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Abstract. The polynomial-time hierarchy (PH) has proven to be
a powerful tool for providing separations in computational complex-
ity theory (modulo standard conjectures such as PH does not col-
lapse). Here, we study whether two quantum generalizations of PH
can similarly prove separations in the quantum setting. The first gen-
eralization, QCPH, uses classical proofs, and the second, QPH, uses
quantum proofs. For the former, we show quantum variants of the
Karp–Lipton theorem and Toda’s theorem. For the latter, we place
its third level, QΣ3, into NEXP using the ellipsoid method for effi-
ciently solving semidefinite programs. These results yield two implica-
tions for QMA(2), the variant of Quantum Merlin-Arthur (QMA) with
two unentangled proofs, a complexity class whose characterization has
proven difficult. First, if QCPH = QPH (i.e., alternating quantifiers
are sufficiently powerful so as to make classical and quantum proofs
“equivalent”), then QMA(2) is in the counting hierarchy (specifically,
in PPPPP

). Second, because QMA(2) ⊆ QΣ3, QMA(2) is strictly con-
tained in NEXP unless QMA(2) = QΣ3 (i.e., alternating quantifiers do
not help in the presence of “unentanglement”).
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1. Introduction

The polynomial-time hierarchy (PH) (Meyer & Stockmeyer 1972) is
a staple of computational complexity theory, and generalizes P, NP
and coNP with the use of alternating existential (∃) and universal
(∀) operators. Roughly, a language L ⊆ { 0, 1 }∗ is in Σi, the i-th
level of PH, if there exists a polynomial-time deterministic Turing
machine M that acts as a verifier and accepts i proofs y1, . . . , yi,
each polynomially bounded in the length of the input x, such that:

x ∈ L ⇒ ∃y1∀y2∃y3 · · ·Qiyi such that M accepts (x, y1, . . . , yi),

x �∈ L ⇒ ∀y1∃y2∀y3 · · ·Qiyi such that M rejects (x, y1, . . . , yi),

where Qi = ∃ if i is odd and Qi = ∀ if i is even, and Q denotes
the complement of Q. Then, PH is defined as the union over all
Σi for all i ∈ N. The study of PH has proven remarkably fruit-
ful in the classical setting, from celebrated results such as Toda’s
theorem (1991), which shows that PH is contained in P#P, to the
Karp–Lipton theorem (1980), which says that unless PH collapses
to its second level, NP does not have polynomial-size non-uniform
circuits.

As PH has played a role in separating complexity classes (as-
suming standard conjectures like “PH does not collapse”), it is nat-
ural to ask whether quantum generalizations of PH can be used to
separate quantum complexity classes. Here, there is some flexibility
in defining “quantum PH,” as there is more than one well-defined
notion of “quantum NP”: The first, Quantum-Classical Merlin-
Arthur (QCMA) (Aharonov & Naveh 2002), is a quantum analogue
of Merlin-Arthur (MA) with a classical proof but quantum verifier.
The second, Quantum Merlin-Arthur (QMA) (Kitaev et al. 2002),
is QCMA except with a quantum proof. Generalizing each of these
definitions leads to (at least) two possible definitions for “quantum
PH,” the first using classical proofs (denoted QCPH), and the sec-
ond using quantum proofs (denoted QPH) (formal definitions in
Section 2).

With these definitions in hand, our aim is to separate quantum
classes whose complexity characterization has generally been diffi-
cult to pin down. A prime example is QMA(2), the variant of QMA
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with two “unentangled” quantum provers. While the classical ana-
logue of QMA(2) (i.e., an MA proof system with two provers)
equals MA, in the quantum regime multiple unentangled provers
are conjectured to yield a more powerful proof system (e.g., there
exist problems in QMA(2) not known to be in QMA), see Aaron-
son et al. (2009); Beigi (2010); Blier & Tapp (2009); Liu et al.
(2007). For this reason, QMA(2) has received much attention, de-
spite which the strongest bounds known on QMA(2) remain the
trivial ones:

QMA ⊆ QMA(2) ⊆ NEXP.

(Note: QMA ⊆ PP, see Gharibian & Yirka 2019; Kitaev & Wa-
trous 2000; Marriott & Watrous 2005; Vyalyi 2003.) In this work,
we show that, indeed, results about the structure of QCPH or QPH
yield implications about the power of QMA(2).

1.1. Results, techniques, and discussion. We begin by in-
formally defining the two quantum generalizations of PH to be
studied (formal definitions in Section 2).

How to define a “quantum PH”? The first definition, QCPH,
has its i-th level QCΣi defined analogously to Σi, except we replace
the Turing machine M with a polynomial-size uniformly generated
quantum circuit V such that:

x ∈ Ayes ⇒(1.1)

∃y1∀y2∃y3 · · ·Qiyi such that

V accepts (x, y1, . . . , yi) with probability ≥ 2/3,

x ∈ Ano ⇒(1.2)

∀y1∃y2∀y3 · · ·Qiyi such that

V accepts (x, y1, . . . , yi) with probability ≤ 1/3

where the use of a language L has been replaced with a promise
problem1 A = (Ayes, Ano) (since QCΣi uses a bounded error ver-

1Recall that unlike a decision problem, for a promise problem A =
(Ayes, Ano), it is not necessarily true that for all inputs x ∈ Σ∗, either x ∈ Ayes

or x ∈ Ano. In the case of proof systems such as QCPH, when x �∈ Ayes ∪ Ano,
V can output an arbitrary answer. Additionally, Ayes ∩ Ano = ∅.
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ifier). The values (2/3, 1/3) are completeness and soundness pa-
rameters for A and the interval (1/3, 2/3) where no acceptance
probabilities are present is termed the promise gap for A. Notice
that QCPH, defined as

⋃
i∈N

QCΣi, is a generalization of QCMA
in that QCΣ1 = QCMA.

We next define QPH using quantum proofs. Here, however,
there are various possible definitions one might consider. Can the
quantum proofs be entangled between alternating quantifiers? If
not, we are enforcing “unentanglement” as in QMA(2). Allowing
entanglement, on the other hand, might weaken the class, just as
QMA ⊆ QMA(2). Assuming proofs are unentangled, should the
proofs be pure or mixed quantum states? (Mixed states are the
more general and physical definition. For QMA and QMA(2), stan-
dard convexity arguments show both classes of proofs are equiva-
lent, but such arguments fail when alternating quantifiers are al-
lowed. For example, consider the predicate “∃x∀y the Swap Test
on (x, y) accepts with probability p.” When x and y are pure
states, this predicate is false for any choice of p > 1

2
. When x and

y are mixed, the predicate is true for p = 1
2

+ 2−n−1 by using the
fully mixed state x = I/2n.)

Here, we define QPH to have its i-th level, QΣi, defined sim-
ilarly to QCΣi, except each classical proof yj is replaced with a
mixed quantum state ρj on polynomially many qubits (for clarity,
each ρj acts on a disjoint set of qubits, making the ρj unentangled).
We say a promise problem A = (Ayes, Ano) is in QΣi if it satisfies
the following conditions:

x ∈ Ayes ⇒
∃ρ1∀ρ2∃ρ3 · · ·Qiρi such that

V accepts (x, ρ1, . . . , ρi) with probability ≥ 2/3,

x ∈ Ano ⇒
∀ρ1∃ρ2∀ρ3 · · ·Qiρi such that

V accepts (x, ρ1, . . . , ρi) with probability ≤ 1/3.

Note that QMA = QΣ1 and QMA(2) ⊆ QΣ3 (simply ignore the
second proof).

Our results are now stated as follows under three headings.
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1. An analogue of Toda’s theorem for QCPH. As previ-
ously mentioned, PH is one way to generalize NP using alterna-
tions. Another approach is to count the number of solutions for
an NP-complete problem such as SAT, as captured by #P. Sur-
prisingly, these two notions are related, as shown by the following
celebrated theorem of Toda.

Theorem 1.3 (Toda 1991). PH ⊆ P#P.

In the quantum setting, for QCPH, it can be shown using stan-
dard arguments involving enumeration over classical proofs that
QCPH ⊆ PSPACE. However, here we show a stronger result.

Theorem 1.4 (A quantum-classical analogue of Toda’s theorem).

QCPH ⊆ PPPPP

.

Thus, we almost recover the original bound of Toda’s theorem2,
except we require an oracle for the second level of the counting
hierarchy (CH). CHcan be defined with its first level as C1 = PP
and its kth level for k ≥ 2 as Ck = PPCk−1 .

Why did we move up to the next level of CH? There are two
difficulties in dealing with QCPH (see Section 3 for a detailed dis-
cussion). The first can be sketched as follows. Classically, many
results involving PH, from basic ones implying the collapse of PH
to more advanced statements such as Toda’s theorem, use the fol-
lowing recursive idea (demonstrated with Σ2 for simplicity): By
fixing the existentially quantified proof of Σ2 the remnant reduces
to a coNP problem, i.e., we can recurse to a lower level of PH.
In the quantum setting, however, this does not hold—fixing the
existentially quantified proof for QCΣ2 does not necessarily yield
a coQCMA problem as some acceptance probabilities may fall in
the (1/3, 2/3) promise gap which cannot happen for a problem in
coQCMA. (This is due to the same phenomenon that has been an
obstacle to resolving whether ∃ · BPP equals MA (see Section 1.2
and Remark 3.12).) Thus, we cannot directly generalize recursive
arguments from the classical setting to the quantum setting. The

2PP captures all problems for which a majority of all possible answers is
correct and it is known that PPP = P#P.
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second difficulty is trickier to explain briefly (see Section 3.2 for
details). Roughly, Toda’s proof that PH ⊆ PPP crucially relies on
the Valiant–Vazirani (VV) theorem (1986), which has one-sided
error (i.e., VV may map YES instances of SAT to NO instances
of UNIQUE-SAT, but NO instances of SAT are always mapped
to NO instances of UNIQUE-SAT). The VV theorem for QCMA
(Aharonov et al. 2022) also has this property, but in addition it
can output instances which are “invalid.” Roughly, an “invalid” in-
stance of a promise problem P is an instance violating the promise
of P . Such instances pose a problem, because feeding an oracle an
invalid instance results in an arbitrary output; coupled with the
two-sided error which arises in QCPH due to the presence of alter-
nating quantifiers, it is unclear how to extend the parity arguments
used in Toda’s proof to the QCPH setting.

To circumvent these difficulties, we exploit a high-level idea
from Gharibian & Yirka (2019), where an oracle for SPECTRAL
GAP3 was used to detect “invalid” QMA instances4. In our setting,
the “correct” choice of oracle turns out to be a Precise-BQP oracle5,
where Precise-BQP is roughly BQP with an inverse exponentially
small promise gap. Using this, we are able to essentially “remove”
the promise gap of QCPH altogether, thus recovering a “decision
problem” which does not pose the difficulties above. Specifically,
this mapping is achieved by Lemma 3.13 (Cleaning Lemma), which
shows that ∀i ∈ N, we have QCΣi ⊆ ∃ ·∀ · · · · ·Qi ·PPP. The latter

3This problem determines whether the spectral gap of a given local Hamil-
tonian is “small” or “large.”

4This was used, in turn, to show in conjunction with Ambainis (2014) that
SPECTRAL GAP is PUnique-QMA[log]-hard.

5For the purposes of our Cleaning Lemma, we may instead use a PQP
oracle, where recall PQP is BQP except in the YES case, the verifier ac-
cepts with probability > 1/2, and in the NO case accepts with probability
≤ 1/2. Note that in contrast to Precise-BQP, PQP is defined without com-
pleteness/soundness parameters (Watrous 2009a); that one may impose an
inverse exponential promise gap on PQP is a non-trivial consequence of the
fact that one may choose an “appropriately nice” gate set for PQP to en-
sure acceptance probabilities are rational. For this reason, and since whether
Precise-BQP equals PQP or not depends strongly on the choice of complete-
ness/soundness parameters, we have opted to treat Precise-BQP as a generally
distinct entity from PQP; see Section 3.1 for details.
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expression applies the existential (∃) and universal (∀) operators
to a complexity class C. Informally, ∃ · C is the class of languages
such that an input x is in the language if and only if there is a
polynomial-size witness y such that 〈x, y〉 is in a language in C.
Correspondingly, the ∀ · C class is defined when for every witness
y, 〈x, y〉 is in some language in C. (See Definition 3.11 for formal
definitions of ∃ and ∀.)

Notice that although we use a Precise-BQP oracle above, the
Cleaning Lemma shows containment using a PP oracle. This is
because, as shown in Lemma 3.3 and Corollary 3.7, Precise-BQP ⊆
PP. One may ask whether our proof technique also works with an
oracle weaker than PP. We show in Theorem 3.27 that this is
unlikely, since the problem of detecting proofs in promise gaps of
quantum verifiers is PP-complete.

Finally, an immediate corollary of Theorem 1.4 and the fact
that QMA(2) ⊆ QPH is:

Corollary 1.5. If QCPH = QPH, then QMA(2) ⊆ PPPPP

.

In other words, if alternating quantifiers are so powerful so as
to make classical and quantum proofs equivalent in power, then
QMA(2) is contained in CH(and thus in PSPACE). For compari-
son, QMA ⊆ PQMA[log] ⊆ PP (Gharibian & Yirka 2019; Kitaev &
Watrous 2000; Marriott & Watrous 2005; Vyalyi 2003).

2. QPH versus NEXP. We next turn to the study of quan-
tum proofs, i.e., QPH. As mentioned above, the best known up-
per bound on QMA(2) is NEXP–a non-deterministic verifier can
simply guess an exponential-size description of the proof. When
alternating quantifiers are present, however, this strategy seem-
ingly no longer works. In other words, it is not even clear that
QPH ⊆ NEXP! This is in stark contrast to the explicit P#P up-
per bound for PH (Toda 1991). In this part, our goal is to use
semidefinite programming to give bounds on some levels of QPH.
As we will see, this will yield the existence of a complexity class
lying “between” QMA(2) and NEXP.



13 Page 8 of 52 Gharibian et al. cc

Theorem 1.6 (Informal statement). It holds that QΣ2 ⊆ EXP
and QΠ2 ⊆ EXP, even when the completeness-soundness gap is
inverse doubly-exponentially small.

(See Corollary 1.12 for a tighter bound given a larger completeness-
soundness gap.) The proof idea is to map alternating quantifiers
to an optimization problem with alternating minimizations and
maximizations. Namely, to decide if x ∈ Ayes or x ∈ Ano for a QΣi

promise problem A = (Ayes, Ano), where i is even, we can solve for
α defined as the optimal value of the optimization problem:

(1.7) α := max
ρ1

min
ρ2

max
ρ3

· · · min
ρi

〈C, ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρi〉

where C is the POVM operator6 corresponding to the ACCEPT
state of the verifier. (Note that each optimization attains an opti-
mal solution by a simple compactness/continuity argument, hence
the use of “max” instead of “sup” and “min” instead of “inf.”) This
is a non-convex problem, and as such is (likely) hard to solve in
general. Our approach is to cast the case of i = 2 as a semidefinite
program (SDP), allowing us to efficiently approximate α.

The next natural question is whether a similar SDP reformu-
lation might be used to show whether QΣ3 or QΠ3 is also con-
tained in EXP. Unfortunately, this is likely to be difficult—indeed,
if there exists a “nice” SDP for the optimal success probability of
QΣ3 protocols, then it would imply QMA(2) ⊆ EXP, resolving
the longstanding open problem of separating QMA(2) from NEXP
(recall QMA(2) ⊆ QΣ3). Likewise, a “nice” SDP for QΠ3 would
place coQMA(2) ⊆ EXP.

To overcome this, we resort to non-determinism by stepping
up to NEXP. Namely, one can non-deterministically guess the first
proof of a QΣ3 protocol, then approximately solve the SDP for the
resulting QΠ2-flavored computation. Hence, we have:

Theorem 1.8 (Informal statement). It holds true QMA(2) ⊆
QΣ3 ⊆ NEXP and coQMA(2) ⊆ QΠ3 ⊆ coNEXP. All contain-

6A POVM is a set of Hermitian positive semidefinite operators that sum
to the identity. In this case, the POVM has two operators—corresponding to
the ACCEPT and REJECT states of the verifier.
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ments hold with equality in the inverse exponentially and doubly-
exponentially small completeness-soundness gap setting as then
QMA(2) = NEXP (Pereszlényi 2012).

Three remarks are in order. First, note that our results are inde-
pendent of the gate set. Second, in principle, it remains plausible
that the fourth level of QPH already exceeds NEXP in power. Fi-
nally, we have the following implication for QMA(2). Assuming
PH does not collapse, alternating quantifiers strictly add power to
NP proof systems. If alternating quantifiers similarly add power in
the quantum setting, then it would separate QMA(2) from NEXP
via the following immediate corollary.

Corollary 1.9. If QMA(2) � QΣ3, i.e., if the second univer-
sally quantified proof of QΣ3 adds proving power, then it follows
that QMA(2) � NEXP. Similarly, if coQMA(2) � QΠ3, then
coQMA(2) � coNEXP.

Note added: Since the original release of this article, new ob-
servations relevant to the discussion above have been made. Since
these observations are closely related to the open questions of this
article, they have been placed in Section 1.3 (Recent observations
and open questions).

3. A quantum generalization of the Karp–Lipton Theo-
rem. Finally, our last result studies a topic which is unrelated to
QMA(2)—the well-known Karp–Lipton theorem (1980). The lat-
ter shows that if NP-complete problems can be solved by polynomial-
size non-uniform Boolean circuit families, then Σ2 = Π2 (formal
definitions in Section 2), which in turn implies that PH collapses
to its second level. Here, a “non-uniform” circuit family implies
that for each input length, there exists a circuit which decides the
problem, with no restriction on the computational difficulty of pro-
ducing the circuit. The class of decision problems solved by such
polynomial-size circuit families is P/poly. An equivalent descrip-
tion for P/poly is the class languages decidable by polynomial-time
Turing machines that receive, in addition to the input instance, a
polynomial-size “advice string” y such that (1) y depends only on
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the input size n, and (2) there is no computational restriction on
y.

Theorem 1.10 (Karp & Lipton 1980). If NP ⊆ P/poly then Π2 =
Σ2.

Denote the bounded-error analogue of P/poly with polynomial-size
non-uniform quantum circuits as BQP/mpoly. In this work, we ask:
Does QCMA ⊆ BQP/mpoly imply QCΠ2 = QCΣ2? Unfortunately,
generalizing the proof of the Karp–Lipton theorem is problematic
for the same “∃ ·BPP versus MA phenomenon” encountered in ex-
tending Toda’s result. Namely, the proof of Karp–Lipton proceeds
by fixing the outer, universally quantified, proof of a Π2 machine,
and applying the NP ⊆ P/poly hypothesis to the resulting NP com-
putation. However, for QCΠ2, it is not clear that fixing the outer,
universally quantified, proof yields a QCMA computation; thus, it
is not obvious how to use the hypothesis QCMA ⊆ BQP/mpoly.

To sidestep this, our approach is to strengthen the hypothesis.
Specifically, using the results of Jordan et al. (2012) on perfect com-
pleteness for QCMA, fixing the outer proof of a QCΠ2 computation
can be seen to yield a Precise-QCMA “decision problem,” where
by “decision problem,” we mean no proofs for the Precise-QCMA
verifier are accepted within the promise gap. Here, Precise-QCMA
is QCMA with inverse exponentially small promise gap. We hence
obtain the following.

Theorem 1.11 (A quantum-classical Karp–Lipton theorem). If
Precise-QCMA ⊆ BQP/mpoly, then QCΠ2 = QCΣ2.

To give this result context, we also show that Precise-QCMA =
NPPP (Lemma 5.11). However, whether QCΠ2 = QCΣ2 collapses
QCPH remains open due to the same “∃ · BPP versus MA phe-
nomenon.”

1.2. Related work. As far as we are aware, Yamakami (2002)
was the first to consider a quantum version of PH. His version dif-
fers from our setting in that it considers quantum Turing machines
(we use quantum circuits) and quantum inputs (we use classical
inputs, like QMA). The next work, by Gharibian & Kempe (2012),
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introduced and studied cq-Σ2, defined as our QCΣ2 except with a
quantum universally quantified proof. Gharibian & Kempe showed
completeness and hardness of approximation results for cq-Σ2 for
(roughly) the following problem: What is the smallest number of
terms required in a given local Hamiltonian for it to have a frus-
trated ground space? More recently, Lockhart & González-Guillén
(2017) considered a hierarchy (denoted QCPH′ here) which a pri-
ori appears identical to our QCPH, but is apparently not so due
to the “∃ · BPP versus MA phenomenon,” which we now discuss
briefly (see also Remark 3.12).

In this work, the “∃ · BPP versus MA phenomenon,” refers
to the following discrepancy: Unlike with MA, all proofs in an
∃ · BPP system must be accepted with probability at least 2/3 or
at most 1/3 (i.e., no proof is accepted with probability in the gap
(1/3, 2/3)). The quantum analogue of this phenomenon yields the
open question: Is ∃ ·BQP (which equals NPBQP) equal to QCMA?
For this reason, it is not clear whether QCPH equals QCPH′, where
QCPH′ is defined recursively as QCΣ′

1 = ∃·BQP, QCΠ′
1 = ∀·BQP,

and

∀i ≥ 1, QCΣ′
i = ∃ · QCΠ′

i−1; QCΠ′
i = ∀ · QCΣ′

i−1.

Thus, in our work QCΣ1 = QCMA, but in Lockhart & González-
Guillén, QCΣ′

1 = ∃ · BQP.7 The advantage of the latter definition
is that one avoids the recursion problems discussed earlier—e.g.,
fixing the first existential proof in QCΣ′

2 does reduce the problem to
a QCΠ′

1 computation, unlike the case with QCΣ2. Hence, recursive
arguments from the context of PH can be extended to show that,
for instance, QCPH′ collapses to QCΣ′

2 when QCΣ′
2 = QCΠ′

2. On
the other hand, the advantage of our definition of QCPH is that it
generalizes the natural quantum complexity class QCMA.

Let us also remark on Toda’s theorem in the context of QCPH′

(for clarity, Toda’s theorem is not studied in Lockhart & González-
Guillén). The recursive definition of QCPH′ allows one to obtain

7While the “∃ · BPP versus MA phenomenon” is not strictly quantum,
there is no issue in defining a classical probabilistic PH due to the ability of
the standard PH to simulate randomness. Specifically, both ∃ · BPP and MA
are in PH, and this generalizes to show any straightforward definitions of a
bounded-error PH are equivalent to deterministic PH.
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Toda’s PPP upper bound for QCPH′ with a simple argument:

∀i, QCΣ′
i = NPNP. .

.
BQP

= ΣBQP
i

=⇒ ∀i, QCΣ′
i ⊆ (

PPP
)BQP

= PPP,

where the first equality holds due to the recursive definition of
QCΣ′

i (but is not known to hold for our QCΣi), the implication
arises by relativizing Toda’s theorem, and the last equality holds
as BQP is low for PP (Fortnow & Rogers 1999). In contrast,

our Theorem 1.4 yields QCPH ⊆ PPPPP

, raising the question:
is QCPH′ = QCPH? A positive answer may help shed light on
whether ∃ · BQP equals QCMA; we leave this for future work.

Finally, a quantum version of the Karp–Lipton theorem was
covered by Aaronson & Drucker (2014) and further improved by
Aaronson, Cojocaru, Gheorghiu & Kashefi (2019), where the con-
sequences of NP-complete problems being solved by small quan-
tum circuits with polynomial-size quantum advice were considered.
Their results differ from ours in that different hierarchies are stud-
ied, and in their use of quantum advice as opposed to our use of
classical advice. Other Karp–Lipton style results for PH involving
classes beyond NP show a collapse of PH to MA (usually) if ei-
ther PP (Lund et al. 1992; Vinodchandran 2005), P#P or PSPACE
(Karp & Lipton 1980) has P/poly circuits.

1.3. Recent observations and open questions.

1.3.1. Recent observations. Upon release of the current ar-
ticle, Sanketh Menda, Harumichi Nishimura, and John Watrous
(whom we thank) made the observation that QΣ2 = QRG(1),
where QRG(1) captures one-round zero-sum quantum games (Jain
& Watrous 2009). Briefly, this equivalence follows immediately
since QRG(1) from Jain & Watrous can be defined as in Equa-
tion (1.7), but restricted to just the first two proofs, ρ1 and ρ2.

8

This insight has led to some remarkable immediate corollaries re-
garding QΣ2 and QΠ2, which we now discuss.

8The use of mixed state proofs in our definition of QΣ2 and in Equa-
tion (1.7) is crucial for this equivalence.
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The starting point for the discussion is that, as done for QRG(1)
in Jain & Watrous, one can apply an extension of von Neumann’s
min-max theorem (1928) to conclude in Equation (1.7) that

max
ρ1

min
ρ2

〈C, ρ1 ⊗ ρ2〉 = min
ρ2

max
ρ1

〈C, ρ1 ⊗ ρ2〉.

In other words, QΣ2 = QΠ2. In addition, Jain & Watrous shows
QRG(1) ⊆ PSPACE. We thus immediately have the following.

Corollary 1.12. QΣ2 = QΠ2 = QRG(1) ⊆ PSPACE.

1.3.2. Relation to current work. For the standard complete-
ness-soundness gap regime (c − s ∈ Ω(1/poly(n))), Corollary 1.12
improves upon our result of Theorem 1.6 (which recall showed QΣ2,
QΠ2 ⊆ EXP). However, Theorem 1.6 and its proof, are still use-
ful for the results in this paper: First, Theorem 1.6 works in the
very small completeness-soundness gap regime. Second, the proof
technique of Theorem 1.6 allows us to prove Theorem 1.8 (e.g.,
QΣ3 ⊆ NEXP), which also holds in the very small completeness-
soundness gap regime.

1.3.3. Further important implications of Corollary 1.12.

1. (Showing a “collapse theorem” for QPH will be “hard”) One
of the most frequently used results about PH is that if Σ2 =
Π2, then PH collapses to Σ2. Does a quantum analogue of this
statement hold for QPH? Corollary 1.12 yields the following.

Corollary 1.13. If QΣ2 = QΠ2 implies QPH = QΣ2, then
QMA(2) ⊆ PSPACE.

This follows immediately since recall QMA(2) ⊆ QΣ3 ⊆
QPH. Thus, proving such a “collapse theorem” for QPH
would require a breakthrough regarding the complexity char-
acterization of QMA(2), which is believed to be challenging.

2. (Separation between the second levels of PH and QPH) Corol-
lary 1.12 also yields a separation of PH and QPH in the fol-
lowing sense, assuming the standard conjecture that PH is
infinite.
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Corollary 1.14. If QΣ2 = Σ2 (or, equivalently, QΠ2 =
Π2), then PH collapses to Σ2.

This follows immediately since, as mentioned above, if Σ2 =
Π2, then PH collapses to Σ2. We are also using the fact
that if A = B for language/promise classes A and B, then
co-A = co-B. Thus, it is highly likely that QΣ2 �= Σ2 and
QΠ2 �= Π2

1.3.4. Open questions. As far as general upper bounds on
QPH go, the currently best upper bound remains the naive one:
The exponential-time analogue of PH, by which we mean constant-

height towers of form NEXPNEXPNEXP···
(i.e., use each copy of NEXP

to “guess” the next exponential size quantum proof, roughly speak-
ing, just as in the proof that PH equals constant-height towers of
NP oracles). An open question is to find a better upper bound on
QPH; we believe the naive bound to be loose.

One can also ask about the relationship between our QCPH and
QPH classes and constant-height towers of the form QCMAQCMA···

(a “QCMA-hierarchy”) and QMAQMA···
(a “QMA-hierarchy”), re-

spectively. In this work, we have not studied the QCMA- and
QMA-hierarchies, as they involve quantum machines making oracle
queries, and this in itself would presumably need to be correctly
defined. Recently, Vinkhuijzen (2018) defined a QMA-hierarchy,
denoted BQPH, in which the QMA machines make queries in su-
perposition. Vinkhuijzen proved BQPH is in the counting hier-
archy (CH). However, it remains unclear how BQPH compares
to QCPH and QPH. An alternative definition might use in-place
queries. We believe this is an interesting avenue for future work.
What we do observe here is that, if QPH were equal to a QMA-
hierarchy (such as in Vinkhuijzen), then it would put QMA(2) in
CH (and hence in PSPACE)9, which would again require a break-
through in our understanding of unentangled quantum proofs (i.e.,
QMA(2)).

Finally, determining where in the complexity zoo QMA(2) be-
longs remains an important open question. Assuming alternating

9Here we are using QMA ⊆ PP (Gharibian & Yirka 2019; Kitaev & Watrous
2000; Marriott & Watrous 2005; Vyalyi 2003).
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quantifiers do add proving power to quantum proofs (the analo-
gous assumption for classical proofs is widely believed), our work
shows QMA(2) is strictly contained in NEXP. Can this statement
be strengthened?

Organization: We begin in Section 2 by formally introducing
relevant complexity classes. In Section 3, we show a quantum-
classical analogue of Toda’s theorem. Section 4 gives upper bounds
on levels of QPH, and Section 5 shows a Karp–Lipton-type theo-
rem.

2. Definitions, preliminaries, and basic
properties

We begin by recalling the definition of uniformly-generated families
of quantum circuits.

Definition 2.1. (Polynomial-time uniform family of quantum
circuits). A family of quantum circuits {Vn}n∈N is said to be uni-
formly generated in polynomial time if there exists a polynomially
bounded function t : N → N and a deterministic Turing machine
M acting as follows. For every n-bit input x, M(1n) outputs in
time t(n) a description of a quantum circuit Vn (consisting of 1-
and 2-qubit gates) that takes |x〉 as input and the all-zeros state
as ancilla and outputs a single qubit. We say Vn(x) accepts if mea-
suring its output qubit in the computational basis yields 1. When
the distinction is clear from context, we may refer to Vn(x) by just
Vn, implicitly fixing the input x into Vn.

Throughout this paper, we study promise problems. A promise
problem is a pair A = (Ayes, Ano) such that Ayes, Ano ⊆ { 0, 1 }∗,
Ayes ∪ Ano ⊂ { 0, 1 }∗ and Ayes ∩ Ano = ∅. We now formally define
each level of our quantum-classical polynomial hierarchy below.

Definition 2.2 (QCΣi). Let A = (Ayes, Ano) be a promise prob-
lem. We say that A is in QCΣi(c, s) for polynomial-time com-
putable functions c, s : N → [0, 1] if there exists a polynomially
bounded function p : N → N and a polynomial-time uniform family
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of quantum circuits {Vn}n∈N such that for every n-bit input x, Vn

takes in x and classical proofs y1 ∈ { 0, 1 }p(n) , . . . , yi ∈ { 0, 1 }p(n)

and outputs a single qubit, such that:

◦ Completeness:

x ∈ Ayes ⇒∃y1∀y2 . . . Qiyi such that

Prob[Vn accepts (x, y1, . . . , yi)] ≥ c.

◦ Soundness:

x ∈ Ano ⇒∀y1∃y2 . . . Qiyi such that

Prob[Vn accepts (x, y1, . . . , yi)] ≤ s.

Here, Qi equals ∃ when m is odd and equals ∀ otherwise and Qi is
the complementary quantifier to Qi.

(2.3) Define QCΣi :=
⋃

c−s∈Ω(1/poly(n))

QCΣi(c, s).

Note that the first level of this hierarchy corresponds to QCMA.
The complement of the i-th level of the hierarchy, QCΣi, is the class
QCΠi defined below.

Definition 2.4 (QCΠi). Let A = (Ayes, Ano) be a promise prob-
lem. We say that A ∈ QCΠi(c, s) for polynomial-time computable
functions c, s : N → [0, 1] if there exists a polynomially bounded
function p : N → N and a polynomial-time uniform family of quan-
tum circuits {Vn}n∈N such that for every n-bit input x, Vn takes

in x and classical proofs y1 ∈ { 0, 1 }p(n) , . . . , yi ∈ { 0, 1 }p(n) and
outputs a single qubit, such that:

◦ Completeness:

x ∈ Ayes ⇒∀y1∃y2 . . . Qiyi such that

Prob[Vn accepts (x, y1, . . . , yi)] ≥ c.

◦ Soundness:

x ∈ Ano ⇒∃y1∀y2 . . . Qiyi such that

Prob[Vn accepts (x, y1, . . . , yi)] ≤ s.
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Here, Qi equals ∀ when m is odd and equals ∃ otherwise and Qi is
the complementary quantifier to Qi.

(2.5) Define QCΠi :=
⋃

c−s∈Ω(1/poly(n))

QCΠi(c, s).

Now the corresponding quantum-classical polynomial hierarchy
is defined as below.

Definition 2.6 (Quantum-Classical Polynomial Hierarchy).

QCPH =
⋃

m∈N

QCΣi =
⋃

m∈N

QCΠi.

A few remarks are in order. First, by encoding a polynomial-
time predicate into a quantum verification circuit, one can see that
(where Σi and Πi refer to the i-th level of the corresponding clas-
sical polynomial hierarchy)

∀i, Σi ⊆ QCΣi, Πi ⊆ QCΠi and PH ⊆ QCPH.

Second, a natural question is to what extent the completeness
and soundness parameters of QCΣi and QCΠi can be improved.
Toward achieving one-sided error, we apply known techniques to
prove that “every other level” (see Theorem 2.10 for a formal state-
ment) has perfect completeness (i.e., we can improve the complete-
ness parameter to c = 1), in addition to every level having inverse
exponentially small soundness. This is shown using techniques
from the proof of the following theorem.

Theorem 2.7 (Jordan et al. 2012). QCMA has perfect complete-
ness, i.e.,

(2.8) QCMA = QCMA(1, 1 − 1/poly(n)).

The proof of the above result starts by choosing a suitable gate-set
for the QCMA verifier, i.e., Hadamard, Toffoli and CNOT gates
(Aharonov 2003; Shi 2003). This ensures that the acceptance prob-
ability for any proof y can be expressed as k/2�(|x|) for an integer
k ∈ {0, . . . , 2�(|x|)} and a polynomially bounded integer function
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�(|x|). The verifier then asks the prover to send k (expressed as a
polynomial-size bit string) along with the classical proof. When k
is above a certain threshold, the verifier chooses one of two tests
with equal probability: (a) run the original verification circuit or
(b) trivially accept with probability > k/2�(|x|). This allows for the
completeness to be reduced to exactly 1/2 while the soundness is
strictly bounded below 1/2. Then, by using the quantum rewind-
ing technique (Watrous 2009c), c can be boosted to exactly 1. The
ideas in this proof have been adapted to several similar scenarios
(see, e.g., Grilo et al. 2016; Kobayashi et al. 2015).

For easy reference later, we state a generalized version of the
technique used by Jordan et al. in the following observation.

Observation 2.9 (Rational acceptance probabilities). By fixing
an appropriate universal gate set (e.g., Hadamard and Toffoli
Aharonov 2003; Jordan et al.), we assume henceforth, without loss
of generality, that the acceptance probabilities of all quantum cir-
cuits V taking only classical (standard basis) states as input are ra-
tional numbers that can each be represented using at most poly(n)
bits.

We state our result below.

Theorem 2.10. For polynomially bounded functions r, q : N → N

and polynomial-time computable functions c, s : N → [0, 1] such
that for any n-bit input c(n) − s(n) ≥ 1/q(n), we have:

For i even: QCΣi(c, s) = QCΣi(1 − 2−r, 2−r),
QCΠi(c, s) = QCΠi(1, 2

−r),
for i odd: QCΣi(c, s) = QCΣi(1, 2

−r),
QCΠi(c, s) = QCΠi(1 − 2−r, 2−r).

Proof (Proof Sketch). To achieve perfect completeness (i.e., c =
1), the idea is to append to the register of the last proof (which
must be an existential quantifier for this to work) a classical register
containing the acceptance probability of the verification circuit C.
Specifically, for level i, for any input x and any set of i − 1 proofs
y1, . . . , yi−1, the final (existential) proof yi is augmented with k,
such that Pr[C(x, y1, . . . , yi) = 1] = k/2�(|x|) (that this probability
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is rational is due solely to the use of an appropriate universal gate
set, as done for Theorem 2.7, and is independent of how each yi for
i ∈ { 1, . . . , i − 1 } is quantified). Then, the proof of Theorem 2.7
in Jordan et al. proves the result. The error reduction follows from
standard arguments. �
Notice that by explicitly emulating the technique from Jordan et al.
we are using it as a white-box and not a black box reduction. Hence,
the issues discussed in Section 1 that arise from “fixing proofs”
does not apply here. We leave as an open problem the question of
obtaining perfect completeness for the remaining levels of the hier-
archy. This seems like a considerably harder problem, with current
proof techniques requiring the last quantifier to be existential.

Now, we move on to defining the fully quantum hierarchy.

Definition 2.11 (QΣi). A promise problem A = (Ayes, Ano) is
in QΣi(c, s) for polynomial-time computable functions c, s : N →
[0, 1] if there exists a polynomially bounded function p : N → N

and a polynomial-time uniform family of quantum circuits {Vn}n∈N

such that for every n-bit input x, Vn takes x as input and p(n)-
qubit density operators ρ1, . . . , ρi as quantum proofs and outputs
a single qubit, then:

◦ Completeness: If x ∈ Ayes, then ∃ρ1∀ρ2 . . . Qiρi such that Vn

accepts (x, ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρi) with probability ≥ c.

◦ Soundness: If x ∈ Ano, then ∀ρ1∃ρ2 . . . Qiρi such that Vn

accepts (x, ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρi) with probability ≤ s.

Here, Qi equals ∀ when m is even and equals ∃ otherwise, and Qi

is the complementary quantifier to Qi.

(2.12) Define QΣi =
⋃

c−s∈Ω(1/poly(n))

QΣi(c, s).

A few comments are in order: (1) In contrast to the standard
quantum circuit model, here we allow mixed states as inputs to
Vn; this can be formally modeled via the mixed state framework of
Aharonov et al. (1998). (2) Clearly, QΣ1 = QMA. (3) We recover
the definition of QMA(k) by ignoring the ρi proofs, for i even, in
the definition of QΣ2k.
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Definition 2.13 (QΠi). A promise problem A = (Ayes, Ano) is
in QΠi(c, s) for polynomial-time computable functions c, s : N →
[0, 1] if there exists a polynomially bounded function p : N → N

and a polynomial-time uniform family of quantum circuits {Vn}n∈N

such that for every n-bit input x, Vn takes x as input and p(n)-
qubit density operators ρ1, . . . , ρi as quantum proofs and outputs
a single qubit, then:

◦ Completeness: If x ∈ Ayes, then ∀ρ1∃ρ2 . . . Qiρi such that Vn

accepts (x, ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρi) with probability ≥ c.

◦ Soundness: If x ∈ Ano, then ∃ρ1∀ρ2 . . . Qiρi such that Vn

accepts (x, ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρi) with probability ≤ s.

Here, Qi equals ∃ when m is even and equals ∀ otherwise, and Qi

is the complementary quantifier to Qi.

(2.14) Define QΠi =
⋃

c−s∈Ω(1/poly(n))

QΠi(c, s).

The fully quantum polynomial hierarchy can now be defined as
follows.

Definition 2.15 (Quantum Polynomial Hierarchy).

QPH =
⋃

m∈N

QΣi =
⋃

m∈N

QΠi.

We recall the definition of PP as it is repeatedly used in various
results throughout this work.

Definition 2.16 (PP). A language L is in PP if there exists a
probabilistic polynomial-time Turing machine M such that x ∈
L ⇐⇒ Pr[M(x) = 1] > 1/2.

Note that the above defines PP as a class of decision problems. An-
other option, used for example in Watrous (2009a), is to define PP
as a class of promise problems. In fact, for PP, the two definitions
are equivalent. The forward direction Decision-PP ⊆ Promise-PP
is trivial, and the reverse containment follows because all inputs
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are polynomial in length, so all probabilities are at least inverse-
exponential10, so in the promise problem definition, we may reduce
any problem to one in which no inputs violate the promise, which
reduces to Decision-PP. Therefore, we will refer to PP both in
terms of decision and promise problems.

Relevant to arguments involving the equivalent oracular defini-
tion of classical PH, we generally adopt the conventional definition

that a complexity class with oracles denoted
(
AB

)C
allows both A

and B to make calls to C.
Finally, we note that for matrices A and B, ‖A‖F :=

√
Tr(AA†)

denotes the Frobenius norm and 〈A,B〉 := Tr
(
AB†) is the stan-

dard inner product of A and B.

3. A quantum-classical analogue of Toda’s
theorem

In this section, we show an analogue of Toda’s theorem to bound
the power of QCPH (Theorem 1.4, Section 3.2), and give evidence
that the bound of Theorem 1.4 is likely the best possible using our
specific proof approach (Section 3.3, Theorem 3.27).

3.1. Precise-BQP. Our proof of a “quantum-classical Toda’s
theorem” requires us to define the Precise-BQP class, which we do
now.

Definition 3.1 (Precise-BQP(c, s)). A promise problem A =
(Ayes, Ano) is contained in Precise-BQP(c, s) for polynomial-time
computable functions c, s : N → [0, 1] if there exists a polynomially
bounded function p : N → N such that ∀� ∈ N, c(�)−s(�) ≥ 2−p(�),
and a polynomial-time uniform family of quantum circuits {Vn}n∈N

whose input is x with the all-zeroes state as ancilla and output is
a single qubit. Furthermore, for an n-bit input x:

◦ Completeness: If x ∈ Ayes, then Vn accepts with probability
at least c(n).

10Specifically, in the proof verification definition of PP, the verifier’s Tur-
ing machine has at most exponentially many paths. Thus, the difference in
acceptance probabilities for a YES versus NO case when picking a random
path/proof is at least inverse exponential.
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◦ Soundness: If x ∈ Ano, then Vn accepts with probability at
most s(n).

(3.2) Define Precise-BQP =
⋃

c−s∈Ω(1/ exp(n))

Precise-BQP(c, s).

In contrast, BQP is defined such that the completeness and sound-
ness parameters are 2/3 and 1/3, respectively (alternatively, the
gap is at least an inverse polynomial in n). The following lemmas
help to characterize the complexity of Precise-BQP.

Lemma 3.3. For any polynomial p, if c − s ≥ 1/2p(n), then

(3.4) Precise-BQP(c, s) ⊆ PP

when c and s are computable in polynomial-time in the size of the
input, n.

Proof (Proof sketch). Recall that the complexity class PQP is
defined as PP except with a uniform quantum circuit family {Qn }
in place of a probabilistic Turing machine, i.e., for YES (NO) in-
stances Qn accepts with probability > 1/2 (≤ 1/2). Consider any
Precise-BQP(c, s) circuit Vn as in Definition 3.1. Then, by flipping
a coin with appropriately chosen bias γ ∈ Q and choosing to ei-
ther accept/reject with probability γ and run Qn with probability
1 − γ, one may map c, s to polynomial-time computable functions
c′, s′ such that

(3.5) c′ > 1/2, s′ ≤ 1/2, and c′ − s′ ∈ Θ(c − s)

(roughly, one loses about a factor of at most approximately 1/2 in
the gap). Thus,

(3.6) Precise-BQP(c, s) ⊆ PQP = PP,

where the last equality is shown in Watrous (2009a). �

As an aside, we remark the following.
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Corollary 3.7. Let P denote the set of all polynomials p : N →
N. Then,

⋃

p∈P

Precise-BQP

(
1

2
+

1

2p(n)
,
1

2

)

= PP.

To prove Corollary 3.7, we need the classical counterpart of Precise-
BQP, denoted Precise-BPP. Accordingly, we define Precise-BPP
analogous to Definition 3.1 except by replacing the quantum cir-
cuit family {Vn }n∈N

with a deterministic polynomial-time Turing
machine which takes in polynomially many bits of randomness.

Proof. The direction ⊆ is given by Lemma 3.3. For the reverse
containment, note that

(3.8) PP =
⋃

p∈P

Precise-BPP

(
1

2
+

1

2p(n)
,
1

2

)

,

since PP can be defined as the set of decision problems of the
form: Given as input a polynomial-time non-deterministic Turing
machine N and string x, do more than half of N(x)’s computa-
tional paths accept? The claim now follows, since for all c, s as in
Definition 3.1, clearly Precise-BPP(c, s) ⊆ Precise-BQP(c, s). �

Note that this proof does not go through as is (assuming PP �=
coNP) when we fix (say) completeness c = 1 and soundness s =
1 − 2−p(n), for some polynomial p. This is because

(3.9)
⋃

p∈P

Precise-BPP

(

1, 1 − 1

2p(n)

)

= coNP.

Similarly, setting s = 0 and c = 2−p(n) yields NP.
Finally, we define the promise problem QCIRCUIT(c, s), which

is trivially Precise-BQP(c, s)-complete when c − s is an inverse
exponential.

Definition 3.10 (QCIRCUIT(c, s)). Parameters c, s : N → [0, 1]
are polynomial-time computable functions such that c > s.
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◦ (Input) A classical description of quantum circuit Vn (acting
on n qubits, consisting of poly(n) 1- and 2-qubit gates), tak-
ing in a fixed string x and the all-zeroes state, and outputting
a single qubit.

◦ (Output) Decide if Pr[Vn(x) accepts] ≥ c or ≤ s, assuming
one of the two is the case.

3.2. Bounding the power of QCPH. We begin by briefly out-
lining a proof of Toda’s theorem (1991), that PH ⊆ P#P. The
proof can be split into two major parts: (1) show PH ⊆ BPP⊕P,
and (2) show BPP⊕P ⊆ P#P. The second step is accomplished
using a clever counting scheme combined with lifting. The first
step is more involved and can be broken down further: (a) use the
Valiant–Vazirani theorem (1986) to filter the proof yi so that at
most one proof is accepted (for Σ1, this gives a randomized reduc-
tion that NP ⊆R Unique-NP); (b) negate the proof yi−1, causing
the i-th and (i − 1)-st quantifiers to match and collapse; and (c)
recurse.

Classically, PH can be defined in terms of the existential (∃)
and universal (∀) operators (distinct from quantifiers), while it is
not clear that one can also define QCPH using these operators,
they nevertheless prove useful in bounding the power of QCPH.

Definition 3.11. (Existential and universal operators: Allender
& Wagner 1993; Wrathall 1976) For C a class of languages, ∃ · C is
defined as the set of languages L such that there is a polynomial p
and set A ∈ C such that for input x,

x ∈ L ⇔ [∃y (|y | ≤ p(|x|)) and 〈x, y〉 ∈ A] .

The set ∀ · C is defined similarly with ∃ replaced with ∀.

Remark 3.12 (Languages versus promise problems). Directly ex-
tending Definition 3.11 to promise problems, gives rise to subtle is-
sues. To demonstrate, recall that ∃ · P = NP. Then, let (L,A) for
L ∈ ∃·P = NP and A ∈ P be as in Definition 3.11, such that TA is a
polynomial-time Turing machine deciding A. If x ∈ L, there exists
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a bounded length witness y∗ such that TA accepts 〈x, y∗〉 and, for
all y′ �= y∗, TA by definition either accepts or rejects 〈x, y′〉. Now
consider instead ∃ · BPP, which a priori seems equal to Merlin-
Arthur (MA). Applying the same definition of ∃, we should obtain
a BPP machine TA such that if x ∈ L, then for all y′ �= y∗, TA

either accepts or rejects 〈x, y′〉. But this means, by definition of
BPP, that 〈x, y′〉 is either accepted or rejected with probability at
least 2/3, respectively. (Equivalently, for any fixed y, the machine
TA,y must be a BPP machine.) Unfortunately, the definition of
MA makes no such promise—any y′ �= y∗ can be accepted with
arbitrary probability when x is a YES instance. Indeed, whether
∃ · BPP = MA remains an open question (Fenner et al. 2003).

The following lemma is the main contribution of this section.
To set context, adapting the ideas from Toda’s proof of PH ⊆ PPP

to QCPH is problematic for at least two reasons:

1. The “Quantum Valiant–Vazirani (QVV)” theorem for QCMA
(and MA) (Aharonov et al. 2022) is not a many-one reduc-
tion, but a Turing reduction. Specifically, it produces a set
of quantum circuits {Qi } (with fixed input, accepting a cor-
responding proof), at least one of which is guaranteed to be
a YES instance of some Unique-QCMA promise problem P
if the input Γ to the reduction was a YES instance. Un-
fortunately, some of the Qi may violate the promise gap of
P , which implies that when such Qi are substituted into the
Unique-QCMA oracle O, O returns an arbitrary answer. This
does not pose a problem in Aharonov et al., as one-sided er-
ror suffices for that reduction—so long as O accepts at least
one Qi, one safely concludes Γ was a YES instance. In the
setting of Toda’s theorem, however, the use of alternating
quantifiers turns this one-sided error into two-sided error.
This renders the output of O useless, as one can no longer
determine whether Γ was a YES or NO instance.

2. Remark 3.12 says that it is not necessarily true that by fix-
ing a proof y to an MA (resp. QCMA) machine, the result-
ing machine is a BPP (resp. BQP) machine. This prevents
the direct extension of recursive arguments, say from Toda
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(1991), to this regime (so, even if we could overcome the pre-
vious and fix the first proof, it remains unclear how to repeat
the process).

To sidestep these issues, we adapt a high-level idea from Gharibian
& Yirka (2019): With the help of an appropriate oracle, one can
sometimes detect “invalid proofs” (i.e., proofs in promise gaps of
bounded error verifiers) and “remove” them. Indeed, we show that
using a PP oracle, one can eliminate the promise-gap of QCPH
altogether, thus overcoming the limitations given above. This is
accomplished by the following “Cleaning Lemma.” We also show
subsequently that it is highly unlikely for an oracle weaker than
PP to suffice for our particular proof technique (see Remark 3.16
and Section 3.3).

Lemma 3.13 (Cleaning Lemma). For all i ≥ 0,

QCΣi ⊆ ∃ · ∀ · · · · · Qi · PPrecise-BQP ⊆ ∃ · ∀ · · · · · Qi · PPP,

where Qi = ∃ (Qi = ∀) if i is odd (even). An analogous statement
holds for QCΠi.

Proof. Let C be a QCΣi verification circuit for a promise prob-
lem P ; we implicitly fix the input x corresponding to P into the
circuit. Let Cy∗

1 ,...,y∗
i

denote the quantum circuit obtained from C
by fixing values y∗

1, . . . , y
∗
i of the i classical proofs. In general, noth-

ing can be said about the acceptance probability py∗
1 ,...,y∗

i
of Cy∗

1 ,...,y∗
i
,

except that, by Observation 2.9, py∗
1 ,...,y∗

i
is a rational number repre-

sentable using p(n) bits for some fixed polynomial p. Let S denote
the set of all rational numbers in [0, 1] representable using p(n)
bits of precision and order the elements s1 < s2 < · · · . (Note
|S | ∈ Θ(2p(n)).) Then, for any pair a = sj+1, b = sj in S, Cy∗

1 ,...,y∗
i

is a valid QCIRCUIT(a, b) instance, in that Cy∗
1 ,...,y∗

i
accepts with

probability at least a or at most b for a > b. It follows that us-
ing binary search (by varying the values a, b ∈ S with a > b) in
conjunction with poly(n) calls to a

⋃
a>b QCIRCUIT(a, b) oracle,

we may exactly and deterministically compute py∗
1 ,...,y∗

i
. Moreover,

since for all such a and b, QCIRCUIT(a, b) ∈ Precise-BQP(a, b),
Lemma 3.3 implies the oracle calls can be simulated with a PP
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oracle. Denote the binary search subroutine using the PP oracle
as B.

Using C and B, we now construct an oracle Turing machine
C ′ as follows. Given any proofs y∗

1, . . . , y
∗
i as input (with x still

implicitly fixed into the circuits), C ′ uses B to compute py∗
1 ,...,y∗

i

for Cy∗
1 ,...,y∗

i
. If py∗

1 ,...,y∗
i

≥ c, C ′ accepts with certainty, and if
py∗

1 ,...,y∗
i

< s, C ′ rejects with certainty. Suppose that the circuits C
and C ′ return 1 when they accept and 0 when they reject. Two
observations: (1) Since by construction, for any fixed y∗

1, . . . , y
∗
i , B

makes only makes “valid” QCIRCUIT(a, b) queries (i.e., satisfying
the promise of QCIRCUIT(a, b)), C ′ is a PPP machine (cf. Ob-
servation 3.17). (2) Since C ′

y∗
1 ,...,y∗

i
accepts if Cy∗

1 ,...,y∗
i

accepts with

probability at least c, and since C ′
y∗
1 ,...,y∗

i
rejects if Cy∗

1 ,...,y∗
i

accepts
with probability at most s, we conclude that

∃y1∀y2 · · ·Qiyi : Prob[C(y1, . . . , yi) = 1] ≥ c(3.14)

⇔ ∃y1∀y2 · · ·Qiyi C ′(y1, . . . , yi) = 1

∀y1∃y2 · · ·Qiyi : Prob[C(y1, . . . , yi) = 1] ≤ s,(3.15)

⇔ ∀y1∃y2 · · ·Qiyi C ′(y1, . . . , yi) = 0.

Equations (3.14) and (3.15) imply that we can reduce P to a ∃ ·
∀ · · · · ·Qi ·PPP computation. The proof for QCΠi is analogous. �

Remark 3.16 (Possibility of a stronger containment). A key ques-
tion is whether one may replace the Precise-BQP oracle in the proof
of Lemma 3.13 with a weaker BQP oracle. For example, consider
the following alternative definition for oracle Turing machine C ′:
Given proofs y∗

1, . . . , y
∗
i , C ′ plugs Cy∗

1 ,...,y∗
i

into a BQP oracle and
returns the oracle’s answers. It is easy to see that in this case,
Equations (3.14) and (3.15) hold. However, C ′ is not necessarily
a PBQP machine, since for some settings of y∗

1, . . . , y
∗
i , its input to

the BQP oracle may violate the BQP promise, hence making the
output of C ′ ill-defined. To further illustrate this subtle point, con-
sider Observation 3.17. Moreover, in Section 3.3 we show that the
task the Precise-BQP oracle is used for in Lemma 3.13 is in fact
PP-complete; thus, it is highly unlikely that one can substitute a
weaker oracle into the proof above.
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Observation 3.17. (When a P machine querying a BQP oracle
is not a PBQP machine). The proof of the Cleaning Lemma uses a
PPrecise-BQP machine. Let us highlight a subtle reason why using a
weaker BQP oracle instead might be difficult (indeed, in Section 3.3
we show that the task we use the Precise-BQP oracle for is PP-
complete). Let M denote the trivially BQP-complete problem of
determining whether a given polynomial-size quantum circuit Q
and input x accepts with probability at least 2/3, or accepts with
probability at most 1/3, with the promise that one of the two is
the case. Now consider the following polynomial-time computation
Γ which uses an oracle for M : Γ sends a circuit taking |0〉 as
input and consisting of a Hadamard gate and measurement and
then Γ outputs the oracle’s answer. Γ is a P machine querying a
BQP oracle, but does it hold that Γ ∈ PBQP? No. The circuit
which Γ sends to the oracle violates the promise of BQP and of M
since applying Hadamard and measuring yields 0 or 1 with equal
probability. Therefore, the oracle can answer arbitrarily (Goldreich
2006), and since Γ outputs the same answer as the oracle, the
output of Γ is also arbitrary. Γ is not deterministic, so it is not in
PBQP.

Using standard techniques, we next show the following.

Lemma 3.18. For all i ≥ 0, the following holds true:

∃ · ∀ · · · · · Qi · PPP ⊆ ΣPP
i ,

∀ · ∃ · · · · · Qi · PPP ⊆ ΠPP
i ,

where Qi = ∃ (resp. Qi = ∀) when i is odd (resp. even) in the first
containment and vice versa for the second containment.

Proof. We show the first statement with containment in ΣPP
i ;

the second containment follows using an analogous proof. Let NPi

be defined recursively as NPi := NPNPi−1 with NP1 := NP. We
show that ∃ · ∀ · · · · · Qi · PPP ⊆ NPPP

i , and then use the (rela-
tivizing) fact that NPi = Σi using the oracular definition for Σi.
Recall that MAJSAT is a PP-complete language, where, given a
Boolean formula φ, one must decide if more than half of the possi-
ble assignments x satisfy φ(x) = 1. For brevity, let Ai denote the
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following (trivially) ∃ · ∀ · · · · · Qi · PPP-complete language (under
polynomial-time many-one reductions): given as input a string x
and a polynomial-time oracle Turing machine T with access to a
MAJSAT oracle, decide whether

∃y1∀y2 · · ·Qiyi such that T accepts 〈x, y1, . . . , yi〉, or

∀y1∃y2 · · ·Qiyi such that T rejects 〈x, y1, . . . , yi〉.

Let Bi denote the analogous trivially complete problem for ∀ · ∃ ·
· · · · Qi · PPP. We proceed by induction. The base case i = 0
holds trivially since Σ0 = P by definition. For the inductive step
i ≥ 1, let L be a language in ∃ · ∀ · · · · · Qi · PPP. Then there
exists a polynomial-time oracle Turing machine T with access to a
MAJSAT oracle such that x ∈ L if and only if ∃y1 such that

∀y2∃y3 · · ·Qiyi such that T accepts 〈x, y1, y2, · · · , yi〉.

By non-deterministically guessing y1, it follows that L ∈ NPBi−1 =
NPAi−1 . This equality holds since for all i ≥ 1, NPBi = NPAi , as
one can run the oracle for Ai instead of Bi and negate its answer.
Since Ai−1 is an oracle for ∃ · ∀ · · · · · Qi−1 · PPP, the induction
hypothesis now implies that

∃ · ∀ · · · · · Qi · PPP ⊆ NPNPi−1
PP

= NPPP
i = ΣPP

i . �

We can now show the main theorem of this section.

Theorem 1.4. QCPH ⊆ PPPPP

.

Proof. The claim follows by combining the Cleaning Lemma
(Lemma 3.13), Lemma 3.18, and Toda’s theorem (PH ⊆ PPP),
whose proof relativizes (see, e.g., page 4 of Fortnow 1994). �

3.3. Detecting non-empty promise gaps is PP-complete.
The technique behind the Cleaning Lemma (Lemma 3.13) can es-
sentially be viewed as using a PP oracle to determine whether a
given quantum circuit accepts some input with probability within
the promise gap (s, c), where c−s is an inverse polynomial. One can
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ask whether this rather powerful PP oracle can be replaced with
a weaker oracle (Remark 3.16)? We show that unless one deviates
from our specific proof approach, the answer is negative. Specif-
ically, we show that the problem of detecting non-empty promise
gaps is PP-complete, even if the gap is constant in size. Let us
begin by formalizing this problem.

Definition 3.19 (NON-EMPTY GAP(c, s)). Let Vn, with fixed
input x, be an input for QCIRCUIT(c, s). Then, output YES if
Prob[Vn(x) accepts ] ∈ (s, c), and NO otherwise.

We now show that NON-EMPTY GAP is PP-complete.

Lemma 3.20. For all c, s with the c − s gap at least an inverse
exponential in input size,

NON-EMPTY GAP(c, s) ∈ PP.

Proof. Our approach to show containment in PP is to give a
polynomial-time many-one reduction of NON-EMPTY GAP(c, s)
with c − s at least an inverse exponential to QCIRCUIT(P,Q)
with P −Q an inverse exponential. (Note that even if c−s ∈ Ω(1),
we will still have P − Q an inverse exponential.) Let Vn be an
input to NON-EMPTY GAP(c, s) (all circuits in this proof have
the same implicitly fixed input x). We construct an instance V ′′

n

of QCIRCUIT(P,Q) as follows.

The first step is to adjust the completeness and soundness pa-
rameters for NON-EMPTY GAP so that they “straddle” the mid-
point 1/2. Formally, map c > s to c′ > s′, respectively, so that
c′(n) − 1/2 = 1/2 − s′(n). For this, construct the following circuit
V ′

n, whose completeness and soundness parameters we denote by c′

and s′, respectively.

If c(n) + s(n) > 1, then with probability

(3.21) α :=
c(n) + s(n) − 1

c(n) + s(n)
,

reject, and with probability 1 − α, run Vn and output its answer.
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The case of c(n) + s(n) < 1 is analogous, except with

(3.22) α :=
1 − c(n) − s(n)

2 − c(n) − s(n)
.

Finally, if c(n) + s(n) = 1, set c′ = c and s′ = s. (Here, we use
Observation 2.9, which allows us to assume c, s ∈ Q with poly(n)
bits of precision.)

Next, map V ′
n to V ′′

n as follows: Given an input y ∈ { 0, 1 }m,
(1) run two copies of V ′

n in parallel on y, (2) negate the output of
the second copy of V ′

n via a Pauli X gate, (3) apply an AND gate
to both output qubits, and (4) measure in the standard basis. Let
py denote the probability that V ′

n accepts y. Then, V ′′
n accepts y

with probability py(1 − py).
Correctness. Intuitively, since the function f(x) = x(1 − x) is

maximized over x ∈ [0, 1] when x = 1/2, the acceptance probability
of V ′′

n is maximized when y falls into the promise gap of V ′
n, i.e.,

py ≈ 1/2. Formally, let c′(n) = 1/2 + γ and s′(n) = 1/2 − γ for
γ ∈ (0, 1/2], and express py = 1/2 + δ for bias δ ∈ [−1/2, 1/2].
Then, V ′′

n accepts y with probability

(3.23) py(1 − py) = 1/4 − δ2.

It follows that if py ≥ c′(n) or py ≤ s′(n), then V ′′
n accepts y with

probability Q ≤ 1/4 − γ2, and if s′(n) < py < c′(n), then V ′′
n

accepts y with probability P > 1/4 − γ2. By Observation 2.9, we
may assume

(3.24) P − Q ∈ Ω(1/ exp(n)),

thus yielding that a YES instance of NON-EMPTY GAP(c, s)
with at least inverse exponential c − s is mapped to a NO in-
stance of QCIRCUIT(P,Q) and vice versa with inverse exponen-
tial P − Q. The claim now follows by Lemma 3.3, which says
QCIRCUIT(P,Q) ∈ PP. �

Lemma 3.25. There exist c, s ∈ Θ(1) such that NON-EMPTY
GAP(c, s) is PP-hard.
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Proof. Let φ : { 0, 1 }n → { 0, 1 } be an instance of the PP-
complete problem MAJSAT (see proof of Lemma 3.18). We con-
struct an instance Vn with fixed input x of NON-EMPTY GAP(c, s)
with c− s ∈ Θ(1) as follows. Let V ′

n be a polynomial-size quantum
circuit which prepares the state

(3.26) 2−n/2
∑

x∈{ 0,1 }n
|x〉A |φ(x)〉B ∈ (C2)⊗n+1,

then measures register B in the standard basis, and accepts if and
only if it obtains result 1. If φ is a YES instance, then V ′

n accepts
with probability in range [1/2+1/2n, 1], and if φ is a NO instance,
V ′

n accepts with probability in range [0, 1/2]. Thus, setting c = 3/4,
s = 1/4, and constructing circuit Vn which with probability 1/2
rejects, and with probability 1/2 runs V ′

n and outputs its answer,
yields the claim. �
Lemmas 3.20 and 3.25 immediately yield the following.

Theorem 3.27. There exist c, s ∈ Θ(1) such that NON-EMPTY
GAP(c, s) is PP-complete.

4. Bounding the complexity of QΣ2 and QΣ3

In this section, we upper bound the complexity of the second
and third levels of our fully quantum hierarchy. For brevity, we
sometimes use shorthand QΣ2 and QΠ2 to refer to QΣ2(c, s) and
QΠ2(c, s), respectively, for completeness and soundness parame-
ters c and s, respectively. We begin by restating Theorem 1.6 as
follows.

Theorem 4.1. For any polynomial r and input size n, if c − s ≥
1/22r(n)

, then QΣ2(c, s) ⊆ EXP and
QΠ2(c, s) ⊆ EXP, when c and s are computable in exponential

time in n.

Note for classes with small completeness-soundness gaps such as
these, a gate set must be fixed11. However, this result is indepen-
dent of a fixed gate set.

11The Solovay–Kitaev algorithm (see, e.g., Dawson & Nielsen 2006) allows
one to convert between gate sets in time scaling polylogarithmically in 1/ε per
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Proof. It suffices to show the first containment for QΣ2, the
second containment holds by taking complements and noting that
coEXP = EXP.

Given a QΣ2 instance, let its two proofs be denoted ρ1 and ρ2,
with the former existentially quantified and the latter universally
quantified. Let α be the maximum acceptance probability of a
QΣ2(c, s) protocol, i.e., the special case of Equation (1.7) such
that

(4.2) α := max
ρ1

min
ρ2

〈C, ρ1 ⊗ ρ2〉

for accepting POVM operator C (the input x to the QΣ2 instance
is implicitly fixed into C). We wish to decide in exponential time
whether α ≥ c or α ≤ s. Since the promise gap satisfies c −
s ≥ 1/22r(n)

, it suffices to approximate α within additive error
(say) 1

4
(c − s). Hence, we show how to compute γ ∈ R such that

|γ − α| ≤ 1/(4 · 22r(n)
) in exponential time.

Beginning with Equation (4.2), note that we can write C as

(4.3) C = Tranc

[
(I ⊗ |0 · · · 0〉〈0 · · · 0|anc)V

†
n (|1〉〈1|out ⊗ I)

Vn(I ⊗ |0 · · · 0〉〈0 · · · 0|anc) ]

for verification circuit Vn. By definition, Vn is generated by a
polynomial-time Turing machine, which we assume specifies Vn

via a sequence of gates from a universal gate set G (e.g., {CNOT,
H, T}). Since we wish to proceed via numerical optimization tech-
niques, we begin by computing a numerical approximation C ′ to C.
Specifically, in exponential time, we can approximate each entry12

Footnote 11 continued
gate, where ε is the desired approximation precision per gate. Thus, the set-
ting of doubly exponentially small precision takes superpolynomial-overhead
to convert between gate sets, which is problematic for promise classes involv-
ing polynomial -time uniform circuit families (such as QΣ2 and QΠ2). For this
reason, in the small gap regime, one can “circumvent” the problem by fixing
a gate set when defining the class.

12This can be accomplished in exponential time as follows. Replace gate set
G with G′ by approximating each entry of each gate in G using 2s(n) bits of
precision, for some sufficiently large, fixed polynomial s. Define C ′ as C, except
each use of a gate U ∈ G is replaced with its approximation U ′ ∈ G′. Then, via
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of C using 2q(n) bits of precision, for some polynomial q. Therefore,
we have

|〈C − C ′, σ1 ⊗ σ2〉| ≤ ‖C − C ′‖F ‖σ1 ⊗ σ2‖F

≤ ‖C − C ′‖F = O
(
22p(n)−2q(n)

)(4.4)

for any density matrices σ1, σ2. (Recall p(n) is the size of each
proof, for some polynomial p.) Therefore, for sufficiently large
polynomial q, we have that

(4.5)
α′ := max

ρ1
min

ρ2
{〈C ′, ρ1 ⊗ ρ2〉 : Tr(ρ1) = Tr(ρ2) = 1, ρ1, ρ2 � 0}

satisfies |α − α′ | ≤ 1
8

· 2−2r(n) ≤ 1
8
(c − s).

We now use SDP duality (in a manner reminiscent of LP solu-
tions for the Chebyshev approximation problem, p. 293 of Boyd &
Vandenberghe 2004) to rephrase Equation (4.5) as an SDP. Sup-
pose we fix a feasible ρ1 and solve the inner optimization problem
in (4.5). Then:

α′(ρ1) := min
ρ2

{〈C ′, ρ1 ⊗ ρ2〉 : Tr(ρ2) = 1, ρ2 � 0}.

We can rewrite 〈C ′, ρ1 ⊗ ρ2〉 as 〈Tr1[(ρ1 ⊗ I)C ′], ρ2〉 where Tr1 is
the partial trace over the register that ρ1 acts on. As the par-
tial trace is cyclic over the target subsystem, Tr1[(ρ1 ⊗ I)C ′] =

Tr1[(ρ
1/2
1 ⊗ I)C ′(ρ1/2

1 ⊗ I)]. Because the approximation12 of C pre-
serves Hermiticity and the partial trace is completely positive and
preserves Hermiticity, this term is Hermitian and positive semidef-
inite. This implies that the best choice for ρ2 is a rank-1 projector
onto the eigenspace corresponding to the least eigenvalue. In other
words, α′(ρ1) = λmin(Tr1[(ρ1 ⊗ I)C ′]) where λmin(X) denotes the

Footnote 12 continued
the well-known bound ‖Um · · · U1 − Vm · · · V1‖∞ ≤ ∑m

i=1 ‖Ui − Vi‖∞ (for uni-
tary Ui, Vi), it follows that ‖C ′ − C‖∞ ∈ O(poly(n)/(22

s(n)
), since Vn contains

poly(n) gates. Here, ‖A‖∞ = max|ψ〉 ‖A |ψ〉‖2 for unit vectors |ψ〉 denotes the
spectral or operator norm. Finally, apply the fact that maxi,j |A(i, j)| ≤ ‖A‖∞
(p. 314 of Horn & Johnson 1990).
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least eigenvalue of the operator X. For fixed ρ1, this minimum
eigenvalue calculation can be rephrased via the dual optimization
program for α′(ρ1),

α′(ρ1) = max
t

{t : tI � Tr1[(ρ1 ⊗ I)C ′]}.

Re-introducing the maximization over ρ1, we hence obtain

α′ = max
ρ1,t

{t : tI � Tr1[(ρ1 ⊗ I)C ′], Tr(ρ1) = 1, ρ1 � 0},

which is a semidefinite program.

With an SDP in hand, we now apply the ellipsoid method to
obtain an estimate, γ, for α′. Note that not all SDPs can be solved
in polynomial time, as the runtime of the ellipsoid method depends
in part on two parameters, R and ε, where R is the radius of a
ball (with respect to the Euclidean norm) containing the feasible
region, and ε is the radius of a ball contained in the feasible region
(see Grötschel et al. 1993 for details). For this reason, we give an
equivalent SDP which allows us to bound R and ε as follows. First,
relax the constraint Tr(ρ) = 1 to Tr(ρ) ≤ 1. Second, replace t with
t1 − t2 where t1, t2 ≥ 0. From context, we know t is a probability,
and so we have the implicit constraint t ∈ [0, 1]. Therefore, we add
redundant constraints t1, t2 ≤ 100 without changing α′. Thus, we
have the following reformulation of α′.

(4.6) α′ = max
ρ1,t1,t2

{t1 − t2 : (t1 − t2)I � Tr1[(ρ1 ⊗ I)C ′],

Tr(ρ1) ≤ 1, ρ1 � 0, t1, t2 ∈ [0, 100]}.

We can now use the ellipsoid method to approximately solve
this SDP in time that is exponential in n. We follow a similar
analysis to Watrous (2009b) and find a γ such that |γ − α′ | ≤ ε in
time

(4.7) poly(log(R), log(1/ε), n′,m, J),

for parameters R, ε, n′, m, and J defined as:

◦ R: This is equal to the maximum of ‖ρ1 ⊕ t1 ⊕ t2‖F over all
feasible (ρ1, t1, t2). Since we have

‖ρ1 ⊕ t1 ⊕ t2‖F ≤ ‖ρ1 ⊕ t1 ⊕ t2‖1

= Tr(ρ1 ⊕ t1 ⊕ t2) = Tr(ρ1) + t1 + t2 ≤ 201,

for feasible (ρ1, t1, t2), we can set R = 201.
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◦ ε: This is the radius of a small ball contained in the feasible
region. Specifically, ε is defined so that there exists feasible
(ρ1, t1, t2) such that (ρ1, t1, t2) + (σ, τ1, τ2) is feasible for all
(σ, τ1, τ2) with ‖σ ⊕ τ1 ⊕ τ2‖F ≤ ε. Since we have

ε ≥ ‖σ⊕τ1⊕τ2‖F = ‖σ‖F +|τ1|+|τ2| ≥ max{‖σ‖F , |τ1|, |τ2|},

we will use the more convenient bound max{‖σ‖F , τ1, τ2} ≤ ε
for the analysis. We choose the interior point

ρ1 =
1

dim(ρ1)2
I, t1 = 10, t2 = 20,

and

ε =
1

8
· 2(−2r(n)) ≤ 1

8
(c − s).

Note that this has the sufficiently small accuracy we require.

We now prove that (ρ1, t1, t2)+(σ, τ1, τ2) is feasible so long as
max{‖σ‖F , τ1, τ2} ≤ ε. One can check that for these values,
we have

1. ρ1 + σ � ρ1 − ‖σ‖∞I � ρ1 − εI � 0, (where we used
‖σ‖F ≤ ε implies ‖σ‖∞ ≤ ε),

2. Tr(ρ1 + σ) = Tr(ρ1) + Tr(σ) ≤ Tr(ρ1) + ‖σ‖F ‖I‖F ≤
1

dim(ρ1)
+ ε

√
dim(ρ1) ≤ 1 , (using the Cauchy-Schwarz

inequality),

3. t1 + τ1 ∈ [0, 100] and t2 + τ2 ∈ [0, 100],

4. ((t1 + τ1) − (t2 + τ2))I ≺ 0 � Tr1[((ρ1 + σ) ⊗ I)C ′],
(since (t1 + τ1) − (t2 + τ2) < 0 and ρ1 + σ � 0 as shown
above).

◦ n′: The dimension of ρ1 ⊕ t1 ⊕ t2, which is equal to the sum
of the dimensions, i.e., O(2p(n)).

◦ m: The dimension of the operators appearing in the con-
straints. Note, from Equation (4.6), that constraint (t1 −
t2)I � Tr1[(ρ1 ⊗ I)C] involves operators acting on a space
of dimension O(2p(n)). Moreover, there are only 3 other
inequality constraints: Tr(ρ) ≤ 1 and t1, t2 ≤ 100. Thus,
m = O(2p(n)).
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◦ J : The maximum bit-length of the entries in C ′, which is
2q(n), by definition.

We conclude that the EXP protocol approximates α′ via γ,
which is correct up to an additive error of 1

8
(c − s). Finally, if

γ ≥ (c + s)/2, we output YES (i.e., x ∈ Ayes). Otherwise, we
output NO (i.e., x ∈ Ano). �

Using the power of non-determinism, we can also bound the
complexity of QΣ3 and QΠ3.

Theorem 4.8. For any polynomial r and input size n, if c − s ≥
1/r(n), then

QMA(2) ⊆ QΣ3 ⊆ NEXP and coQMA(2) ⊆ QΠ3 ⊆ coNEXP,

where all classes have completeness and soundness c and s, re-
spectively. Moreover, if we allow smaller gaps (in principle, gaps
which are at most inverse singly exponential in n suffice), such as

c − s ≥ 1/22r(n)
, then

QMA(2)(c, s) = QΣ3(c, s) = NEXP

and coQMA(2) = QΠ3(c, s) = coNEXP,

where we assume c and s are computable in exponential time in n.

Note for classes with doubly exponentially small completeness-
soundness gaps, a gate set must be fixed. However, this result
is independent of the choice of a fixed gate set.

Proof. Again, we prove the statements involving QΣ3 and the
analogous statements involving QΠ3 follow by taking complements.

Consider the maximum acceptance probability of a QΣ3 proto-
col,

β := max
ρ1

min
ρ2

max
ρ3

{〈C, ρ1 ⊗ ρ2 ⊗ ρ3〉 :

Tr(ρ1) = Tr(ρ2) = Tr(ρ3) = 1, ρ1, ρ2, ρ3 � 0}
where C is the POVM element corresponding to the verifier ac-
cepting (again, the input x to the QΣ3 protocol is implicitly fixed
into C).
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As in the proof of Theorem 4.1, define C ′ to be equal to C
where each entry is correct up to 2q(n) bits of precision. Consider
now the optimization problem

β′ := max
ρ1

min
ρ2

max
ρ3

{〈C ′, ρ1 ⊗ ρ2 ⊗ ρ3〉 :

Tr(ρ1) = Tr(ρ2) = Tr(ρ3) = 1, ρ1, ρ2, ρ3 � 0}

and note that |β′ − β| = O(23p(n)−2q(n)
) by an argument similar to

Equation (4.4).
Now, suppose we non-deterministically guess a value for the

optimal ρ�
1 (which, recall, exists by compactness) by a matrix, each

of whose entries is specified up to 2t(n) bits of precision for some
polynomial t. Call this approximation ρ′

1. We now consider the
optimization problem

β′′ := min
ρ2

max
ρ3

{〈C ′, ρ′
1 ⊗ ρ2 ⊗ ρ3〉 : Tr(ρ2) = Tr(ρ3) = 1, ρ2, ρ3 � 0}

= min
ρ2

max
ρ3

{〈C ′′, ρ2 ⊗ ρ3〉 : Tr(ρ2) = Tr(ρ3) = 1, ρ2, ρ3 � 0},

where C ′′ := Tr1[(ρ
′
1 ⊗ I ⊗ I)C ′] is the matrix which hardcodes ρ′

1

into C ′. We now bound |β′ − β′′|. For any density operators σ2

and σ3, we have

|〈C ′, (ρ�
1 − ρ′

1) ⊗ σ2 ⊗ σ3〉| ≤ ‖C ′‖F ‖ρ�
1 − ρ′

1‖F ,

‖C ′‖F ≤ ‖C ′ − C‖F + ‖C‖F ≤ 2‖I‖F = O(2
3p(n)

2 ),

‖ρ�
1 − ρ′

1‖F = O(2p(n)−2t(n)

).

Thus, we have |β′ − β′′| = O(2
5p(n)

2
−2t(n)

) and therefore we can
choose q and t such that

|β − β′′| ≤ |β − β′| + |β′ − β′′| ≤ 1

8
· 2−2r(n) ≤ 1

8
(c − s)

as before.
Since C ′′ still has exponential bit-length, is positive semidefi-

nite, and can be computed in non-deterministic exponential time,
we can repeat the arguments from Theorem 4.1 to find γ in expo-
nential time such that |β′′ − γ| ≤ 1

8
(c − s). Thus, if γ ≥ 1

2
(c + s)
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we output YES (i.e., x ∈ Ayes). Otherwise, we output NO (i.e.,
x ∈ Ano). This yields

(4.9) QΣ3 ⊆ NEXP,

even when QΣ3 has small gap. The rest of the theorem holds
by a result of Pereszlényi (2012), who proved that the equality
QMA(2)(c, s) = NEXP holds when c − s ≥ 1/22r for polynomial
r. Combining this with the fact that QMA(2) ⊆ QΣ3 and Equa-
tion (4.9) finishes the proof. �

5. A Karp–Lipton-type theorem

The Karp–Lipton (1980) theorem showed that if NP ⊆ P/poly (i.e.,
if NP can be solved by polynomial-size non-uniform circuits), then
Σ2 = Π2 (which in turn collapses PH to its second level). Then,
building on the conjecture that the polynomial hierarchy is infinite,
this result implies that NP �⊂ P/poly (a stronger claim than P �= NP
as P ⊆ P/poly). Some attempts to separate NP from P use this as a
basis to try and prove the stronger claim instead. For instance, this
has led to the approach of proving super-polynomial circuit lower
bounds for circuits of NP-complete problems. Here, we show that
the proof technique used by Karp and Lipton carries over directly
to the quantum setting, provided one uses the stronger hypothesis

(5.1) Precise-QCMA ⊆ BQP/mpoly

(as opposed to QCMA ⊆ BQP/mpoly). Whether this causes QCPH
to collapse to its second level, however, remains open (see Re-
mark 5.10 below). We begin by formally defining BQP/mpoly and
Precise-QCMA.

Definition 5.2 (BQP/mpoly). A promise problem A=(Ayes, Ano)
is in BQP/mpoly if there exists a polynomial-time uniform family of
quantum circuits {Cn}n∈N and a collection of binary advice strings
{an}n∈N with |an| = poly(n), such that for all n and all strings
x where |x| = n, Pr[Cn(|x〉 , |an〉) = 1] ≥ 2/3 if x ∈ Ayes and
Pr[Cn(|x〉 , |an〉) = 1] ≤ 1/3 if x ∈ Ano.
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Equivalently, BQP/mpoly is the set of promise problems solvable by
a non-uniform family of polynomial-size bounded error quantum
circuits. It is used as a quantum analogue for P/poly in this sce-
nario.13 Here, we remark on the use of mpoly instead of poly in
Definition 5.2. Note that BQP/poly accepts Karp–Lipton style ad-
vice, i.e., it is a BQP circuit that accepts a polynomial-size advice
string to provide some answer with probability at least 2/3 even if
the “advice is bad.” On the other hand, BQP/mpoly accepts Mer-
lin style advice, i.e., it is a BQP circuit accepting polynomial-size
classical advice such that the output is correct with probability at
least 2/3 if the “advice is good.” Note BQP/poly versus BQP/mpoly

is analogous to the “∃ · BPP versus MA” phenomenon. Moreover,
as we are concerned with variations of QCMA, and not ∃ · BQP,
BQP/mpoly is the right candidate for us.

Definition 5.3 (Precise-QCMA). A promise problem A = (Ayes,
Ano) is said to be in Precise-QCMA(c, s) for polynomial-time com-
putable functions c, s : N → [0, 1] if there exists polynomially
bounded functions p, q : N → N such that ∀� ∈ N, c(�) − s(�) ≥
2−q(�), and there exists a polynomial-time uniform family of quan-
tum circuits {Vn}n∈N that takes input x and a classical proof y ∈
{ 0, 1 }p(n) and outputs a single qubit. Moreover, for an n-bit input
x:

◦ Completeness: If x ∈ Ayes, then ∃ y such that Vn(x, y) accepts
with probability at least c(n).

◦ Soundness: If x ∈ Ano, then ∀ y, Vn(x, y) accepts with prob-
ability at most s(n).

Define Precise-QCMA =
⋃

c−s∈Ω(1/ exp(n))

Precise-QCMA(c, s).

13In contrast to P/poly, we use polynomial-size uniform quantum circuit fam-
ilies accepting advice in Definition 5.2 instead of polynomial-time bounded er-
ror quantum Turing machines. The two models are computationally equivalent
(Molina & Watrous 2019).
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Observation 5.4. The proof of Theorem 2.7 and footnote 2 in
Jordan et al. (2012) show that by choosing an appropriate universal
gate set (e.g., Hadamard, Toffoli, NOT), one has that

(5.5) Precise-QCMA = Precise-QCMA(1, 1 − 1/ exp(n)).

As an aside, note QCMA is defined with c − s ∈ Ω(1/poly(n)).
Recall from the discussion in Section 1.1 that the main obstacle to
the recursive arguments that work well for NP in Karp & Lipton
(1980) is the “promise problem” nature of QCΠ2 and QCMA. How-
ever, exploiting the perfect completeness of Precise-QCMA and the
fact that ∀s ≤ s′ < c, Precise-QCMA(c, s) ⊆ Precise-QCMA(c, s′),
we “recover” the notion of a decision problem in a rigorous sense
by working with Precise-QCMA as demonstrated below.

Claim 5.6. For every promise problem A = (Ayes, Ano) ∈ Precise-
QCMA(c, s) with verifier V , where an input x is hardcoded into
V , there exists a verifier V ′ (a polynomial-time uniform quantum
circuit family), a polynomial q and a language A′ = (Ayes, { 0, 1 }∗\
Ayes) such that A′ ∈ Precise-QCMA(1, 1 − 2−q(n)) with verifier V ′.
Moreover, for all proofs y, V ′ accepts y with probability either 1
or at most 1 − 2−q(n).

Proof. By Observation 5.4, we may assume

Precise-QCMA(c, s) = Precise-QCMA(1, 1 − 2−p(n))

for some polynomial p. Let A=(Ayes, Ano) ∈ Precise-QCMA(1, 1−
2−p(n)) be a promise problem with verifier V , where an input x has
already been hardcoded into the verifier. The concern is that for
x ∈ Ayes, there may exist a proof y accepted by V with probability
in (1−2−p(n), 1). By Observation 2.9, we may we modify V to create
V ′ such that the acceptance probabilities of V ′ are integer multiples
of 2−g(n) for some polynomial g. Since p and g are polynomials,
there exists n0 ≥ 0 such that ∀n ≥ n0, either p(n) ≥ g(n) or vice
versa. Thus, setting q equal to p in the former case or equal to g
in the latter case ensures that for sufficiently large n, no proofs are
accepted by V ′ with probability in (1 − 2−q(n), 1). This yields the
second claim of the observation. The first claim also follows, since
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all inputs in Ayes have proofs which accept with probability 1, and
if no proofs are accepted in the promise gap, then certainly the
optimal proofs for inputs in { 0, 1 }∗ \ Ayes are not accepted with
probability in the gap. �

Note that the same process fails to map a promise problem
P ∈ QCMA(1, s) to some corresponding decision problem P ′ ∈
QCMA(1, s′) where s < s′. As shown above, s′ could very well
be exponentially close to 1, which would violate the requirement
for QCMA that the promise gap should be an inverse polynomial
function in the input size.

Building on this ”decision problem” flavor of Precise-QCMA,
we first show the following.

Lemma 5.7. Suppose Precise-QCMA ⊆ BQP/mpoly. Then, for ev-
ery promise problem A = (Ayes, Ano) in Precise-QCMA and ev-
ery n-bit input x, there exists a polynomially bounded function
p : N → N and a bounded error polynomial-time non-uniform
quantum circuit family {Cn }n∈N

such that:

◦ if x ∈ Ayes, then Cn(x) outputs valid proof y ∈ { 0, 1 }p(n)

with probability exponentially close to 1 such that (x, y) is
accepted by the corresponding Precise-QCMA verifier with
probability 1;

◦ if x ∈ Ano, then Cn(x) outputs a symbol ⊥ with proba-
bility exponentially close to 1 signifying that there is no
y ∈ { 0, 1 }p(n), such that (x, y) is accepted by the corre-
sponding Precise-QCMA verifier with probability 1.

Proof. To begin, recall from Claim 5.6 that we may assume
that a given promise problem A in Precise-QCMA has (a) com-
pleteness/soundness parameters (1, 1 − 2−q(n)) for a polynomial
q and (b) a verifier Vn which on an n-bit input x accepts no
proofs with probability in the promise gap. Since Precise-QCMA ⊆
BQP/mpoly, by assumption, there exists a non-uniform polynomial-
size quantum circuit family {C ′

n }n∈N
that receives x as input such

that for any x ∈ Ayes, C ′
n accepts with probability at least 2/3 and

rejects with probability 2/3 otherwise. By using standard parallel
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repetition, we may assume without loss of generality that C ′
n(x)

accepts or rejects the corresponding cases with probability at least
1 − 2−p(n) for some polynomial p. Now, we would like to construct
a BQP/mpoly circuit Cn that uses the input x and a description of
C ′

n as polynomial-size advice and outputs a valid proof y such that
Vn accepts (x, y) with probability 1.

The construction of {Cn } is now as follows. Cn first runs C ′
n

using x to check if x ∈ Ayes; if not, it rejects and outputs ⊥. To find
a proof y, we now use standard self-reducibility ideas from SAT,
coupled with the crucial Claim 5.6. Specifically, fix y1 = 0 (i.e., the
first bit of y) to obtain a new circuit C ′

n,1, run C ′
n,1 on (x, y1) and

record its answer z1 ∈ { 0, 1 }. Since no proofs are accepted in the
gap as per Claim 5.6, C ′

n,1 is a valid Precise-QCMA verifier (i.e.,
satisfying the promise of the completeness/soundness parameters).
Thus, with high probability, if z1 = 1 there is an accepting proof
for x whose first bit is 0 and if z1 = 0, there is a proof with the
first bit set to 1. Hence, we can fix y1’s accordingly. Iterating this
process successively for all remaining bits of y yields the claim. �

We next give a quantum-classical analogue of the Karp–Lipton
theorem.

Theorem 1.11 (A Quantum-Classical Karp–Lipton Theorem).

If Precise-QCMA ⊆ BQP/mpoly then QCΠ2 = QCΣ2.

Proof. We essentially follow the proof of the original Karp–
Lipton theorem, coupled with careful use of Observation 2.9. To
show QCΠ2 = QCΣ2, it suffices to show that QCΠ2 ⊆ QCΣ2.
To see this, consider promise problem A ∈ QCΣ2. Now, Ā (the
complement of A) is in QCΠ2 by definition. However, if QCΠ2 ⊆
QCΣ2, then Ā ∈ QCΣ2, which in turn implies by definition that
A ∈ QCΠ2, as desired.

To show QCΠ2 ⊆ QCΣ2, let A = (Ayes, Ano) be a QCΠ2 prob-
lem. As QCΠ2 has perfect completeness from Result 2.10, there
exist polynomials p, r and a polynomial-time uniform family of
quantum circuits {Vi}i∈N that take as input a string x ∈ {0, 1}n

for some n ∈ N, two classical proofs u, v ∈ {0, 1}p(n), and outputs
a single qubit such that:
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x ∈ Ayes ⇒ ∀u ∃v Pr[Vn(x, u, v) = 1] = 1,(5.8)

x ∈ Ano ⇒ ∃u ∀v Pr[Vn(x, u, v) = 1] ≤ 1

2r(n)
.(5.9)

Let us now highlight the difficulty in proving the claim for
QCMA instead of Precise-QCMA. Specifically, if we fix the first
proof u, what we would ideally require is that the resulting existen-
tially quantified computation over v, denoted Mu

14, is in QCMA.
Indeed, if x ∈ Ayes, then for any fixed u, there exists a v caus-
ing Mu(x, v) to accept with certainty (henceforth x is implicitly
fixed into Mu). The problem arises when x ∈ Ano, in which case,
we require that for all v, Mu accepts with probability at most s
for some soundness parameter s inverse polynomially gapped away
from 1. Unfortunately, the definition of QCΠ2 only ensures this
holds for some u, and not necessarily all u. To circumvent this,
we use Observation 2.9, which implies we may assume Mu’s accep-
tance probabilities are given by rational numbers with poly(n) bits
of precision (assuming an appropriate universal gate set is used).
It follows that if Mu does not accept some v with probability 1,
then it must reject v with probability at least 1 − 2−q(n) for some
efficiently computable polynomial q. Thus, by definition Mu is a
Precise-QCMA(1, 1 − 2−q(n)) computation, to which we may now
apply our hypothesis that Precise-QCMA ⊆ BQP/mpoly. (Note:
There is a subtle point here—the precise choice of q depends on
the length of circuit Mu, which in turn depends on the Hamming
weight of u, since we can simulate “fixing” u by adding appropriate
Pauli X gates to our circuit. Nevertheless, it is trivial to choose
a polynomial q which provides sufficient precision in our rational
approximation in order to accommodate the fixing of proofs u of
any Hamming weight.)

Since for any fixed u, Mu denotes a Precise-QCMA computa-
tion, our assumption says that there exists a non-uniform family
of polynomial-size bounded-error quantum circuits {Q′

n }n∈N
(here,

the BQP/mpoly advice strings are implicitly fixed into the circuits)
that receive (x, u) and a description of Mu as input and outputs a

14Notice that Mu is the remnant of the verifier circuit obtained from Vn

when the first proof register is loaded with u. In a slight abuse of notation,
Mu will be referred to both as a computation and as a circuit.
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bit such that:

◦ if there exists a proof v such that Mu accepts (x, v) with
probability 1, then Q′

n accepts (x, u,Mu) with probability at
least 2/3, and

◦ if for all proofs v, Mu accepts (x, v) with probability at most
1 − 2−q(n), then Q′

n accepts (x, u,Mu) with probability at
most 1/3.

Crucially, the set {Q′
n } is non-uniform, and thus Q′

n depends only
on n, not the choice of x or u.

Continuing, from Lemma 5.7, we now conclude there exists a
bounded-error polynomial-time non-uniform quantum circuit fam-
ily {Qn }n∈N

which, whenever x ∈ Ayes, outputs a proof v which Mu

accepts with certainty. For clarity, note that Qn receives (x, u) and

a description of Mu as input and outputs a string v ∈ { 0, 1 }p(n).
Suppose Qn outputs the correct answer with probability at least
1 − 2−s(n) for some polynomial s, as per Lemma 5.7. Using the
existence and non-uniformity of {Qn }, as done in the proof of the
classical Karp–Lipton theorem, we claim we may now swap the
order of the quantifiers and write:

◦ If x ∈ Ayes, then ∃Qn ∀u Pr[Vn(x, u,Qn(x, u,Mu)) = 1] ≥
1 − 2−s(n), and

◦ if x ∈ Ano, then ∀Qn ∃u Pr[Vn(x, u,Qn(x, u,Mu)) = 1] ≤
1

2r(n) .

This would imply the desired claim that QCΠ2 ⊆ QCΣ2.
To see that we may indeed swap quantifiers in this fashion,

assume first that x ∈ Ayes. Then, choosing the non-uniform circuit
family from Lemma 5.7 yields that for any fixed x and u, with
probability at least 1 − 2−s(n), Qn outputs a proof v such that Cn

accepts (x, u, v) with probability 1. Conversely, if x ∈ Ano, since
for an appropriate choice of u, there are no proofs v such that Cn

accepts (x, u, v) with probability more than 2−r(n). Then, clearly
no choice of Qn is able to generate a proof Qn(x, u,Mu) such that
Cn accepts (x, u,Qn(x, u,Mu)) with probability more than 2−r(n).

�
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Remark 5.10 (Collapse of QCPH?). An appeal of the classical
Karp–Lipton theorem is that it implies that if NP ⊆ P/poly, then
PH collapses to its second level; this is because if Π2 = Σ2, then
PH collapses to Σ2. Does an analogous statement hold for QCPH
as a result of Theorem 1.11? Unfortunately, the answer is not
clear. The problem is similar to that outlined in Remark 3.12.
Namely, classically Π2 = Σ2 collapses PH since for any Π3 decision
problem, fixing the first (universally) quantified proof yields a Σ2

computation. But this can be replaced with a Π2 computation by
assumption, yielding a computation with quantifiers ∀∀∃, which
collapses to ∀∃, i.e., Π3 ⊆ Π2. In contrast, for (say) QCΠ3, similar
to the phenomenon in Remark 3.12, fixing the first (universally)
quantified proof does not necessarily yield a QCΣ2 computation.
Thus, a recursive application of the assumption QCΣ2 = QCΠ2

cannot straightforwardly be applied.

Since Precise-QCMA plays an important role in Theorem 1.11,
we close with an equivalent characterization of Precise-QCMA.15

Lemma 5.11. Precise-QCMA = NPPP.

Proof. Let V be a Precise-QCMA verifier. Using Claim 5.6,
we may assume that for any proof y, V either accepts y with prob-
ability 1 or rejects with probability at most 1 − 2−q(n). Thus, for
any fixed y, the resulting computation Vy is a Precise-BQP = PP
computation. This implies Precise-QCMA ⊆ ∃ · PP (see also Re-
mark 3.12). The fact ∃ · PP = NPPP (Torán 1991) completes the
proof of the forward direction.

To show the reverse direction, observe that Precise-QCMA ⊇
∃·PP since the Precise-QCMA verifier can guess the classical proof
and simulate the classical verification circuit with exponential pre-
cision. The previous reasoning then works in the reverse direction.

�
15Thank you to an anonymous reviewer for suggesting to improve this from

an upper bound to an equality. This potential improvement was also observed
by Deshpande et al. (2022), which referenced an earlier version of this work to
claim Precise-QCMA = NPPP.
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