′(xR, yi) = 1 if fxR(yi) > wi + ε2, and f ′(xR, yi) = 0 if fxR(yi) < wi − ε2. Let
µ be the uniform distribution on all such pairs (xR, yi).

Clearly, DA→B,µ
ε1,ε2

(f) ≥ DA→B,µ
ε1

(f ′), since in order to compute f ′ on a given
pair (xR, yi), Alice and Bob can run the protocol for computing f and Bob can
output 1 if the answer is greater than wi, and 0 otherwise. Since for each xR
and yi, f(xR, yi) is either greater than wi + ε2, or smaller than wi − ε2, and
with probability 1− ε1, the protocol for computing f , has error at most ε2, the
resulting protocol for f ′ errs with probability at most ε1, as required. As for the
lower bound onDA→B,µ

ε1
(f ′), since S is shattered by {f ′xR}, we can directly apply

the proof of the lower bound in Theorem 3.2 to get that DA→B,µ
ε1

(f ′) = Ω(d)
(where d = |S| = Pε2-dim(fX)).

It remains to prove the upper bound on RA→B,[]
ε1,ε2

(f). We shall need the
following theorem of Bartlett, Long and Williamson (1996). 2

Theorem (Bartlett et al. (1996)). Let H be a class of functions over a domain
Y into the range [0, 1], let π be an arbitrary probability distribution over Y ,
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and let 0 < ε < 1/2, 0 < δ < 1. Let d = P ε2
576

-dim(H). Then there exists a
(deterministic) learning algorithm L which has the following property. Given
as input a set S ∈ Y m of m examples chosen according to πm and labeled
according to an unknown function h ∈ H, L outputs a hypothesis h′ ∈ H such
that if m ≥ m0(d, ε, δ) where

m0(d, ε, δ) = c0

(
1
ε4

log
1
δ

+
d

ε4
log2 d

ε

)

for some constant c0 > 0, then with probability at least 1− δ over the random
samples, ∫

y∈Y
|h′(y)− h(y)| dπ(y) ≤ ε .

Given the above theorem, the proof of the upper bound on RA→B,[]
ε1,ε2

(f) is
very similar to the proof of the upper bound on RA→B,[]

ε (f) in Theorem 3.2. Let
m0(·, ·, ·) be as defined in the theorem above. Here we show that for every rect-
angular distribution µ, there exists a deterministic protocol whose (µ, ε1, ε2)-
distributional complexity is bounded by log(2/ε2) times m = m0(d, ε, δ), where
ε = (ε1 · ε2)/4, δ = ε1/2, and d = P ε2

576
-dim(fX). Note that this complexity is

O(d log2(d)) for constant ε1, ε2.
We first consider a bounded precision variant of f which we denote by f̄ .

Namely, for each (x, y) ∈ X × Y , f̄(x, y) is the value of f(x, y) truncated after
the log(2/ε2) bit of precision. Clearly, for every (x, y), then |f̄(x, y)−f(x, y)| ≤
ε2/2. Moreover, since f̄X ⊆ fX , we have that for every γ, Pγ-dim(f̄X) ≤
Pγ-dim(fX). Let µ : X × Y → [0, 1] be a product distribution over X × Y ,
where for every x ∈ X, y ∈ Y , µ(x, y) = µX(x)µY (y). Consider the following
family of deterministic protocols. For every set S = (y1, . . . , ym) of m points
where m is as defined above and yi ∈ Y , let PS be the following protocol.
For a given input (x, y), Alice sends Bob the value of f̄x(·) on each point in S
(using a constant number (log(2/ε2)) of bits). Bob runs the learning algorithm
L (referred to in the theorem of Bartlett, Long and Williamson (1996)) for
learning the class f̄X , giving it as input the set S together with the labels sent
by Alice. Bob then outputs f̄x′(y), where f̄x′ ∈ f̄X is the hypothesis output
by L.

We define the following probability distribution, Π, on this family of de-
terministic protocols: Π(PS) = µm(S). Then, from the theorem of Bartlett,
Long and Williamson (1996), our choice of m, and the definition of f̄ , we have
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that

∀x ∈ X, PrΠ

[
PrµY [|PS(x, y)− f̄(x, y)| > ε2/2] > ε1/2

]
< ε1/2.

It directly follows that

PrΠ

[
Prµ[|PS(x, y)− f̄(x, y)| > ε2/2] > ε1/2

]
< ε1/2,

and hence
EΠ [Prµ[|PS(x, y)− f(x, y)| > ε2]] < ε1.

Therefore, there exists at least one deterministic protocol which, with probab-
ility at least 1− ε1 over the choice of (x, y), outputs a value that differs by at
most ε2 from f(x, y).

If the range of f is not [0, 1] but rather in [−B,B] for some integer B, Alice
and Bob can execute the protocol for the [0, 1]-valued function f [0,1](·, ·) def=
f(·, ·)/(2B) + 1/2 with ε

[0,1]
2 set to ε2/(2B), and translate the value received

back to the original range. In such a case, the upper bound obtained on the
running time is O(d[0,1] log2(d[0,1])), where d[0,1] = P (ε1ε2)2

216B2)

-dim(f [0,1]
X ). By defin-

ition of the pseudo-dimension, we have that for every γ, P γ
(2B)

-dim(f [0,1]
X ) ≤

Pγ-dim(fX), and hence for constant B, the bound has the same form as the
bound for [0, 1] valued function.

3.3. Applications.

3.3.1. RA→B(f) vs. RB→A(f). In our first application we use Theorem 3.2
to prove the following gap between RA→B(f) and RB→A(f), which seems to be
folklore.

Theorem 3.7. There exists a function f for which RA→B(f) = Θ(log(n)),
while RB→A(f) = Θ(n).

Proof. Let IND : {1, . . . , n} × {0, 1}n → {0, 1}, the “index” function, be
defined as follows: IND(i, ~y) = yi. The upper bounds on RA→B(IND) and
RB→A(IND) are clear since each party can simply send the other party its
input.

In order to prove the lower bound onRB→A(IND), we show that the (whole)
set {1, . . . , n} is shattered by INDY . For every subset R of {1, . . . , n}, let ~y(R)
be defined as follows: yi(R) = 1 iff i ∈ R. Then, by definition, IND~y(R)(i) = 1
iff i ∈ R, and {1, . . . , n} is shattered by INDY .
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To see that the upper bound on RA→B(IND) is also tight, we define the
following set S ⊂ {0, 1}n, S = {~y1, . . . , ~ylog(n)}. For every 1 ≤ j ≤ log(n), and
for every 1 ≤ i ≤ n, yji = 1 iff the jth coordinate in the binary representation
of i is 1. It is not hard to verify that S is shattered by INDX . 2

3.3.2. 2. RA→B(f) vs. RA→B,[](f)
We next show the existence of a function f for which there is a large gap

between RA→B(f) and RA→B,[](f). It is interesting to note that in the case
of multi-round communication complexity, there are only examples showing
a polynomial (quadratic) gap between R[](f) and R(f) (Babai et al. (1986),
Kalyanasundaram & Schnitger (1992), Razborov (1992)).

Theorem 3.8. There exists a function f for which RA→B,[](f) = O(1), while
RA→B(f) = Ω(n).

Proof. Let GT : {1, . . . , 2n} × {1, . . . , 2n} → {0, 1}, the “greater than”
function, be defined as follows: GT (x, y) = 1 iff x > y. The VC-dimension of
GTX is exactly 1, since almost every set {y} of size one can be shattered by
GTX , while for every set {y1, y2}, y1 < y2, there is no x satisfying x > y2 and
x ≤ y1. Applying Theorem 3.2, we get the upper bound on RA→B,[](GT ).

The proof of the lower bound on RA→B(GT ) is given in Miltersen et al.
(1998). We describe a simpler proof to a slightly weaker bound of Ω(n/ log(n)).
Let IND′ be the same as the index function IND except that IND′ : {0, 1}n×
{1, . . . , n} → {0, 1}. That is, Alice gets a vector ~x ∈ {0, 1}n, Bob gets an index
i ∈ {1, . . . , n}, and they want to compute xi. From Theorem 3.7 we have the
RA→B(IND′) = Ω(n). Let P be a randomized private coin protocol for GT
whose cost is c = RA→B(GT ). We now show how O(log(n)) executions of P
(at a cost of O(c log(n)) can be used to compute IND′. In fact, we show that
O(log(n)) executions of P can be used to exactly find every coordinate xi of ~x.
The lower bound of Ω(n/ log(n)) on RA→B(GT ) directly follows.

Assume that for a fixed ~x, ~y ∈ {0, 1}n, Alice and Bob execute P , k log(n)
times for some constant k, and Bob outputs the majority outcome. Since the
probability that the outcome of a single execution is incorrect and is at most
1/3, the probability among k log(n) executions that the majority outcome is
incorrect is exp(−Ω(log(n)) = n−Ω(1). Furthermore, with high probability, for a
fixed ~x and for any set {~y 1, . . . , ~y n}, since the set has only n elements, Bob can
compute the correct value of GT (~x, ~y i) for every ~y i in the set with probability
at least 1−n−Ω(1). It follows that Bob can use this protocol (while ignoring his
input i ∈ {1, . . . , n}) to perform a binary search and find the exact value of ~x
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with high probability. In other words, he can compute each coordinate in the
binary representation of ~x, and in particular, xi. 2

3.3.3. 3. Linear Halfspaces
We apply Theorem 3.6 to get an upper bound on the (parameterized)

pseudo-dimension of a function class that is closely related to the class of linear
halfspaces. The latter is a class of threshold functions, where each function is
defined by a vector ~x ∈ [−1, 1]n whose L2 norm equals 1. The value of the
function on an input ~y ∈ <n is the sign of ~x · ~y – the sign of the cosine of the
angle between the vectors (or the side of the halfspace perpendicular to ~x on
which ~y falls). This class has received much attention in the learning theory
literature. We consider the related class of real valued functions whose value on
~y is the angle between ~x and ~y, or the inner product between ~x and (1/‖~y‖2) ·~y.
This class is simply (INP2,2)X . For brevity, we denote it by INPX .

It is well known that the VC-dimension of the class of linear halfspaces is
n+ 1. In contrast, from Theorem 3.6 we have that for constant ε1, RA→B

ε1,ε2
(f) =

Ω(Pε2-dim(fX)), and from the proof of Theorem 4.4 (appearing in Section 4.2)
we have that, for constant ε1, RA→B

ε1,ε2
(INP2,2) = O(log(n)+1/ε22). By combining

the two bounds, we get the following corollary. We do not know of any direct
way to obtain this upper bound.

Corollary 3.9. Pγ-dim(INPX) = O(log(n) + 1/γ2) .

4. Real Inner Products

In this section we study problems in which Alice and Bob each receive an n-
dimensional real valued vector, and they wish to compute the inner product
between the two vectors. We assume that there are known bounds on certain
norms of the vectors. We consider two variants of these problems. In the first,
we ask that the inner product be computed within some small given additive
error ε2. In the second, we define a partial boolean function whose value is 1
if the value of the inner product is above 2/3, and 0 if it is below 1/3, and ask
that this partial function be computed. Our upper bounds all apply to the first
variant with any constant error ε2.

4.1. A Complete Problem for One-Round Communication Complex-
ity. We start by presenting a fairly simple inner product function which is
complete for the class of boolean functions whose 1-round communication com-
plexity is polylog(n). First we need to define completeness in this context.
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This is done using rectangular reductions, which were introduced by Babai et
al. (1986).

Definition 4.1. Let X, X ′, Y, Y ′ and Z be arbitrary sets. Let f : X×Y →
Z, and let f ′ : X ′ × Y ′ → Z. A rectangular reduction from f ′ to f is a pair of
functions g1 : X ′ → X, g2 : Y ′ → Y , which satisfy the following conditions:

1. ∀x′ ∈ X ′, y′ ∈ Y ′, f ′(x′, y′) = f(g1(x′), g2(y′)).

2. ∀x′ ∈ X ′, |g1(x′)| = 2polylog(|x′|).

3. ∀y′ ∈ Y ′, |g2(y′)| = 2polylog(|y′|).

If there exists a rectangular reduction from f ′ to f , then we say that f ′ reduces
to f and we denote this by f ′ ∝ f .

Functions can be classified according to their communication complexity
similarly to the way in which they are classified according to their computa-
tional complexity. A complete function for a given communication complexity
class is defined as follows.

Definition 4.2. We say that a function f is complete for a communication
complexity class C if the following two conditions hold:

1. f ∈ C;

2. ∀f ′ ∈ C, f ′ ∝ f .

Let INP1,∞(·, ·) be the following inner product function. INP1,∞(~p, ~q) =
~p·~q, where ~p = 〈p1, . . . , pn〉 and ~q = 〈q1, . . . , qn〉 are n-dimensional vectors which
have the following properties: ‖~p‖1 ≤ 1 and ‖~q‖∞ ≤ 1, where ‖~p‖1

def=
∑
i |pi|,

and ‖~q‖∞ def= maxi |qi|. Let the partial boolean function INP par
1,∞(·, ·) be defined

as follows:

INP par
1,∞(~p, ~q) def=

{
1 ifINP1,∞(~p, ~q) ≥ 2/3
0 ifINP1,∞(~p, ~q) ≤ 1/3.

The domain of INP par
1,∞(·, ·) is therefore all (~p, ~q) such that either INP1,∞(~p, ~q) ≥

2/3, or INP1,∞(~p, ~q) ≤ 1/3, and INP par
1,∞(·, ·) is undefined on inputs (~p, ~q) such

that 1/3 < INP1,∞(~p, ~q) < 2/3. A protocol for computing INP par
1,∞(·, ·) must

be correct (with high probability) only when given inputs that belong to the
domain of the function, and may output either 0 or 1 (or any other value) when
given inputs not in the domain of the function. Such a protocol, however, does
not need to distinguish between inputs in the domain and inputs outside the
domain.



38 Kremer, Nisan & Ron cc 8 (1999)

Theorem 4.3. RA→B(INP1,∞) = O(log(n)), but RB→A(INP par
1,∞) = Ω(n).

Furthermore, INP par
1,∞ is complete for the class of boolean functions whose 1-

round communication complexity is polylog(n).

Proof. Without loss of generality, we assume that ~p is a probability vector,
i.e., ~p is non-negative, and ‖~p‖1 = 1.3 We start by describing a 1-round ran-
domized protocol for computing INP1,∞, whose cost is O(log(n)). Clearly, it
follows that INP par

1,∞ belongs to the class of boolean functions whose 1-round
communication complexity is polylog(n). Alice repeats the following process k
times, where k is a constant. She chooses an index i with probability pi and
sends it to Bob. For the `th repetition of this process, let X` be the value of the
qi corresponding to the index i sent by Alice. Bob then outputs the average
of the X`’s. The X`’s are random variables which take values in [−1, 1] and
whose expect value is

∑n
j=1 pj ·qj, the inner product between ~p and ~q. Applying

Chernoff bounds, if k = O(1/ε22 log(1/ε1)), then with probability at least 1− ε1,
the absolute value of the difference between the average of the X`’s, and ~p ·~q is
at most ε2. For constant ε1 and ε2, the cost of the protocol is thus O(log(n)).

Next, we describe a rectangular reduction from any given f : X×Y → {0, 1}
for which RA→B(f) = polylog(n), to INP par

1,∞. As noted in the introduction,
this reduction was implicit in Yao (1979). If RA→B(f) = polylog(n), then there
exists a 1-round communication protocol P for f with error 1/4 that has the
following properties. For every x ∈ X, Alice’s side of the protocol defines a
probability distribution over all messages of length c, where c = polylog(n), and
for each such message and every y ∈ Y , Bob’s side of the protocols determines
a probability of outputting 1. For 1 ≤ i ≤ 2c, let Mi denote the ith message
in some arbitrary enumeration of the messages Alice can send Bob. Let pi(x)
be the probability that Alice sends the message Mi to Bob, given that her
input is x, and let qi(y) be the probability that Bob outputs 1, given that he
received the input y, and that Alice sent him the message Mi. Thus, using the
notations from Definition 4.1, we define g1(x) to be ~p(x) and g2(y) = ~q(y). The
dimension of both vectors is 2c which is 2polylog(n), and we let each coordinate
be written with exponential precision, using Θ(n) bits.

It remains to be shown that f(x, y) = INP par
1,∞(~p(x), ~q(y)). By the definition

of ~p(x) and ~q(y),

Pr[P (x, y) = 1] =
2c∑
i=1

pi(x) · qi(y)± o(2−n). (4.4)

3The first assumption can be removed as follows. Let ~p = ~p+ + ~p− where ~p+ is a
non-negative vector, and ~p− is a negative vector. ~p+ · ~q and (−~p−) · ~q can then be com-
puted separately, and summed together. The second assumption can be removed simply by
normalizing.
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Since Pr[P (x, y) = 1] should be greater than 3/4 if f(x, y) = 1 and smaller
than 1/4 otherwise, the claim follows.

Finally, the lower bound on RB→A(INP par
1,∞) directly follows from the lower

bound on the index function, IND, proved in Theorem 3.7. 2

4.2. The bounded L2 norm case. In this subsection we study the problem
of computing the inner product of two n-dimensional vectors whose L2 norm
is bounded by 1. More precisely, we define:

INP2,2(~u,~v) def= ~u · ~v def=
∑
i

uivi,

where ‖~u‖2, ‖~v‖2 ≤ 1, and ‖~u‖2
def=
√
~u · ~u =

√∑
u2
i ).

Theorem 4.4. RA→B,pub(INP2,2) = Θ(1) and RA→B(INP2,2) = Θ(log(n)).

Proof. Without loss of generality, we assume that the L2 norm of both ~u
and ~v is exactly 1. In the public coin protocol we are about to describe, we
apply a technique presented in Goemans & Williamson (1994). In particular,
we need the following lemma:

Lemma (Goemans & Williamson (1994)). Let ~u and ~v be two n-dimensional
real vectors whose L2 norm is 1. Let ~r be a random n-dimensional real vector
whose L2 norm is 1. Then

Pr[sgn(~u · ~r) 6= sgn(~v · ~r)] =
1
π

arccos(~u · ~v),

where sgn(x) = 1 if x ≥ 0, and 0 otherwise.
Given this lemma, the public coin protocol is quite obvious. Alice and Bob

use their common random string to choose k random vectors ~r1, . . . , ~rk, for some
constant k, such that ∀i ‖~ri‖2 = 1. Alice sends Bob sgn(~u · ~r1), . . . , sgn(~u · ~rk),
and Bob estimates arccos(~u · ~v) by π

k
|{~ri | sgn(~u · ~ri) 6= sgn(~v · ~ri)}|. Since the

absolute value of the derivative of the cosine function is bounded by 1, Bob can
use this estimate to compute, with high probability, the value of ~u ·~v within an
additive error ε2 = O(1/

√
k). Stated slightly differently, for every given ε1 and

ε2, if k = Θ(log(1/ε1)/ε22), then with probability at least 1− ε1, Bob’s estimate
is within ε2 from the correct value.

In order to get the upper bound on RA→B(INP2,2), we apply Newman’s
theorem (Newman (1991)), quoted in Theorem 2.4. Though the theorem is
not directly applicable in our case since it applies to functions defined on finite
domains X and Y , we need only make the following observation. Assume that
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the public coin protocol described above is run on bounded precision represent-
ations of ~u and ~v, where each coordinate is written in Θ(n) bits. Then we incur
only an exponentially small additional error, while the size of our effective do-
main is 2poly(n). Thus, RA→B

ε1,ε2
(INP2,2) ≤ O(log(1/ε1)/ε22))+O(log(poly(n)/ε1)),

which for constant ε1 and ε2 is O(log(n)). In Subsection 4.4 we give an altern-
ative proof to a slightly weaker claim (RA→B(INP2,2) = polylog(n)), in which
we explicitly describe a private-coin protocol for the function (the application
of Newman’s theorem only proves the existence of such a protocol).

It remains to show that RA→B(INP2,2) = Ω(log(n)); we clearly have
RA→B,pub(INP2,2) = Ω(1). Assume, contrary to the claim, that there exists
a protocol P for INP2,2 whose cost is o(log(n)), and let the approximation
error of P be bounded by 1/5. We next define the “intersection” function,
INT , and use it to reach a contradiction. Given two sets S, T ∈ {1, . . . , n},
|S| = |T | = n/2, the value of INT (S, T ) is the size of S

⋂
T . Then we can

use P to compute INT (S, T ) (within an additive error of n/10) as follows.
Let ui(S) = 1/

√
|S|, if i ∈ S, and 0 otherwise. Define ~v(T ) similarly. Thus,

~u(S) · ~v(T ) = |S ⋂T |/√|S||T | = 2|S ⋂T |/n. Since ‖~u(S)‖2 = ‖~v(T )‖2 = 1, we
can run P to compute ~u(S) · ~v(T ), from which we can derive the size of S

⋂
T

within an additive error of n/10.

Therefore, under our counter assumption on INP2,2, the protocol for INT
gives us a randomized protocol whose cost is o(log(n)) for computing the “dis-
jointness” function, DISJ , when the sets, S and T are known to be of size
exactly n/2, and their intersection is either empty or of size at least n/5. It
is well-known that for every f , D(f) = 2O(R(f)), where D(f) (R(f)) denotes
the deterministic (randomized) multi-round communication complexity of f .
We next show that the known linear lower bound D(DISJ) = Ω(n) holds for
our restricted version of DISJ as well. It then follows that RA→B(DISJ) ≥
R(DISJ) = Ω(log(n)), contradicting our assumption on the 1-round random-
ized communication complexity of INP2,2. For this we need the following
definition of a fooling set (see Yao (1979), Lipton & Sedgewick (1981)).

A set S ⊂ X×Y is called a fooling set for a function f : X×Y → {0, 1}, if
there exists z ∈ {0, 1} such that for every (x, y) ∈ S, f(x, y) = z, while for every
(x1, y1) 6= (x2, y2) (both in S), either f(x1, y2) 6= z or f(x2, y1) 6= z. It is not
hard to verify that if f has a fooling set of size t, then D(f) ≥ log t. We would
thus like to show that there exists an exponential size fooling set S for DISJ
(when the domain of the function is restricted as defined above). In particular
let S consist of pairs {(S, S̄)}, such that |S| = n/2, and for every two pairs
(S, S̄) and (T, T̄ ) in S, if S 6= T , then |S ⋂ T̄ | = |S̄ ⋂T | ≥ n/5. Clearly such a
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set is a fooling set since DISJ(S, S̄) = 1, while DISJ(S, T̄ ) = DISJ(S̄, T ) =
0. In order to show that such a (large) set exists, we simply upper bound
the probability that a random choice of pairs (S, S̄) does not have the desired
property. Let S and T be two sets of size n/2 chosen independently and at
random. Then the expected size of S

⋂
T (or of S

⋂
T̄ ) is n/4. By applying

a simple Chernoff bound we have that the probability that their intersection
is smaller than n/5 is less than e−n/200. If we now choose 2n/400 such sets,
independently and at random, then the probability that some pair of sets have
an intersection of size smaller than n/5 is less than 1. Hence there exists a
choice of 2O(n) sets which defines a fooling set, as required. 2

As a corollary of Theorem 4.4 and Theorem 5.1 (which is proved in Sec-
tion 5) we have that R||,pub(INP2,2) = Θ(1). In contrast, in the private coin
simultaneous model we have the following proposition.

Proposition 4.5. R||(INP2,2) = Θ(
√
n).

Proof. The upper bound follows from the application of a general upper
bound (Ambainis (1996), Naor (1994), Newman (1994), see Newman & Szegedy
(1996)) which asserts that R||(f) = O(

√
n · R||,pub(f)), where we get from

Theorem 4.4 and Theorem 5.1 that R||,pub(INP2,2) = O(1). (Though the upper
bound in Newman & Szegedy (1996) was stated only for boolean functions, it
also holds in our case, since we are only varying the definition of correctness
(or success) of a protocol on inputs, and this is irrelevant to the proof.)

In order to obtain the lower bound we only need to show that Alice, Bob
and Carol can use a private coin simultaneous protocol that computes INP2,2

for computing the equality function EQ. The lower bound will then follow
from the Ω(

√
n) lower bound on R||(EQ) (see Newman & Szegedy (1996),

Bourgain & Wigderson (1996), Babai & Kimmel (1997)). This can be done
simply as follows. Let g : {0, 1}n → {−1,+1}m, m = O(n), be an error
correcting code with linear distance. Namely, there exists a constant α such
that for every x, y ∈ {0, 1}n, if x 6= y, then g(x) and g(y) differ on at least αm
bits. It is well known that such codes exist and in particular that a random
linear code will have this property with high probability. Let g′(x) = 1√

m
g(x).

Then we have that for every x, INP2,2(g′(x), g′(x)) = 1, while for every x 6=
y, INP2,2(g′(x), g′(y)) ≤ 1 − 2α. This gap ensures that if Alice, Bob and
Carol execute a protocol for INP2,2 with g′(x) and g′(y) as inputs, and with
any constant approximation parameter smaller than α, then they can use the
resulting value to decide EQ(x, y). 2
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4.3. An Application – Inner Product preserving mappings. Let Bn
1 ,

Bn
2 , and Bn

∞, be the sets of n-dimensional real valued vectors whose L1, L2, and
L∞ norm, respectively, is bounded by 1. Then we have the following theorem.

Theorem 4.6. (1) For every constant 0 < ε < 1, there exist mappings,
g2,1 : Bn

2 → Bn′
1 , and g2,∞ : Bn

2 → Bn′
∞, where n′ = poly(n), such that for every

pair of vectors, ~u,~v ∈ Bn
2 , |~u · ~v − g2,1(~u) · g2,∞(~v)| ≤ ε.

(2) For any given integer n′, there do not exist mappings, g1,2 : Bn
1 → Bn′

2 ,
and g∞,2 : Bn

∞ → Bn′
2 , such that for every pair of vectors, ~u ∈ Bn

1 , v ∈ Bn
∞,

|~u · ~v − g1,2(~u) · g∞,2(~v)| ≤ 1/6.

Proof. The construction of the mappings for the first claim is very similar to
the one described in Theorem 4.3. Let 0 < ε1, ε2 < 1 be such that ε1 + ε2 < ε,
and let P be the private coin protocol for computing INP2,2 within ε2 and
with probability 1 − ε1, whose cost is O(log(n)) and which is guaranteed in
Theorem 4.4. For a vector ~u ∈ Bn

2 , let g2,1(~u), be the probability vector over
the messages Alice may send Bob according to P , given that she received ~u as
input. Let qi,j(~v) be the probability that Bob outputs j ∈ [0, 1], given that Alice
sent the ith message, and Bob received ~v as input, and let qi(~v) =

∑
j(qi,j(~v)·j).

We note that it can be shown that, in P , Bob is deterministic4 and hence qi(~v)
is simply the value Bob outputs given the input ~v and the ith message. Let
g2,∞(~v) = ~q(~v). Then g2,1(~u) · g2,∞(~v) is the expected value of Bob’s output.
But we know that with probability at least 1− ε1, Bob’s output is at most ε2
away from the correct value of the inner product. Hence the expected value is
at most ε1 + ε2 away from the correct value, and the claim follows.

The second claim follows from: (1) The upper bound

RA→B,pub(INP2,2) = RB→A,pub(INP2,2) = O(1)

stated in Theorem 4.4; (2) The lower bound

RB→A(INP par
1,∞) = Ω(n)

stated in Theorem 4.3 combined with Newman’s theorem (Newman (1991)),
(stated in Theorem 2.4) which imply that

RB→A,pub(INP par
1,∞) ≥ RB→A(INP par

1,∞)−O(log(n)) = Ω(n).

Given the constant upper bound on INP2,2, such a pair of mappings would
clearly contradict the linear lower bound on INP par

1,∞. 2

4Actually, the proof of Newman’s theorem (Theorem 2.4) implies that every randomized
1-round private coin protocol can be transformed into a protocol in which Bob is deterministic
while incurring small additional error and cost.
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4.4. An additional version of Theorem 4.4. The following is a slightly
weaker version of Theorem 4.4 in which we explicitly describe a private coin
protocol for INP2,2.

Theorem 4.4’. RA→B(INP2,2) = polylog(n).

Proof. We describe a 1-round randomized (private-coin) communication
protocol for INP2,2. Without loss of generality, we assume that the vectors
~u = 〈u1, . . . , un〉 and ~v = 〈v1, . . . , vn〉 are both positive (see Footnote 3). Let `
denote the length of the representation of each coordinate in ~u and ~v, where we
may assume that ` = polylog(n) (since we are allowed constant error). Alice
and Bob transform their vectors into sums of binary vectors. More explicitly,
for each j ∈ {1, . . . , `}, let ~u j = 〈uj1, . . . , ujn〉, and let ~v j = 〈vj1, . . . , vjn〉 be
defined as follows: for every i ∈ {1, . . . , n}, uji is the jth bit in the binary
representation of ui, and vji is the jth bit in the binary representation of vi.
Then ~u and ~v can be represented as follows:

~u =
∑̀
j=1

2−j+1~u j , ~v =
∑̀
j=1

2−j+1~v j. (4.5)

We next make the following two key observations.

1. ~u · ~v =
∑`
j,k=1 2−(j+k)+2(~u j · ~v k);

2. ∀j ∈ {1, . . . , `}, |sup(~u j)|, |sup(~v j)| ≤ 22j−2, where for a vector ~r, sup(~r) ⊆
{1, . . . , n}, (the support of ~r) is the set of non-zero coordinates in ~r.

The first observation can be verified through the following sequence of equal-
ities.

~u · ~v =
n∑
i=1

ui · vi

=
n∑
i=1

∑̀
j=1

∑̀
k=1

2−j+1uji · 2−k+1vki

=
∑̀
j,k=1

2−(j+k)+2
n∑
i=1

uji · vki

=
∑̀
j,k=1

2−(j+k)+2(~u j · ~v k).
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The second observation is true since following the first observation:

~u · ~u =
∑
j,k

2−(j+k)+2(~u j · ~u k)

≥
∑
j

2−2j+2 · |sup(~u j)|;

but ~u · ~u ≤ 1, and hence in particular, ∀j ∈ {1, . . . , `}, 2−2j+2 · |sup(~u j)| ≤ 1.
Let aj,k

def= 2−(j+k)+2(~u j · ~v j). Alice and Bob compute each aj,k separately,
and then sum them all up. The number of pairs (j, k) is polylog(n), and hence
it remains to show how these values can be computed each with polylog(n)
bits of communication, 1/polylog(n) accuracy, and with confidence at least
1− 1/polylog(n).

We separate the discussion into two cases: j ≤ k, and j > k.

◦ j ≤ k : Alice repeats the following process polylog(n) times. She picks
a coordinate i in sup(~u j), uniformly, and at random, and sends i to
Bob. Clearly, the corresponding coordinate of ~v k, vki , is a {0, 1} random
variable which is 1 with probability

~u j · ~v k
|sup(~u j)| .

Since this process is repeated polylog(n) times, if we apply Chernoff
bounds, we get that with high probability, the average value of the uki ’s
approximates (~u j ·~v k)/|sup(~u j)| within an additive error of 1/polylog(n).
Alice also sends Bob the size of sup(~u j), and Bob then multiplies the av-
erage of the uki ’s by |sup(~v j)| and by 2−(j+k)+2 to get an approximation
of aj,k. With high probability (1 − 2−polylog(n)), the error of this approx-
imation is

2−(j+k)+2 · |sup(~u j)|
polylog(n)

.

Since k ≥ j, and using the second observation above, we get that the error
is bounded by 1/polylog(n), as required. The communication complexity
is clearly polylog(n).

◦ j > k: This case can be divided into two sub-cases:

1. 2j−k ≤ polylog(n) : Alice and Bob essentially follow the same pro-
tocol as described above for the case j ≤ k. Since

2−(j+k)+2 · |sup(~u j)| ≤ 2j−k,

the claim follows.
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2. 2j−k > polylog(n) : in this case

aj,k = 2−(j+k)+2(~u j · ~v k)
≤ 2−(j+k)+2|sup(~v k)|

≤ 2k−j ≤ 1
polylog(n)

,

and we can ignore all such pairs by assuming the corresponding aj,k’s
are 0. 2

5. Simultaneous Protocols

In this section we show that the public coin simultaneous communication com-
plexity of any function f is bounded by the sum of the two corresponding
one-round public coin protocols. As mentioned previously, there is a gen-
eral transformation from simultaneous public coin protocols to simultaneous
private-coin protocols at a multiplicative cost of O(

√
n) (Ambainis (1996),

Naor (1994), Newman (1994), Newman & Szegedy (1996)). While it may be
the case that for certain functions there is a better upper bound on R||(f),
the results of Bourgain and Wigderson (1996) and Babai and Kimmel (1997)
imply that this bound is tight for every function f such that D||(f) = Ω(n) and
R||,pub(f) = O(1) (as is the case for the equality function). The existence of
such a multiplicative Ω(

√
n) gap between public coin and private coin commu-

nication complexity in the simultaneous model should be contrasted with the
worst case O(log(n)) additive difference between public coin and private-coin
one-round communication complexity (Newman (1991)).

Theorem 5.1. For every boolean function f ,

R||,pub(f) = Θ
(
RA→B,pub(f) +RB→A,pub(f)

)
.

Proof. It is clear that R||,pub(f) ≥ RA→B,pub(f) + RB→A,pub(f), since both
Alice and Bob can simulate Carol’s side of the protocol. We show that for every
probability distribution µ on X × Y , D||,µ(f) = O

(
DA→B,µ(f) +DB→A,µ(f)

)
,

where D||,µ(f) is the simultaneous µ-distributional complexity of f . The the-
orem follows since, similarly to the statement in Theorem 2.2, it holds that
R||,pub(f) = maxµD||,µ(f). Let PA→B be a deterministic protocol for f in
which Alice sends Bob a single message of length c1 = DA→B,µ

ε (f), and whose
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error probability with respect to µ is ε for ε < 2−8. Let PB→A be a protocol
whose cost is c2, and which is chosen analogously. In what follows we show
that there exists a deterministic simultaneous protocol P || whose cost is c1 +c2,
and whose error with respect to µ is O(ε1/4). Furthermore, in P ||, Alice simply
simulates her side of the protocol in PA→B, and Bob simulates his side in PB→A.

Let Mf be the “truth table” of f , i.e., it is an |X| by |Y | matrix where each
row is labeled by some x ∈ X, each column is labeled by some y ∈ Y , and
Mf(x, y) = f(x, y). Then PA→B induces a partition of the rows in Mf into 2c1
classes such that for every x1 and x2 which are in the same class X ′, and for
every y, PA→B(x1, y) = PA→B(x2, y). Let us denote this value by PA→B(X ′, y).
Similarly, PB→A induces a partition of the columns in Mf into 2c2 classes. For
a class X ′ ⊂ X in the partition induced by PA→B, and for a class Y ′ ⊂ Y
in the partition induced by PB→A, let RX′,Y ′ = X ′ × Y ′ be the corresponding
rectangle in Mf . Then we ask that P || have a constant value, P ||(X ′, Y ′), on
the entries in RX′,Y ′. Let this value be the majority value, with respect to µ, of
the entries in RX′,Y ′. We would like to show that the total weight (with respect
to µ) of the rectangles which are almost monochromatic (with respect to µ) is
high.

We may assume that for every class X ′, and for every y, the value of
PA→B(X ′, y) is the majority value (with respect to µ) of the entries in the
sub-column of Mf corresponding to y and X ′. We say that an entry (x, y) in
Mf is column-bad (with respect to PA→B) iff Mf(x, y) 6= PA→B(X ′, y), where
X ′ 3 x. The bound on the error probability of PA→B ensures that the total
weight of the column-bad entries is at most ε. Based on a similar assumption
on PB→A, we can define row-bad entries, and bound their total weight in Mf .

We need three more definitions. For a class X ′ ⊂ X (Y ′ ⊂ Y ) and y ∈ Y
(x ∈ X), we say that the corresponding sub-column (sub-row) is bad iff the
relative weight of column-bad (row-bad) entries in it is larger than ε1/4. For a
class X ′ ⊂ X, and a class Y ′ ⊂ Y , we say that the corresponding rectangle
RX′,Y ′ in Mf is bad-in-columns (bad-in-rows) iff the relative weight of bad sub-
columns (sub-rows) in R is higher than ε1/4. A rectangle R is bad, if it is either
bad-in-columns or bad-in-rows. Otherwise it is good. Finally we say that an
entry (x, y) is rectangle-bad, if Mf(x, y) 6= P ||(X ′, Y ′), where x ∈ X ′, y ∈ Y ′,
and P ||(X ′, Y ′) is as defined previously.

Claim 5.2. The total weight of bad rectangles in Mf is at most 2ε1/2.

Proof. By definition, in a bad-in-columns (bad-in-rows) rectangle, the relative
weight of the column-bad (row-bad) entries is at least ε1/2. Since the total weight
of the column-bad (row-bad) entries is at most ε, the claim follows. 2
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We now prove that in every good rectangle R, the relative weight of the
rectangle-bad entries is at most 4ε1/4. It follows that the total weight of rectangle-
bad entries is bounded by 2ε1/2 + 4ε1/4 = O(ε1/4).

Let R be a good rectangle. We partition the (sub-)columns in R into three
sets: A1, A0, and Ab. Ab are the bad columns. Their relative weight is at
most ε1/4. A1 (A0) are good columns whose majority value is 1 (0). Let the
relative weight of A1 (A0) be α1 (α0). Without loss of generality, α1 ≥ α0. The
relative weight of rectangle-bad entries in R is hence at most ε1/4 +α1ε

1/4 +α0.
It remains to bound α0. We use the following claim whose proof is similar to
the proof of Claim 5.2.

Claim 5.3. The relative weight of sub-rows in A1 (A0) in which the relative
weight of entries (x, y) for which Mf (x, y) = 0 (1) is larger than ε1/8 is at most
ε1/8.

It follows from this claim, that in at least 1−ε1/8 of the sub-rows in A1∪A0,
the relative weight of entries with value 0 is at least α0(1 − ε1/8). Since R is
good, in particular, it is good-in-rows. For ε < 2−8, 1 − ε1/8 > ε1/4, and thus
necessarily α0 < ε1/4/(1− ε1/8) which is less than 2ε1/4. 2
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