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Abstract.
We study the problem of constructing explicit families of matrices which
cannot be expressed as a product of a few sparse matrices. In addition to
being a natural mathematical question on its own, this problem appears
in various incarnations in computer science; the most significant being in
the context of lower bounds for algebraic circuits which compute linear
transformations, matrix rigidity and data structure lower bounds.
We first show, for every constant d, a deterministic construction in
time exp(n1−Ω(1/d)) of a family {Mn} of n × n matrices which cannot
be expressed as a product Mn = A1 · · ·Ad where the total sparsity of
A1, . . . , Ad is less than n1+1/(2d). In other words, any depth-d linear
circuit computing the linear transformation Mn · x has size at least
n1+Ω(1/d). The prior best lower bounds for this problem were barely
super-linear, and were obtained by a long line of research based on
the study of super-concentrators. We improve these lower bounds at
the cost of a blow up in the time required to construct these matrices.
Previously, however, such constructions were not known even in time
2O(n) with the aid of an NP oracle.
We then outline an approach for proving improved lower bounds
through a certain derandomization problem, and use this approach to
prove asymptotically optimal quadratic lower bounds for natural special
cases, which generalize many of the common matrix decompositions.
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1. Introduction

This work concerns the following (informally stated) very natural
problem:

Open Question 1.1. Exhibit an explicit matrix A ∈ F
n×n, such

that A cannot be written as A = BC, where B ∈ F
n×m and C ∈

F
m×n are sparse matrices.

Before bothering ourselves with the precise meaning of the
words “explicit” and “sparse” in the above problem, we discuss
the various contexts in which this problem presents itself.

1.1. Linear circuits and matrix factorization. Algebraic
complexity theory studies the complexity of computing polyno-
mials using arithmetic operations: addition, subtraction, multipli-
cation and division. An algebraic circuit over a field F is an acyclic
directed graph whose vertices of in-degree 0, also called inputs, are
labeled by indetermeinates {x1, . . . , xn} or field elements from F,
and every internal node is labeled with an arithmetic operation.
The circuit computes rational functions in the natural way, and
the polynomials (or rational functions) computed by the circuit
are those computed by its vertices of out-degree 0, called the out-
puts. This framework is general enough to encompass virtually all
the known algorithms for algebraic computational problems. The
size of the circuit is defined to be the number of edges in it. For
a more detailed background on algebraic circuits, see Shpilka &
Yehudayoff (2010).

Perhaps the simplest non-trivial class of polynomials is the class
of linear (or affine) functions. Accordingly, such polynomials can
be computed by a very simple class of circuits called linear circuits:
these are algebraic circuits which are only allowed to use addition
and multiplication by a scalar. It is often convenient to consider
graphs with labels on the edges as well: every internal node is an
addition gate, and for c ∈ F, an edged labeled c from a vertex v
to a vertex u denotes that the output of v is multiplied by c when
feeding into u. Thus, every node computes a linear combination of
its inputs.
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It is not hard to show that any arithmetic circuit for computing
a set of linear functions can be converted into a linear circuit with
only a constant blow-up in size (see (Bürgisser et al. 1997), Theo-
rem 13.1 for a proof of this statement, and note that eliminating
division gates requires that the field F in question is large enough,
an assumption we will make in this paper when needed).

Clearly, every set of n linear functions on n variables (repre-
sented by a matrix A ∈ F

n×n) can be computed by a linear circuit
of size O(n2). Using counting arguments (over finite fields) or di-
mension arguments (over infinite fields), it can be shown that for
a random or generic matrix this upper bound is fairly tight. Thus,
a central open problem in algebraic complexity theory is to prove
any super-linear lower bound for an explicit family of matrices
{An} where An ∈ F

n×n. The standard notion of explicitness in
complexity theory is that there is a deterministic algorithm that
outputs the matrix An in poly(n) time, although more or less strin-
gent definitions can be considered as well.

Despite decades of research and multiple partial results, such
lower bounds are not known.1 In order to gain insight into the gen-
eral model of computation, research has focused on limited models
of linear circuits, such as monotone circuits, circuits with bounded
coefficients, or bounded depth circuits. We defer a more thorough
discussion on previous work to Section 1.3, and proceed to describe
bounded depth circuits, which are the focus of this work.

The depth of a circuit is the length (in edges) of a longest path
from an input to an output. Constant depth circuits appear to
be a particularly weak model of computation. However, even this
model is surprisingly powerful (see also Section 1.2).

The “easiest” non-trivial model is the model of depth-2 linear
circuits. A depth 2 linear circuit computing a linear transformation
A ∈ F

n×n consists of a bottom layer of n input gates, a middle layer
of m gates, and a top layer of n output gates. We assume, without
loss of generality, that the circuit is layered, in the sense that every
edge goes either from the bottom to the middle layer, or from the

1We remark that super-linear lower bounds for general arithmetic circuits
are known, but for polynomials of high degree (Baur & Strassen 1983; Strassen
1973).
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middle to the top layer. Indeed, every edge going directly from the
bottom to the top layer can be replaced by a path of length 2; this
transformation increases the size of the circuit by at most a factor
of 2.

By letting C ∈ F
m×n be the adjacency matrix of the (labeled)

subgraph between the bottom and the middle layer, and B ∈ F
n×m

be the adjacency matrix as the subgraph between the middle and
the top layer, it is clear that A = BC. Thus, a decomposition
of A into the product of two sparse matrices is equivalent to say-
ing that A has a small depth-2 linear circuit. This argument can
be generalized, in exactly the same way, to depth-d circuits and
decompositions of the form A = A1 · · · Ad, for constant d.

Weak super-linear lower bounds are known for constant depth
linear circuits. They are based on the following observation, due
to Valiant (1975): for subsets S, T ⊆ [n] of size k, let AS,T denote
the submatrix of A indexed by rows in S and columns in T . If AS,T

has rank k, the minimal vertex cut in the subcircuit restricted to
input from S and outputs from T 2 is of size at least k: indeed, a
smaller cut corresponds to a factorization AS,T = PQ for P ∈ F

k×r

and Q ∈ F
r×k for r < k, contradicting the rank assumption. Using

Menger’s theorem, it is now possible to deduce that if A is a matrix
such that for every S, T as above the matrix AS,T is non-singular,
then the circuit computing A contains, for every subcircuit which
corresponds to such S, T , at least k vertex disjoint paths from S
to T . Such graphs were named superconcentrators by Valiant, and
their minimal size was extensively studied (Alon & Pudlák 1994;
Dolev et al. 1983; Pippenger 1977, 1982; Pudlák 1994; Radhakr-
ishnan & Ta-Shma 2000; Valiant 1975).

Superconcentrators of logarithmic depth and linear size do ex-
ist, so while this approach cannot show lower bounds for circuits
of logarithmic depth, it is possible to show that for constant d,
any depth-d superconcentrator has size at least n · λd(n), where
λd(n) is a function that unfortunately grows very slowly with n.

2Such a subcircuit is obtained from the original circuit by erasing all input
gates not in S and output gates not in T , and their outgoing and incoming
edges, and then recursively removing all inner gates whose in-degree or out-
degree is 0, along with all edges touching them. The resulting subcircuit
computes the transformation given by AS,T .
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For example, λ2(n) = Θ(log2 n/ log log n), λ3(n) = Θ(log log n),
λ4(n) = λ5(n) = log∗(n), and so on. Such lower bounds ap-
ply for any matrix whose minors of all orders are non-zero, e.g.,
a Cauchy matrix given by Ai,j = 1/(xi − yj) for any distinct
x1, . . . , xn, y1, . . . , yn. Over finite fields it is possible to modify the
proof and obtain similar lower bounds for matrices defining good
error correcting codes (Gál et al. 2013).

These lower bounds on the size of superconcentrators are tight:
for every d ∈ N, there exists a super-concentrator of depth d and
size O(n ·λd(n)). It is thus impossible to improve the lower bounds
only using this technique.

1.2. Matrix rigidity. A demonstration of the surprising power
of depth-2 circuits can be seen using the notion of matrix rigidity, a
pseudorandom property of matrices which we now recall. A matrix
A ∈ F

n×n is (r, s) rigid if A cannot be written as a sum A =
R + S where R is a matrix of rank r, and S is a matrix with at
most s non-zero entries. Valiant (1977) famously proved that if
A is computed by a linear circuit with bounded fan-in of depth
O(log n) and size O(n), then A is not (εn, n1+δ) rigid for every
ε, δ > 0.3 It follows that an explicit construction of (εn, n1+δ)
matrix, for some ε, δ > 0, will imply a super-linear lower bound
for linear circuits of depth O(log n). Pudlák (1994) observed that
similar rigidity parameters will imply even stronger lower bounds
for constant depth circuits. A random matrix (over infinite fields)
is (r, (n−r)2)-rigid, but the best explicit constructions have rigidity
(r, n2/r · log(n/r)) (Friedman 1993; Shokrollahi et al. 1997), which
is insufficient for proving lower bounds.

Observe that a decomposition A = R + S where rank(R) = εn
and S is n1+δ-sparse corresponds to a depth-2 circuit with a very
special structure and with at most 2εn2 + n1+δ edges (this circuit
is not layered, but as we explained above, this does not make a sig-
nificant difference). In particular, one way of interpreting Valiant’s
result is as a non-trivial depth reduction from depth O(log n) to
depth 2, so that proving any depth-2 linear circuit lower bound of

3In fact, one can obtain slightly better parameters. See, for example,
Valiant (1977) or Dvir et al. (2019).
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Ω(n2) for an explicit matrix, will imply a lower bound for linear
circuits of depth O(log n).4 This can be seen as the linear circuit
analog of similar strong depth reduction theorems for general al-
gebraic circuits (Agrawal & Vinay 2008; Gupta et al. 2016; Koiran
2012; Tavenas 2015).

However, we would like to argue that proving lower bounds
for depth-2 circuits is in fact necessary for proving rigidity lower
bounds, by observing that upper bounds on the depth-2 complex-
ity of A give upper bounds on its rigidity parameters, or in the
contrapositive form, high rigidity means high depth-2 complexity.

Observation. Suppose A has a depth-2 circuit of size at most
n1+ε. Then for any δ > 0, A is not (2δn, n1+3ε/δ2)-rigid

Proof. Suppose A = BC can be computed by a depth-2 circuit
of size n1+ε. Let m be as before the number of columns of B (which
equals the number of rows of C), and note that we may assume
m ≤ n1+ε, as zero columns of B or zero rows of C can be omitted.
For i ∈ [m], let Bi denote the i-th column of B, and Ci the i-th row
of C, so that A =

∑m
i=1 BiCi. Fix δ > 0, and say i ∈ [m] is dense

if either Bi or Ci has more than nε/δ non-zero entries; otherwise,
i is sparse. Since B can have at most δn columns with sparsity
of more than nε/δ, and similarly for the rows of C, the number of
dense i-s is at most 2δn. It follows that

A =
∑

i dense

BiCi +
∑

i sparse

BiCi.

The first sum is a matrix of rank at most 2δn, and the second is a
matrix whose sparsity is at most m · n2ε/δ2 = n1+3ε/δ2. �

Thus, proving rigidity lower bounds of the type required to
carry out Valiant’s approach necessarily means proving lower
bounds of the form “n1+ε” on the depth-2 complexity of A (we

4We note that this statement makes sense only over large fields, as over fixed
finite fields, it is always possible to prove an upper bound of O(n2/ log n) on
the depth-2 complexity of any matrix (Jukna & Sergeev 2013). This does not
contradict the fact that rigid matrices exist over finite fields — a decomposition
to R + S is a very special type of depth-2 circuit.
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remark that the argument above is very similar to the aforemen-
tioned result of Pudlák (1994); Pudlák’s argument is stated in a
slightly different language and in greater generality). Since proving
rigidity lower bounds is a long-standing open problem, we view the
problem of proving an Ω(n1+ε) lower bound for depth-2 circuits as
an important milestone towards this.

1.3. Related work. As mentioned in Section 1.1, there are no
non-trivial known lower bounds for general linear circuits, and for
bounded depth circuits, the best lower bounds follow from the
lower bounds on bounded depth super-concentrators, which are
barely super-linear.

Shoup & Smolensky (1996) give a lower bound of Ω(dn1+1/d) for
depth-d circuits computing a certain linear transformation given by
a matrix A ∈ R

n×n. Unfortunately, the matrices for which their
lower bound holds are not explicit from the complexity theoretic
point of view, despite having a very succinct mathematical descrip-
tion (for example, one can take Ai,j =

√
pi,j for n2 distinct prime

numbers pi,j). For the same matrix, they in fact prove super-linear
lower bounds for circuits of depth up to polylog(n).

Quite informally, the intuition behind their lower bounds is that
all small bounded depth linear circuits can be described as lying
in the image of a low-degree polynomial map in a small number
of variables, and thus, if the elements of A are sufficiently “alge-
braically rich”, for a certain specific measure, A cannot be com-
puted by such a circuit. This same philosophy lies behind Raz’s
elusive function approach for proving lower bounds for algebraic
circuits (Raz 2010). In particular, among other results, Raz uses
an argument which can be seen as a modification of the technique
of Shoup and Smolensky (as worked out in (Shpilka & Yehudayoff
2010)) to prove lower bounds for bounded depth algebraic circuits
computing bounded degree polynomials.

One class of linear circuits which has attracted significant atten-
tion is the class of circuits with bounded coefficients. Here, the cir-
cuit is only allowed to multiply by scalars with absolute value of at
most some constant. For definiteness, we may assume this constant
is 1 (this does not affect the complexity by more than a constant
factor). The earliest result for this model is Morgenstern’s inge-
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nious proof (Morgenstern 1973) of an Ω(n log n) lower bound on
bounded coefficient circuits computing the discrete Fourier trans-
form matrix (this lower bound is matched by the upper bound
given by the Cooley-Tukey FFT algorithm, which is a bounded
coefficient linear circuit). For depth-d circuits, Pudlák (2000) has
proved lower bounds of the form Ω(dn1+1/d) for the same matrix.

Another natural subclass which was considered in earlier works
is the class of monotone linear circuits. These are circuits which
are defined over R, and can only use non-negative scalars. Chazelle
(2001) observed that it is possible to prove lower bounds in this
model, even against unbounded-depth circuits, for any boolean
matrix with no large monochromatic rectangle. Instantiated with
the recent explicit constructions of bipartite Ramsey graphs (Ben-
Aroya et al. 2017; Chattopadhyay & Zuckerman 2019; Cohen 2017;
Li 2019), this gives an almost optimal n2−o(1) lower bound against
such circuits. The main observation in the proof is that if A does
not have monochromatic t × t rectangle, then since the model is
monotone and no cancellations are allowed, every internal node
which computes a linear function supported on at least t variables
cannot be connected to more than t output gates.

For a more detailed survey on these results, see the survey by
Lokam (2009).

The problem of matrix factorization into sparse matrices also
appears in other areas in computer science. One such example is
the study of data structures. A dynamic data structure with n
inputs and q queries is a pair of algorithms whose purpose is to
update and retrieve certain data under a sequence of operations,
while minimizing the memory access. In the group model, it is
given by a pair of algorithms. The update algorithm is represented
by a matrix U ∈ F

s×n. Given x ∈ F
n, thought of as assignment

of weights to the n inputs, Ux computes a linear combination of
those weights and stores them in memory. The query algorithm is
given by a matrix Q ∈ F

q×s. Given a query, it computes a linear
function of the s memory cells, and returns the answer. Hence, an
“update” operation followed by a “retrieve” operation computes
the linear transformation given by A = QU .
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The sparsity of the matrices Q and U roughly correspond to the
average case query and update time of the data structure. Thus, a
matrix A ∈ F

q×n which cannot be factored as A = QU for a row-
sparse Q and column-sparse U gives a data structure problem with
a lower bound on its query or update time. Lower bounds for this
model were proved by Fredman (1982), Fredman & Saks (1989),
Pǎtraşcu & Demaine (2006), Pǎtraşcu (2007), Larsen (2012, 2014)
and Larsen et al. (2018), but none of these results beats the lower
bounds for depth-2 circuits obtained using superconcentrators.

A related model is that of a static data structures, which is
again given by a factorization A = QP , where now we are inter-
ested in trade-offs between the space s of the data structure and
its worst case query time, while not being charged for the total
sparsity of P . A recent work of Dvir et al. (2019) showed that
proving lower bounds for this model is related to the problem of
matrix rigidity from Section 1.2.

Despite the overall similarity, there are several key technical dif-
ferences between the linear circuit complexity and the data struc-
ture problems. One important issue is that in many examples in
the data structures literature, the number of queries q is polyno-
mially larger than n, while the lower bounds on running time are
still measured as functions of the number of inputs n. This makes
sense in the data structure settings, but from a circuit complexity
point of view, a set of say n3 linear functions trivially requires a
circuit of size n3, and thus a lower bound of say n polylog(n) is
meaningless in that setting.

Finally, we briefly remark that the problem of factorizing a ma-
trix into a product of two or more sparse matrices is also ubiquitous
in machine learning and related areas. Naturally, research in those
areas did not focus on lower bounds but rather on algorithms for
finding such a representation, assuming it exists, sometimes heuris-
tically, and it is usually enough to approximate the target matrix A.
In particular, algorithms have been proposed for the very related
problems of non-negative matrix factorization (Lee & Seung 2000)5

5It is interesting to observe that for the problem of factorizing matrices into
non-negative matrices it is quite easy to prove almost-optimal lower bounds
even for unbounded depth linear circuits, as mentioned in Section 1.3.
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or sparse dictionary learning (Mairal et al. 2009), and there are also
connections to the analysis of deep neural networks (Neyshabur &
Panigrahy 2013).

1.4. Our results. In this paper, we prove several results regard-
ing bounded depth linear circuits which we now discuss.

Lower bounds for depth-d linear circuits. We start by
considering general depth-d circuits. We give the first deterministic
construction in time 2o(n) of matrices which require depth-d circuits
of size n1+Ω(1/d).

Theorem 1.2. Let Fq be a finite field and d ≥ 2 an integer. Let E
be an extension of Fq of degree exp(n1−Ω(1/d)). There exists a family
of n×n matrices {An}n∈N over E, which can be constructed in time
exp(n1−Ω(1/d)) such that every depth-d linear circuit computing An,
even over the algebraic closure of Fq, has size at least n1+Ω(1/d).

Similarly, there exists a family of n × n matrices {Bn}n∈N over
Q, whose entries are integers of bit complexity exp(n1−Ω(1/d)), such
that every depth-d linear circuit computing Bn over C has size at
least n1+Ω(1/d).

This theorem is proved in Section 2. We remark again that
the previous best lower bounds against general depth-d linear cir-
cuits (for matrices that can be constructed in polynomial time) are
barely super-linear and much weaker than n1+ε. In the recent work
of Dvir et al. (2019) it was pointed out that currently there are not
even known constructions of rigid matrices (with parameters that
would imply lower bounds) in classes such as ENP. By arguing
directly about circuit size, and not about rigidity, Theorem 1.2
gives constructions of matrices in a much smaller complexity class,
which enjoy the same bounded-depth complexity lower bounds as
would follow from optimal constructions of rigid matrices using the
results of Pudlák (1994).

In a related and independent work, Alman & Chen (2019) con-
structed in PNP (i.e., in polynomial time and using an NP oracle),
for infinitely many n’s, an n × n matrix with rigidity parameters
which suffice for proving a lower bound of Ω(n · 2log(n)1/4−ε

) on its
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depth-2 complexity. Compared to their work, our construction lies
in an incomparable complexity class (we do not use an NP oracle at
the expense of a longer running time), extends for all depths d ≥ 2,
works for all large enough n, and provides stronger lower bounds.
Furthermore, Alman and Chen use complexity theoretic techniques
which are very different from our algebraic techniques. The param-
eters of their construction was recently improved in Bhangale et al.
(2020). We refer to Alman & Chen (2019) for some further discus-
sion on the differences and similarities.

While the statement in Theorem 1.2 holds for any d ≥ 2, for
d = 2 there is a much simpler construction of a hard family of
matrices in quasi-polynomial time.

Theorem 1.3. Let F be any field and c be any positive constant.
Then, there is a family {An}n∈N of n × n matrices which can be
constructed in time exp(O(log2c+1 n)) such that any depth-2 linear
circuit computing An even over the algebraic closure of F has size
at least Ω(n logc n).

For every constant c ≥ 2, this theorem already improves upon
the current best lower bound of Ω(n log2 n/ log log n) known for this
problem (see (Radhakrishnan & Ta-Shma 2000)). This construc-
tion is based on an exponential time construction of a small hard
matrix, and then amplifying its hardness using a direct sum con-
struction (note, however, that over infinite fields even the fact that
a hard matrix can be constructed in exponential time, while not
very hard to prove, is not completely obvious). For completeness,
we describe this simple construction in Section 2.7.

Lower bounds for restricted depth-2 linear circuits. Given
the importance of the model of depth-2 linear circuits, as explained
above, and its resistance to strong lower bounds, we then move on
to consider several natural subclasses of depth-2 circuits. These
classes in particular correspond to almost all common matrix de-
compositions. We are able to prove asymptotically optimal Ω(n2)
lower bounds for these restricted models. As mentioned above,
such lower bounds for general depth-2 circuits will imply super-
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linear lower bounds for logarithmic depth linear circuits, thus re-
solving a major open problem.

Symmetric circuits. A symmetric depth-2 circuit (over R) is
a circuit of the form BT B for some B ∈ R

m×n (considered as a
graph, the subgraph between the middle and the top layer is the
“mirror image” of the subgraph between the bottom and middle
layer). Over C, one should take the conjugate transpose B∗ instead
of BT .

Symmetric circuits are a natural computational model for com-
puting positive semi-definite (PSD) matrix. Clearly, every sym-
metric circuit computes a PSD matrix, and every PSD matrix has
a (non-unique) symmetric circuit. In particular, a Cholesky de-
composition of PSD matrices corresponds to a computation by a
symmetric circuit (of a very special form).

We prove asymptotically optimal lower bounds for this model.

Theorem 1.4. There exists an explicit family of real n × n PSD
matrices {An}n∈N such that every symmetric circuit computing An

(over R or C) has size Ω(n2).

We do not know whether every depth-2 linear circuit for a PSD
matrix can be converted to a symmetric circuit with a small blow-
up in size. One way to phrase this question is given below.

Question 1.5. Is there a constant c < 2, such that every PSD
matrix A ∈ R

n×n which can be computed by a linear circuit of size
s, can be computed by a symmetric circuit of size O(sc)?

A positive answer for Question 1.5 will imply, using Theo-
rem 1.4, an Ω(n1+ε) lower bound for depth-2 linear circuits.

Invertible circuits. Invertible circuits are circuits of the
form BC, where either B or C are invertible (but not necessar-
ily both). We stress that invertible circuits can (and do) compute
non-invertible matrices. In particular, if B ∈ F

n×m and C ∈ F
m×n,

here we require m = n.
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Invertible circuits generalize many of the common matrix de-
compositions, such as QR decomposition, eigendecomposition, sin-
gular value decomposition6 and LUP decomposition (in the case
where the matrix L is required to be unit lower triangular).7

We prove optimal lower bounds for invertible circuits.

Theorem 1.6. Let F be a large enough field. There exists an
explicit family of n × n matrices {An}n∈N over F such that every
invertible circuit computing An has size Ω(n2).

If A is an invertible matrix, then clearly every depth-2 circuit
with m = n must be an invertible circuit. However, our technique
for proving Theorem 1.6 crucially requires the hard matrix A to be
non-invertible.

1.5. Proof Overview. Our proofs rely on a few different ideas
coming from algebraic complexity theory, coding theory, arithmetic
combinatorics and the theory of derandomization. We now discuss
some of the key aspects.

Shoup-Smolensky dimension. For the proof of Theorem 1.2,
we rely on the notion of Shoup-Smolensky dimension as a mea-
sure of complexity of matrices. Shoup-Smolensky dimensions are a
family of measures, parametrized by t ∈ N, of “algebraic richness”
of the entries of a matrix (see Definition 2.1 for details), which is
supposed to capture the intuition that matrices with small circuits
should depend on a few “parameters” and thus should not posses
much richness.

Shoup & Smolensky (1996) showed that for an appropriate
choice of parameters, this measure is non-trivially small for lin-
ear transformations with small linear circuits of depth at most
poly(log n). Informally, as the order t gets larger, this measure be-
comes useful against stronger models of computation; however, it

6A diagonal matrix can be multiplied with the matrix to its left or to its
right, without increasing the sparsity, to obtain an invertible depth-2 circuit.

7The sparsity of UP equals the sparsity of U , as P simply permutes the
columns of U , so every LUP decomposition corresponds to the invertible
depth-2 circuit given by L(UP ).
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also becomes harder to construct matrices which have a large com-
plexity with respect to this measure (and hence cannot be com-
puted by a small linear circuit). Shoup and Smolensky do this
by constructing hard matrices which do not have small bit com-
plexity (and hence this construction is not complexity theoretically
explicit) but do have short and succinct mathematical description.

For our proof, we first observe that for bounded depth cir-
cuits it suffices to use much smaller order t than what Shoup and
Smolensky used. This observation was also made by Raz (2010) in
a similar context, but using the language of elusive functions.

We then use this observation to “derandomize”, in a certain
sense, an exponential time construction of a hard matrix, by
giving deterministic constructions of matrices with large Shoup-
Smolensky dimension.

A key ingredient of our proof is a connection between the notion
of Sidon Sets in arithmetic combinatorics and Shoup-Smolensky
dimension (see Section 2.4 for details). Our construction is in two
steps. In the first step we construct matrices with entries in F[y]
which have a large Shoup-Smolensky dimension over F, and degree
of every entry is not too large. In the next step, we go from these
univariate matrices to a matrix with entries in an appropriate low
degree extension of F while still maintaining the Shoup-Smolensky
dimension over F. Our construction of hard matrices over the field
of complex numbers is based on similar ideas but differs in some
minor details.

Lower bounds via Polynomial Identity Testing. Our proofs
for Theorem 1.4 and Theorem 1.6 are based on a derandomiza-
tion argument. Connections between derandomization and lower
bounds are prevalent in algebraic and Boolean complexity, but in
our current setting they have not been widely studied before.

We say that a set H of n×n matrices is a hitting set for a class
C of matrices if for every non-zero A ∈ C there is H ∈ H such that
〈A,H〉 :=

∑
i,j Ai,jHi,j 	= 0.

As we describe in Section 3, It is simple yet important obser-
vation that a hitting set of size strictly less than n2 for a class C of
matrices implies an efficient construction of a matrix which is not
in C.
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We carry out this idea for two different classes in the proofs of
Theorem 1.4 and Theorem 1.6. A useful ingredient in our construc-
tions is the use of maximum distance separable (MDS) codes (for
example, Reed-Solomon codes), as their dual subspace is a small
dimensional subspace which does not contain sparse non-zero vec-
tors. Over the reals, it is also easy to give such construction based
on the well known Descartes’ rule of signs which says that a sparse
univariate real polynomial cannot have too many real roots. We
refer the reader to Section 3.1 for details.

2. Lower bounds for constant depth linear
circuits

In this section, we prove Theorem 1.2. We start by describing the
notion of Shoup-Smolensky dimension, but first we set up some
notation.

2.1. Notation. We work with matrices whose entries lie in an
appropriate extension of a base finite field Fp. We follow the nat-
ural convention that the elements of this extension will be rep-
resented as univariate polynomials of appropriate degree over the
base field, and the arithmetic is done modulo an explicitly given
irreducible polynomial.

We use boldface letters (x,y) to denote vectors. The length of
the vectors is understood from the context.

For a matrix M , ‖M‖0 denotes the number of non-zero entries
in M .

2.2. Shoup-Smolensky Dimension. A useful concept will be
the notion of Shoup-Smolensky dimension of sequences of elements
of an extension E of a field F.

Definition 2.1 (Shoup-Smolensky dimension). Let F be a field,
and E be an extension field of F. Let S = (a1, . . . , am) a sequence
of elements of E. For t ∈ N, denote by Prodt(S) the set of t-wise
products of distinct entries of S that is,

Prodt(S) =

{
t∏

j=1

aij : 1 ≤ i1 < i2 < · · · < it ≤ m

}

.
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The Shoup-Smolensky dimension of S of order t, denoted by Γt,F(S)
is defined to be the dimension, over F, of the vector space spanned
by Prodt(S).

We also denote by Σt(S) the number of distinct elements of E
that can be obtained by summing distinct elements of Prodt(S).

When M ∈ E
n×n is a matrix we also regard it as a sequence of

m = n2 elements of E (under some order on the entries) and refer
to the Shoup-Smolensky dimension of M .

2.3. Upper bounding the Shoup-Smolensky dimension for
Sparse Products. The following lemma shows that any matrix
computable by a depth-d linear circuit of size at most s has a
somewhat small Shoup-Smolensky dimension. This statement was
proved by Shoup & Smolensky (1996) (although we believe the
formulation using matrix product makes the notation somewhat
simpler). For completeness, we give the proof.

Lemma 2.2. Let F be a field, E an extension of F and A ∈ E
n×n

be a matrix such that A =
∏d

i=1 Pi for Pi ∈ E
ni×mi , where

∑d
i=1 ‖Pi‖0 ≤ s. Then, for every t ≤ n2/4 such that s ≥ dt it

holds that
Γt,F(A) ≤ (

ed(2s/dt)d
)t

.

Proof. Since

Ai,j =

(
d∏

�=1

P�

)

i,j

=
∑

k1,...,kd−1

(P1)i,k1 ·
(

d−1∏

�=2

(P�)k�−1,k�

)

· (Pd)kd−1,j ,

every element in Prodt(A) is a sum of monomials of degree dt in
the entries of P1, P2, . . . , Pd, that is,

Γt,F

(
d∏

i=1

Pi

)

≤
(

s + dt

dt

)

,

with the right hand side being the number of monomials of degree
dt in s variables. Using the inequality

(
n
k

) ≤ (en/k)k,

Γt,F(A) ≤ (e(1 + s/dt))dt ≤ (
ed(2s/dt)d

)t
,

as desired. �
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Over Q, we do not wish to use field extensions (which would
give rise to elements with infinite bit complexity). Thus, we use
a similar argument that replaces the measure Γt,F with Σt (recall
Definition 2.1) for a small tolerable penalty.

Lemma 2.3. Let d be a positive integer. Let A ∈ Q
n×n be a matrix

such that A =
∏d

i=1 Pi for Pi ∈ Q
ni×mi , where

∑d
i=1 ‖Pi‖0 ≤ s.

Assume that for each i, ni ≤ n2 and mi ≤ n2. Then, for every
t ≤ n2/4 such that s ≥ dt it holds that

Σt(A) ≤ 22n3·(ed(2s/dt)d)
t

.

Proof. We follow the same steps as in the proof of Lemma 2.2,
replacing the measure Γt,F(A) by Σt(A). As before,

Ai,j =

(
d∏

�=1

P�

)

i,j

=
∑

k1,...,kd−1

(P1)i,k1 ·
(

d−1∏

�=2

(P�)k�−1,k�

)

· (Pd)kd−1,j .

Every element in Prodt(A) can be written as

(2.4)
∑

α∈M
cα · α

where M is the set of monomials of degree dt in the entries of
P1, P2, . . . , Pd, and each cα is a non-negative integer of absolute
value at most sdt ≤ 2n3

(since s ≤ n2d and d is O(1)). It now
follows that each element in Σt(A) has the same form as in ((2.4)),
with cα ≤ |Prodt(A)| · 2n3 ≤ 22n3

. We conclude that

Σt(A) ≤ (22n3

)(
s+dt

dt ),

which implies the statement of the lemma using the same bounds
on binomial coefficients as in Lemma 2.2. �

We now move on to describe constructions of matrices which
have large Shoup-Smolensky dimension, and then deduce lower
bounds for them.
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2.4. Sidon sets and hard univariate matrices. In this sec-
tion, we describe a construction of a matrix G ∈ F[y]n×n which
has a large value of Γt,F. Let us denote Gi,j = yei,j for some non-
negative integer ei,j. For G to have a large Shoup-Smolensky di-
mension of order t, the set S = {e1,1, e1,2, . . . , en,n} ⊆ N should have
the property that S(t) := {a1 + a2 + · · · + at : ai ∈ S distinct} has
size comparable to

(|S|
t

)
. A set S such that every subset of size

t of S has a distinct sum is called a t-wise Sidon set. These are
very well studied objects in arithmetic combinatorics, and explicit
constructions are known for them in poly(n) time (e.g., Lemma 60
in Bshouty (2014)). However, another important parameter in the
construction of G is the degree of y. A t-Sidon set will inevitably
contain integers of size roughly nΩ(t), which implies that even if
the Sidon set itself can be constructed in polynomial time, the
construction of G itself would still take time which is not polyno-
mially bounded in n. Below we give an elementary construction of
such a set in time nO(t), which is similar to a related construction
given in Agrawal et al. (2015).

Lemma 2.5. For every integers t ≤ m there is a set S ⊆ N of size
m such that:

(i) S(t) := {a1 + a2 + · · · + at : ai ∈ S distinct} has size
(

m
t

)
.

(ii) The maximal element in S is at most mO(t).

(iii) S can be constructed in time mO(t).

Proof. Let S ′ = {1, 2, 22, . . . , 2m−1}. Clearly, every subset of
S ′ has a distinct sum. For a prime p we denote Sp = S ′ mod p =
{a mod p : a ∈ S ′}, and we claim that there exists a prime p ≤
mO(t) such that |(Sp)

(t)| =
(

m
t

)
. Since this condition can be checked

in time mO(t), this would immediately imply the statement of the
lemma, by checking this condition for every p ≤ mO(t) and letting
S = Sp for a p which satisfies this condition.

For every subset T ⊆ S ′ of size t, let σT denote the sum of
its elements, and observe that σT ≤ 2m. Clearly, σT mod p =
σT ′ mod p if and only if p | σT − σT ′ , so it is enough to show that
there exists p ≤ mO(t) which does not divide
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N :=
∏

T �=T ′⊆S′
|T |=|T ′|=t

(σT − σT ′),

and therefore does not divide any of the terms on the right hand

size. It further holds that 0 	= N ≤ (2m)mO(t)

= 2mO(t)
, so the

existence of p now follows from the fact that N can have at most
log N = mO(t) distinct prime divisors, and from the prime number
theorem. �

Given the above construction of t-wise Sidon sets, we now de-
scribe the construction of matrices with univariate polynomial en-
tries which has large Shoup-Smolensky dimension.

Construction 2.6. Let S = {ei,j : i, j ∈ [n]} be a t-wise Sidon
set of positive integers of size n2 as in Lemma 2.5. Then, the matrix
Gt,n ∈ F[y]n×n is defined as (Gt)i,j = yei,j .

The useful properties of Construction 2.6 are given by the fol-
lowing lemma.

Lemma 2.7. Let t ≤ n be a parameter, S ⊆ N be a t-wise Sidon
set of size n2 and let Gt,n be the matrix defined in Construction 2.6.
Then, the following are true.

(i) Every entry of Gt,n is a monomial of degree at most nO(t).

(ii) Γt,F((Gt,n)) ≥ (
n2

t

) ≥
(

n2

t

)t

.

Proof. The first item follows from the definition of Gt,n and the
properties of the set S in Lemma 2.5. The second item also follows
from the properties of S and the definition of Shoup-Smolensky
dimension, since every t-wise product of elements of Gt,n gives a
distinct monomial in y, and thus they are all linearly independent
over the base field F. �

2.5. Hard matrices over finite fields. From the univariate
matrix in Construction 2.6, we now construct, for every p and
parameter t, a matrix M over an extension of Fp which has large
Shoup-Smolensky dimension over Fp with the same parameters as
Gt,n.
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Lemma 2.8. Let p be a prime, and t be any positive integer.
There is a matrix Mt,n ∈ E

n×n over an extension E of Fp of degree
exp (O(t log n)), which can be deterministically constructed in time
nO(t), and satisfies

Γt,Fp(Mt,n) ≥
(

n2

t

)t

Proof. Let Gt,n be as in Construction 2.6, and let Δ be the
maximum degree of any entry of Gt,n. Set D = 10 · t · Δ =
exp (O(t log n)). We use Shoup’s algorithm (see Theorem 3.2
in Shoup (1990)) to construct an irreducible polynomial g(z) of
degree D + 1 over Fp in deterministic poly(D, |Fp|) time. Let α be
a root of g(z) in an extension E of Fp, where E ≡ Fp[z]/〈g(z)〉.8
Then, it follows that 1, α, α2, . . . , αD are linearly independent over
F.

The matrix Mt,n is obtained from Gt by just replacing every
occurrence of the variable y by α. We now need to argue that

Mt,n continues to satisfy Γt,Fp(Mt,n) ≥
(

n2

t

)t

. By the choice of α,

it immediately follows that Γt,Fp(Mt,n) = Γt,Fp(Gt,n), since every
monomial in the set Prodt(Mt,n) is mapped to a distinct power of
α in {0, 1, . . . , D}, which are all linearly independent over Fp.

The upper bound on the running time needed to construct Mt,n

now follows from the upper bound on the degree of the extension
E, and from Lemma 2.5. �

The following theorem now directly follows.

Theorem 2.9. Let p be any prime and d ≥ 2 be a positive inte-
ger. Then, there exists a family of n × n matrices {An}n∈N which

can be constructed in time nO(n1−1/2d) such that every depth-d lin-
ear circuit Fp computing An has size at least Ω(n1+1/2d). More-
over, the entries of An lie in an extension of Fp of degree at most
exp(O(n1−1/2d log n)).

8We identify the elements of E with coefficient vectors of polynomials of
degree at most D in Fp[z], and in this representation α is identified with the
polynomial z.



cc Lower Bounds for Matrix Factorization Page 21 of 40 6

Proof. We invoke Lemma 2.8 with parameter t set to n1−1/2d

to get matrices {An} in time nO(t) with the following lower bound
on their Shoup-Smolensky dimension.

Γt,Fp(Mn) ≥
(

n2

t

)t

.

If there is a depth d linear circuit of size s computing the lin-
ear transformation An · x, the following inequality must hold
(from Lemma 2.2),

(2.10)
(
ed(2s/dt)d

)t ≥
(

n2

t

)t

.

If s ≤ n1+1/2d/2, we have,

(
ed(2s/dt)d

)t ≤ (O(e/d))dt · nt .

We also have, (
n2

t

)t

≥ (
n1+1/2d

)t
.

For any constant d, these estimates contradict (2.10), thereby im-
plying a lower bound of Ω(n1+1/2d) on s. �

2.6. Hard matrices over C. We now prove an analog for
Lemma 2.8. We construct a matrix whose entries are positive in-
tegers that can be represented by at most exp(O(t log n)) bits, and
give a lower bound for its Σt-measure (rather than Γt,F as before).

Lemma 2.11. Let t be any positive integer. There is a matrix
Mt,n ∈ Q

n×n, which can be deterministically constructed in time
nO(t), such that every entry of Mt,n is an integer of bit complexity
at most exp(O(t log n)), and it holds that

Σt(Mt,n) ≥ 2

(
n2

t

)t

.

Proof. Let Gt,n ∈ F[y]n×n be as in Construction 2.6. Define
Mt,n ∈ Q

n×n as
(Mt,n)a,b = (Gt,n)a,b(2),
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that is, (Mt,n)a,b is simply the polynomial (Gt,n)a,b(y) evaluated at
y = 2.

As in the proof of Lemma 2.7, each element in Prodt(Mt,n) is

now a distinct power of 2, which implies that Σt(Mt,n) = 2(n2

t ).

The statement on the running time follows directly from
Lemma 2.7. �

The analog of Theorem 2.9 for C is given below.

Theorem 2.12. There exists a family of matrices {An}n∈N over

Q which can be constructed in time nO(n1−1/2d) such that every
depth-d linear circuit C computing An has size at least Ω(n1+1/2d).
Moreover, the entries of An are positive integers of bit complexity
at most exp(O(n1−1/2d log n)).

Proof. Let s = n1+1/2d/2 and t = n1−1/2d and let An = Mt,n,
where Mt,n is as in Lemma 2.11. A depth-d circuit for Mn im-

plies a factorization Mn =
∏d

i=1 Pi, with Pi ∈ C
ni×mi , such that

∑d
i=1 ‖Pi‖0 ≤ s. Observe that by removing, if necessary, zero

columns or rows from P1, . . . , Pd without affecting the product, we
may assume ni,mi ≤ n2, as otherwise the lower bound trivially
holds. By Lemma 2.3 and Lemma 2.11, this implies that

(n2/t)t ≤ log Σt(An) ≤ 2n3 · (
ed(2s/t)d

)t
.

If s ≤ n1+1/2d/2, we have,

(
ed(2s/dt)d

)t ≤ (O(e/d))dt · nt .

We also have (
n2

t

)t

≥ (
n1+1/2d

)t
.

For any constant d, these estimates contradict the inequality above,
thus implying a lower bound of Ω(n1+1/2d) on s.

The statement on the running time for constructing An follows
again from Lemma 2.11. �
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2.7. Lower bounds for depth-2 linear circuits. The lower
bounds of Theorem 2.9 and Theorem 2.12 apply to any constant
depth. However, here we briefly remark that in the special case of
d = 2 there is in fact a much simpler construction. As discussed in
the introduction, for depth-2 linear circuits, the best lower bounds

currently known is a lower bound of Ω
(
n log2 n

log log n

)
based on the

study of super-concentrator graphs in the work of Radhakrishnan
& Ta-Shma (2000). We now discuss two constructions of matrices
in quasi-polynomial time which improve upon this bound. More
formally, we prove the following theorem.

Theorem 2.13. Let c be any positive constant. Then, there is a
family {An}n∈N of n×n matrices with entries in N of bit complexity
at most exp(O(log2c+1 n)) such that An can be constructed in time
exp(O(log2c+1 n)) and any depth-2 linear circuit over C computing
An has size at least Ω(n logc n).

The first construction directly follows from Lemma 2.11 when in-
voked with t = 10 · log2c n. Once we have the matrices guaranteed
by Lemma 2.11, we just follow the proof of Theorem 2.12 as is
by taking d = 2 and t = 10 log2c n. We skip the technical details
and now discuss the second construction, which is based on the
following observation, first proved by Shoup & Smolensky (1996).

Observation 2.14. Let {An}n∈N be a family of matrices where

(An)i,j = 22(n+1)(i−1)+j
. Then, any depth−2 linear circuit computing

An has size Ω(n2).

Proof. The key to the proof is to observe that for t = n2/4,

Σt(An) ≥ 2( n2

n2/4) ≥ 22n2/2
. This follows from the fact that each t

wise product of the entries of An is a power of 2 where the exponent
is a sum of powers of 2 and for any two distinct degree t multilinear
monomials in the entries of An, the set of powers of 2 that appear
in the exponent are distinct. On the other hand, from Lemma 2.3,
we know that if An can be computed by a depth-2 linear circuit of
size at most s, then

Σt(An) ≤ 22n3(e2(4s/n2))
n2/4

.
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Now, for s ≤ n2/100, this upper bound is much smaller than the

lower bound of 22n2/2
. Thus, any depth-2 linear circuit for An over

C has size at least n2/100. �

If we directly use this observation to construct hard matrices,
the bit complexity of the entries of An (and hence the time com-
plexity of constructing An) is as large as 2Θ(n2). However, it also
gives a much stronger (quadratic) lower bound on the depth-2 lin-
ear circuit size for An than what is promised in Theorem 2.13.
For our second construction for hard matrices for Theorem 2.13,
we invoke Observation 2.14 to construct small hard matrices (thus
saving on the running time) and then construct a larger block di-
agonal matrix by taking a Kronecker product of this small hard
matrix with a large identity matrix. The following lemma then
guarantees a non-trivial lower bound on the size of any depth-2
linear circuit computing this larger block diagonal matrix.

Lemma 2.15. Let A be an k × k matrix, such that any depth-
2 linear circuit computing A has size at least s. Let B be an
mk × mk matrix defined as B = Im ⊗ A, where ⊗ denotes the
Kronecker product, and Im the m × m identity matrix. Then, any
depth-2 linear circuit computing B has size at least m · s.

Proof. A depth-2 linear circuit for B gives a factorization of B
as P ·Q for an mk × r matrix P and an r ×mk matrix Q for some
parameter r. We partition the rows of P into m contiguous blocks
of size k each, and let Pi be the k × r submatrix which consists
of the ith block (i.e. rows (i − 1)k + 1, (i − 1)k + 2, . . . , ik of P ).
Similarly, we partition the columns of Q into m contiguous blocks
of size k each and let Qi be the r×k submatrix of Q corresponding
to the ith block. From the structure of B, it follows that for every
i ∈ {1, 2, . . . , m}, Pi · Qi = A. From the lower bound on the size
of any depth-2 linear circuit for A, we get that ‖Pi‖0 + ‖Qi‖0 ≥ s.
Combining this lower bound for i = 1, 2, . . . , m, we get ‖P‖0 +
‖Q‖0 =

∑m
i=1 (‖Pi‖0 + ‖Qi‖0) ≥ m · s. �

We now note that Observation 2.14 and Lemma 2.15 imply
another family of matrices for which Theorem 2.13 holds.
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Proof (Second proof of Theorem 2.13). Pick k = Θ(logc n) such
that k divdes n, and let Mk be the matrix defined as (Mk)i,j =

22(k+1)(i−1)+j
. Let An = In/k ⊗ Mk. Clearly, An can be constructed

in time 2O(k2). Moreover, from Observation 2.14 and Lemma 2.15
it follows that any depth-2 linear circuit computing An has size at
least Ω(n/k · k2) = Ω(n logc n). �

We note that even though the discussion in this section was
confined to depth-2 linear circuit lower bounds over C, similar ideas
can be extended to other fields as well.

In light of the above construction, a natural question is to ask
if this idea also extends to the construction of hard matrices for
depth-d circuits for arbitrary constant d. While this is a reasonable
conjecture, the easy proof of Lemma 2.15 breaks down even at
depth 3.

There are some variations of this idea, such us looking at Jn/k⊗
Mk, where J is the all-1 matrix, which would work equally well to
prove a lower bound for depth-2 circuits, but for which it is possible
to prove an O(n) upper bound in depth-3.

Furthermore, it can be seen that upper bounds on matrix mul-
tiplication in bounded depth will give small linear circuits for com-
puting In/k ⊗ Mk. Thus, improved lower bounds using this con-
struction, even for depth-3 circuits, will require proving new lower
bounds for matrix multiplication in bounded depth (the current
best lower bounds are again barely super-linear (Raz & Shpilka
2003)).

3. Lower bounds via Hitting Sets

In this section, we prove lower bounds for several classes of depth 2
circuits using hitting sets for matrices. We first recall the definition.

Definition 3.1 (Hitting set for matrices, Forbes & Shpilka 2012).
Let C ⊆ F

n×n be a set of matrices. A set H ⊆ F
n × F

n is said to
be a hitting set for C, if for every non-zero M ∈ C, there is a pair
(a,b) ∈ H such that

〈a,M · b〉 =
∑

i∈[n],j∈[n]

Mi,jaibj 	= 0.
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Every class C has a hitting set of size n2, namely the indicator
matrices of each of the entries. A hitting set is non-trivial if its size
is at most n2 − 1. Observe that a non-trivial hitting set for C gives
an efficient algorithm for finding a matrix M 	∈ C, by finding a non-
zero A such that 〈A,H〉 = 0 for every H ∈ H. Such an A exists
and can be found in polynomial time because the set H imposes at
most n2 − 1 homogeneous linear constraints on the n2 entries of A.
This argument is a special case of a more general theorem showing
how efficient algorithms for black box polynomial identity testing
give lower bounds for algebraic circuits (Agrawal 2005; Heintz &
Schnorr 1980).

In practice, it is often convenient (although by no means neces-
sary) to consider hitting sets that contain only rank 1 matrices xyT ,
since

〈
A,xyT

〉
= xT Ay, and thus we find ourselves in the more fa-

miliar territory of polynomial identity testing, trying to construct
a hitting set for the class of polynomials of the form xT Ay for
A ∈ C. This approach was also taken by Forbes & Shpilka (2012),
who considered this exact problem where C is the class of low-rank
matrices, and remarked that hitting sets for the class of low-rank
matrices plus sparse matrices will give an explicit construction of
a rigid matrix.

As mentioned in Section 1.5, our proofs of Theorem 1.4 and
Theorem 1.6 involve constructions of hitting sets for classes which
correspond to restricted classes of depth-2 circuits. However, the
following problem remains open.

Open Question 3.2. For some 0 < ε ≤ 1, construct an explicit
hitting set of size at most n2 − 1 for the class of n × n matrices A
which can be written as A = BC where B,C have at most n1+ε

non-zero entries.

A solution to Open Question 3.2 will imply lower bounds of the
form n1+ε for an explicit matrix. If ε = 1, this will imply lower
bounds for logarithmic depth linear circuits.

3.1. Matrices with no sparse vectors in their kernel. In
this section, we recall some simple, deterministic and efficient con-
structions of matrices which do not have any sparse non-zero vector
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in their kernel. Such a construction forms the basic building block
for building hard instances of matrices for various cases of the ma-
trix factorization problem that we discuss in the rest of this paper.
We start by describing such a construction over the field of real
numbers.

3.1.1. Construction over R. The following is a weak form of
a classical lemma of Descartes.

Lemma 3.3 (Descartes’ rule of signs, Anderson et al. 1998). Let
d1 < d2 < · · · < dk be non-negative integers, and let a1, a2, . . . , ak

be arbitrary real numbers. Then, the number of distinct positive
roots of the polynomial

∑k
i=1 aix

di is at most k − 1.

Lemma 3.3 immediately gives the following construction of a small
set of vectors, such that not all of them can lie in the kernel of any
matrix with at least one sparse row.

Lemma 3.4. For i ∈ [n], let vi := (1, i, i2, . . . , in−1) ∈ R
n. Then,

for every 1 ≤ s ≤ n and for every m×n matrix B over real numbers
that has a non-zero row with at most s non-zero entries, there is
an i ∈ [s] such that B · vi 	= 0.

Proof. Let (a0, a1, . . . , an−1) ∈ R
n be any non-zero vector with

at most s non zero entries. So, the polynomial P (x) =
∑n−1

i=0 aix
i

has sparsity at most s. From Lemma 3.3, it follows that P has at
most s − 1 positive real roots. Therefore, there exists an i ∈ [s]
such that i is not a root of P (x), i.e., P (i) 	= 0. The lemma now
follows immediately by taking (a0, a1, . . . , an−1) to be any non-zero
s-sparse row of B. �

We remark that Lemma 3.4 also holds for matrices over C which
have a sparse non-zero row for the choice of the vectors vi as above.
This follows from the application of Lemma 3.3 separately for the
real and complex parts of a sparse complex polynomial, both of
which are individually sparse, with real coefficients and at least
one of them is not identically zero. This observation extends our
results over R in Section 3.2 to the field of complex numbers.
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3.1.2. Construction over finite fields. We now recall some
basic properties of Reed-Solomon codes, and observe they can be
used as well in lieu of the construction in Lemma 3.4.

The proofs for these properties can be found in any standard
reference on coding theory, e.g., Chapter 5 in Guruswami et al.
(2018).

Definition 3.5 (Reed Solomon codes). Let Fq be the finite field
with q elements, which we denote {α0, α1, . . . , αq−1}. Let k ∈
{0, 1, . . . , q − 1}. The Reed-Solomon code of block length q and
dimension k is defined as follows.

RSq[q, k] = {(P (α0), P (α1), . . . , P (αq−1)) : P (z) ∈ Fq[z],

deg(P ) ≤ k − 1}.

Lemma 3.6. Let Fq be the finite field with q elements and let
k ∈ {0, 1, . . . , q−1}. The linear space RSq[q, k] as in Definition 3.5
satisfies the following properties.

◦ Every non-zero vector in RSq[q, k] has at least q − k +1 non-
zero coordinates.

◦ The dual of RSq[q, k] is the space of Reed Solomon codes of
block length q and dimension q − k.

Lemma 3.7. Let Fq = {α0, α1, . . . , αq−1} be the finite field with q
elements. For any k ≤ q − 1, let Gk be the q × k matrix over Fq

whose i-th row is (1, αi−1, α
2
i−1, . . . , α

k−1
i−1 ). Then, every non-zero

vector in F
q
q in the kernel of (Gk)

T has at least k + 1 non-zero
coordinates.

Proof. Observe that Gk is the precisely the generator matrix of
Reed Solomon codes of block length q and dimension k over Fq. In
particular, the linear space RSq[q, k] as in Lemma 3.6 is spanned
by the columns of Gk. Thus any vector w in the kernel of (Gk)

T

is in fact a codeword of the dual of these codes, which as we know
from Item 2 of Lemma 3.6, is itself a Reed Solomon code of block
length q and dimension q − k. From the first item of Lemma 3.6,
it now follows that w has at least k + 1 non-zero coordinates. �
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The following lemma is an analog of Lemma 3.4.

Lemma 3.8. Let Fq = {α0, α1, . . . , αq−1} be the finite field with q
elements, s ∈ [q] be a parameter and let vi be the i-th column of
the matrix Gk as in Lemma 3.7 for k = s.

Then, for every m × n matrix B over Fq that has a non-zero
row with at most s non zero entries, there is an i ∈ [s] such that
B · vi 	= 0.

Proof. The proof follows from the observation that any non-
zero vector orthogonal to all the vectors v1,v2, . . . ,vs must be in
the kernel of the matrix GT

s and hence by Lemma 3.7 must have
at least s + 1 non-zero entries. �

3.2. Lower bounds for symmetric circuits. We now prove
our lower bounds for symmetric circuits. Recall that a symmetric
circuit is a linear depth-2 circuit of the form BT B.

Theorem 3.9. There is an explicit family of positive semidefinite
matrices {Mn} such that every symmetric circuit computing Mn

has size at least n2/4.

For the proof of this theorem, we give an efficient deterministic
construction of a hitting set H for the set of matrices which factor
as BT · B for B of sparsity less than n2/4, and as outlined in
Section 1.5, we construct a hard matrix M = M̃T · M̃ which is not
hit by such a hitting set and has a high rank.

We start by describing the construction of M .

Lemma 3.10. Let {vi : i ∈ [n]} be the set of vectors defined in
Lemma 3.4. There exists an explicit PSD matrix M ∈ R

n×n of
rank n/2 such that vT

i Mvi = 0 for i ∈ [n/2].

Proof. We first wish to construct a matrix M̃ of high rank
such that M̃vi = 0 for i = 1, . . . , n/2. This can always be done in
polynomial time by finding n/2 independent vectors in the vector
space (of dimension n/2) which is orthogonal to all the vectors vi.

We now describe such a construction more explicitly. Let V be
the Vandermonde matrix whose rows are the vi’s. Let U = V −1,
and for j ∈ [n] let uj denote the j-th column of U .
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Let M̃ be an n × n matrix whose first n/2 rows are 0, and
for j ∈ {n/2 + 1, . . . , n}, the i-th row of M̃ is uT

j . Since 〈viuj〉
equals 1 if i = j and 0 otherwise, it now follows that M̃vi = 0 for
i = 1, . . . , n/2, and since u1, . . . ,un are linearly independet, M̃ has
rank n/2.

Now let M = (M̃T ) · M̃ , so that indeed M is a positive semi-
definite matrix, and rankM = n/2 as well. It immediately follows
that

vT
i Mvi = (vT

i M̃T )(M̃vi) = 0,

as stated in the Lemma. �

We are now ready to prove Theorem 3.9.

Proof (Proof of Theorem 3.9). Let M be the matrix from
Lemma 3.10. Let B ∈ R

m×n be real matrix such that ‖B‖0 < n2/4,
and suppose towards contradiction that M = BT B.

It follows that the rank of B must be at least n/2. Thus, B
must have at least n/2 non-zero rows. Now, since the total sparsity
of B is at most n2/4 − 1, there must be a non-zero row of B with
sparsity at most (n2/4 − 1)/(n/2) ≤ n/2. From Lemma 3.4, it
follows that there is an i ∈ [n/2] such that B ·vi is non-zero. Thus,
for this index i, we have that

vT
i (BT B)vi = ‖Bvi‖2

2 	= 0,

contradicting Lemma 3.10. �

We remark that the proof of Theorem 3.9 goes through almost
verbatim for symmetric circuits over C (recall that over C these
are circuits of form B∗B, where B∗ is the conjugate transpose of
B).

3.3. Lower bounds for invertible circuits. Recall that an
invertible circuit is a circuit of the form BC where either B or C
is invertible. In this section, we prove Theorem 1.6, which shows
a quadratic lower bound for such circuits. For convenience, we
restate the theorem.
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Theorem 3.11. There exists an explicit family of n × n matrices
{An}, over any field F such that F ≥ poly(n), such that every
invertible circuit computing An has size n2/4.

Proof. We give a proof over the field of real numbers and high-
light the ideas necessary to extend the argument to work over large
enough finite fields.

Fix n, and let M = M̃T M̃ be the matrix constructed in
Lemma 3.10. Let B and C be n × n matrices over R such that
M = BC. Suppose first that B is invertible and C has sparsity
less than n2/4.

Since rank(M) ≥ n/2, the same applies for rank(C), and hence
the number of non-zero rows in C must be at least n/2. Thus, C
must have a non-zero row with at most (n2/4 − 1)/(n/2) ≤ n/2
non-zero entries. Along with Lemma 3.4, this implies that there
is an i ∈ [n/2] such that C · vi 	= 0, where vi is as in Lemma 3.4.
Since B is invertible, we get that (B · C · vi) is a non-zero vector,
so for some j ∈ [n],

eT
j (BC)vi 	= 0.

However, as in the proof of Lemma 3.10

eT
j (M)vi = eT

j M̃T M̃vi = 0,

since M̃vi = 0 for all i ∈ [n/2].
The case that B is sparse and C is invertible is virtually the

same, by considering vT
i (BC)ej, and replacing the argument on

the rows of C by a similar one on the columns of B.
For the proof over finite fields, we replace every application of

Lemma 3.4 by Lemma 3.8. Note that this requires the n-th matrix
in the family to be defined over a field of size more than n. The
rest of the argument essentially remains the same. �

Over fixed finite fields (for example, F2), it is possible to prove
an analog of Theorem 3.11, with worse constants, by replacing the
use of Reed-Solomon codes with any good explicit error-correcting
code C of dimension αn and distance δn for some fixed constants
α, δ > 0. The proof proceeds as above by finding a matrix M̃ of
rank αn such that Mv = 0 for every v ∈ C⊥.



6 Page 32 of 40 Volk & Kumar cc

4. Open problems

An important problem that continues to remain open is to prove
a lower bound of the form Ω(n1+ε) for some constant ε > 0 for
the depth-2 complexity of an explicit matrix. Such a lower bound
would follow from an explicit hitting set of size at most n2−1 for the
class of polynomials of the form xT BCy such that ‖B‖0 + ‖C‖0 ≤
n1+ε.

Another natural question here is to understand if this PIT
based approach can be used for explicit constructions of rigid ma-
trices, which improve the state of art. One concrete question in
this direction would be to construct explicit hitting sets for the set
of matrices which are not (r, s) rigid for rs > ω(n2 log(n/r)). Us-
ing the techniques in this paper, it is possible to construct hitting
sets of size O(rs) for matrices which are not (r, s) rigid. But, this
is non-trivial only when rs ≤ cn2 for some constant c < 1, which
is a regime of parameters for which explicit construction of rigid
matrices is already known. A sequence of recent results (Alman &
Williams 2017; Dvir & Edelman 2019; Dvir & Liu 2020) showed
that many natural candidates for rigid matrices that posses certain
symmetries are in fact not as rigid as suspected. This approach
might circumvent these obstacles by giving an explicit construction
which is not ruled out by these results.

A lower bound of s on the size of depth d linear circuits comput-
ing the linear transformation Ax implies a lower bound of Ω(s) for
depth Ω(d) algebraic circuits computing the degree-2 polynomial
yT Ax (Baur & Strassen 1983; Kaltofen & Singer 1991) (so, we can
convert lower bounds for circuits with n outputs to lower bounds
for circuits with 1 output). A notable open problem in algebraic
complexity, which is very related to this work, is to prove any
super-linear lower bound for algebraic circuits of depth O(log n)
computing a polynomial with constant total degree. We refer to
Raz (2010) for a discussion on the importance of this problem.
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