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Abstract. J. De Loera & T. McAllister and K. D. Mulmuley & H.
Narayanan & M. Sohoni independently proved that determining the
vanishing of Littlewood–Richardson coefficients has strongly polyno-
mial time computational complexity. Viewing these as Schubert calcu-
lus numbers, we prove the generalization to the Littlewood–Richardson
polynomials that control equivariant cohomology of Grassmannians.
We construct a polytope using the edge-labeled tableau rule of H.
Thomas, A. Yong. Our proof then combines a saturation theorem of D.
Anderson, E. Richmond, A. Yong, a reading order independence prop-
erty, and É. Tardos’ algorithm for combinatorial linear programming.
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1. Introduction

Let λ = (λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0) be a partition with n non-
negative parts. We identify it in the usual manner with its Fer-
rers/Young diagram, where the i-th row consists of λi boxes. Con-
sider a grid with n rows and m ≥ n + λ1 − 1 columns. Place λ in
the northwest corner; this is the initial diagram for λ.
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For example, if λ = (4, 1, 1, 0), the initial diagram is the first of
the three below.
⎡
⎢⎢⎣

+ + + + · · ·
+ · · · · · ·
+ · · · · · ·
· · · · · · ·

⎤
⎥⎥⎦

⎡
⎢⎢⎣
+ + + · · · ·
+ · · · + · ·
· · · · · · ·
· + · · · · ·

⎤
⎥⎥⎦

⎡
⎢⎢⎣

+ · · · · · ·
+ · + + + · ·
· · · · · · ·
· + · · · · ·

⎤
⎥⎥⎦

A local move is a mutation of any 2 × 2 subsquare of the form

(
+ ·
· · �→ · ·

· +

)
.

from successive applications of the local move to the initial diagram
for λ. Above, one sees two more of the many other plus diagrams
for λ = (4, 1, 1, 0).

Let Plus(λ) be the set of plus diagrams for λ. Given P ∈
Plus(λ), let wtx(P ) be the monomial xα1

1 xα2
2 · · · xαn

n where αi is
the number of +’s in row i of P . A finer statistic is

wtx,y(P ) =
∏
(i,j)

xi − yj,

where the product is over all (i, j) such that there is a + in row
i and column j of P . For example, if P is the rightmost diagram
above, then

wtx(P ) = x1x
4
2x4 and

wtx,y(P ) = (x1 − y1)(x2 − y1)(x2 − y3)(x2 − y4)(x2 − y5)(x4 − y2).

Let X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn+λ1−1} be two
collections of indeterminates. We consider two generating series,
the second being a refinement of the first:

sλ(X) =
∑

P∈Plus(λ)
wtx(P ) and sλ(X; Y ) =

∑
P∈Plus(λ)

wtx,y(P ).

These are the Schur polynomial and factorial Schur polyno-
mial, respectively. A more standard description of these polyno-
mials involves semistandard Young tableaux, see, e.g., Macdonald
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(1992) and the references therein. The description above arises in,
e.g., Knutson et al. (2009).

Let Sym[X] denote the ring of symmetric polynomials in X.
The set of Schur polynomials sλ(X) over partitions λ with at most
n, possibly empty, rows is a Z-linear basis of Sym[X]. Analo-
gously, the factorial Schur polynomials form a Z[Y ]-linear basis of
Sym[X] ⊗Q Z[Y ].

The structure constants with respect to these bases are defined
by

sλ(X)sμ(X) =
∑

ν

cν
λ,μsν(X) and

sλ(X; Y )sμ(X; Y ) =
∑

ν

Cν
λ,μsν(X; Y ).

Here, cν
λ,μ is the Littlewood–Richardson coefficient; this is

known to be a nonnegative integer. Following the terminology
of Molev (2009), the Littlewood–Richardson polynomial is
Cν

λ,μ ∈ Z[Y ]. These latter coefficients generalize the former, i.e.,

cν
λ,μ = Cν

λ,μ|y1=0,y2=0,...,yn+λ1−1=0.

In general, cν
λ,μ = 0 unless |λ| + |μ| = |ν|, whereas Cν

λ,μ = 0 unless
|λ| + |μ| ≥ |ν|, where here |λ| =

∑
i λi. It is a theorem of Graham

(2001) that Cν
λ,μ is uniquely expressible as a polynomial, with non-

negative integer coefficients in the variables {βi := yi+1−yi : i ≥ 1}.
For example, the interested reader may verify that

s(1,0)(x1, x2; Y )2 = s(2,0)(x1, x2; Y ) + s(1,1)(x1, x2; Y )

+ (y3 − y2)s(1,0)(x1, x2; Y ).

De Loera & McAllister (2006) and Mulmuley et al. (2012) in-
dependently proved the vanishing problem for cν

λ,μ has strongly
polynomial time complexity. The following result completes the
parallel above:

Theorem 1.1. The vanishing of Cν
λ,μ can be decided in strongly

polynomial time.
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In contrast, Narayanan (2006) has shown that computation of
cν
λ,μ is a #P-complete problem in L. Valiant’s complexity theory

for counting problems Valiant (1979). Now, cν
λ,μ is a special case

of Cν
λ,μ of when |ν| = |λ| + |μ|. In this case, Cν

λ,μ|βi=1 = Cν
λ,μ.

Hence, it follows that determining the value of Cν
λ,μ|βi=1 ∈ Z≥0 is

#P-hard. In particular, no polynomial time algorithm for either
counting problem can exist unless P = NP.
Overview of proof of Theorem 1.1. Our argument is a modification
of that used in De Loera & McAllister (2006); Mulmuley et al.
(2012). In Section 3, we construct, with explicit inequalities, a
polytope Pν

λ,μ with the property that Pν
λ,μ has a lattice point if and

only if Cν
λ,μ �= 0. Now, if Pν

λ,μ is nonempty, it has a rational vertex.
In that case, some dilation NPν

λ,μ contains an integer lattice point.
Moreover, by our construction, NPν

λ,μ = PNν
Nλ,Nμ, which means

CNν
Nλ,Nμ �= 0. Thus, by a saturation theorem of Anderson et al.

(2013), we conclude

Cν
λ,μ �= 0 ⇐⇒ CNν

Nλ,Nμ �= 0 ⇐⇒ Pν
λ,μ �= ∅.

To determine if Pν
λ,μ �= ∅, one needs to ascertain feasibility of any

linear programming problem involving Pν
λ,μ. The Klee–Minty cube

shows that the practically efficient simplex method has exponential
worst-case complexity. Instead, one can appeal to ellipsoid/interior
point methods for polynomiality. Better yet, our inequalities are
of the form Ax ≤ b where the entries of A are from {−1, 0, 1}
and the vector b is integral. Hence, our polytope is combinatorial
and so one can achieve strongly polynomial time complexity using
É. Tardos’ algorithm; see Grotschel et al. (1993); Tardos (1986). �

We point out some aspects of our modification. In De Loera
& McAllister (2006); Mulmuley et al. (2012), the authors use the
original saturation theorem of Knutson & Tao (2003). In addition,
the polytope used has precisely cν

λ,μ many lattice points. Our poly-
tope does not have any such exact counting feature. To construct
it, we need to deduce a new result about the edge-labeled tableau
rule of Thomas & Yong (2018). The remainder of our argument is
Proposition 3.2.

In recent years, there has been significant work on the complex-
ity of computing Kronecker coefficients; see, e.g., Bürgisser & Iken-
meyer (2008); Ikenmeyer et al. (2017); Pak & Panova (2017) and
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the references therein. In the context of the representation theory
of the symmetric group, these are an extension of the Littlewood–
Richardson coefficients. This paper initiates a study of the anal-
ogous complexity issues in Schubert calculus, by interpreting the
Littlewood–Richardson coefficients as triple intersections of Schu-
bert varieties in the Grassmannian; see Section 4 for further dis-
cussion and open problems.

2. A factorial Littlewood–Richardson rule

Molev & Sagan (1999) gave the first combinatorial rule for Cν
λ,μ.

The first rule that exhibited the positivity of Graham (2001) was
found by Knutson & Tao (2003) in terms of puzzles. Later,
Kreiman (2010) and Molev (2009) independently gave essentially
equivalent tableaux rules with the same positivity property. We
also mention Zinn-Justin (2009) which gives a quantum integrabil-
ity proof of the puzzle rule.

Actually, we will use yet another rule, due to Thomas & Yong
(2018). This is also the rule utilized in the proof of the saturation
theorem of Anderson et al. (2013) that we need. Indeed, we will
observe a new property of the rule that may be of some independent
interest.

2.1. The edge-labeled rule. We now recall the rule for Cν
λ,μ of

Thomas & Yong (2018).
Suppose λ ⊆ ν. An edge-labeled tableau T of skew shape

ν/λ and content μ is an assignment of μi many labels i to the boxes
of ν/λ and the horizontal edges weakly south of the
“southern border” of λ (thought of as a lattice path, in the usual
way). Each box contains exactly one label. Each edge contains a
(possibly empty) set of labels. Moreover:

(i) the box labels weakly increase along rows;

(ii) the labels strictly increase along columns; and

(iii) no edge label k is too high, i.e., every edge label k must be
weakly below the southern edges of row k.
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We will refer to (i) and (ii) as semistandardness conditions.
A tableau is lattice if for each label k and column j, the number

of k’s in column j and to the right is weakly greater than the
number of (k + 1)’s that appear in the same region. This can
be stated in terms of a column reading word wc(T ), obtained by
reading the columns top to bottom, right to left. When reading a
set-valued edge, read entries in increasing order.

We will also need the row reading word wr(T ). This is obtained
by reading the rows right to left and top to bottom, and reading
set-valued edges in increasing order.

We say a word is a lattice if for every t and label k, in reading
the first t letters, there are weakly more k’s than (k + 1)’s.

Example 2.1. Consider the following tableaux with ν = (4, 2, 2)
and λ = (2, 2, 0): ♦

Then,

wc(T1) = 1 1 1 2 3 1 2 3 wr(T1) = 1 1 1 2 1 3 2 3

wc(T2) = 2 1 1 2 3 1 2 3 wr(T2) = 2 1 1 2 1 3 2 3.

T1 and T2 are both edge-labeled tableaux; however, only T1 is
lattice. Further, notice that both wc(T1) and wr(T1) are lattice,
whereas both wc(T2) and wr(T2) are not lattice. This is the point
of Theorem 2.3 below. In T3, the edge labels on the southern bor-
der of the first row are too high. Therefore, while T3 is lattice, it
is not an edge-labeled tableau.

Let EdgeTabν
λ,μ be the set of edge-labeled tableaux T such that

wc(T ) is lattice. The main theorem of Thomas & Yong (2018) is
that there is a weight apwt(T ) such that

Cν
λ,μ =

∑
T∈EdgeTabν

λ,μ

apwt(T ).
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We do not actually need apwt(T ) in this paper, so we suppress this
detail. Instead, to discuss nonvanishing, we only need the following
immediate consequence:

Proposition 2.2 (Anderson et al. 2013, Corollary 3.3). Cν
λ,μ = 0

if and only if EdgeTabν
λ,μ = ∅.

2.2. Reading order independence. It is well known to ex-
perts in the theory of Young tableaux that “any reasonable reading
order works.” An instantiation of this imprecise statement is that
a (classical, i.e., non-edge-labeled) semistandard tableaux is lattice
for the column reading word (top to bottom, right to left) if and
only if it is lattice for the row reading word (right to left, top to
bottom).

The original formulation of the rule from Thomas & Yong
(2018) uses column reading order. However, since the saturation
property concerns stretching rows, we will need the following:

Theorem 2.3. Let T be an edge-labeled tableau. Then, wc(T ) is
lattice if and only if wr(T ) is lattice.

Proof (Theorem 2.3). Let T be an edge-labeled tableau. Let

Ti,j = the label of the box in row i column j in matrix notation.

Similarly,

Ti+ 1
2
,j = the (set) filling of the southern edge of (i, j).

Accordingly, we let (x, y) denote either a box or edge position
of the tableau, i.e., (x, y) = (i, j) or (x, y) = (i + 1

2
, j). Let

wr |(x,y) (T ) = the row reading word of T ending at (x, y), and

wc |(x,y) (T ) = the column reading word of T ending at (x, y).

Example 2.4. Let T = T1 from Example 2.1. Then,

wc |(2,1) (T ) = 1 1 1 2 3 wr |(2,1) (T ) = 1 1

wc |(2+ 1
2
,1) (T ) = 1 1 1 2 3 1 wr |(2+ 1

2
,1) (T ) = 1 1 1 2 1.

♦
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Claim 2.5.

(I) All labels weakly northeast of (x, y) are read by wr |(x,y) (T )
and wc |(x,y) (T ).

(II) If � is read by wc |(x,y) (T ) but not wr |(x,y) (T ) then � > Tx,y.

(III) If � is read by wr |(x,y) (T ) but not wc |(x,y) (T ) then � < Tx,y.

Proof (Claim 2.5): (I) is by definition. (II) and (III) follow since
T is semistandard. �

(⇒) Suppose wc(T ) is lattice, but wr(T ) is not. Hence, there
exists a label k and position (x, y) such that wr |(x,y) contains more
(k + 1)’s than k’s. We may assume without loss of generality that
(x, y) contains k + 1. Then by (II) and (III) of the claim, the
excess of (k + 1)’s must be blamed on the region weakly northeast
of (x, y). However, (I) implies wc(T ) is not lattice, a contradiction.

(⇐) Conversely, suppose wr(T ) is lattice and wc(T ) is not. Take
a label k and position (x, y) such that wc|(x,y)(T ) contains more
(k + 1)’s than k’s. We may assume that if (x, y) is a box position
then Tx,y = k+1, and if (x, y) is an edge position then k+1 ∈ Tx,y.
Further, we may assume (x, y) is the first (topmost and rightmost)
position of such a failure.
Case 1: [(x, y) = (i, j) is a box] By (II), among the labels read by
wc |(i,j) (T ) but not wr |(i,j) (T ), no k or k + 1 appears. Therefore,
since wc |(i,j) (T ) is not lattice, in the region read by both, there
are more (k + 1)’s than k’s. Since wr(T ) is lattice, in the region
only read by wr |(i,j) (T ), there must exist at least one k. Where
can such an additional k appear? By semistandardness, it must be
in row i−1, strictly to the left of column j, as either a box or edge
label. Moreover, again by semistandardness, any such extra k in
column j′ < j must have a “paired” k + 1 in the box (i, j′) below
it. Hence, it follows that wr(T ) is also not lattice, a contradiction.

Case 2: [(x, y) = (i + 1
2
, j)] As in Case 1, there must exist an extra

k in the region R weakly north of row i and strictly west of column
j. Now, if there is a box label k in R, then by semistandardness,
we conclude Ti,j = k. This implies (x, y) is not the first violation
of latticeness for wc(T ).
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3. Proof of the main theorem

Suppose T ∈ EdgeTabν
λ,μ. Let ri

k = ri
k(T ) denote the number of k′s

in the ith row of T and r
i+ 1

2
k = r

i+ 1
2

k (T ) the number of k’s in the
southern edges of the ith row of T , where

k ∈ {1, 2, . . . , l(μ)} and i ∈ {1, 2, . . . , l(ν)}.

Recall, l(μ) is the number of nonzero parts of μ, etc. By convention,
let

ri
l(μ)+1 = r

l(ν)+1
k = 0.

Example 3.1. For instance, consider

Then,

r21 = 2, r
2+ 1

2
1 = 1, r

2+ 1
2

2 = 1, r32 = 1, r33 = 1, r
3+ 1

2
3 = 1,

and all other values are zero. ♦

Next, examine the following conditions (which modify those of
a preprint version of Mulmuley et al. (2012)):

(A) Nonnegativity: For all i, k,

ri
k ≥ 0, r

i+ 1
2

k ≥ 0.

(B) Shape constraints: For all i,

λi +
∑

k

ri
k = νi.
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(C) Content constraints: For all k,

∑
i

ri
k + r

i+ 1
2

k = μk.

(D) Gap constraints: For all i, k,

r
i+ 1

2
k ≤

(
λi +

∑
k′<k

ri
k′

)
−

(
λi+1 +

∑
k′≤k

ri+1
k′

)
.

(E) Too high: For all i < k,

r
i+ 1

2
k = 0.

(F) Reverse lattice word constraints: For all i, k,

∑
i′<i

ri′
k + r

i′+ 1
2

k ≥ ri
k+1 +

∑
i′<i

ri′
k+1 + r

i′+ 1
2

k+1 .

Define a polytope

Pν
λ,μ = {(ri

k, r
i+ 1

2
k ) : (A)–(F)} ⊆ R

2l(ν)l(μ).

Proposition 3.2. EdgeTabν
λ,μ �= ∅ ⇐⇒ Pν

λ,μ ∩ Z
2l(ν)l(μ) �= ∅.

Proof (Proposition 3.2). (⇒) Let T ∈ EdgeTabν
λ,μ. Clearly, ri

k

and r
i+ 1

2
k satisfy (A), (B), (C), and (E) above. The tableau con-

straint (D) asks that there be enough edges in row i + 1
2
, between

the rightmost k in row i+1 and the leftmost k in row i, to accom-

modate r
i+ 1

2
k many k’s; this holds by semistandardness of T .

Finally, (F) merely asks that the row word will be lattice after
reading all the (k + 1)’s in row i; this is certainly true of T as it is
row lattice.

(⇐) Let (ri
k, r

i+ 1
2

k ) ∈ Pν
λ,μ ∩Z

2l(ν)l(μ). Construct a tableau T � of
shape ν/λ and content μ as follows. First, for all i, k, (uniquely)
place ri

k many k’s in row i, such that the k’s are weakly increasing
along each row. At this point, the tableau has no edge labels but,
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by (B) has the correct skew shape ν/λ. Moreover, (A) and (D)
combined implies that for all i, k,

λi+1 +
∑
k′≤k

ri+1
k′ ≤ λi +

∑
k′<k

ri
k′ .

This precisely asserts that the partially built T � is column strict.

Next, place r
i+ 1

2
k many k’s as far to the right as possible in row

i + 1
2

without breaking the semistandardness of T . To be precise,
the last k will be in column λi +

∑
k′<k ri

k′ and the remaining k’s
will be in adjacent columns to the left, namely columns:

(
λi +

∑
k′<k

ri
k′

)
− r

i+ 1
2

k + 1,

(
λi +

∑
k′<k

ri
k′

)
− r

i+ 1
2

k + 2,

. . . ,

(
λi +

∑
k′<k

ri
k′

)
− 1,λi +

∑
k′<k

ri
k′ .

(3.3)

This completes T �.
(D) asserts that column strictness is preserved in the final step

where we have added the edges: We are placing the k’s in row i+ 1
2

to the right of the box labels ≤ k in row i + 1. Also, in row i, the
columns (3.3) contain box labels < k. Now, (E) says no edge label
is too high.

However, (F) does not a priori show wr(T
�) is lattice (see

Example 3.6 below). Thus, we need:

Claim 3.4. wr(T
�) is lattice.

Proof of claim: Consider row i = 1. In this case, (F) asserts
r1k+1 ≤ 0 for all k ≥ 1. In view of (A), this means that there are no
labels greater than 1 in the first row of T �. Moreover, if we know
row latticeness has not failed before reading row i > 1, then (F)
immediately says no violation can occur in row i either.

Therefore, it remains to check that while reading the edge labels
in a row i + 1

2
, one always remains lattice. Suppose not. (F)

combined with (A) implies

(3.5)
∑

i′<i+1

ri′
k + r

i′+ 1
2

k ≥
∑

i′<i+1

ri′
k+1 + r

i′+ 1
2

k+1 .



252 Adve, Robichaux & Yong cc 28 (2019)

That is, after reading the entirety of row i + 1
2
, the row reading

word has at least as many k’s as (k + 1)’s.

Say edge (i + 1
2
, j) contains a violating label k + 1 that breaks

the latticeness of the row word. We may assume this k + 1 is first
(rightmost) among all such labels. By (3.5), and/or the sentence
immediately after it, there must be an “extra” edge label k in row
i + 1

2
and in column j or to its left.

Case 1: [Ti,j < k] The rightmostness of the placement of the k’s
(see (3.3)) implies that k ∈ Ti+ 1

2
,j. Hence, the row word has more

(k + 1)’s than k’s before reading edge (i + 1
2
, j), a contradiction of

the rightmostness of k + 1. That is, this case cannot occur.

Case 2: [Ti,j = k] By semistandardness, for every k + 1 in an edge
(i + 1

2
, j′) with j′ ≥ j, there is k ∈ Ti,j′ . It is then straightforward

to conclude there are more (k + 1)’s than k’s before reading the
edge (i+ 1

2
, j), and in particular, before it even reads the rightmost

k in row i, a contradiction. �
This completes the proof of the proposition.

Example 3.6. To illustrate the proof of (⇐) above, take λ =
(2, 2, 1, 1, 0), μ = (2, 2, 2, 1, 1), and ν = (2, 2, 2, 2, 2). Now, r31 =

r42 = r
4+ 1

2
1 = r

4+ 1
2

2 = r
5+ 1

2
4 = r

5+ 1
2

5 = 1 and r53 = 2 (all other
components are zero) defines a lattice point in Pν

λ,μ. There are
four edge-labeled tableaux that have these statistics, namely

The first is not lattice, but the other three are. The rightmost of
them is T �. ♦

Conclusion of proof (Theorem 1.1): Notice that since (A)–(F) is
linear and homogeneous in the components of λ, μ and ν, it follows
that PNν

Nλ,Nμ = NPν
λ,μ. Thus, in view of Proposition 3.2, we have
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constructed the desired polytope Pν
λ,μ alluded to in the introduc-

tion. Since this is the only missing component of the argument
given there, the theorem follows.

Using indicator variables, one easily modifies the above argu-
ment to construct a polytope Qν

λ,μ whose lattice points are in bi-
jection with the tableaux in EdgeTabν

λ,μ. However, this polytope

does not satisfy NQν
λ,μ = QNν

Nλ,Nμ. Counting lattice points of this
polytope is not equivalent to computing Cν

λ,μ since one needs a
weighted count based on apwt.

4. Schubert calculus and complexity theory

The Littlewood–Richardson polynomials appear in the topic of
equivariant Schubert calculus of Grassmannians. The usage of
“equivariant” refers to “equivariant cohomology,” a type of en-
riched cohomology theory. We refer the reader to Knutson & Tao
(2003) for background.

Another enriched cohomology theory is K-theory (i.e., the
Grothendieck ring of algebraic vector bundles). There is a lattice
rule Buch (2002) for the corresponding K-theoretic Littlewood–
Richardson coefficients kν

λ,μ (another lattice rule uses genomic tab-
leaux Pechenik & Yong (2017)).

Question 4.1. Is the decision problem kν
λ,μ = 0 in P?

One cannot use the same general method of this paper to resolve
Question 1. To be precise, in (Buch 2002, Section 7), it is noted

that (up to a sign convention) k
(2,1)
(1,0),(1,0) = 1 but k

(4,2)
(2,0),(2,0) = 0.

That is, the saturation statement

kν
λ,μ �= 0 =⇒ kNν

Nλ,Nμ �= 0

is false. (The truth of the converse is not known.) Therefore, there
cannot exist a polytope Kν

λ,μ with the dilation property NKν
λ,μ =

KNν
Nλ,Nμ crucial for the argument we use.

Quantum cohomology of Grassmannians is another deforma-
tion of significant interest. Work of Buch et al. (2016) established
a combinatorial rule for the coefficients dν

λ,μ of this case. They
proved the two-step case of a puzzle conjecture of A. Knutson; see
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Buch et al. (2003). Also, Belkale (2008) has established a quan-
tum saturation property for these quantum Littlewood–Richardson
coefficients. However, even from these results a solution to the fol-
lowing is not clear to us:

Question 4.2. Is the decision problem dν
λ,μ = 0 in P?

The problems of computing kν
λ,μ and dν

λ,μ are #P-hard
problems. This is because they contain as special cases the
Littlewood–Richardson coefficients, which are #P-complete by
Narayanan (2006). To show both problems are actually
#P-complete, one needs an argument to establish both problems
are actually in #P. This should be possible using one of the combi-
natorial rules for each of the numbers; the technicalities of such an
argument (including recalling the rules) might appear elsewhere.

Finally, the Schur polynomials are special cases of Schubert
polynomials Sw(X), defined for any permutation w ∈ Sn. It is
known that Sw′ = Sw if w′ is the image of w under the natural
embedding of Sn ↪→ Sn+1. Therefore, it is unambiguous to refer
to Sw for w ∈ S∞. These polynomials form a Z-linear basis of
the ring of polynomials Q[x1, x2, . . .]. The structure constants cw

u,v

relative to this basis are known to be nonnegative for Schubert cal-
culus reasons. We refer to the book Manivel (2001) for background
and references.

It is a longstanding open problem to find a combinatorial rule
for cw

u,v. In particular, it is not known if the problem is in #P.
Since the Schubert structure constants also contain the Littlewood–
Richardson coefficients in a specific way, the aforementioned the-
orem of H. Narayanan implies the problem is #P-hard. I. Pak-
A. Morales have informed us that they have a proof that the prob-
lem is in GapP.

Question 4.3. Is the decision problem cw
u,v = 0 NP-hard?

Recently, it was shown that vanishing of Kronecker coefficients
is NP-hard Ikenmeyer et al. (2017). This establishes a formal dif-
ference in difficulty between the Kronecker coefficients and the
Littlewood–Richardson coefficients. Inspired by their results, Ques-
tion 3 asks if one can similarly establish a formal complexity dif-
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ference in Schubert calculus. On the other hand, if either decision
problem in Questions 1 or 2 is NP-hard, then such a formal differ-
ence does not preclude existence of a general combinatorial rule,
as rules exist in both of these research directions.
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