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Abstract. The motivation for this work (Pandey et al. 2016) comes
from two problems: testing algebraic independence of arithmetic cir-
cuits over a field of small characteristic and generalizing the structural
property of algebraic dependence used by Kumar, Saraf, CCC’16 to ar-
bitrary fields. It is known that in the case of zero, or large characteristic,
using a classical criterion based on the Jacobian, we get a randomized
poly-time algorithm to test algebraic independence. Over small char-
acteristic, the Jacobian criterion fails and there is no subexponential
time algorithm known. This problem could well be conjectured to be in
RP, but the current best algorithm puts it in NP#P (Mittmann, Sax-
ena, Scheiblechner, Trans.AMS’14). Currently, even the case of two
bivariate circuits over F2 is open. We come up with a natural gener-
alization of Jacobian criterion that works over all characteristics. The
new criterion is efficient if the underlying inseparable degree is promised
to be a constant. This is a modest step toward the open question of
fast independence testing, over finite fields, posed in (Dvir, Gabizon,
Wigderson, FOCS’07). In a set of linearly dependent polynomials, any
polynomial can be written as a linear combination of the polynomials
forming a basis. The analogous property for algebraic dependence is
false, but a property approximately in that spirit is named as “func-
tional dependence” in Kumar, Saraf, CCC’16 and proved for zero or
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large characteristics. We show that functional dependence holds for ar-
bitrary fields, thereby answering the open questions in Kumar, Saraf,
CCC’16. Following them, we use the functional dependence lemma to
prove the first exponential lower bound for locally low algebraic rank
circuits for arbitrary fields (a model that strongly generalizes homoge-
neous depth-4 circuits). We also recover their quasipoly-time hitting-set
for such models, for fields of characteristic smaller than the ones known
before. Our results show that approximate functional dependence is
indeed a more fundamental concept than the Jacobian as it is field
independent. We achieve the former by first picking a “good” transcen-
dence basis, then translating the circuits by new variables, and finally
approximating them by truncating higher degree monomials. We give a
tight analysis of the “degree” of approximation needed in the criterion.
To get the locally low-algebraic-rank circuit applications, we follow the
known shifted partial derivative-based methods.

Keywords. independence, transcendence, finite field, Hasse–Schmidt,
Jacobian, differential, inseparable, degree, circuit, identity testing,
lower bound, depth-4, shifted partials

Subject classification. 11T06, 12Y05, 68W30, 68Q25

1. Introduction

Algebraic dependence is a fundamental concept in algebra that
captures algebraic/polynomial relationships of objects like num-
bers, polynomials, rational functions or power series, over some
field. Here, we define algebraic dependence of polynomials, since in
this work we deal only with polynomials. Polynomials f1, . . . , fm ∈
F[x1, . . . , xn] are called algebraically dependent over field F if there
exists a nonzero polynomial A(y1, . . . , ym) ∈ F[y1, . . . , ym] such that
A(f1, . . . , fm) = 0 and such an A is called an annihilating polyno-
mial of f1, . . . , fm. If no such nonzero polynomial A exists, then
the given polynomials are called algebraically independent over F.

For example, f1 = (x + y)2 and f2 = (x + y)3 are algebraically
dependent over any field, as y3

1 − y2
2 is an annihilating polynomial.

Polynomials x+y and xp +yp are dependent over Fp, but indepen-
dent over Q. Monomials x1, . . . , xn are examples of algebraically
independent polynomials over any field.
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Algebraic dependence can be viewed as a generalization of lin-
ear dependence as the former captures algebraic relationships of
any degree, whereas the latter captures linear relationships. Alge-
braic dependence shares a few combinatorial properties (known as
matroid properties, Oxley 2006) with linear dependence. For ex-
ample, if a set of polynomials is algebraically independent then any
subset of them is algebraically independent. The transcendence de-
gree (trdeg or algRank) of a set of polynomials is defined as the
maximal number of algebraically independent polynomials and it
is well defined thanks to the matroid properties. The concepts of
rank and basis in linear algebra have analogs here as transcendence
degree and transcendence basis,respectively.

The concept of algebraic independence is useful in several areas
of mathematics (Kemper 2010, Chap. 13): field theory, commuta-
tive algebra, algebraic geometry, invariant theory, theory of alge-
braic matroids. It has found interesting applications in computer
science as well. For example, L’vov (1984) used algebraic depen-
dence in analysis of program invariants of arithmetic straight line
programs. To prove lower bounds on the formula size of determi-
nant, Kalorkoti (1985) also used transcendence degree as a tool.
Dvir et al. (2009a), Dvir (2009) constructed explicit deterministic
randomness extractors for sources which are polynomial maps over
finite fields. Dvir et al. (2011) gives a cryptography application,
using algebraic characterization of entropy of low-degree polynomi-
als. Beecken et al. (2013), Agrawal et al. (2016), Kumar & Saraf
(2016) used it for designing faster deterministic hitting-sets for
some interesting cases of the polynomial identity testing problem
(PIT) and proving circuit lower bounds. Curticapean (2013) used
algebraic independence of polynomials to show the hardness of a
parameterized counting problem.

An example relevant to computer science is to compute the “en-
tropy” of a given polynomial map φ : (x1, . . . , xn) �→ (f1, . . . , fn)
in the space F

n
q , where q is a power of p = 2. (More generally, p

grows as a polynomial in the input size.) This turns out to be a
question of computing the transcendence degree of the polynomi-
als f1, . . . , fn (Dvir et al. 2009a).For constant p, there are no good
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methods known. Our work improves the state of the art in this
regime.

To discuss the complexity of algebraic independence testing, we
have to specify the representation of input polynomials. An arith-
metic circuit is a directed acyclic graph consisting of addition (+)
and multiplication (×) gates as nodes, takes variables x1, . . . , xn

and field constants as input (leaves), and outputs a polynomial
f(x1, . . . , xn). This is a succinct representation of multivariate
polynomials, as polynomials of high degree (or having many mono-
mials) can be represented by small circuits.

Perron (1927), P�loski (2005) gave a bound on the degree of the
minimal annihilating polynomial, proving that it is bounded by
the product of the degrees of the input polynomials. This bound
was subsequently slightly improved in Kayal (2009), Beecken et al.
(2013). Perron’s bound gives us the brute-force approach. It re-
duces the problem of computing the annihilating polynomial to
solving an exponential sized system of linear equations and this
can be done in PSPACE (Csanky 1976). Thus, PSPACE is the
“trivial” complexity upper bound for algebraic independence test-
ing, over any field.

The degree bound on the minimal annihilating polynomial hap-
pens to be tight. We can give examples of n quadratic polynomials,
such that the degree of their minimal annihilating polynomial is 2n

(Kayal 2009). There is a hardness result known (Kayal 2009), that
shows that computing even the constant term of the annihilating
polynomial is NP-hard, and that the annihilating polynomial is
not of polynomial size in general, unless the polynomial hierarchy
collapses.

It turns out that the decision version, i.e., checking if the poly-
nomials are algebraically independent, is much more efficient over
zero or large characteristic, even when the polynomials are suc-
cinctly represented as circuits. The key idea is a classical result,
known as the Jacobian criterion (Beecken et al. 2013; Jacobi 1841).
It says that if the characteristic of the field is zero, or large enough
(compared to the product of degrees of the given polynomials),
then the transcendence degree equals the linear rank of the Jaco-
bian matrix of the polynomials. This leads to a simple randomized
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poly-time algorithm for checking algebraic independence, as we
can get the circuits of the partial derivatives efficiently (Bauer &
Strassen 1983) and then use random evaluations to compute the
rank of the Jacobian matrix. This final step of randomized evalua-
tion is possible due to the Schwartz–Zippel–DeMillo–Lipton lemma
(DeMillo & Lipton 1978; Schwartz 1980; Zippel 1979).

One direction of the Jacobian criterion (if the polynomials are
algebraically dependent, then their Jacobian matrix is not full
rank) holds true for any characteristic. But the converse fails if
the characteristic is small compared to the product of the degrees
of input polynomials. For example, xp is algebraically independent
of Fp, yet its derivative vanishes. We remark here that if two alge-
braically independent polynomials over characteristic p have zero
Jacobian, then it does not mean that one of them is a p power.
Consider, for example, {xp−1y, xyp−1} over Fp for prime p > 2.

There are infinitely many input instances (set of polynomi-
als), where the Jacobian criterion fails, i.e., Jacobian vanishes even
though the given polynomials are independent. Those instances
can be characterized by the notion of inseparable extension that
appears in Galois theory and is formally defined in Sec. 2.1. For
example, the field extension Fp(x)/Fp(x

p) has inseparable degree
p as that many conjugates of p

√
xp in the splitting field are equal.

This is a hard algebraic situation with no good geometric interpre-
tation. Such behavior is absent over zero characteristic fields. So,
positive characteristic requires inventing new concepts.

Naturally, we would like to come up with an efficient (random-
ized poly-time) algorithm over small characteristic. Though the
failure of Jacobian criterion over small characteristic is known for
long (Ehrenborg & Rota 1993; Forsman 1992), owing to the inter-
est in algebraic independence from a computer science perspective,
several recent papers (Beecken et al. 2013; Dvir et al. 2009a; Kayal
2009) posed the complexity status of this problem (whether it is
in RP) as an open question.1

1In a recent development, independence testing has been put in AM ∩
coAM by Guo et al. (2018); in particular, this makes the problem unlikely to
be NP-hard. However, the method does not yet give an efficient criterion.
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Talking about the two degrees. Let us consider a case
where Jacobian criterion fails and certifying independence gets
tricky. Let m1 and m2 be integers such that m1m2 is coprime to p,
and let f1 = xpm1

1 , f2 = xm2
2 . It is easy to deduce that the degree

of the extension Fp(x1, x2)/Fp(f1, f2) is pm1m2. In fact, the degree
of the annihilating polynomial of {x1, f1, f2} (resp. {x2, f1, f2}) is
pm1 (resp. m2). However, the inseparable degree of the extension
is only p, as the former annihilating polynomial (i.e., ypm1

1 −y2) is a

polynomial in yp
1 but not in yp2

1 . Thus, there are cases when the in-
separable degree can be much smaller, even O(1), compared to the
extension degree. Notice that, in general, the inseparable degree is
a p-power that divides the extension degree, which in turn is upper
bounded by

∏
i deg(fi) (by Perron’s bound)—usually an exponen-

tially large parameter. The methods developed in this work only
depend on the underlying inseparable degree; thus, our algorithm
is expected to be much better than brute-force (in many cases).

A criterion that works for all characteristic for a natural prob-
lem like testing algebraic independence would be mathematically
interesting and useful. Direct computational implications of hav-
ing an efficient Jacobian-like criterion would be a possible gen-
eralization (to small characteristic) of PIT or lower bound results
(Agrawal et al. 2016), and algebraic extractors or entropy concepts
(Dvir et al. 2009a).

Work done in case of finite fields. Mittmann et al. (2014)
gave a criterion that works over all fields, which they named Witt–
Jacobian criterion. One key idea of the Witt–Jacobian criterion is
to lift the input polynomials from characteristic p ≥ 2 to a field
of p-adics, which is zero characteristic. Witt–Jacobian polynomial
can be seen as a scaled up p-adic lift of Jacobian polynomial and
the criterion involves checking certain monomials (degeneracy test-
ing; which looks hard) rather than zero testing. The main object
underlying the proof is the de Rham–Witt pro-complex, a tool from
modern algebraic geometry. (An excellent survey is Illusie 1994.)

Witt–Jacobian criterion improved the complexity of indepen-
dence testing problem, over positive characteristic, from PSPACE
to NP#P. In the hierarchy of complexity classes, NP#P is far above
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RP; thus, there is a huge gap between what we have and what we
want.

Partial derivative operator played a key role in Jacobian crite-
rion, but it behaves strangely over positive characteristic. Though
it satisfies the usual rules of derivatives like linearity, product rule
and chain rule, one important difference here is the fact that a
non-constant polynomial can have a zero derivative, causing the
failure of Jacobian criterion. Another difference is that the higher
derivatives of order k ≥ p are zero for all polynomials over charac-
teristic p. Hasse derivatives are variants of usual derivatives that
were originally defined by Hasse & Schmidt (1937) and indepen-
dently by Teichmüller (1936), to tackle this problem. In computer
science literature, Hasse derivatives were used recently in coding
theory (see Dvir et al. 2013 and the references therein), and PIT or
lower bounds via generalized versions of shifted partial derivatives
(Forbes 2014, 2015).

The observation that the p-th-order Hasse–Schmidt derivative
of xp is nonzero is the starting point of our work, seeking a gen-
eralization of Jacobian criterion using higher-order Hasse–Schmidt
differentials. Though our current exposition does not use it explic-
itly, we give a possible interpretation of the main criterion using
Hasse–Schmidt differentials in Sec. A.

Approximate functional dependence. Although algebraic
dependence and linear dependence share many structural proper-
ties, there are some differences as well. For example, in a set of
linearly dependent polynomials, any polynomial can be expressed
as a linear combination of the polynomials forming the basis. The
analogous property for the case of algebraic dependence is not true.
A polynomial f which is algebraically dependent on a set of poly-
nomials g1, . . . , gn may not be expressible as a polynomial function
in g1, . . . , gn. For example, x is algebraically dependent on x2,
but x is not a polynomial in x2, as no polynomial in x2 can have
a linear term like x. As a side note, we remark that checking
if f ∈ F[g1, . . . , gn] (known as algebra membership problem) seems
harder than testing algebraic dependence (see Shannon & Sweedler
1988 for an algorithm using Gröbner bases).

Using a polynomial root approximation lemma from Dvir et al.
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(2009b), Kumar & Saraf (2016) came up with the notion of ap-
proximate functional dependence. They showed that over fields
of zero, or large characteristic, if polynomials f, g1, . . . , gn are alge-
braically dependent and g1, . . . , gn form a transcendence basis, then
one can always approximate the polynomial f (shifted by a ran-
dom point) as a polynomial function in the correspondingly shifted
polynomials g1, . . . , gn. This is approximate in the sense that we
ignore the monomials with degree greater than the precision we
want (in this case, the degree of f). Kumar & Saraf (2016) asked
if this structural property of approximate functional dependence
holds true for small characteristic. They also left open the ques-
tion whether the converse of approximate functional dependence
is true, i.e., whether approximate functional dependence exactly
characterizes algebraic dependence? We answer these questions,
for arbitrary characteristic, in the affirmative. Over zero charac-
teristic, the converse of approximate functional dependence is easy
to show using classical Jacobian criterion; we refer to (Saptharishi
2016, Chap. 20) for a proof.

The notion of approximate functional dependence can be re-
lated to a classical theorem in multivariate calculus, known as
Implicit Function Theorem (Krantz & Parks 2012). It is about
converting an implicit relationship (like, f(x, y) = 0) to an explicit
one (like, y = g(x)). There is an algebraic version of this theorem
using formal power series; we refer to (Bürgisser et al. 2013, Thm.
2.31) for its proof and (Bourbaki 2013, Chap. 4) for a generalized
multidimensional version. This theorem basically says that roots
of a polynomial, satisfying a moderate condition, can be expressed
as a power series and the proof uses multivariate Taylor expansion
of a polynomial.

The process is similar to Newton iteration2 for root finding
and in computer science it has numerous applications: namely fast
polynomial division (see Von Zur Gathen & Gerhard 2013 and
references therein) and power series manipulations like inversion,
reversion, composition, root finding (see Bini & Pan 2012 and ref-
erences therein). It is well known that Hensel lifting and Newton

2Newton iteration, and Hensel lifting, converge very rapidly to the required
precision.
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iteration are related processes (Geddes et al. 1992) and this idea of
iterative root finding or ideal-adic lifting is behind almost all the
multivariate circuit factorization results by Kaltofen and others,
culminating in the papers (Kaltofen 1987, 1989, 2003; Kaltofen &
Trager 1990). Also see the work of Oliveira (2016) and the recent
results of Dutta et al. (2017).

Kumar–Saraf’s work and the power series version of the Implicit
function theorem motivate the following definition. Let us consider
the formal power series ring F

[[
x1, . . . , xn

]]
, where the precision is

by total degree.3 We say that a polynomial f is functionally de-
pendent on polynomials g1, . . . , gn if there exists a power series A ∈
F[[x1, . . . , xn]] such that f = A(g1, . . . , gn). Without loss of gener-
ality, we assume that the constant terms of the given polynomials
are zero, so that the above equality is well defined in F[[x1, . . . , xn]].
Now one may ask whether functional dependence relates to al-
gebraic dependence at all? Our main theorems (Thm. 3.7 and
Thm. 3.13) show that these two different-looking concepts are
equivalent! Our main result can be informally stated as follows.
Polynomials f1, . . . , fm (from F[x1, . . . , xn], where the field F is
arbitrary) are algebraically dependent if and only if there exists a
shifted polynomial fi(x1+z1, . . . , xn+zn)−fi(z1, . . . , zn) that func-
tionally depends on the rest of the polynomials fj(x + z) − fj(z)
(for random z in F

n
).

How is this related to classical derivatives or differentiation?
Multivariate Taylor expansion of a polynomial (around a generic
point z) connects the two interpretations. The coefficients of mono-
mials (in x) in the shifted polynomial f(x1 + z1, . . . , xn + zn) are
Hasse derivatives (Defn. 2.6) and the criterion we come up with
can be interpreted as a natural generalization of classical Jacobian
criterion using Hasse derivatives (see Sec. A).

Readers who are interested in the p-adic integers Ẑp (Koblitz
1984) may ask whether we get functional dependence in the analo-

gous p-adic formal power series Ẑp

[[
x1, . . . , xn

]]
. Indeed, for arbi-

3Formally, we are looking at the 〈x〉-adic completion of the polynomial
ring F[x]; see (Kemper 2010, Chap. 13). This new object has better analytic
behavior. Compare it with the 〈p〉-adic completion Ẑp of integers Z, for a
prime p (or, “completion” of rationals to get reals!).
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trary p-adic lifts f̂i, it can be shown that: f̂1, . . . , f̂m ∈ Ẑp[x1, . . . ,
xn] are algebraically dependent modulo p, if and only if there exists

a shifted polynomial f̂i(x1 + z1, . . . , xn + zn) − f̂i(z1, . . . , zn) that

functionally depends on the rest of the polynomials f̂j(x+z)−f̂j(z)

(for random z in Ẑ
n
p). We will skip the proof.

Background on PIT and circuit lower bounds. The prob-
lems of derandomization of PIT and proving lower bounds, for
explicit family of polynomials, are two fundamental questions in
complexity theory. The question of PIT asks to test whether the
polynomial computed by an arithmetic circuit is identically zero.
This question can be studied in two settings. In the whitebox
setting, we are allowed to see inside the circuit, whereas in the
blackbox setting we can only evaluate the circuit at some field
points. The problem of blackbox PIT is equivalent to the prob-
lem of designing hitting-sets efficiently. Hitting-set is defined as
follows. Let C be a class of polynomials in N variables over a
field F. Then, a set H ⊆ F

N is called a hitting-set for the class
C, if for every nonzero polynomial C ∈ C, there exists an x ∈ H
such that C(x) �= 0. PIT has a randomized poly-time algorithm,
thanks to Schwartz (1980), Zippel (1979), DeMillo & Lipton (1978)
lemma. Derandomization of PIT is an outstanding open question
in complexity theory with several implications, including proving
arithmetic circuit lower bounds; refer to Agrawal & Vinay (2008)
& the survey by Shpilka & Yehudayoff (2010).

In the world of arithmetic complexity, we have strong struc-
tural results like depth and variable reductions (Agrawal et al.
2017; Agrawal & Vinay 2008; Gupta et al. 2013). These results
show in particular that strong enough lower bounds, or PIT re-
sults for homogeneous depth-4 (or general depth-3) circuits would
give us exponential lower bounds and quasipoly-time derandom-
ized PIT for general circuits (up to VP). Recent years have seen a
fast growth in papers giving lower bound and PIT results for sev-
eral special cases of small depth arithmetic circuits (Saptharishi
2016; Saxena 2014). Although there are strong (almost exponen-
tial, see Kayal et al. 2014a; Kumar & Saraf 2017) lower bounds
for homogeneous depth-4 circuits, the bestknown lower bounds for
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non-homogeneous depth-4 circuits are only superlinear; see Raz
(2008) & the references therein.

Circuits with locally low algebraic rank. Kumar & Saraf
(2016) defined a locally low algebraic rank circuit of degree n in N
variables over F, denoted ΣΓ(k)ΣΠd, as: C =

∑
i∈[T ] Γi(Qi1, . . . , Qit),

where Qij is a sparse polynomial (all monomials are given explic-
itly) of degree at most d, algRank of {Qij | j ∈ [t]} is at most k,
and Γi is an arbitrary t-variate polynomial, for i ∈ [T ].

The size of C comprises N,n, T and the maximum sparsity of
Qij’s. Note that k ≤ N , and we will be interested in the cases
when kd is somewhat restricted.

Interestingly, ΣΓ(n)ΣΠ subsumes homogeneous depth-4 circuits
computing a degree n polynomial, as for homogeneous circuits
k ≤ t ≤ n and Γi is merely the product gate. Since this class in-
cludes non-homogeneous circuits as well (where t can be arbitrarily
larger than k, n), it can be seen as a significant generalization of
homogeneous depth-4.

This model subsumes certain other interesting models that were
studied by Forbes (2015), Agrawal et al. (2016), Beecken et al.
(2013) in the context of lower bounds and PIT. Invariably, their
methods need to assume that F has characteristic zero or expo-
nentially large (since partial derivatives are involved). Our goal in
this paper is to overcome such restrictions.

1.1. Our contribution and relation with previous works.
Broadly, in this paper, we prove two main technical theorems, one
about the algebraically dependent polynomials and the other about
algebraically independent polynomials. We apply these two the-
orems to obtain an algebraic independence testing algorithm, an
arithmetic circuit lower bound over arbitrary fields and a PIT algo-
rithm (over fields of characteristic larger than the individual-degree
of the polynomial). We now describe each of the results.

Algebraic dependence to approximate functional de-
pendence. We show that over arbitrary fields, algebraic depen-
dence of polynomials f1, . . . , fm implies the existence of a tran-
scendence basis such that all the polynomials f1, . . . , fm can be
obtained (up to a random shift and a truncation) as a polynomial
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function of the basis elements (Thm. 3.7). Essentially, to obtain
the desired polynomial, say fk, we truncate a polynomial function
in the elements of the basis up to the degree of fk. This gener-
alizes the functional dependence result of (Kumar & Saraf 2016,
Lem. 3.1) which asserted the same over fields of zero (or large)
characteristic.

We use a proof approach which is different from Kumar & Saraf
(2016) to achieve the more general results. In the case of fields of
zero characteristic, the subtle strength that this functional depen-
dence property possesses is that any transcendence basis serves
the purpose, which in general is false over positive characteristic.
Our result explains this subtlety using the concept of separating
transcendence basis from Galois theory (Sec. 2.1). With this, a
simple algebraic manipulation on the annihilating polynomial, and
subspace of polynomial products (Lem. 3.10), yields a functional
dependence up to any desired degree of approximation.4

For example, {x1, x2, x1x
2
2} are algebraically dependent over

F2. Pick random field elements a1, a2. The shifted polynomials
are {x1 + a1, x2 + a2, (x1 + a1)(x

2
2 + a2

2)}. Clearly, (x2 + a2) is
not a function of the other two modulo the ideal 〈x〉2. However,
(x1+a1) is trivially a function of the other two, namely, (x1+a1) ≡
a−2

2 · (x1 + a1)(x
2
2 + a2

2) mod 〈x〉2.

Algebraically independent polynomials criterion. The
above example shows that over fields of positive characteristic, an
approximate functional dependence may exist even in the case of
algebraically independent polynomials. We overcome this issue
and show that the independence can be captured by truncating
the polynomial function in the basis elements up to a precise pa-
rameter, i.e., if we choose the truncation point to be greater than
that parameter, then algebraically independent polynomials can-
not exhibit functional dependence (Thm. 3.13). This parameter is
actually the inseparable degree of an appropriate field extension,
which is a well studied concept in Galois theory (Sec. 2.1).

4This is a bit simpler than the approach of (Kumar & Saraf 2016, Lem.
2.4) where they approximate the roots of any multivariate polynomial using
(Dvir et al. 2009b, Lem. 3.1). Such methods also appear in classical analysis
under Implicit Function Theorems, see Krantz & Parks (2012).
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Continuing the above example, {x1, x1x
2
2} are algebraically in-

dependent over F2. Pick random field elements a1, a2. The shifted
polynomials are {x1 + a1, (x1 + a1)(x

2
2 + a2

2)}. It can be seen that
neither is a polynomial function of the other modulo the ideal 〈x〉3.
This becomes a certificate of algebraic independence. (Note that
the inseparable degree of F2(x1, x2)/F2(x1, x1x

2
2) is 2.)

When the inseparable degree is 1 (which means a separable ex-
tension), then looking at the truncation up to the linear term of
shifted basis elements would suffice. We show that separable ex-
tension is precisely the case when the Jacobian works (Cor. 3.14).
For higher inseparable degree t, our result can be reinterpreted as
giving a Jacobian-like result: algebraically independent polynomi-
als have F(z)-linearly independent higher differentials (Sec. 2.2),
modulo a carefully chosen subspace Ut (Rmk. 3.2). This follows by
considering the Taylor series, around a “generic” point z, whence
the functional independence of polynomials shifted by z implies the
linear independence of shifted polynomials modulo Ut. As shifted
polynomials contain all the Hasse–Schmidt higher derivatives (wrt
x and evaluated at the point z), we deduce their F(z)-linear inde-
pendence modulo Ut. We give a possible interpretation of the main
criterion using Hasse–Schmidt differentials and matrices in Sec. A.

Again, a key technical lemma used in finishing the proof is
Lem. 3.10 (subspace reduction), which concerns the ideal theoretic
properties of the subspace Ut. Basically, it helps us prove that if
{h1, . . . , hn} are polynomials with their degree(≤ t)-part having
algebraically independent leading monomials, and gn functionally
depends on {g1, . . . , gn−1} (with truncation beyond t), then some hi

is functionally independent of {g1, . . . , gn}.5 (The proof is divided
into Lemmas 3.10 & 3.4 and requires simple ideal manipulations.)

Application 1: Testing algebraic independence. An easy
consequence of Thm. 3.7 and Thm. 3.13 is that we get a ran-
domized poly-time algorithm for testing algebraic independence of
polynomials over finite fields (say, Fq of characteristic p) in the
cases when the inseparable degree is constant. Since the latter is

5Polynomials hi, gj ’s are constant-free and lower degree monomials are said
to lead over the higher degree ones.
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a p-power (Sec. 2.1), our algorithm is interesting when p is a con-
stant. (Whenever required, we can assume wlog that the input
is n circuits in n variables over an algebraically closed field; see
Lemmas 2.7, 2.8 and 2.9.)

Theorem 1.1 (Independence testing). For circuits f ∈ Fq[x] we
have a randomized poly(s,

(
t+n
n

)
)-time algebraic independence test-

ing algorithm, where the inseparable degree of the field extension
Fq(x)/Fq(f) is t (assuming f algebraically independent) and s is
the total input size.

It is proved in Sec. 4. This covers a lot of interesting cases
as the inseparable degree can be quite small even in case of poly-
nomials with exponential degree. As a simple example, take two
bivariate circuits of exponential degree over F2. Suppose they are
independent and their Jacobian is nonzero. Now if we square any
one of these two, then Jacobian would fail as the inseparable de-
gree becomes 2. Previously known algorithms cannot deal with
even such a simple case, whereas we easily handle the case by try-
ing our test with t = 2. In general, the inseparable degree is upper
bounded by Perron’s degree bound (product of degrees of given
polynomials, P�loski 2005), so in the worst-case our algorithm is
exponential-time. (Witt–Jacobian criterion, in Mittmann et al.
2014, is exponential-time in all cases.) We illustrate the overall
idea, and its comparison with Jacobian criterion, in Fig. 5.1.

Remark: An interesting by-product of the algorithm is that it
can compute the inseparable degree, of the independent polynomi-
als given as circuits over Fq, in the same time complexity.

Application 2: Lower bound for locally low-algebraic-
rank circuits. Using the functional dependence result, we give an
explicit family of polynomials in VNP of degree n in N variables,
where N = nO(1) such that any ΣΓ(n)ΣΠ circuit computing it has
size NΩ(

√
n). We obtain this lower bound over arbitrary fields. This

generalizes the lower bound of (Kumar & Saraf 2016, Thm. 1.4)
which itself was a strong generalization of the shifted partials based
homogeneous depth-4 lower bounds (Kayal et al. 2014a) and Ja-
cobian based lower bounds (Agrawal et al. 2016) (all over zero or
large characteristic). Since our functional dependence generalizes
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the key technical ingredient of Kumar & Saraf (2016) to arbitrary
fields, we are able to get the same lower bound (for the same model
and hard polynomial family) over arbitrary fields. Formally,

Theorem 1.2. Let F be any field. There exists a family {Pn} of
polynomials in VNP, such that Pn is a polynomial of degree n in
N = nO(1) variables with 0, 1 coefficients, and for any ΣΓ(k)ΣΠ
circuit C, if k ≤ n and if C computes Pn over F, then Size(C) ≥
NΩ(

√
n).

Remark: As remarked by Kumar & Saraf (2016), the above
model is challenging even for k = 2 (& was open before us for small
characteristic fields). Also, the proof goes through for any k =
nO(1), as long as one picks N as an appropriately large polynomial
in n.

The proof of this theorem closely follows Kumar & Saraf (2016),
and is sketched in Sec. B.

Application 3: Hitting-set for ΣΓ(k)ΣΠd circuits. We
show that for any size-s circuit C ∈ ΣΓ(k)ΣΠd, where k, d =
polylog(s), over fields of characteristic p > individual-degree(C),
there exists a quasipoly(s)-time hitting-set.

Theorem 1.3. Let F be any field of characteristic p. There exists

an exp(logO(1) s)-time constructible hitting-set H ⊆ F
N

for size-s
circuit C ∈ ΣΓ(k)ΣΠd with kd = logO(1) s, assuming p > individual-
degree(C) or p = 0.

Again, the proof follows Kumar & Saraf (2016), and is sketched
in Sec. C. For PIT, algebraic-rank-based models have already been
considered by Beecken et al. (2013), Agrawal et al. (2016), Ku-
mar & Saraf (2016). Our result generalizes some of these results
to smaller positive characteristic (only requiring p > individual-
degree(C)). The previous results required p > dk, which is super-
polynomial in the above regime. Our inability to remove this re-
striction lies in the nature of shifted partials (Forbes 2015, Lem.
4.13). For example, the dimension of shifted partials of a p-power
monomial xpe1

1 · · · xpen

n is not that large over Fp.
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2. Preliminaries: Jacobi, Galois and
Hasse–Schmidt

We define the central object related to the testing of algebraic
independence of polynomials, i.e., the Jacobian.

Definition 2.1 (Jacobian). The Jacobian of polynomials f =
{f1, . . . , fm} in F[x1, . . . , xn] is the matrix Jx(f) = (∂xj

fi)m×n,
where ∂xj

fi := ∂fi/∂xj.

We state the classical Jacobian criterion (Beecken et al. 2013;
Jacobi 1841).

Lemma 2.2 (Jacobian criterion). Let f ⊂ F[x] be a finite set of
polynomials of degree at most d, and trdeg

F
f ≤ r. If char(F) = 0,

or char(F) > dr, then trdeg
F
f = rankF(x)Jx(f).

Previously, we saw some examples of polynomials over fields
of smaller characteristic where the Jacobian fails. Here is another
non-trivial example: f = {x2

1x2 +x3
1, x1x

2
2 +x1x

5
2} in F3[x1, x2] is a

set of algebraically independent polynomials, but rankF3(x)Jx(f) =
1, and hence the criterion fails.

2.1. Inseparability & separating transcendence basis. For
this section, let E ⊇ F be fields. Failure of the Jacobian criterion
can be explained using the fundamental concept of inseparability
from Galois theory (Isaacs 1994).

Definition 2.3. An f ∈ F[x] is separable if it has no multiple
roots in its splitting field.

It is easy to prove that for an irreducible f , separability is
implied by the nonzeroness of ∂xf . Thus, if char(F) = 0, then
any irreducible polynomial is separable. It further implies that if
char(F) = p > 0, then an irreducible f is separable if and only if f /∈
F[xp]. We have this notion of separability in case of field extensions
as well. An algebraic extension E/F is said to be separable if every
element α ∈ E has a minimal polynomial over F that is separable.

For polynomials f1, . . . , fm ∈ F[x1, . . . , xn], we deal with the ex-
tension F(x1, . . ., xn)/F(f1, . . . , fm). This extension is algebraic iff
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trdeg(f)= n (by Lem. 2.7, every xj depends on f). In which case,
the extension F(x)/F(f) is separable iff the minimal polynomial of
xj over F(f) is separable, for all j ∈ [n]. The latter, clearly, is the
case when char(F) = 0. When char(F) = p > 0, the extension is
inseparable if there exists j ∈ [n], such that the minimal polyno-
mial of xj over F(f) lives in F(f)[yp]. Thus for every xj, we have an

mj such that xpmj

j has a separable minimal polynomial over F(f).
The inseparable degree of the extension F(x)/F(f) is defined as

the minimum pm such that the minimal polynomial of xpm

j over
F(f) is separable, for all j ∈ [n]. We also associate this inseparable
degree with the set f . Note that pm will divide the degree of the
extension F(x)/F(f), and could be as large.

Corollaries 3.14 and 3.15 to our main theorems relate the fail-
ure of the Jacobian criterion to the inseparability of the extension
F(x)/F(f).

In the case when f are algebraically dependent, we would like
to use a “good” transcendence basis. This is captured by:

Definition 2.4 (Separating transcendence basis). A field exten-
sion E/F is called separably generated if there exists an alge-
braically independent set (i.e., transcendence basis) S = {f1, . . . ,
fr} ⊂ E such that E/F(S) is algebraic and separable.

S is called a separating transcendence basis of E/F.

It is a classical result that such bases exist for fields that we
are interested in.

Theorem 2.5. Consider a finite set of polynomials f ⊂ F[x]. If F
is a finite field (or, an algebraically closed field); then, there exists
a separating transcendence basis, of F(f)/F, in f . In case F is a
zero characteristic field then every transcendence basis of f is a
separating one of the extension F(f)/F.

Proof. It is clear that if F has characteristic zero then there is
no possibility of inseparability.

Let F be a finite (or algebraically closed) field. (Knapp 2007,
Thm. 7.20) shows that the extension F(f)/F is separably gener-
ated. Furthermore, (Knapp 2007, Thm. 7.18) shows that f con-
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tains a subset that is a separating transcendence basis of the ex-
tension. �

Examples. Extension F3(x
3)/F3 has {x3} as a separating tran-

scendence basis. Consider the two transcendence bases of the ex-
tension F3(x

2, x3)/F3 – {x3} and {x2}. The latter is a separating
transcendence basis, but the former is not.

2.2. Taylor expansion at z, higher derivatives & differen-
tials. We consider the application of shift (or translation) to our
polynomials. We view this as writing the Taylor expansion of a
polynomial f(x) at a “generic” point z (Forbes 2014, Sec.C.1). A
second view is that of computing the Hasse–Schmidt higher deriva-
tives of f at the point z (Dvir et al. 2013; Forbes 2015). A third
view is seeing the shifted polynomial as a Hasse–Schmidt differ-
ential (Traves 1998). We collect these equivalent viewpoints in a
single definition.

Definition 2.6 (Formal shift). We see f(x + z) as a polynomial
in R := Fp(z)[x] where the variables x1, . . . , xn are shifted, respec-
tively, by the function field elements z1, . . . , zn.

Now the coefficient of m := x�1
1 · · ·x�n

n in the Taylor-series ex-

pansion of f(x + z) can be written as 1
�1!···�n!

∂(�1+···+�n)f

∂x
�1
1 ···∂x�n

n

(z).

This is called the Hasse–Schmidt derivative of f wrt m evalu-
ated at the point z. It can be denoted, by some abuse of notation,
as ∂mf(x)|z.

Finally, we can see the formal shift as a Hasse–Schmidt differen-
tial, namely, f(x + z) =

∑
m m ·∂mf(x)|z (sum over all monomials

m in x).

Example. We have ∂2x2/∂x2 = 0 over F2, but ∂2x2/2!∂x2 = 1.
Thus, Hasse–Schmidt derivatives offer a natural solution to this
vanishing problem.

This connection between the shifts and Hasse–Schmidt higher
derivatives/ differentials is what motivated us to search for the
right framework to study algebraic independence.

Now the Jacobian criterion is given in terms of the first-order
derivatives of the polynomials and the failure of Jacobian essen-
tially exposes the inability of first-order derivative in capturing
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independence. Intuitively, it seems that going to higher deriva-
tives may help. The above connection points out that perhaps we
need to look at higher degree terms (wrt x) of f(x + z) to get
an algebraic independence criterion in cases where Jacobian fails.
Eventually, we will see that the intuition is indeed true.

Operator H. For notational convenience, we define the non-
constant part of f(x + z) up to degree≤ t wrt x, as Htf :=
f≤t(x + z) − f(z). This is easier to work with when we do ma-
nipulations modulo the ideal 〈x〉t+1

R .

2.3. Preprocessing. For completeness, we present standard re-
sults that entail that for our main Theorems (Thm. 3.7
and Thm. 3.13) it suffices to study the case of n polynomials in n
variables over an algebraically closed field. The first lemma han-
dles the case when the polynomials are more than the number of
variables.

Lemma 2.7 (Extra polys). If m > n then any f1, . . . , fm ∈ F[x1,
. . . , xn] are algebraically dependent.

Proof. It is proved in P�loski (2005), Forsman (1992) and books
on field theory (Jacobson 2012). �

The next lemma deals with the case when the variables are
more than the number of polynomials. We can use this lemma
to project n variables to a random m dimensional subspace (over
a large enough field extension L of F) in our input polynomials.
Thus, in case n > m, we reduce to the case of m polynomials with
m variables.

Lemma 2.8 (Extra variables). Let f1, . . . , fm ∈ F[x1, . . . , xn] with
m < n and the transcendence degree of the set {f1. . . . , fm} be r.
Then, there exists a linear map φ : L[x1, . . . , xn] �→ L[y1, . . . , ym]
such that trdegL{φ(f1), . . . , φ(fm)} is also r.

Proof. Roughly, the idea is to consider the annihilating poly-
nomial AS of {xS, f}, and study the action of a “random” linear φ
on it.

For a proof refer to (Beecken et al. 2013, Theorem 4). �
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For algebraic independence over a field, it suffices to work over
the algebraic closure.

Lemma 2.9 (Closed field). Consider polynomials f(x) over any
field F. Their trdeg remains invariant if we move from F to any
algebraic extension.

Proof. Let B = {g1, . . . , gr} be a transcendence basis of f over
F. Let us move to the algebraic closure F. Clearly, any fi ∈
f continues to be algebraically dependent on B as the original
annihilating polynomial works.

Suppose polynomials in B become algebraically dependent over
F. Then, by Perron’s bound (P�loski 2005) we know that {ge |
|e| ≤ ∏

i deg(fi)} has to be F-linearly dependent. But these poly-
nomials are in F[x], so they must be F-linearly dependent, implying
that B is algebraically dependent over F. This contradiction proves
the lemma. �

3. Main structure theorems

We use the following standard notation in the paper:

1. F is an arbitrary field. F is its algebraic closure.

2. Fq is a finite field of size q and characteristic p ≥ 2.

3. Let R ⊇ S be a commutative ring extension over a field F,
let v1, . . . , vm ∈ R and r ≥ 1. Then 〈v1, . . . , vm〉r

S is simply
the set of all S-linear combinations of products vi1 · · · vir (ij’s
in [m]). It is both an S-module and an F-vector space. (It is
an ideal when R = S.)

4. For a polynomial h ∈ F[x], h≤d extracts out the degree≤ d
part of h and returns it as an element in F[x] again. Note that
by h≤d(g1(x), . . . , gn(x)) we would mean that: first compute
the composition h(g(x)) and then extract out the degree≤ d
part.

5. For a polynomial h ∈ F[x], h[≤d] extracts out the degree≤ d
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part of h and returns it as a d+1 tuple, where for i ∈ [0 . . . d],
i-th entry of the tuple contains h=i which is defined as the
homogeneous component of h of degree i.

In the following section, we prove a few technical lemmas that
we use in the proofs of our main theorems. One may want to skip
some of the details in the first reading and move to Section 3.2.

3.1. Technical lemmas. We will use z as a formal variable (n-
tuple) and can fix it later to a suitable constant a. To prove the
theorem, we consider the ring R := F(z)[x] and its ideal I0 := 〈x〉R.
The ideal collects the non-constant linear polynomials. Now, define
the ideal It := It+1

0 and the quotient algebra Qt := R/It, i.e., we
are filtering out, or truncating, all the terms of degree > t.

Now Qt can also be seen as a finite
(

n+t
n

)
dimensional vector

space over F(z) whose basis is monomials in x of degree at most t.
In our theorems and proofs, most of the operations happen in this
quotient ring Qt for increasing t’s.

In our analysis, we plan to use the shifting of the variables in
the evaluated annihilating polynomial of {fi, g1, . . . , gk}, and it is
clear that on applying the shifts, we will end up having terms of
the form (Htfi)

j0(Htg1)
j1 · · · (Htgk)

jk (recall that in Qt, f(x + z) =
f(z) + Htf(x) ).

We consider an appropriate subspace Ut ⊂ Qt generated by
such “higher” products, which we formally define as: U1 := {0}
and

Ut := 〈Ht−1fi,Ht−1g1, . . . ,Ht−1gk〉2
F(z)

+ · · · +

〈H1fi,H1g1, . . . ,H1gk〉t
F(z)

, t ≥ 2.

We now prove a (standard) property of ideal powering in a
filtration. Essentially, one needs a “lower accuracy” a1, . . . , ai ∈ Qj

to compute their product a1 · · · ai.

Lemma 3.1 (Powers in filtration). Recall the algebras R := F

(z)[x] and Qt, t ≥ 1. If, for j ∈ [i], bj ∈ 〈x〉R and aj ≡ bj in
Qt, then a1 · · · ai ≡ b1 · · · bi in Qt+i−1, for i ≥ 1.

Proof. The congruence aj ≡ bj in Qt implies that aj − bj is a
polynomial αj(x) in It+1

0 . We write it as aj = bj +αj(x), and take
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the product on both sides. This yields
∏

j aj =
∏

j(bj + αj) which

is contained in
∏

j bj + It+1
0 · I i−1

0 , which is in
∏

j bj + I i−1+t+1
0

[∵ I0 is an ideal of R, and each bj is in I0]. In other words,∏
j aj ∈ ∏

j bj + I i+t
0 . Hence,

∏
j aj ≡ ∏

j bj in Qt+i−1. �
Lem. 3.1 tells us that due to the filtration in Qt, some of these

terms will be equivalent to terms involving Hr with r < t.

Remark 3.2. In Qt, this is the same subspace as 〈Htfi,Htg1, . . .,
Htgk〉2

F(z)
+ · · · + 〈Htfi, Htg1, . . . ,Htgk〉t

F(z)
by Lem. 3.1.

The following lemma implies that proving the linear indepen-
dence for truncation t suffices to prove it for every truncation above
t. Moreover, it also implies that proving the dependence for trun-
cation t suffices to prove it for every truncation below t.

Lemma 3.3 (Descent). If Htf1, . . . ,Htfn are F(z)-linearly depen-
dent modulo Ut, then Hrf1, . . ., Hrfn are F(z)-linearly dependent
modulo Ur, for all r ∈ [t].

Proof. If we see the linear dependence of Htf1, . . . ,Htfn mod-
ulo Ut in the quotient ring Qr instead (i.e., reduce modulo 〈x〉r+1

R ),
then we get the dependence of Hrf1, . . . ,Hrfn modulo Ur. This is
true since Htf = Hrf+ (degree> r)-terms in x , and Qr filters out
〈x〉r+1

R . �
Now we show that n “pure” monomials cannot functionally

depend on < n polynomials. This is at the heart of our criterion.

Lemma 3.4 (Impossible containment). Let F be any field. Con-
sider the subspace V ′

t := 〈Htf1, . . . ,Htfn−1〉F(z) + · · · + 〈H1f1, . . . ,
H1fn−1〉t

F(z) of Qt, for t ≥ 1. Then, {xt
1, . . . , x

t
n} �⊆ V ′

t.

Proof. Rmk. 3.2 suggests that V ′
t equals the subspace 〈Htf1,

. . . ,Htfn−1〉F(z) + · · · +〈Htf1, . . ., Htfn−1〉t
F(z) in Qt.

Intuitively, these n “pure” monomials xt
1, . . . , x

t
n should not all

appear in the subspace V ′
t as it has merely n − 1 many “key”

generators. However, assume for the sake of contradiction that
{xt

1, . . . , x
t
n} ⊆ V ′

t. We rewrite this in absolute terms (in R) as:

xt
i + αi ∈ 〈Htf1, . . . ,Htfn−1〉F(z) + · · · + 〈Htf1, . . . ,Htfn−1〉t

F(z) ,
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for some αi ∈ 〈x〉t+1
R , for all i ∈ [n]. This simply means xt

i + αi =
Pi(Htf1, . . . , Htfn−1), for some polynomial Pi ∈ F(z)[Y1, . . . , Yn−1]
of degree at most t, for i ∈ [n]. Notice that the degree of αi (in
x) is ≥ t + 1. Thus, by choosing a graded lexicographic monomial
ordering (Cox et al. 2007, Pg. 58) in which lower degree terms
lead, we get the leading monomials of the set {xt

i + αi | i ∈ [n]} to
be {xt

1, . . . , x
t
n}.

Now, using the fact that the algebraic independence of leading
monomials imply the algebraic independence of the corresponding
polynomials (Lem. 3.6), we get that trdeg

F(z){xt
i +αi | i ∈ [n]} = n.

On the other hand, clearly,

trdeg
F(z){Pi(Htf1, . . . ,Htfn−1) | i ∈ [n]} ≤ n − 1.

This makes the containment impossible. �

Remark 3.5. The proof works if we replace the n pure monomials
by any polynomials whose leading monomials are algebraically in-
dependent and appear in degree≤ t part (under some strict mono-
mial ordering in which lower degree terms lead).

We give the following for the sake of completeness.

Lemma 3.6 (Kreuzer & Robbiano 2005, Prop. 6.6.11). Let f1, . . . ,
fn ∈ F[x1, . . . , xn] be nonzero polynomials. If under some (strict)
monomial ordering σ, leading monomials of f1, . . . , fn are alge-
braically independent over F, then f1, . . . , fn are algebraically in-
dependent over F.

Proof. Let us fix the monomial ordering σ, and let the lead-
ing monomials of f1, . . . , fn wrt σ be LM(f1), . . . , LM(fn), respec-
tively. (They uniquely exist as σ is strict and total.) By the hy-
pothesis the leading monomials are algebraically independent.

Recall that for h1, h2 ∈ F[x1, . . . , xn], the LM operator has the
properties (Kemper 2010, Sec. 9.1):

◦ LM(h1 · h2) = LM(h1) · LM(h2),

◦ LM(h1 + h2) �σ max{LM(h1), LM(h2)}.
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We use the above two properties to prove the lemma. Con-
sider any nonzero polynomial g ∈ F[y1, . . . , yn], and let m be the
monomial in the support of g such that m(LM(f1), . . . , LM(fn))
is maximal with respect to σ. Hence, for any monomial m′ in the
support of g, and any monomial ki in the support of fi ,

m′(k1, . . . , kn) �σ m′(LM(f1), . . . , LM(fn))

�σ m(LM(f1), . . . , LM(fn)).

In this case, the last inequality cannot be equality, unless m′ =
m. Otherwise, m′−m is the annihilating polynomial of the leading
monomials, contradicting the hypothesis.

This proves that the monomial m(LM(f1), . . . , LM(fn)) cannot
cancel with other monomials in g(f(x)). This implies that there is
no nonzero annihilating polynomial for f1, . . . , fn. �

3.2. Functional dependence for algebraically dependent
polynomials. As algebraic dependence is a generalization of lin-
ear dependence, it is worth noting that if f1, . . . , fm ∈ F[x] are
linearly dependent, it implies that every polynomial can be writ-
ten as a linear combination of the polynomials in the basis. The
question is whether the same can be extended to algebraic depen-
dence: Does algebraic dependence imply that all the polynomials
can be written as a function of the polynomials in the transcen-
dence basis? It was shown in (Kumar & Saraf 2016, Lem. 3.1)
that it is indeed true (approximately) over fields of zero (and large)
characteristic.

We generalize the property using a different proof approach and
show that algebraic dependence implies functional dependence over
arbitrary fields (to arbitrary degree of approximation t).

Theorem 3.7 (Functional dependence over arbitrary fields). Let
f = {f1, . . ., fm} ⊂ F[x1, . . ., xn] be a set of polynomials, where F

is any field, and t ∈ N. If trdeg of {f1, . . . , fm} is k, then there
exist algebraically independent {g1, . . . , gk} ⊂ f , such that for ran-
dom a ∈ F

n
, there are polynomials hi ∈ F[Y1, . . . , Yk] satisfying,

∀i ∈ [m], f≤t
i (x + a) = h≤t

i (g1(x + a), . . . , gk(x + a)).
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Remark 3.8. Clearly, F
n

is an infinite space. What we mean here
by a random a is “random point in any sufficiently large, but finite,
subset of the space.” It will be clear from the proof that it would
suffice to sample from any set of size at most exponential in the
input size. We skip the detailed estimate as in this section merely
existence of a is needed. Section 4.1 will discuss the estimate.

Proof (Pf. of Thm. 3.7). Consider the set f := {f1, . . . , fm} ⊂
F[x] with algebraic rank k. If we work over F, then Thm. 2.5 guar-
antees the existence of a separating transcendence basis {g1, . . . , gk}
⊆ f . Let g0 := fi for a fixed i ∈ [m]. Now we consider the
separable annihilating polynomial A(y) =

∑
e�

ae�
ye� of the set

g := {g0, g1, . . . , gk}, and ae�
’s are in F (e� is a (k + 1)-tuple

(ej� | j ∈ [0 . . . k])). Thus, A(g) =
∑

e�
ae�

∏k
j=0 gj(x)ej� = 0.

We now apply the formal shift x �→ x + z to get A(g0(x + z),
. . . , gk(x + z)) = 0, i.e.,

∑
e�

ae�

∏
j gj(x +z)ej� = 0. We now study

this relation in the algebra Qt. By Taylor series expansion, we know
that f(x + z) ≡ f(z)+Htf(x) in Qt, so we get

∑
e�

ae�

∏
j(gj(z)+

Htgj)
ej� ≡ 0. The binomial expansion gives a compact expression:

∑

e�

ae�

∑

0≤s≤e�

(
e�

s

) · (Htg)s · ge�−s ≡ 0 .

Note that the contribution by s = 0 terms sum up to
∑

e�
ae�∏k

j=0 gj(z)ej� which is zero. This implies that an F(z)-linear combi-
nation of the products of the form (Htg0)

s0 · · · (Htgk)
sk ,

∑
j sj ≥ 1,

vanishes in Qt. Now the key step is to separate out the terms linear
in Htgj and switch the sums, to obtain

Htg0/g0(z) ·
(

∑

e�

ae�
e0�g

e0�
0 · · · gek�

k

)

+
∑

j∈[k]

Htgj/gj(z) ·
(

∑

e�

ae�
ej�g

e0�
0 · · · gek�

k

)

+(higher terms with
∑

j

sj ≥ 2) ≡ 0 .(3.9)

Further, we argue using the minimality and separability of A
(in terms of the first variable) that the “linear” term Htg0 in the
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vanishing sum above has a nonzero coefficient: as it would either
mean a lower degree annihilating polynomial A :=

∑
e�

ae�
e0�y

e0�−1
0 ·

ye1�
1 · · · yek�

k , i.e., contradicting the minimality, or that all the e0�’s
are divisible by p (when F has characteristic p) which means that
fi does not depend separably on {g1, . . . , gk}; which contradicts
the fact that {g1, . . . , gk} is a separating transcendence basis.

Thus, we get that Htg0 lives in the F(z)-linear span of Htg1, . . . ,
Htgk modulo the subspace generated by the higher terms of the
summation in Eqn. 3.9. So, Htg0 lives in the F(z)-linear span of
Htg1 . . . , Htgk modulo the subspace Ut (Rmk. 3.2) in Qt. We got
Htfi ∈ 〈Htg1, . . . ,Htgk〉F(z) + Ut.

Now, we are in a position to apply our subspace reduction
lemma (Lem. 3.10) which gives that Htfi ∈ 〈Htg1, . . . ,Htgk〉F(z) +

〈Ht−1g1, . . . ,Ht−1gk〉2
F(z)

+ · · · + 〈H1g1, . . ., H1gk〉t
F(z)

. The latter

(by Rmk. 3.2) is exactly 〈Htg1, . . . ,Htgk〉F(z)+〈Htg1, . . . ,Htgk〉2
F(z)

+ · · · + 〈Htg1, . . . ,Htgk〉t
F(z)

.

This implies fi(x + z) ∈ 〈1, g1(x + z), . . . , gk(x + z)〉t
F(z)

in Qt,

which yields the approximate functional dependence around a
generic point z.

Fixing z (avoiding some bad choices that make certain z poly-
nomials in the above proof zero) to an element a ∈ F

n
finishes the

proof. �
The following lemma essentially shows that if Hrfn depends

on higher-order terms (in the sense of Eqn. 3.9), then it can be
“dropped” from the ideal manipulations.

Lemma 3.10 (Subspace reduction). Let F be any field, R := F

(z)[x], Qr := R/〈x〉r+1 for r ≥ 1, and f ⊂ F[x]. Define U1 = V1 =
{0}, and for u ∈ 〈x〉R, r ≥ 2, define the subspaces (in the quotient
algebra Qr),

Ur := 〈Hr−1f1, . . . ,Hr−1fn〉2
F(z) + · · · + 〈H1f1, . . . ,H1fn〉r

F(z),

Vr := 〈Hr−1f1, . . . ,Hr−1fn−1, u〉2
F(z) + · · ·

+ 〈H1f1, . . . ,H1fn−1, u〉r
F(z).

If Htfn ∈ 〈Htf1, . . . ,Htfn−1, u〉F(z) + Ut, then Ut ⊆ Vt (for any
t ∈ N).



cc 27 (2018) Algebraic independence over Fq 643

Remark: If u = 0, then the lemma “reduces” the n polynomial
generators, of the subspace Ut, by one. Hence, the name “subspace
reduction.” In general, one can think of the lemma as replacing
Htfn by u everywhere.

Proof. We prove the lemma using induction on t.
Base Case (t = 2): By definition, U2 = 〈H1f1, . . . ,H1fn〉2

F(z).

Now, from the hypothesis, we have that, in Q1: 〈H1f1, . . . ,
H1fn〉F(z) ⊆ 〈H1f1, . . . ,H1fn−1, u〉F(z).

Apply the powering (Lem. 3.1 with t = 1, i = 2) to get, in Q2,
〈H1f1, . . . ,H1fn〉2

F(z) ⊆ 〈H1f1, . . . ,H1fn−1, u〉2
F(z). So, U2 ⊆ V2 and

the base case is true.

Induction Step: The induction hypothesis is that the lemma
holds for all t < �. To prove the lemma for t = �, we take Q�

and its subspace U�, and consider its general summand 〈Hrf1, . . . ,
Hrfn〉�+1−r

F(z) from the above sum of subspaces (r ∈ [� − 1]). We try
to show the containment of this summand in a desired subspace.
Firstly, note that the dependence hypothesis (with Lem. 3.3) gives,
in Qr,

〈Hrf1, . . . ,Hrfn〉F(z) ⊆ 〈Hrf1, . . . ,Hrfn−1, u〉F(z) + Ur.

By the induction hypothesis on Ur, r < �, we get, in Qr,

〈Hrf1, . . . ,Hrfn〉F(z) ⊆ 〈Hrf1, . . . ,Hrfn−1, u〉F(z)

+ · · · + 〈H1f1, . . . ,H1fn−1, u〉r
F(z).

Apply the powering (Lem. 3.1, with t = r and i = � + 1 − r) to
get, in Q�,
(3.11)

〈Hrf1, . . . Hrfn〉�+1−r
F(z) ⊆ 〈vq1

1 · · · vqr
r |

∑

j∈[r]

qj = �+1−r, qj ≥0,v〉F(z)

where we consider all the possible vj ∈ 〈Hr−j+1f1, . . . , Hr−j+1fn−1,
u〉j

F(z) for j ∈ [r]. Now observe that, for any f , H1f, . . . ,Hrf, u are

all in 〈x〉R.
So, the least degree term (wrt variables x) of the above product

vq1
1 · · · vqr

r would have degree at least s := q1 + 2q2 + · · · + rqr. In
Q�, only the terms with degree ≤ � survive.
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This restricts s in the range: � + 1 − r ≤ s ≤ � and we only
need to consider the corresponding r subspaces 〈Hrf1, . . . Hrfn〉s

F(z)

in the RHS of Eqn. 3.11. This allows us to rewrite Eqn. 3.11 as
(recall Rmk. 3.2),

〈Hrf1, . . . ,Hrfn〉�+1−r
F(z) ⊆ 〈Hrf1, . . . ,Hrfn−1, u〉�+1−r

F(z)

+ · · · + 〈H1f1, . . . ,H1fn−1, u〉�.

Hence, we now have the desired containment for a general sum-
mand of U�. Since in U�, r is in the range [� − 1], we get that, in
Q�,

U� ⊆ 〈H�−1f1, . . . ,H�−1fn−1, u〉2
F(z)+· · ·+〈H1f1, . . . ,H1fn−1, u〉�

F(z).

This proves U� ⊆ V�, finishing the induction step. �

Now we easily generalize a structural property of ΣΓ(k)ΣΠd

circuits (Kumar & Saraf 2016, Lem. 3.5), which will be used in
the lower bound and PIT applications later.

Corollary 3.12 (Rewrite ΣΓ(k)ΣΠd). Let F be an arbitrary
field. Let C =

∑T
i=1 Fi(Qi1, . . ., Qit) be a ΣΓ(k)ΣΠd circuit in

F[x1, . . . , xN ] of degree n, with Bi := {Qi1, . . . , Qik} be a separat-
ing transcendence basis of {Qi1, . . . , Qit}, for all i ∈ [T ]. Then, for

random a ∈ F
N

, there exist polynomials F ′
i in variables at most

k(d + 1) over F such that

C(x + a) =
T∑

i=1

F ′
i ( Q

[≤d]
i1 (x + a), . . . , Q

[≤d]
ik (x + a) ).

Proof. This follows from our functional dependence result
(Thm. 3.7), and the univariate interpolation trick from (Kumar
& Saraf 2016, Cor. 3.4): From the representation f(x + a) =
h≤d(g1(x + a), . . ., gk(x + a)) one can get an h′ and an absolute

representation f(x+ a) = h′(g[≤d]
1 (x + a), . . ., g

[≤d]
k (x + a)), for d ≥

degree(f). Applying this idea on each Qij gives us the desired re-
sult. �
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3.3. Algebraic independence: criterion. Having proved the
functional dependence for algebraically dependent polynomials, one
naturally asks whether a converse exists (for arbitrary fields? To
what degree?). We will characterize this completely.

It is all about the inseparable degree We show that if f is alge-
braically independent of {g1, . . . , gk}, then under a random shift,
f cannot be written as a function of {g1, . . . , gk} when chosen to
truncate at (or beyond) the inseparable degree of the extension
Fq(x)/Fq(f, g1, . . . , gk). Moreover, for each truncation at lower
degrees we get functional dependence.

Theorem 3.13 (Algebraic to functional independence). Let f ⊂
Fq[x] be algebraically independent polynomials (wlog n-variate n
polynomials) with inseparable degree pi. Then,

(i) for all t ≥ pi, for random a ∈ F
n

q , f≤t
n (x + a) cannot be writ-

ten as h≤t(f1(x+ a), . . ., fn−1(x + a)), for any h ∈ Fq[Y1, . . . ,
Yn−1].

(ii) for all 1 ≤ t < pi, ∃j ∈ [n], for random a ∈ F
n

q , f≤t
j (x + a) can

be written as h≤t
jt (f1(x + a), . . . , fj−1(x + a), fj+1(x + a), . . . ,

fn(x + a)), for some hjt ∈ Fq[Y].

Remark: Our proof works for any field F (manipulate in F).
In the case of prime characteristic, we get the above statement,
while in the zero characteristic case one should set the inseparable
degree = 1 to read the above statement. The meaning of “random
a” was explained in Remark 3.8.

Proof idea By the hypothesis we have that each monomial xpi

j ,
j ∈ [n], algebraically depends on f with a separable annihilating
polynomial over Fq. Consider ring R := Fq(z)[x]. The basic idea

is to consider the minimal annihilating polynomial Aj of {xpi

j , f}
and formally shift the relevant polynomials by z. From the proof

of Thm. 3.7, we get a functional dependence of xpi

j on f(x + z) up
to any degree t.

Interestingly, when we take t < pi the monomial xpi

j vanishes
mod 〈x〉t+1. This means that the above yields, in fact, a functional
dependence among f(x + z).
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On the other hand, for t ≥ pi, we get a non-trivial functional

dependence of xpi

j on f(x + z), for all j ∈ [n]. In this case, we
give an argument using monomial ordering that there exists no
functional dependence among f(x + z) (Lem. 3.4).

Proof (Pf. of Thm. 3.13). [t < pi part.] We first prove the de-
pendence part of the theorem. We use the shifts on the annihilat-
ing polynomial of the algebraically dependent set {xj, f} and then
argue about desired dependence by making use of the arguments
used in the proof of Thm. 3.7.

The descent principle (Lem. 3.3) implies that we need to prove
it only for t = pi − 1. Algebraic independence of f asserts the exis-
tence of the minimal annihilating polynomial Aj ∈ Fq[y0, y1, . . . , yn]
for the polynomials {xj, f}, for all j ∈ [n] (because of Lem. 2.7).
Now the inseparable degree of the extension Fq(x)/Fq(f) being pi

implies that there exists a j such that Aj lives in Fq[y
pi

0 , y1, . . . , yn]

but not in Fq[y
pi+1

0 , y1, . . . , yn]. Let us fix that j. Thus, we have

Aj(xj, f) =
∑

e�
αe�

· (xpi

j )e0�f e1�
1 · · · f en�

n = 0, where αe�
∈ Fq.

Next we apply the shift and note that truncating Aj(xj, f) at de-
gree ≤ pi −1 is same as looking at Aj(xj, f) in Qpi−1. In Qpi−1, the

above equation gives us
∑

e�
αe�

·(zpi

j )e0� ·f e1�
1 (x + z) · · · f en�

n (x + z)

≡ 0, since in Qpi−1, (xj + zj)
pi ≡ zpi

j .
We can now repeat the arguments used in Eqn. 3.9 (Sec. 3.2)

to get that for some j′, f≤pi−1
j′ (x + z) = h≤pi−1

j′ (f1(x + z), . . . ,
fj′−1(x + z), fj′+1(x + z), . . . , fn(x + z)) for some hj′ ∈ Fq[Y1, . . . ,
Yn−1] to finish the proof of the dependence part of the theorem.

[t ≥ pi part.] Next, we prove the independence part of the
theorem which gives us the independence testing criterion, and
we do it by contradiction. The contrapositive of Lem. 3.3 implies
that proving the theorem for t = pi suffices. For contradiction, as-
sume that (wlog) f≤pi

n (x + z) can be written as h≤pi
(f1(x + z), . . . ,

fn−1(x + z)) for some h ∈ Fq[Y1, . . . , Yn−1] which implies that the
non-constant part of fn(x + z) Fq(z)-linearly depends on the non-
constant parts of f1(x + z), . . . , fn−1(x + z) modulo the subspace
Upi . Thus, Hpifn Fq(z)-linearly depends on Hpif1, . . . ,Hpifn−1

modulo the subspace Upi .
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We are given that the inseparable degree of the field extension
Fq(x)/Fq(f) is pi. This by the definition of inseparable degree
(Sec. 2.1) implies that the minimal annihilating polynomial Aj ∈
Fq[y0, . . . , yn] of {xpi

j , f} is separable with respect to y0, for all j,
i.e., the derivative of Aj does not vanish with respect to y0.

Let us consider such an Aj =
∑

e�
ae�

ye� . We begin by ap-
plying the variable shift as we did in the dependent case, and get
that Aj((xj + zj)

pi
, f(x + z)) ≡ 0 in Qpi . Now Taylor expansion

allows us to write f(x + z) as f(z) + Hpif(x) in Qpi (i.e., sum
of constant terms and non-constant terms of degree ≤ pi). Using

this, we expand the congruence as
∑

e�
ae�

· (zpi

j + xpi

j )e0� · (f1(z) +
Hpif1)

e1� · · · (fn(z) + Hpifn)en� ≡ 0.

Note that (zpi

j + xpi

j )e0� ≡ zpie0�
j + e0� · z

pi(e0�−1)
j xpi

j . Using this,
we further expand to,

∑

e�

ae�
·
(
zpie0�

j + e0� · z
pi(e0�−1)
j xpi

j

)
·(f1(z) + Hpif1)

e1� · · ·

(fn(z) + Hpifn)en� ≡ 0.

Observe that xpi

j ·Hpif� ≡ 0 in Qpi , for � ∈ [n]. Thus, the above
equation reduces to
∑

e�

ae�
zpie0�

j (f1(z) + Hpif1)
e1� · · ·(fn(z) + Hpifn)en�

+ xpi

j

∑

e�

ae�
e0� · z

pi(e0�−1)
j fe� ≡ 0.

Thus, an Fq(z)-linear combination of xpi

j and the products of
the form (Hpif1)

t1 · · · (Hpifn)tn vanishes in Qpi .
By the separability of Aj at least one e0� is not a multiple of p.

Now having shown that there is at least one nonzero term in the

sum
∑

e�
ae�

e0� ·(zpi

j )e0�−1 ·fe� , we argue that the overall sum cannot
be zero. This follows immediately from the minimality of Aj again
since the zero sum would imply the existence of an annihilating
polynomial with degree less than the degree of Aj. Thus, we get

that xpi

j lives in the subspace generated by the terms of the form
(Hpif1)

t1 · · · (Hpifn)tn , with
∑

j tj ≥ 1. (Note that the x-free terms
cancel out.)
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We write the above subspace as 〈Hpif〉Fq(z) + 〈Hpif〉2
Fq(z) + · · ·+

〈Hpif〉pi

Fq(z) which, by Rmk. 3.2, is the same as the

subspace 〈Hpif〉Fq(z) +Upi =: U ′
pi . Using the assumption of the

linear dependence of Hpif modulo Upi , and subspace reduction

(Lem. 3.10), we get that xpi

j lives in U ′
pi = V ′

pi := 〈Hpif1, . . . ,

Hpifn−1〉Fq(z) + Vpi , where Vpi := 〈Hpif1, . . . ,Hpifn−1〉2
Fq(z) + · · · +

〈Hpif1, . . ., Hpifn−1〉pi

Fq(z).

On repeating this for all the Aj’s, we get that {xpi

1 , . . . , xpi

n } ⊆
V ′

pi . This contradicts (the impossible containment) Lem. 3.4, and
hence finishes the proof. (One can easily see that we get functional
independence for random fixing of z in the space F

n

q .) �
We can see the classical Jacobian criterion as a special case of

Theorems 3.7 and 3.13.

3.4. Recovering the classics. As a corollary of Thm. 3.7 and
Thm. 3.13, we get the classical Jacobian criterion for the separable
case (i.e., inseparable degree = p0 = 1).

Corollary 3.14 (Jacobian rephrased). Let F be any field. Let
f ⊂ F[x] be such that the field extension F(x)/F(f) is separable,
then the linear terms (in x) of f1(x + z), . . . , fn(x + z) are F(z)-
linearly dependent iff f1, . . . , fn are algebraically dependent.

The dependence part of Thm. 3.13 helps us in characterizing
the failure of the Jacobian.

Corollary 3.15 (Jacobian fails for inseparable). For algebrai-
cally independent polynomials f ⊂ F[x] such that the field ex-
tension F(x)/F(f) is inseparable, the linear terms (in x) of f1

(x + z), . . . , fn(x + z) are F(z)-linearly dependent.

Thus, Jacobian being zero implies that either the n-variate n
polynomials are algebraically dependent, or they are independent
but inseparable.

Now we describe the algorithm to test algebraic independence
using our criterion. Other complexity applications appear in Sec-
tions B and C, closely following the approach of Kumar & Saraf
(2016).
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4. Application 1: Algebraic independence
testing algorithm

We will prove the following time complexity.

Theorem 1.1 (textscrestated). For circuits f ∈ Fq[x] we have a
randomized poly(s,

(
t+n
n

)
)-time algebraic independence testing al-

gorithm, where the inseparable degree of the field extension Fq(x)/
Fq(f) is t (assuming f algebraically independent) and s is the total
input size.

Algorithm idea The criterion (by Theorems 3.7 & 3.13) es-
sentially involves testing Htfn ≡ 0 modulo the subspace V ′

t :=
〈1,Htf1, . . . ,Htfn−1〉t

Fq(z) in Qt, where t is the inseparable degree

of the field extension Fq(x)/Fq(f). (In fact, one needs to check
whether Htfj functionally depends on the remaining n − 1 poly-
nomials, for all j ∈ [n].) Implementing the criterion involves three
main steps:

Step 1 Computing the arithmetic circuits for Htf1, . . . ,Htfn in Qt

using the fact that Htf = f(x + z) − f(z) in Qt.

Step 2 Computing the arithmetic circuits for the basis vectors
generating the subspace V ′

t in Qt.

Step 3 Testing the nonzeroness of Htfn modulo the linear space
V ′

t given its basis vectors as circuits, in Qt.
A subroutine that we use several times in our algorithm com-

putes a basis of a given subspace, over the field F(z), generated
by given arithmetic circuits in F[z][x]. Let us call this subroutine
BASIS.

4.1. The subroutine BASIS. Suppose we are given m circuits
a1, . . . , am ∈ Fq[z][x] and we want to compute a basis B of the
subspace generated by a1, . . . , am over Fq(z). Let d be a degree
bound (wrt x, z), and s a size bound, for these circuits.

We invoke the Alternant criterion as proven in (Mittmann 2013,
Lem. 3.1.2). It says that if a1, . . . , am are Fq(z)-linearly indepen-
dent, then for “random” points αi, i ∈ [m], in F

n
q , det(aj(αi)) �= 0.

For this to work we need q > 2dm. Note that such a field exten-
sion Fq/Fp can be constructed in polylog(dm)-time by Adleman &
Lenstra (1986). Once we have fixed the x variables we still have
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to test det(aj(αi)) �= 0. This we can do by, again, randomly fixing
the z variables to a single point in F

n
q (DeMillo & Lipton 1978;

Schwartz 1980; Zippel 1979).
Moreover, to compute a basis B we merely have to find a

column-basis of the matrix (aj(αi))i,j. This can be done by ba-
sic linear algebra (using minors and random evaluations as above),
in randomized poly(sm log d)-time. So BASIS runs in randomized
poly-time in the input size.

4.2. Computing the arithmetic circuits for Htf1, . . . ,Htfn.
Recall that Htf = f(x + z) − f(z) in Qt. Since Htf is nothing
but the non-constant part of the shifted f , truncated at degree t,
we can get the circuit for Htf by shifting the variables of f(x) and
using standard circuit reductions.

Given an arithmetic circuit for f(x), we easily get the circuit
for f(x+z). Now to get the terms with degree ≤ t wrt x, from the
above circuit, use Strassen’s homogenization technique (Shpilka &
Yehudayoff 2010; Strassen 1973, Thm. 2.2) which gives a homoge-
neous circuit of size O(t2s) computing the homogeneous parts of
Htf up to degree t.

4.3. Computing the basis vectors of V ′
t. Recall that V ′

t is
generated as 〈1,Htf1, . . . ,Htfn−1〉t

F(z), t ≥ 1, in Qt. Now, having
computed the circuits for Htfj in Qt, we compute the generators
for V ′

t iteratively.
We first compute the linear basis B1 of the set, of above com-

puted circuits {1,Htf1, . . ., Htfn−1}, using the subroutine BASIS.
Next, we multiply every element of the obtained basis to every

element of the set {1,Htf1, . . . ,Htfn−1} in Qt and compute the
basis B2 of the corresponding set of products obtained.

We repeat the procedure and multiply every element of B2 to
every element of {1,Htf1, . . ., Htfn−1} and compute the basis to
obtain B3, and so on.

Clearly, the size of the intermediate basis Bi remains bounded
by the dimension of Qt which is

(
n+t
n

)
. Further, we only need to

go up to i ≤ t.
Hence, we compute the final basis, using BASIS, in randomized

poly(s,
(

n+t
n

)
)-time.
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4.4. Testing nonzeroness modulo the subspace V ′
t. We now

test nonzeroness of Htfn modulo V ′
t. This is simply the question of

computing the dimension of the subspace spanned by {Htfn} ∪ Bt

and the one by Bt, and checking whether the difference is 1. Clearly,
BASIS can be used to do this in randomized poly(s,

(
t+n
n

)
)-time.

Thus, we have a poly(s,
(

t+n
n

)
)-time randomized algorithm for

testing algebraic independence, where t upper bounds the insepa-
rable degree of the field extension Fq(x)/Fq(f) and s is the input
size. This finishes the proof of Thm. 1.1.

5. Conclusion

We give a criterion for testing algebraic independence over positive
characteristic, in the spirit of Jacobian criterion, that works for any
field. Its complexity is parameterized by the inseparable degree
bound. It is also strong enough to give the inseparable degree at
the same time. We give applications to locally low-algebraic-rank
circuits in the cases that were open before.

The main open problem is to investigate whether we can im-
prove the criterion to get a randomized poly-time algorithm for
circuits over a finite field. Bringing down the complexity from ran-
domized poly(s,

(
t+n
n

)
) to randomized poly(s, n, t) seems a plausible

target.
The complexity of annihilating polynomials is well understood,

but the complexity of the approximate functional dependence is not
yet clear. Is there a small circuit for the approximate functional
dependence up to a given precision?

We mention a few special cases based on different restrictions
on input. None of these cases are (efficiently) solved by presently
known techniques.

◦ the given polynomials are supersparse, i.e., they are sparse
polynomials with possibly exponential degree monomials.

◦ two bivariate circuits, with an exponentially large inseparable
degree, over F2.

◦ n quadratic polynomials over F2.
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Figure 5.1: Our criterion
Jacobian Criterion Our Criterion

The approach: reduces algebraic
independence to
linear independence
testing

reduces algebraic
independence to
linear independence
testing

Related
“approximate”
shift :

f(x) �→ f(x + z)
mod 〈x〉2

F(z)[x]

f(x) �→ f(x + z)
mod Ut

Vectors for
F(z)-
dependence:

H1f mod U1 Htf mod Ut

Certifies alg.
independence
if:

F(x)/F(f) is separa-
ble

separable or insepa-
rable F(x)/F(f)

Efficiency in
char(F) = 0:

randomized
poly-time algorithm

t = 1, (same as
Jacobian criterion)

Efficiency in
char(F) = p,
inseparable de-
gree ≤ pe:

fails randomized
poly

(
n+pe

n

)
-time

algorithm

Our hitting-set result, for locally low-algebraic-rank circuits,
still has a mild assumption on the characteristic. Can this be
eliminated?

Algebraic matroids over fields of positive characteristic may not
have any linear/vector representation (unlike the zero characteris-
tic case) (Lindström 1985). Can our criterion help to identify some
special cases when algebraic matroids can be represented by linear
matroids?
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A. Application 1: Interpretation of the
criterion via Hasse–Schmidt differential

Motivated by the classical Jacobian criterion, we see how we can
generalize to positive characteristic. Jacobian criterion can be
proved using the differential operator (denoted by H1) defined as
follows,

H1 :=
∂

∂z1

x1 + · · · +
∂

∂zn

xn.

H1 acts on f ∈ F[z] as H1f = (∂f/∂z1)x1 + · · · + (∂f/∂zn)xn.
The key idea of Jacobian criterion is that the differential opera-

tor can reduce the nonlinear problem of testing algebraic indepen-
dence to linear algebra (testing linear independence over function
fields) in zero, or large, characteristic. Formally, f1, . . . , fn are al-
gebraically dependent iff H1f1, . . . H1fn are linearly dependent over
the function field F(z1, . . . , zn). If we see the proof, we observe that
four properties of differential operators (acting on some annihilat-
ing polynomial) crucially helps to achieve this reduction: linearity,
product rule (Leibniz rule: H1(fg) = fH1g +gH1f), the facts that
differentiating a polynomial reduces its degree, and differentiation
does not make a non-constant polynomial zero. The last property
fails over small characteristic, as we know that the partial deriva-
tives vanish for p-powers over characteristic p. This leads to failure
of Jacobian criterion.

Let us start with the question of finding analogs of differen-
tial operator in positive characteristic that may help to reduce
our problem to linear algebra. In our search for nice derivative-
like operator which may not kill p-powers, and that satisfies some
product rule, Hasse derivative (Eqn. A.1) naturally comes up. Al-
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though derivative of zp with respect to z is zero over characteristic
p, the p-th-order Hasse derivative of zp is 1 (essentially, differenti-
ate it p-times over Q, divide by p!, and return back to Fp). Hasse
derivatives also satisfy a product rule analogous to the product
rule (Sec. 2.2) of higher-order derivatives. So, it seems that Hasse
derivatives can be used to construct higher-order differentials and
such differentials are already known as Hasse–Schmidt higher-order
differentials. For example, we can define a second-order differ-
ential operator using the second-order Hasse–Schmidt derivatives:
H2 := H2

1/2!, with its action on f given as

H2f :=
H2

1

2!
f =

∑

i,j∈[n]

1

2!

∂2f

∂zi∂zj

xixj.

More generally, we can define:

Hkf :=
Hk

1

k!
f

=
∑

k1+···+kn=k

1

(k1)!(k2)! . . . (kn)!
· ∂kf

∂zk1
1 ∂zk2

2 · · · ∂zkn
n

· xk1
1 · · ·xkn

n .

(A.1)

So, the natural choice of differential operator for getting
a Jacobian-like criterion over characteristic p would be
Hasse–Schmidt derivation of order pi, for a large enough i. Hasse–
Schmidt operator gets us through one direction (algebraic depen-
dence implies linear dependence), but one problem is that this
operator vanishes for polynomials of degree < pi, so it cannot be
used to certify independence in all cases. This problem can be
avoided by considering instead the sum of Hasse–Schmidt higher-
order differentials up to k, where k ≥ pi. Let us call this operator
Hk (Sec. 2.2).

But taking higher derivatives does not immediately solve the
problem. A major problem is, one wants to reduce the question
of deciding algebraic independence of n polynomials to deciding
the linear independence of n polynomials/vectors. As in the case
of the proof of Jacobian criterion, ideally we want a bijection be-
tween algebraic dependencies among the polynomials and the lin-
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ear dependencies of the corresponding vectors. But simple count-
ing shows that there are n first derivatives in n variables, but the
number of higher derivatives is > n. We can fix this issue by re-
ducing algebraic dependence of n polynomials to linear dependence
of n polynomials modulo a carefully chosen subspace (by stuffing
higher-products of the higher differentials in that subspace). This
gets implemented by working modulo Ut in Sec. 3.2.

Now we give a version of generalized Jacobian criterion de-
scribed in terms of Hasse–Schmidt differentials. We describe the
notation first. Hif(x) contains all the terms, of the polynomial
f(x + z) − f(x) ∈ Fp(x)[z], that are of degree (wrt z) ≤ i.

Let S ⊇ R be a ring extension over a field F, and let v1, . . . , vm ∈
S. Then, the R-module 〈v1, . . . , vm〉R is simply the set of linear
combinations of the vi’s where the coefficients come from R. It
is also a vector space over F. We extend this notation to powers
(r ≥ 1):

〈v1, . . . , vm〉r
R :=

{
∑

αi∈R

αi · vq1
1 · · · vqm

m | q1+· · · + qm = r, qj ≥ 0

}

.

Using the above notation, we define Uk, a subspace of Fp(x)[z].

Uk := 〈Hk−1f〉2
Fp(x) + · · · + 〈H1f〉k

Fp(x) + 〈z〉k+1
Fp(x)[z],

U1 := 〈z〉2
Fp(x)[z].

Now we are ready to state the theorems.

Theorem A.2 (Dependent). Let f ⊂ Fp[x] be a set of n n-variate
polynomials. If f is algebraically dependent, then Hkf is Fp(x)-
linearly dependent modulo the subspace Uk, for all k ≥ 1.

Theorem A.3 (Independent). If f ⊂ Fp[x] is algebraically inde-
pendent with inseparable degree (of the field extension Fp(x)/Fp(f))
equal to pi, then Hkf is Fp(x)-linearly independent modulo the sub-
space Uk, for k ≥ pi. Moreover, Hkf is Fp(x)-linearly dependent
modulo Uk, for every 1 ≤ k < pi.
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These two theorems together give a Jacobian-like criterion for
testing algebraic independence of n polynomials, assuming we are
given a promise that the inseparable degree is bounded by pi. The
proofs of these two theorems are essentially same as the the proofs
of Theorem 3.7 and Theorem 3.13.

Matrix version of the criterion. From the above two the-
orems, we can get a Jacobian like matrix J with entries in Fp[x].
The rows of the matrix J are indexed by Hkf , and the columns of
the matrix are indexed by the monomials in z with degree ≤ k.
The entry, in the i-th row and the column indexed by a mono-
mial m, is the coefficient of monomial m in the polynomial Hkfi.
Clearly, the entries of J are order ≤ k Hasse–Schmidt derivatives
of fi’s.

The subspace Vk of the ambient vector space Fp(x)(
n+k

k ) is de-
fined by taking all the coefficient vectors (corresponding to the
coefficients of z-monomials of degree ≤ k) of the polynomials in
Uk.

It can be seen directly from our theorems that the row-span of
the matrix J has full rank modulo the subspace Vk iff the polyno-
mials f are algebraically independent (assuming that inseparability
degree is ≤ k).

B. Application 2: Exponential lower bounds

In this section, we prove
Theorem 1.2 (textscrestated). Let F be any field. There exists a
family {Pn} of polynomials in VNP, such that Pn is a polynomial
of degree n in N = nO(1) variables with 0, 1 coefficients, and for
any ΣΓ(k)ΣΠ circuit C, if k ≤ n and if C computes Pn over F, then
Size (C) ≥ NΩ(

√
n).

We state the main lemmas following the notation of (Kumar
& Saraf 2016, Sec. 4) and discuss proof ideas; the details are the
same as those in Kumar & Saraf (2016). The main reason why their
lower bound result needed characteristic of the underlying field to
be zero (or large enough) is due to the fact that their key lemma
(algebraic dependence to functional dependence) worked only for
those characteristics. As we have generalized the key lemma to
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arbitrary fields, we are able to generalize their lower bound results
to arbitrary fields as well.

All the recent arithmetic circuit lower bound proofs follow a
common recipe with the following main steps. (Refer to the evolv-
ing survey Saptharishi (2016).)

◦ Coming up with a complexity measure on polynomials that
is sub-additive.

◦ Calculating an upper bound on the complexity measure of the
family of circuits against which we would like to prove the
lower bound.

◦ Calculating a lower bound on the complexity measure for the
hard polynomial.

◦ Set appropriate parameters and compare these bounds using
binomial estimates.

Following Kumar & Saraf (2016) we adopt the same strategy
here.

B.1. The complexity measure: dimension of proj. shifted
partial derivatives space. The complexity measure used in
Kumar & Saraf (2016) is dimension of projected shifted partial
derivatives of a polynomial. This measure was used in Kayal et al.
(2014a) to prove a strong lower bound against homogeneous depth-
4 circuits for zero or large characteristic. Later Kumar & Saraf
(2016, 2017) extended it to other models.

For a polynomial P and a monomial γ, ∂P
∂γ

is the partial deriva-

tive of P with respect to γ. For a set of monomials M, ∂M(P )
is the set of partial derivatives of P with respect to monomials in
M. Mult[P ] is the projection of P on the multilinear monomials
in its support.

Definition B.1 ((M,m)-projected shifted partial derivatives,
Kumar & Saraf 2016). For an N variate polynomial P ∈ F[X1, . . . ,
XN ], set of monomials M of degree r and a positive integer m ≥ 0,
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the space of (M,m)-projected shifted partial derivatives of P is de-
fined as

〈∂M(P )〉m

:= F − span

(

Mult

[ ∏

i∈S

Xi · g

]

: g∈∂M(P ), S ∈
(

[N ]

m

))

.

The complexity measure we use is dimension of the projected
shifted partial derivatives space. Formally, φM,m(P ) := Dim
(〈∂M(P )m 〉).

It is easy to check that the measure is sub-additive.
The following lemma is used in the proof and it is easy to verify

that it is valid for all characteristic. It gives an upper bound on
the measure of the homogeneous component of a polynomial of low
degree.

Lemma B.2 (Kumar & Saraf 2016, Lem. 4.3). Let P be a poly-
nomial of degree at most d. Then for every 0 ≤ i ≤ d and for all
choice of parameters m, r and a set M of monomials of degree r,

φM,m(P=i) ≤ φM,m(P ).

B.2. Target polynomials for the lower bound. The tar-
get polynomial family (in VNP) is a variant of Nisan–Wigderson
polynomials—Nisan–Wigderson composed of linear forms. First,
we give the definition of Nisan–Wigderson family of polynomials,
which was first introduced in Kayal et al. (2014b).

Definition B.3 (Nisan–Wigderson family of polynomials,
Kumar & Saraf (2016) Defn. 4.5). Let n, q, e be arbitrary pa-
rameters with q being a power of prime and n, e ≤ q. We have
some identification [n] ⊆ Fq. The Nisan–Wigderson polynomial
with parameters n, q, e, denoted by NWq,n,e is defined as

NWq,n,e(X) :=
∑

p(t)∈Fq [t]
deg(p)<e

X1,p(1) · · ·Xn,p(n).

Note that it has arity equal to N = nq. Now we define the fam-
ily of polynomials which is hard for the circuit model we consider.
This is in VNP (by Valiant’s criterion).
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Definition B.4 (Nisan–Wigderson composed of linear forms,
Kumar & Saraf (2016) Defn. 4.6). Let δ ∈ (0, 1) be an arbi-
trary constant, and let p = N−δ. Let γ = N/p. The polynomial
NW ◦ Linq,n,e,p is defined as

NW ◦ Linq,n,e,p = NWq,n.e

( γ∑

i=1

X1,1,i,

γ∑

i=1

X1,2,i, . . .

γ∑

i=1

Xn,q,i

)

.

This polynomial, of arity γN , behaves well under random re-
strictions on the variables. Let V be the set of variables in the
polynomial NW ◦ Lin. We define a distribution Dp over the sub-
sets of V as follows. Each variable in V is independently kept alive
with a probability p = N−δ.

We notice that (Kumar & Saraf 2016, Lem. 4.7) & (Kumar
& Saraf 2017, Sec. 6) (lower bound on the dimension of projected
shifted partial derivatives of NW) hold for any field F (unlike Kayal
et al. 2014a).

Lemma B.5 (NW lower bound, Kumar & Saraf (2016) Lem. 4.7,
Kumar & Saraf (2017) Sec. 6). For every n and r = O(

√
n), there

exist parameters q, e, ε such that q = Ω(n2), N = qn and ε =
Θ( log n√

n
) with qr ≥ (1 + ε)2(n−r) and qe−r = ( 2

1+ε
)n−r · poly(q). For

any n, q, e, r, ε satisfying the above constraints, for m = N
2
(1 − ε),

over any field F, we have

φ(NWq,n,e) ≥
(

N

m + n − r

)

· exp(−O(log2 n)).

Using the above lemma, it can be shown that, with high prob-
ability, the measure of NW ◦ Lin remains high.

Lemma B.6 (Kumar & Saraf 2016 Lem. 4.8). With probability
1 − o(1) over V ← Dp , there exists a subset of variables V ′ ⊆ V
with N elements such that φ(NW ◦ Lin|V ′) ≥ (

N
m+n−r

) · exp(−O

(log2 n)).

The proof is given in Kumar & Saraf (2016) and, importantly,
works for any field.
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B.3. Measure upper bound for ΣΓ(k)ΣΠd. Observe that, by
our functional dependence result (Thm. 3.7), the relevant proof
of (Kumar & Saraf 2016, Lem. 4.9) immediately extends over
arbitrary fields. (A technical point is that one uses F in their
arguments.)

Lemma B.7 (Measure upper bound, Kumar & Saraf (2016)
Lem. 4.9). Let m, r, s be parameters such that m + rs ≤ N/2.
Let M be any set of multilinear monomials of degree r. Let C be a
ΣΓ(k)ΣΠd circuit computing a homogeneous polynomial of degree
n such that

C =
T∑

i=1

Ci(Qi1, Qi2, . . . , Qit)

where for each i ∈ [T ], Ci is an arbitrary polynomial in t variables,
for each (i, j) ∈ [T ] × [t], Qij is a homogeneous polynomial in N
variables and for each i ∈ [T ], the algebraic rank of {Qij : j ∈ [t]}
is at most k. Let Sij be the support of Qij and assume it to have
monomials of support≤ s. If

∣
∣
∣
∣
∣
∣

⋃

i∈[T ],j∈[t]

Sij

∣
∣
∣
∣
∣
∣

≤ N
δs
2

then, with probability 1 − o(1) over V ← Dp , for all subsets V ′ of
V of size at most N ,

φ(C|V ′) ≤ T

(
k(n + 1) + r

r

)(
N

m + rs

)

.

The proof strategy is the same as Kumar & Saraf (2016). The
first step is using random restrictions to simplify the circuit into a
circuit with bounded bottom support. This step is not sensitive to
the characteristic or size of the underlying field.

The step crucial for us is their second step, where low algebraic
rank is exploited in the rewriting (Cor. 3.12). Here, we invoke
functional dependence (Thm. 3.7) to get the same upper bound.

The third step is to simply estimate the measure once t has been
reduced to k(n+1). We note that this part is purely combinatorial
and field independent.
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B.4. Wrapping up. Finally, assume that NW◦Lin has a circuit
C ∈ ΣΓ(k)ΣΠd. Consider the degree-n homogeneous part of the
randomly shifted NW◦Lin polynomial (this gives back the original
polynomial).

The above analysis (with Cor. 3.12 & Lem. B.2) entails that:
with a positive probability, there exists a subset V ′ of variables of
size N so that simultaneously

φM,m(C|V ′) ≤ T

(
k(n + 1) + r

r

)(
N

m + rs

)

and

φM,m(NW ◦ Lin|V ′) ≥
(

N

m + n − r

)

exp(− log2 n).

As C computes NW ◦ Lin,

T ≥
(

N
m+n−r

)
exp(− log2 n)

(
k(n+1)+r

r

)(
N

m+rs

) .

Setting appropriate parameters as in (Kumar & Saraf 2016, Pg.
21), we would get

T = NΩ(
√

n).

C. Application 3: Quasipoly-time hitting-set

In this section, we prove
Theorem 1.3 (textscrestated). Let F be any field of characteristic
p. There exists an exp(logO(1) s)-time constructible hitting-set H ⊆
F

N
for size-s circuit C ∈ ΣΓ(k)ΣΠd with kd = logO(1) s, assuming

p > individual-degree (C) or p = 0.

We only sketch the proof ideas, along the lines of (Kumar &
Saraf 2016, Sec. 5). Their main trick is the following. If we can
prove that every nonzero polynomial P (of degree at most n and
in N variables) in the class ΣΓ(k)ΣΠd (of size s) has a monomial
of low support (say, at most �), then a hitting-set for the class can
be easily constructed in poly(s(nN)�)-time (Agrawal et al. 2013).
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This trick was combined with the shifted partials measure by
Forbes (2015) for interesting models, to get hitting-sets and also
to solve circuit divisibility testing questions. Basically, he showed
that a circuit with a low measure also has a low support trailing
monomial. (Kumar & Saraf 2016, Lem. 5.2) proved the same for
ΣΓ(k)ΣΠd circuits. Albeit their proof requires the characteristic to
be zero or super-polynomially large.

We extend (Kumar & Saraf 2016, Lem. 5.2) to fields of charac-
teristic greater than the individual-degree of the circuit. To prove
this, (Forbes 2015, Lem. 4.18) is used which related shifted partials
measure to the support of trailing monomial.

Lemma C.1 (Forbes (2015) Lem. 4.18, Kumar & Saraf (2016)
Lem. 5.3). Let F be a field with characteristic p. Let R(X) be a
polynomial in F[X] such that

R(X) =
T∑

i=1

Fi(Qi1, Qi2, . . . Qit)

and for each (i, j) ∈ [T ]×[t], the degree of Qij is at most d. Let α be
the trailing monomial of R. If p = 0 or p > individual-degree(α),
then the support of α is at most 2e3d(ln T + t ln 2t+1) (e is Euler’s
constant).

Now, using our rewriting of ΣΓ(k)ΣΠd circuits (Cor. 3.12), we
can generalize (Kumar & Saraf 2016, Lem. 5.2).

Lemma C.2 (Trailing monomial has low support,
Kumar & Saraf (2016) Lem. 5.2). Let F be a field of charac-
teristic p. Let P be a homogeneous polynomial of degree Δ in N
variables such that P can be represented as

P =
T∑

i=1

Ci(Qi1, Qi2, . . . , Qit)

such that the following are true. For each i ∈ [T ], Ci is a polyno-
mial in t variables. For each i ∈ [T ] and j ∈ [t], Qij is a polynomial
of degree at most d in N variables. For each i ∈ [T ], the algebraic
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rank of the set of polynomials Qij : j ∈ [t] is at most k. Let α be
the trailing monomial of P . If p = 0 or p > individual-degree(α),
then α has support at most

2e3d · ( ln(T (Δ + 1)) + (d + 1)k ln((d + 1)k) + 1 ).

Sketch of Proof. We want to show that

P =
T∑

i=1

Ci(Qi1, Qi2, . . . , Qit)

has a trailing monomial of low support.
The proof uses Cor. 3.12, which we have shown for arbitrary

fields (after a shift from F
N

), to reduce t to k(d + 1). Now, invoke
Lem. C.1, which requires a mildly large characteristic, to deduce
that the trailing monomial has low support.

The proof also uses the fact that degree-Δ homogeneous com-
ponent of the shifted P (x) is P itself, and applies Lemmas B.2 &
B.7, to upper bound the circuit’s measure. �

Note that a non-homogeneous P can be first made homoge-
neous, for PIT purposes, and then apply the above.

Thus, if dk = polylog(s), then we get a quasipoly-time hitting-
set for ΣΓ(k)ΣΠd circuits.
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