
comput. complex. 27 (2018), 511 – 559

c© Springer International Publishing AG 2017

1016-3328/18/030511-49

published online October 17, 2017

DOI 10.1007/s00037-017-0163-1 computational complexity

ON SPACE AND DEPTH IN

RESOLUTION

Alexander Razborov

Abstract. We show that the total space in resolution, as well as in
any other reasonable proof system, is equal (up to a polynomial and
(log n)O(1) factors) to the minimum refutation depth. In particular, all
these variants of total space are equivalent in this sense. The same
conclusion holds for variable space as long as we penalize for exces-
sively (that is, super-exponential) long proofs, which makes the ques-
tion about equivalence of variable space and depth about the same as
the question of (non)-existence of “supercritical” tradeoffs between the
variable space and the proof length. We provide a partial negative an-
swer to this question: for all s(n) ≤ n1/2 there exist CNF contradictions
τn that possess refutations with variable space s(n) but such that every
refutation of τn with variable space o(s2) must have double exponential
length 22Ω(s)

. We also include a much weaker tradeoff result between
variable space and depth in the opposite range s(n) � log n and show
that no supercritical tradeoff is possible in this range.

Keywords. Resolution proofs, supercritical tradeoff, variable and total
space.

Subject classification. Primary 03F20; Secondary 68Q17.

1. Introduction

The area of propositional proof complexity has seen a rapid devel-
opment since its inception in the seminal paper Cook & Reckhow
(1979). This success is in part due to being well connected to a
number of other disciplines, and one of these connections that has
seen a particularly steady growth in recent years is the interplay

Birkhäuser

512 Alexander Razborov cc 27 (2018)

between propositional proof complexity and practical SAT solving.
As a matter of fact, SAT solvers that seem to completely dominate
the landscape at the moment (like those employing conflict-driven
clause learning) are inherently based on the resolution proof sys-
tem dating back to the papers Blake (1937) and Robinson (1965).
This somewhat explains the fact that resolution is by far the most
studied system in proof complexity, even if recent developments
(see, e.g., the survey Barak & Steurer (2014)) seem to be bringing
the system of sum-of-squares as a serious rival.1

Most of this study concentrated on natural complexity mea-
sures of resolution proofs like size, width, depth or space and
on their mutual relations; to facilitate further discussion, let us
fix some notation (the reader not familiar with some or all of
these is referred to Section 2 in which we give all necessary defini-
tions). Namely, we let S(τn � 0), ST (τn � 0), w(τn � 0), D(τn �
0),CSpace(τn � 0),TSpace(τn � 0) and VSpace(τn � 0) stand
for the minimum possible size [tree-like size, width, depth, clause
space, total space2 and variable space, respectively]. w(τn) is the
width of the contradiction τn itself.

Let us review some prominent relations between these mea-
sures. The inequalities w(τn � 0) ≤ D(τn � 0) and log ST (τn �
0) ≤ D(τn � 0) are trivial. Ben-Sasson & Wigderson (2001) con-
joined them by proving that

(1.1) w(τn � 0) ≤ log ST (τn � 0) + w(τn).

Even more importantly, in the same paper they established the
celebrated width-size relation

(1.2) w(τn � 0) ≤ O(n · log S(τn � 0))1/2 + w(τn)

1 It should be remarked, however, that one of the most prominent SOS
lower bound technique dating back to the paper Grigoriev (2001) is based on
resolution width.

2 A word of warning about terminology: it is this measure that had been
called “variable space” in Alekhnovich et al. (2002), and this usage of the term
persisted in the literature for a while, see, e.g., Ben-Sasson (2009). But then
several good arguments were brought forward as to why it is more natural to
reserve the term “variable space” for its connotative meaning, and we follow
this revised terminology.

cc 27 (2018) On space and depth in resolution 513

that has steadily grown into a standard method of proving lower
bounds on the size of DAG resolution proofs.

In the space world, the obvious relations are CSpace(τn � 0) ≤
TSpace(τn � 0) and VSpace(τn � 0) ≤ TSpace(τn � 0). Can
CSpace(τn � 0) and VSpace(τn � 0) be meaningfully related to
each other?

In one direction this was ruled out by (Ben-Sasson 2009, The-
orem 3.9): there are 3-CNF contradictions τn with CSpace(τn �
0) ≤ O(1) and3 VSpace(τn � 0) ≥ Ω(n/ log n).

Whether CSpace can be meaningfully bounded by VSpace is
unknown. As will become clear soon, this question is extremely
tightly connected to the content of our paper.

Let us mention several prominent and rather non-trivial results
connecting “sequential” measures (size, width, depth) and “config-
urational”, space-oriented ones. Atserias & Dalmau (2008) proved
that

(1.3) w(τn � 0) ≤ CSpace(τn � 0) + w(τn);

a simplified version of their proof was presented by Filmus et al.
(2015) and independently by Razborov (unpublished).

As we already observed, variable space cannot be bounded in
terms of clause space, but Urquhart (2011) proved that it can be
bounded by depth:

(1.4) VSpace(τn � 0) ≤ D(τn � 0).

In a recent paper Bonacina (2016), the following connection
between width and total space was established:

(1.5) w(τn � 0) ≤ O(TSpace(τn � 0))1/2 + w(τn)

that, similarly to (1.2), immediately opens up the possibility of
proving super-linear lower bounds on the total space in a system-
atic way.

3 Ironically (cf. Footnote 2), although this result was stated in Ben-Sasson
(2009) for variable space, it was actually proved there only for what we call
here TSpace. However, the extension to VSpace is more or less straightforward,
see, e.g., Beck et al. (2013).

514 Alexander Razborov cc 27 (2018)

Finally, it should be mentioned that besides simulations there
have been proven quite a great deal of separation and tradeoff
results between these measures. They are way too numerous to be
meaningfully accounted for here, we refer the interested readers,
e.g., to the survey Nordström (2013).

Our contributions. We continue this line of research and
prove both simulations and tradeoff results. In the former di-
rection, perhaps the most catchy statement we can make is that
TSpace(τn � 0) and D(τn � 0) are equivalent, up to a polynomial
and log n factors (see Figure 1.1 below for more refined statements).
This is arguably the first example when two proof-complexity mea-
sures that are quite different in nature and have very different his-
tory turn out not only to be tightly related to each other, but
actually practically equivalent.

Now, in order to discuss these simulations and their ramifica-
tions properly, we need to make up a few definitions.

For a configurational proof4 π, let VSpace∗(π)
def
= VSpace(π) ·

log2 |π|; a similar definition can be made for the total space and
for the clause space although we do not need the latter in our
paper. Thus, we penalize refutations in a configurational form
for being excessively long; let us note that a similar logarithmic
normalization naturally pops up in many tradeoff results, see, e.g.,
Ben-Sasson (2009). Then what we “actually” do is to show that
VSpace∗(τn � 0) is polynomially related to depth; in particular, any
small variable space proof can be unfolded into a shallow sequential
proof unless it is prohibitively long. Given this simulation, the
equivalence for the total space is a simple artifact of the observation
that proofs with small total space cannot be too long just because
there are not that many possible different configurations. More
specifically, we have the following picture in which, for the sake
of better readability, we have removed τn � 0 elsewhere, replaced
f ≤ O(g) with f � g and taken the liberty to blend new results
(that are essentially observations) with previously known ones, like
(1.4), and trivial inequalities like D2 ≤ D3.

An immediate corollary is that TSpace, D,TSpace∗ and VSpace∗

4 For definitions see Section 2 below.

cc 27 (2018) On space and depth in resolution 515

VSpace � TSpace � D2
≥ � ≥

D � VSpace∗ � TSpace∗ � D3

� �

VSpace · (VSpace · log n + 2VSpace) TSpace2 · log n

Figure 1.1: Simulations.

are all equivalent up to a polynomial and log n factors, and the
same applies for semantic versions of TSpace and TSpace∗.

The only difference between TSpace and VSpace is that in the
first case we have a decent (that is, singly exponential) bound on
the overall number of configurations of small total space. Due to
the standard counting argument, this remains true for an arbitrary
reasonable circuit class, and hence our equivalence uniformly gen-
eralizes to the total space based on any one of them: polynomial
calculus with resolution, cutting planes etc. (Theorem 3.2). All
these measures are essentially depth in disguise, and hence nΩ(1)

depth lower bounds automatically imply nΩ(1) lower bounds on the
total space in all those models. For instance, for the total space
we have

(1.6) ˜Ω(D1/2) ≤ TSpace ≤ O(D2),

(the question how tight are these bounds will be addressed in the
concluding section 7).

In the rest of the paper, we study the relation of variable space
itself to these equivalent measures; this question was (apparently)
first asked by Urquhart Urquhart (2011). As follows from Figure
1.1, this is equivalent to the following question: can the term 2VSpace

in the upper bound on VSpace∗ be really dominating or, in other
words, can it be the case that the length of a configurational proof
must necessarily be super-exponential, as long as its variable space
is relatively small? Note that this in particular would imply that
such a proof must mostly consist of totally non-constructive con-
figurations so this situation may look a bit counterintuitive on the

516 Alexander Razborov cc 27 (2018)

first sight. However, precisely this kind of a behavior dubbed “su-
percritical” tradeoffs was recently exhibited in Razborov (2016),
and several other examples have been found in Berkholz & Nord-
ström (2016a,b) and Razborov (2017).

Our most difficult result (Theorem 3.3) gives a moderate su-
percritical tradeoff between variable space and proof length: for
any s = s(n) ≤ n1/2, there are O(1)-CNF contradictions τn with
VSpace(τn � 0) ≤ s but such that every refutation π with sub-

quadratic variable space o(s2) must have length 22Ω(s)
. Improving

the space gap from sub-quadratic to super-polynomial would estab-
lish a strong separation between the variable space and the depth,
but that would probably require new techniques or at least quite
a significant enhancement of ours. As a matter of fact, I am not
ready even to conjecture that a super-polynomial gap here exists,
and perhaps VSpace after all is equivalent to all other measures in
Figure 1.1.

The proof of Theorem 3.3 is highly modular and consists of
three independent reductions; we review its overall structure at
the beginning of Section 6 where the statement is proven. Among
previously known ingredients we can mention r-surjective func-
tions Alekhnovich & Razborov (2008), “hardness compression”
Razborov (2016) and an extensive usage of the multi-valued logic
in space-oriented models Alekhnovich et al. (2002). One new idea
that we would like to highlight is a “direct product result” Lemma
6.9; results of this sort do not seem to be too frequent in the proof
complexity. We use it to amplify our length lower bound for proofs
of variable space 1 (that is, consisting of multi-valued literals) to
the same lower bound for proofs of larger variable space. This is
precisely this step that exponentially blows up the number of multi-
valued variables and prevents us from extending this supercritical
tradeoff into a super-quadratic space range.

Finally, we look into the opposite range when VSpace(τn � 0)
is very small (say, a constant) and hence the term 2VSpace in Fig-
ure 1.1 becomes negligible. In this regime, the syntactic measures
CSpace,TSpace become constant and, by (1.3), the same applies
to width. Razborov (2016) proved a supercritical tradeoff between
width and depth, and Berkholz & Nordström (2016b) studied this

cc 27 (2018) On space and depth in resolution 517

question for width vs. space, so it seems very natural to ask what
kind of tradeoffs might exist between space and depth. We prove
both positive and negative results in this direction. First, we ob-
serve (Theorem 3.4) that the proof of the relation D ≤ VSpace∗ in
Figure 1.1 can be generalized to showing that every (semantical)
refutation of constant variable space gives rise, for an arbitrary
parameter h, to a configurational refutation of variable space O(h)
and depth h2 · nO(1/h); in particular, both space and depth can
be made poly-logarithmic, or depth can be brought down to n1/10

while space still remains constant. This rules out supercritical
tradeoffs in this context, at least as strong as those in Berkholz
& Nordström (2016b); Razborov (2016). But we also show that
this simulation is essentially the best possible: for the Induction
Principle τn = {x0, x0 → x1, . . . , xn−1 → xn, x̄n} we show that
every refutation π with variable space s must have depth nΩ(1/s)

(Theorem 3.5).

The structure of the paper corresponds to the above overview.
In Section 2 we review all the necessary definitions, and in
Section 3 we state our main results. The next three sections are
devoted to proofs: simulation results in Section 4, small space
results in Section 5 and the supercritical tradeoff for large space5

in Section 6. We conclude with a few remarks and open problems
in Section 7.

2. Notation and preliminaries

We let [n]
def
= {1, 2, . . . , n}. |x| is the length of a word x, and xy

is the concatenation of two words. u is a prefix of v, denoted by
u ≤ v if v = uw for another (possibly, empty) word w, and Λ is
the empty word.

For a Boolean function f , V ars(f) is the set of variables f
essentially depends on. f |= g stands for semantical implication
and means that every assignment α satisfying f satisfies g as well.
If τ and τ ′ are syntactic expressions like CNFs, the semantical
implication τ |= τ ′ is understood in terms of the Boolean functions;

5 We defer our by far most difficult proof to the end.

518 Alexander Razborov cc 27 (2018)

these expressions represent.
A literal is either a Boolean variable x or its negation x̄; we will

sometimes use the uniform notation xε def
=

{

x if ε = 1

x̄ if ε = 0
. A clause

is a disjunction (possibly, empty) of literals in which no variable
appears along with its negation. A generalized clause is either a
clause or 1; the set of all generalized clauses makes a lattice in which
∨ is the join operator. If C and D are clauses then C ≤ D in this
lattice if and only if C |= D if and only if every literal appearing
in C also appears in D. We will also sometimes say that C is a
sub-clause of D in this case. The empty clause will be denoted by
0, and the set of variables occurring in a clause C, either positively

or negatively, will be denoted by V ars(C), let also V ars(1)
def
= ∅.

This is consistent with the general semantic definition. The width

of a clause C is defined as w(C)
def
= |V ars(C)|.

A CNF τ is a conjunction of clauses, often identified with the
set of clauses it is comprised of. A CNF is a k-CNF if all clauses
in it have width at most k. Unsatisfiable CNFs are traditionally
called contradictions.

The resolution proof system operates with clauses, and it con-
sists of the only resolution rule:

C ∨ x D ∨ x̄

C ∨ D
.

Two major topologies used for representing resolution proofs are
sequential (Hilbert-style) and configurational (or space-oriented).
In order to distinguish between them, we use upper-case letters Π
for the former and lower-case π for the latter.

A (sequential) resolution proof Π is a DAG with a unique target
node in which all nodes are labeled by clauses, every non-source
node v has fan-in 2, and the clause assigned to v can be inferred
from clauses sitting at its predecessors via a single application of
the resolution rule. A resolution proof of a clause C from a CNF
τ is a resolution proof Π in which all source nodes are labeled by
clauses from τ , and the target node is labeled by a sub-clause6 of

6 This is a technicality that is necessary since we did not explicitly include
the weakening rule.

cc 27 (2018) On space and depth in resolution 519

C. A refutation of a contradiction τ is a proof of 0 from it. The
size S(Π) of a sequential proof is the number of nodes, its depth
D(Π) is the length of the longest path in the underlying DAG, and
its width w(Π) is the maximal possible width w(C) of a clause C
appearing in it. For a contradiction τ , we let S(τ � 0), D(τ � 0)
and w(τ � 0) denote the minimal possible value of S(Π), D(Π)
and w(Π), respectively, taken over all sequential refutations Π of
τ .

The configurational (or space-oriented) form of propositional
proofs was introduced in Alekhnovich et al. (2002); Esteban &
Torán (2001). A configuration C is a set of generalized clauses that
can be viewed as a CNF. A configurational proof π from a CNF
formula τ is a sequence of configurations (C0, . . . ,CT) in which
C0 = ∅ and every Ct (t ∈ [T]) is obtained from Ct−1 by one of the
following rules:

Axiom Download. Ct = Ct−1 ∪ {A}, where A ∈ τ ;

Inference. Ct = Ct−1 ∪ {C} for some C
∈ Ct−1 inferrable by a
single application of the resolution rule from the clauses in
Ct−1.

Erasure. Ct ⊆ Ct−1.

π is a (configurational) refutation of τ if 0 ∈ CT . T is the length
of π, denoted by |π|.

The clause space of a configuration C is |C|, its total space
TSpace(C) is

∑

C∈C w(C), and its variable space VSpace(C) is
∣

∣

⋃

C∈C V ars(C)
∣

∣. The clause [total] space CSpace(π) [TSpace(π),
respectively] of a configurational proof π is the maximal clause
[total, respectively] space of all its configurations, and if τ is a
contradiction, then CSpace(τ � 0) [TSpace(τ � 0)] is the minimum
value of CSpace(π) [TSpace(π), respectively], where the minimum
is taken over all configurational refutations π of τ .

Variable space VSpace(τ � 0) can be of course defined analo-
gously, but since this measure is inherently semantical, we prefer
to stress this fact by giving a separate, and more robust, definition
below.

520 Alexander Razborov cc 27 (2018)

Definition 2.1. Let τ be an arbitrary set of Boolean constraints.
For a set V of variables, we let

τ [V]
def
=

∧

{C | C ∈ τ ∧ V ars(C) ⊆ V } .

A semantical proof π from τ is a sequence of Boolean functions
(f0, . . . , f1, . . . , fT) such that f0 ≡ 1 and for every t ∈ T ,

(2.2) ft−1 ∧ τ [V ars(ft−1) ∪ V ars(ft)] |= ft.

T is again the length of π, denoted by |π|, and π is a semanti-

cal refutation if fT ≡ 0. VSpace(π)
def
= max0≤t≤T |V ars(ft)| and

VSpace(τ � 0) is the minimum value of VSpace(π) taken over all
semantical refutations π of τ .

In this definition we have combined all three rules (Axiom

Download, Inference and Erasure) into one. Every configu-
rational proof turns into a semantical proof of (at most) the same
variable space if we replace all configurations in it by the Boolean
functions they represent. Hence VSpace(τ � 0) never exceeds its
syntactical variant, and in the other direction (when τ is actually
a CNF), they may differ by at most a factor of 2 simply by ex-
panding all semantical refutations (2.2) into brute-force resolution
derivations never leaving the set of variables V ars(ft−1)∪V ars(ft).

This purely semantical model also provides a handy uniform
way to talk about semantical analogues of more sophisticated space
complexity measures. Namely, let C be a circuit class equipped
with a complexity measure μ(C) (C ∈ C). Then μ gives rise to the
complexity measure on Boolean functions in a standard way: μC(f)
is the minimum value of μC taken over all circuits C ∈ C computing

f . For a semantical refutation π, let us define μC-Space(π)
def
=

max0≤t≤T μC(ft) and then μC-Space as usual. This definition may
seem overly broad at the first glance, but we will see in Theorem
3.2 that under very mild conditions on the circuit class C, this
measure will also turn out to be equivalent to depth.

Examples. Semantical analogues of clause and total space
studied in the literature before correspond to the case when C con-
sists of all CNFs, and the measures μC are the number of clauses

cc 27 (2018) On space and depth in resolution 521

or overall size, respectively. Semantical analogues of, say, cutting
planes space or PCR space are also straightforward in this lan-
guage.

Finally, we need several mixed, “amortized” measures that pe-
nalize configurational proofs for being unreasonably long. We let

TSpace∗(π)
def
= TSpace(π) · log2 |π|,

VSpace∗(π)
def
= VSpace(π) · log2 |π|,

μC-Space
∗(π)

def
= μC-Space(π) · log2 |π|,

and then we define TSpace∗(τ � 0) VSpace∗(τ � 0) and μC-Space
∗

(τ � 0) as usual (CSpace∗(τ � 0) can be also defined likewise, but
we do not need it in this paper).

Definition 2.3. For a configurational proof π = (C0,C1, . . . ,CT),
define integer valued depth functions Dt on Ct by induction on t.
Since C0 is empty, there is nothing to define. Let t > 0, assume
that C ∈ Ct and that Dt−1 is already defined. If C ∈ Ct−1, we

simply let Dt(C)
def
= Dt−1(C). If A ∈ τ in the Axiom Download

Rule then Dt(A)
def
= 0. If C is obtained from C ′, C ′′ ∈ Ct−1 via

the resolution rule, we let

Dt(C)
def
= max(Dt−1(C

′), Dt−1(C
′′)) + 1.

Finally, the depth D(π) of a configurational refutation π is defined
as DT (0).

Let us remark that Boolean restrictions naturally act on con-
figurational refutations, and that under this action neither space
(any flavor) nor depth may increase.

3. Main results

As all our results were discussed at length in the introduction, here
they are listed more or less matter-of-factly.

In order to improve readability, in our first theorem 3.1 we omit
the argument τn � 0 throughout (τn is an arbitrary contradiction
in n variables), and also we write f � g for f ≤ O(g). Also, we

522 Alexander Razborov cc 27 (2018)

include here both previously known results and trivial simulations;
for explicit tags see the proof given in the next section. Arguably,
the only non-trivial new part in the whole table is the simulation
D � VSpace∗.

Theorem 3.1. For the proof-complexity measures D,TSpace,
VSpace,TSpace∗,VSpace∗ introduced in Section 2 we have the fol-
lowing simulations:

VSpace � TSpace � D2

≥ � ≥

D � VSpace∗ � TSpace∗ � D3

� �
VSpace · (VSpace · log n + 2VSpace) TSpace2 · log n.

Theorem 3.2. Let C be any circuit class that includes CNFs,
and let μC be any complexity measure on C that is intermediate
between the number of input variables and the circuit size of C ∈ C.
Then μC-Space(τn � 0) is equivalent, up to a polynomial and log n
factors to D(τn � 0) (and hence to all other measures in Theorem
3.1 except, possibly, VSpace).

Theorem 3.3. Let s = s(n) ≤ n1/2 be an arbitrary parameter.
Then there exists a CNF τn with VSpace(τn � 0) ≤ s but such that
for any semantical refutation π of τn with VSpace(π) ≤ o(s2) we
have |π| ≥ exp(exp(Ω(s))).

The next result is a variation on the simulation D � VSpace∗

in Theorem 3.1.

Theorem 3.4. Assume that a contradiction τ possesses a seman-
tical refutation π with VSpace(π) = s and |π| = S, and let h ≥ 1
be an arbitrary parameter. Then τ also has a configurational refu-
tation π′ with VSpace(π′) ≤ O(sh) and D(π′) ≤ O

(

sh2 · S1/h
)

.

cc 27 (2018) On space and depth in resolution 523

Theorem 3.5. Let τn = {x0, x̄0 ∨ x1, x̄1 ∨ x2, . . . , x̄n−1 ∨ xn, x̄n}.
Then for every configurational refutation π from τn, we have the
bound

D(π) ≥ Ω
(

n1/VSpace(π)
)

.

4. Proofs of simulations

In this short section, we prove Theorems 3.1 and 3.2.

Proof of 3.1. The square

VSpace ≤ TSpace

≥

VSpace∗ ≤ TSpace∗

is obvious.

Variable space is upper bounded by depth.
VSpace(τ � 0) ≤ D(τ � 0) is (Urquhart 2011, Theorem 6.1(1)).

Total space is upper bounded by depth squared.
This is a minor variation on (Esteban & Torán 2001, Theo-

rem 2.1). Indeed, let Π be a refutation of a contradiction τ with
D(Π) = d, then w.l.o.g. we can assume that Π is in a tree-like
form. Also, w(Π) ≤ d since every variable in the clause at a
node v must be resolved on the path from v to the target (root)
node. We now consider the standard pebbling of the underlying
tree with (d + 1) pebbles and the resulting configuration refuta-
tion π = (C0,C1, . . . ,CT), as in Esteban & Torán (2001). As
a reminder, we can assume w.l.o.g. that Π is a complete binary
tree of height d, identify its nodes with binary words α of length
≤ d in such a way that α0 and α1 are the two children of α, and

let Cα be the corresponding clauses so that
Cα0 Cα1

Cα

is an

instance of the resolution rule. Ct then consists of all those Cα

for which α1d−|α| ≤ t, where the left-hand side is interpreted as
an integer in the binary notation and that are maximal with this
property (i.e., either α = Λ or α = β0 with β1d+1−|α| > t). It

524 Alexander Razborov cc 27 (2018)

can be readily checked that Ct+1 is obtained from Ct by a sin-
gle Axiom Download rule, followed by at most d Influence-

Erasure pairs, and that |Ct| ≤ d + 1. Since also every clause
in π has width ≤ d (due to the above remark) and T ≤ 2d+1,
both claims TSpace(τ � 0) ≤ D(τ � 0)(D(τ � 0) + 1) and
TSpace∗(τ � 0) ≤ D(τ � 0)(D(τ � 0) + 1)2 now follow.

“Amortized” space is upper bounded by ordinary space.

We need to prove that

TSpace∗(τn � 0) ≤ 2 log2(2n + 1)TSpace(τn � 0)2

and

VSpace∗(τn � 0)

≤ VSpace(τn � 0)
(

VSpace(τn � 0) log2 n + 2VSpace(τn�0)
)

.

Both bounds follow from the observation that a configurational
refutation (be it syntactic or semantic) can w.l.o.g. be assumed not
to contain repeated configurations. Now, we estimate the overall
number of configurations C = {C1, . . . , Ck} with total space ≤ s
by encoding them as a string C1#C2# . . . #Ck# . . . of length 2s
in which the clauses Ci are written down simply as sequences of
literals. We conclude that the overall number of different configu-
rations C of total space ≤ s is bounded by (2n+1)2s, which gives us
the first statement. Likewise, the overall number of Boolean func-
tions f with |V ars(f)| ≤ s is upper bounded by

(

n
s

)

22s ≤ ns22s
,

and this gives us the second statement.

Depth is upper bounded by amortized variable space.

This is by standard binary search. Let π = (f0, f1, . . . , fT)
be a semantical refutation from τ minimizing VSpace∗(π), and let

s
def
= VSpace(π). We prove by induction on d that for every 0 ≤ a <

b ≤ T with b − a ≤ 2d and for any clause C in the straightforward
CNF expansion of the implication fa → fb (that is to say, for every
clause C with V ars(C) = V ars(fa)∪V ars(fb) and (fa → fb) |= C)
we have D(τ � C) ≤ 2s(d + 1).

Induction base d = 0, b = a + 1.

cc 27 (2018) On space and depth in resolution 525

We have fa ∧ τ [V ars(fa) ∪ V ars(fa+1)] |= fa+1, hence

τ [V ars(fa) ∪ V ars(fa+1)] |= (fa → fa+1) |= C.

Since |V ars(fa) ∪ V ars(fa+1)| ≤ 2s, we can realize the latter se-
mantical refutation by a resolution refutation of depth ≤ 2s.

Inductive step: d ≥ 1, 2 ≤ b − a ≤ 2d.
Pick c with a < c < b such that c − a, b − c ≤ 2d−1. Then

C has an obvious resolution proof of depth |V ars(fc)\(V ars(fa) ∪
V ars(fb))| ≤ s from clauses ˜C appearing in the CNF expansions

of fa → fc and fc → fb. Since D(τ � ˜C) ≤ (d − 1)s for any such
clause by the inductive assumption, the inductive step follows.

In particular, setting d = log2 T , a = 0, b = T, C = 0, we
conclude that D(τ � 0) ≤ (2s) log2 T ≤ 2VSpace∗(π). �

Proof of 3.2. Take the configurational refutation (C0,C1, . . . ,
CT) of τ with total space TSpace(τ � 0) and convert it to the
semantical form (f0, f1, . . . , fT). Since C contains all CNFs and
μC does not exceed the circuit size, we conclude that μC(ft) ≤
O(TSpace(Ct)) and hence μC-Space(τ � 0) ≤ O(TSpace(τ � 0)).
On the other hand, since μC is bounded from below by the num-
ber of essential variables, for every semantical proof π we have

VSpace(π) ≤ s
def
= μC-Space(π). If π in addition is minimal, then

the length is bounded by the overall number of circuits C in C that
satisfy μC(C) ≤ s and hence, using again the condition on μC, have
size ≤ s. Since the number of circuits of size s is bounded (to
be on the safe side) by nO(s), the bound VSpace∗(π) ≤ O(s2 log n)
follows. As VSpace∗ and TSpace are equivalent up to a polynomial
and log n factors, the same holds for μC-Space. �

5. Very small space

In this section we prove Theorems 3.4 and 3.5 (as we noted in
the introduction, we defer our most challenging proof to the next
section).

Proof of 3.4. As we already remarked, this is a variation on
the proof of Theorem 3.1 (the D(τ � 0) ≤ 2VSpace∗(τ � 0) part),

526 Alexander Razborov cc 27 (2018)

except that instead of binary search we now do T -ary search for a
suitable T . But this time our goal is to come up with a configura-
tional refutation rather than a tree-like one. Hence, an inductive
description would be somewhat awkward, and we frame the argu-
ment as a direct construction instead.

Let π = (f0, f1, . . . , fS) be a semantical refutation from τ that
has variable space ≤ s. Assume w.l.o.g. that S is of the form
(T + 1)h − 1 for an integer T , and for t ∈ [0..S], let (th−1, . . . , t0)
be its (T + 1)-ary representation, that is t =

∑h−1
d=0 td(T + 1)d. For

t > 0, let ord(t) be the minimal d for which td
= 0 (that is, the
maximal d for which (T + 1)d|t). Let t(k) be the truncation of t

by taking k most significant bits: t(k) def
=

∑h−1
d=h−k td(T + 1)d. In

particular, t(0) = 0 and t(h) = t. Let

̂ft
def
= (f0 → ft(1)) ∧ (ft(1) → ft(2)) ∧ · · · ∧ (ft(h−1) → ft).

Clearly, |V ars(̂ft)| ≤ O(hs).

Let us now take a look at ̂ft+1. Denoting k
def
= h−ord(t+1), let

us note that (t+1)(k) = (t+1)(k+1) = · · · = (t+1)(h−1) = t+1 since
in all those cases we truncate zeros only. Hence we can remove from
̂ft+1 all trivial terms f(t+1)(k) → f(t+1)(k+1) , . . . , f(t+1)(h−1) → ft+1

and write it down simply as

̂ft+1 ≡ (f0 → ft(1)) ∧ (ft(1) → ft(2)) ∧ · · ·
∧ (ft(k−2) → ft(k−1)) ∧ (ft(k−1) → ft+1).

Hence ̂ft ∧ (ft → ft+1) |= ̂ft+1 and (̂f0, ̂f1, . . . , ̂fs) is also a seman-
tical refutation from τ of the desired variable space O(hs).

We convert it to a configurational resolution refutation as fol-
lows. First, for t ≤ t′ denote by C(t, t′) the straightforward CNF

expansion of ft → ft′ . Next, let Ct
def
= C(0, t(1)) ∪ C(t(1), t(2)) ∪ · · · ∪

C(t(h−1), t); this is our chosen CNF representation of the Boolean

function ̂ft. Now the conversion is natural: to get from Ct to Ct+1,
we first download all axioms in τ [V ars(ft)∪V ars(ft+1)], then write
down the brute-force inference

C(ft(k−1) , ft(k)), . . . , C(ft(h−1) , ft), τ [V ars(ft) ∪ V ars(ft+1)](5.1)

� C(ft(k−1) , ft+1),

cc 27 (2018) On space and depth in resolution 527

and, finally, erase all clauses in the left-hand side. It remains to
bound the depth of this refutation (recall Definition 2.3).

Every individual step (5.1) has depth O(hs) as this is how many
variables it involves. To get a bound on the depth of the tree formed
by the inferences (5.1), we not that for every C(fa, fb) in the left-
hand side either ord(b) < ord(t + 1)(= h − k): this happens for
all configurations but C(ft(k−1) , ft(k)), or ord(b) = ord(t + 1) and
b < t + 1 (a = t(k−1), b = t(k), th−k
= 0), or it is trivial and can
be removed (a = t(k−1), b = t(k), th−k = 0). Hence the depth of
the proof tree defined by the inferences (5.1) is O(hT), and the
required overall bound O(h2sT) on depth follows. �

Proof of 3.5. Fix a configurational refutation π = (C0,C1, . . . ,
CT) from the Induction Principle τn that has variable space s. Let
us begin with a few generic remarks.

First, we can assume w.l.o.g. that for every 0 ≤ t ≤ T − 1, Ct

does not contain the empty clause 0.
Next, let us call a clause Bi-Horn if it contains at most one

occurrence of a positive literal and at most one occurrence of a
negative literal. Since the set of bi-Horn clauses is closed under
the Resolution rule, and all axioms in τn are bi-Horn, all clauses
appearing in our refutation must be also bi-Horn. In other words,
for every t < T , Ct must entirely consist of literals and implications
of the form xi → xj (i
= j).

Next, for t ≤ T − 1 we can remove from Ct all clauses C with
Dt(C) ≥ D(π) and still get a configurational refutation (this reduc-
tion corresponds to removing non-essential clauses in Ben-Sasson
(2009)). Hence, we can assume that

(5.2) Dt(C) ≤ D(π) − 1, t ≤ T − 1, C ∈ Ct.

Let us now return to the proof of Theorem 3.5. The config-
uration CT−1 must contain both literals xi, x̄i of some variable i.
Let r be the maximal index for which xr, viewed as a one-variable
clause, appears anywhere in π, and let � be the minimal index for
which the clause x̄� occurs there. Note that � ≤ i ≤ r, and hence
V ars(CT−1) has a non-empty intersection with both {x0, . . . , xr}
and {x�, x�+1, . . . , xn}.

528 Alexander Razborov cc 27 (2018)

Choose a such that

V ars(Ca)∩{x0, x1, . . . , xr}
= ∅ ∧ V ars(Ca)∩{x�, x�+1, . . . , xn}
= ∅
while for Ca−1 one of these properties is violated. By symmetry,
we can assume w.lo.g. that V ars(Ca−1) ∩ {x0, . . . , xr} = ∅.

Let us now apply to π the restriction ρ+ : x0 → 1, x1 →
1, . . . , x� → 1. It transforms τn to τn−�−1, and since x̄� appears
somewhere in the refutation (and is killed by ρ+), (5.2) implies
that D(π|ρ+) ≤ D(π) − 1.

Let us also apply to π the dual restriction ρ− : x� → 0, x�+1 →
0, . . . , xn → 0. Then τn|ρ− = τ�−1. Next, every clause C in Ca−1 is
a bi-Horn clause in the variables {xr+1, . . . , xn}, and, by the defini-
tion of r, it may not be a positive literal. Hence C must contain a
negative literal which, since r ≥ �, implies C|ρ− ≡ 1. Thus, ρ− sets
to 1 all clauses in Ca−1, and since V ars(Cb)∩{x�, x�+1, . . . , xn}
= ∅
for all b ≥ a, ρ− reduces the space by at least one: VSpace(π|ρ−) ≤
VSpace(π) − 1.

For the purpose of recursion, let D(n, s) be the minimum depth
of a configurational refutation of τ�n� that has variable space ≤ s.
We have proved so far that

D(n, s) ≥ min
0≤�≤n

{max(D(n − � − 1, s) + 1, D(� − 1, s − 1))} .

Note that D(n, s) is monotone in n. Hence, for any particular
� we have

max(D(n − � − 1, s) + 1, D(� − 1, s − 1))

≥ min
{

D(n − n1−1/s − 2, s) + 1, D(n1−1/s, s − 1)
}

,

and we conclude that

D(n, s)≥min
{

D(n − n1−1/s − 2, s)+1, D(n1−1/s, s − 1)
}

.(5.3)

This recurrence resolves to D(n, s) ≥ Ω
(

n1/s
)

since

n1/s ≤ (

n − n1−1/s − 2
)1/s

+ O(1)

(and n1/s =
(

n1−1/s
)1/(s−1)

). �

cc 27 (2018) On space and depth in resolution 529

6. A supercritical tradeoff between variable
space and length

In this section we prove Theorem 3.3. While it is our most difficult
result, its proof naturally splits into three fairly independent parts,
and we present it in this modular way, interlaced with necessary
definitions.

6.1. Multi-valued logic. Multi-valued logic is the instrument
to argue about constraints over larger alphabets just in the same
way the propositional logic reasons about Boolean constraints.
While the bulk of our proof in this section is carried in the context
of multi-valued logic over a large alphabet, we will be content with
a purely semantical view and, accordingly, do not attempt to de-
fine any syntactic proof system. Our notation more or less follows
(Alekhnovich et al. 2002, Section 4.3).

Definition 6.1. (cf. (Alekhnovich et al. 2002, Definitions 4.5-
4.7)). Let D be a finite domain. Instead of Boolean variables,
we consider D-valued variables Xi ranging over the domain D.
A multi-valued function f(X1, . . . , Xn) is a mapping from Dn to
{0, 1}. Since the image here is still Boolean, the notions of a (multi-
valued) satisfying assignment α ∈ Dn and the semantical impli-
cation f |= g are generalized to the multi-valued logic straight-
forwardly. So does the definition of the set of essential variables
V ars(f).

A (D-valued) literal is an expression of the form XP , where
X is a (D-valued) variable and P ⊆ D is such that P
= ∅ and
P
= D. Allowing here also D = 0 or D = P , we obtain the
definition of a generalized (D-valued) literal. A generalized literal
XP is semantically interpreted by the characteristic function of
the set P . XQ is a weakening of XP if P ⊆ Q or, equivalently,
XP |= XQ.

A D-valued clause [term] is a disjunction [conjunction] of multi-
valued literals corresponding to pairwise distinct variables. A con-
straint satisfaction problem (CSP) is simply a set of arbitrary
multi-valued functions called in this context “constraints”. The
width of a constraint C is again |V ars(C)|, and a CSP is an k-

530 Alexander Razborov cc 27 (2018)

CSP if all constraints in it have width ≤ k. A semantical D-valued
refutation from a multi-valued CSP η and its variable space are
defined exactly as in the Boolean case.

Remark 6.2. In this section we will be predominantly interested
in constraints of width ≤ 2. If the reader find this too restrictive,
it is perhaps worth reminding that a great deal of celebrated CSPs
studied in the combinatorial optimization do have this form.

6.2. Supercritical tradeoff against variable space 1. Our
starting point is the following (quite weak) tradeoff. Before stat-
ing it, let us remind that according to our conventions, proofs of
variable space 1 make perfect sense and are precisely those in which
all configurations are representable by generalized literals.

Lemma 6.3. For any finite domain D, there exists a D-valued 2-
CSP η in four variables such that η is refutable in variable space
1, but any such refutation π must have length ≥ exp

(

DΩ(1)
)

.

Proof. We begin with the observation that was apparently first
made in Babai & Seress (1992): the symmetric group Sym(D)
contains elements σ of exponential order. More specifically, let
p1 + · · ·+pn ≤ |D|−2 < p1 + · · ·+pn +pn+1, where p1 < p2 < · · · <
pn < · · · is the list of all prime numbers, take pairwise disjoint
Di ⊆ D with |Di| = pi (1 ≤ i ≤ n), and let σ act cyclically on every

Di and identically on D\(D1 ∪ · · · ∪Dn). Let ˜P be any transversal

of the set {D1, . . . , Dn}, then the orbit of ˜P in the induced action
of σ on P(D) also has size ≥ exp(|D|Ω(1)). Denote its size by r,

then all sets ˜P , σ(˜P), σ2(˜P) . . . , σr−1(˜P) are pairwise distinct and

σr(˜P) = ˜P . Since all these sets
{

σi(˜P) | 0 ≤ i ≤ r − 1
}

also have

the same size, they are moreover independent w.r.t. inclusion. Let

now P
def
= ˜P ∪ {a}, where a ∈ D\(D1 ∪ · · · ∪ Dn) is an arbitrary

fixed element. Then (since |D\(D1∪· · ·∪Dn)| ≥ 2) we additionally
have that the (2r) sets

(6.4)
{

σi(P) | 0 ≤ i ≤ r − 1
}

,
{

D\σi(P) | 0 ≤ i ≤ r − 1
}

are pairwise independent w.r.t. inclusion.

cc 27 (2018) On space and depth in resolution 531

Let now X0, X1, X2, X3 be D-valued variables. The required 2-
CSP η has the following constraints, where Q ⊆ D is an arbitrary
subset different from ∅ and D:

XQ
0

XQ
0 → XP

1

X2 = X1

X3 = X2

X1 = σ(X3)

X
σr/2(P)
3 → X

D\Q
0 .

The extra “buffer” variable X3 here is needed due to the way a
semantical proof is defined (see (2.2)). If we, say, would have in-
cluded the axioms X2 = X1, X1 = σ(X2) instead then a space one
proof could have simultaneously downloaded both of them, and the
subtle argument below would have completely fallen apart.

The refutation π from η with VSpace(π) = 1 is straightforward:

1, XQ
0 , XP

1 , XP
2 , XP

3 , X
σ(P)
1 , . . . , X

σ2(P)
1 , . . . ,

X
σr/2(P)
1 , X

σr/2(P)
2 , X

σr/2(P)
3 , X

D\Q
0 , 0.

In order to prove the second statement in Lemma 6.3, we show
that this refutation, its inverse and its contrapositive are essen-
tially the only non-trivial inferences with variable space 1. More
specifically, let

Lt
def
= {XQ

0 } ∪
{

X
σh(P)
i | i ∈ [3], h ∈ Z, |h| ≤ t − 2

}

∪
{

X
D\σh(P)
i | i ∈ [3], h ∈ Z, |h − r/2| ≤ t − 2

}

,

and let
π = 1, XA1

i1
, . . . , XAt

it
, 0

be a semantical refutation of variable space 1. We claim that as
long as t ≤ r/2, XAt

it
is a weakening of a literal in Lt.

Inductive base t = 1 is obvious since XQ
0 is the only constraint

in η of width 1.

532 Alexander Razborov cc 27 (2018)

Inductive step.
Let t ≤ r/2. We have to prove that if XA

i ∈ Lt, XB
j is a

generalized literal and

XA
i ∧ η[{Xi, Xj}] |= XB

j

then XB
j is a weakening of a literal in Lt+1. This is by a routine

case analysis; the only case worth mentioning here is i ∈ {1, 3} and
j = 0, this is where we need the assumption t ≤ r/2. By symmetry,
assume that i = 1, then η[{X0, X1}] ≡ XQ

0 ∧ XP
1 . But since XA

i ∈
Lt and t ≤ r/2, we conclude that A ∩ P
= ∅ since all sets in (6.4)
are independent w.r.t. inclusion. Hence XA

1 ∧ η[{X0, X1}] |= XB
0

actually implies that B ⊇ Q and thus XB
0 is a weakening of XQ

0 .
�

6.3. Supercritical tradeoffs against logarithmic variable
space. In the previous section, we established a numerically
strong tradeoff between length and space. On the negative side, it
works only against proofs of space 1, but, to compensate for this,
the CSP we constructed had only O(1) variables. Our next task
is to improve the space range from 1 to h, where h is an arbitrary
parameter, but the prize we will have to pay for that is that the
number of variables blows up to exp(O(h)). The proof is based
on a carefully designed iterative construction of unsatisfiable CSPs
that we will call a lexicographic product and will essentially consist
in showing a “direct product” theorem for the variable space. We
would like to express a cautious hope that this construction may
turn out to be of independent interest.

6.3.1. Combinatorial and geometric set-up. For integer pa-
rameters h, � ≥ 0 that will be fixed throughout Section 6.3, we let

V
def
= {(i1, . . . , ih) | iν ∈ [�]} be the set of all words of length h in

the alphabet [�]. The set V can be alternately viewed as the set of
all leaves of a complete �-ary tree of height h, and it is equipped
with the natural ultrametric: ρ(u, v) is equal to h minus the length
of the longest common prefix of u and v. We have found the geo-
metric view of V as an ultrametric space more instructive for the
proof in this section; the reader preferring the language of trees
will hopefully have little difficulty with a translation.

cc 27 (2018) On space and depth in resolution 533

We let V + be the set of all words u in the same alphabet � such
that 1 ≤ |u| ≤ h. Its elements correspond to non-root vertices
of the tree. Conveniently, elements of V + can be also naturally
identified with non-trivial (that is, non-empty and different from
the whole space V) balls in the ultrametric ρ. By a ball we will
always mean a non-trivial ball. Let r(B) be the radius of the ball
B, and let B(v, r) be the ball with center v and radius r.

To help the reader develop some intuition, we compile below
simple properties of balls (and give a few definitions on our way)
that will be used throughout Section 6.3. All of them immediately
follow from the fact that ρ is an ultrametric.

1. Any two balls are either disjoint or one of them contains
another.

2. The intersection of any family of balls is either empty or is
again a ball.

3. If u ∈ B(v, r), then B(u, r) = B(v, r). In other words, every
point in a ball can be taken as its center.

4. If B and B′ are disjoint balls, then ρ(u, v) takes on the same
value for all pairs u ∈ B, v ∈ B′. We call it the distance
between B and B′ and denote by ρ(B,B′). The distance be-
tween two disjoint balls is always strictly larger than both
r(B) and r(B′).

5. If B and B′ are disjoint balls, then a ball containing both
of them exists if and only if ρ(B,B′) < h. In that case, the
minimal ball with these properties is uniquely defined and
has radius ρ(B,B′).

6. Let us call two disjoint balls B and B′ adjacent if they have the
same radius r and ρ(B,B′) = r + 1. The relation “two balls
are either the same or adjacent” is an equivalence relation.

7. Every partition of V into balls contains at least one equiva-
lence class of this relation.

We conclude with a less trivial combinatorial lemma that will
be crucial for our proof.

534 Alexander Razborov cc 27 (2018)

Definition 6.5. For a ball B with r(B) ≤ h − 1, B+ is the
uniquely defined ball of radius r(B) + 1 such that B+ ⊃ B.

Lemma 6.6. Any set V0 ⊆ V with |V0| ≤ h − 2 can be covered
by a collection of balls {B1, . . . ,Bw} of radii ≤ h − 1 such that the
balls (B1)

+, . . . , (Bw)+ are pairwise disjoint.

Proof. Let us call a covering of the set V0 by pairwise disjoint
balls frugal if every ball B in this covering covers at least r(B) + 1
elements of V0. Frugal coverings do exist: take, for example, the
trivial covering by balls of radius 0. Now pick up a frugal covering
with the smallest possible number of balls. We claim that it has
all the required properties.

Indeed, the bound r(B) ≤ h − 1 for a ball B in our frugal
covering simply follows from the definition of frugality and the
bound |V0| ≤ h − 2. Next, if B,B′ are two different balls in this
coloring such that B+ ∩ (B′)+
= ∅, then one of these latter balls
must contain another, say, B+ ⊇ (B′)+ ⊃ B′. Replacing B with
B+ and removing all balls contained in B+ (including B′!), we will
get a frugal covering with a smaller number of balls, a contradic-
tion. Thus, all the balls in the minimal frugal covering are pairwise
disjoint. �

6.3.2. Lexicographic products and the main lemma. Let
D1, . . . , Dh be pairwise disjoint finite domains, and let η1(X1, . . . ,
X�), . . . , ηh(X1, . . . , X�) be CSPs, where ηd is Dd-valued. For nota-
tional simplicity, we assume that these CSPs have the same number
of variables �. In our application of the construction, they will be
actually identical (namely, the CSP constructed in the previous
section 6.2), and in particular all alphabets Dd’s will also be the
same. It would have been notationally unwise, however, to iden-
tify the domains D1, . . . , Dh as well, so we keep them separate and
pairwise disjoint.

In this set-up, we are going to define a lexicographic product of
η1, . . . , ηh, and we begin with an informal description of its intended
meaning and the intuition behind it. We start off with a simple
naive attempt that does not work, and then we will explain what
is the problem and how to fix it.

cc 27 (2018) On space and depth in resolution 535

Let us introduce variables YB for balls B. The domain of YB
will be Dr(B)+1 ∪ {∗}, where the intended meaning of ∗ is “unde-
fined”. Thus, an assignment to these variables consists of a set
{B1, . . . ,Bw} of balls and an assignment of the corresponding vari-
ables to values in Dr(B1)+1, . . . , Dr(Bw)+1; all other variables YB re-
ceive the value ∗. We are interested only in those assignments (let
us call them “legal”) for which the family {B1, . . . ,Bw} makes a
partition of the space V . Then, as we noted in Section 6.3.1, for ev-
ery legal assignment there is an equivalence class of the adjacency
relation in which all the corresponding variables YB are defined,
i.e., take values in Dr(B)+1.

Let us now describe how the CSPs η1, . . . , ηh are used to gen-
erate local constraints on legal assignments. Fix a ball B with

d
def
= r(B) > 0, and let B1, . . . ,B� be all its (pairwise adjacent) sub-

balls of radius d−1. We want to “lift” constraints in ηd(X1, . . . , X�)
to constraints in the variables YB1 , . . . , YB�

inside this ball. As ηd

are all unsatisfiable, it will imply that there is no legal assignment
satisfying all these constraints. The only subtle issue is how to
treat ∗ values, or, in other words, how to lift a Dh-valued constraint
C(Xi1 , . . . , Xiw) to a (Dh ∪ {∗})-valued constraint ̂C(Y1, . . . , Yw).

It turns out that in order to preserve the bound from Sec-
tion 6.2, we should do it in the most minimalistic way possible
and accept any assignment in which at least one value is ∗. The
intuition (that will be made rigorous in the forthcoming subsec-
tions) is that, roughly speaking, in this way every variable YBi

can “store” information only about itself and of (by the token of
legality) larger balls. It does not have any bearing on adjacent
balls. This will prevent the refutation from cheating: if, say, it
keeps in memory a literal of a variable YBi

, and wants to apply a
semantical inference YBi

→ YBj
, then it is quite possible that in-

stead of following Dd-rules prescribed by this inference, the ball
Bj gets shattered into smaller balls, and we will have to treat
them from the scratch, i.e., recursively. As the variable space
will be assumed to be small, we will not have enough variables
at any given moment to “guard” all levels (Lemma 6.6 will help
to make this precise), and the only choice “should be” to proceed
lexicographically.

536 Alexander Razborov cc 27 (2018)

The only problem with this plan lies in the concept of legality.
The assumption that balls do not intersect is local and presents
no problems. However, the assumption that every point v ∈ V
is covered is represented by the constraint

∨

B	v(YB
= ∗) which is
prohibitively wide. We circumvent this by replacing YB with “ex-
tension variables” Xv for any v ∈ V that will carry the information
which of those YB is different from ∗, and what is its value. Thus,
Xv must be D-valued, where D = D1

.∪ · · · .∪ Dh, and then YB can
be “retrieved” from Xv by

YB =

{

Xv if Xv ∈ Dr(B)+1

∗ otherwise.

Naturally, we will need explicit consistency constraints saying that
these “intended values” do not depend on the choice of v ∈ B, and
we will sometimes say that a variable Xv is assigned in a ball B � v
if its assignment is in Dr(B)+1.

We will now proceed to formal definitions and the statement of
the main lemma of Section 6.3.

Definition 6.7. Let D1, . . . , Dh be pairwise disjoint finite sets,

D
def
= D1

.∪ · · · .∪ Dh, and let η1(X1, . . . , X�), . . . , ηh(X1, . . . , X�)
be CSPs, where ηd is Dd-valued. We define their lexicographic
product ηh ·ηh−1 ·. . .·η1 that will be a D-valued CSP in the variables
(Xv | v ∈ V) as follows.

(i) For 1 ≤ d ≤ h − 1, let Cond(X,Y) be the conjunction of
the formulas X{a} ≡ Y {a}, where a ∈ Dd+1 ∪ · · · ∪ Dh. We
include into ηh · ηh−1 · . . . · η1 the constraints Cond(Xu, Xv)
for all u, v ∈ V with ρ(u, v) = d.

Informally, if one of the variables Xu, Xv was assigned in a
ball where both u and v belong, then the other variable must
be also assigned to the same value. Otherwise, the constraint
is vacuous.

(ii) Let C(Xi1 , . . . , Xiw) be a (Dd-valued) constraint in ηd. We

let the formula ̂C(Y1, . . . , Yw) of the D-valued logic be defined
as

cc 27 (2018) On space and depth in resolution 537

(6.8)
w
∧

ν=1

Y Dd
ν =⇒ C(Y1, . . . , Yw)

(the right-hand side here makes sense due to the premise
∧w

ν=1 Y Dd
ν). We add to ηh · ηh−1 . . . · η1 all axioms of the form

̂C(Xu1 , . . . , Xuw) as long as ρ(uν , uμ) = d for all ν
= μ (in
particular, u1, . . . , uw share a common prefix of length h−d)
and (uν)h−d+1 = iν (1 ≤ ν ≤ w).

Informally, if u1, . . . , uw belong to pairwise adjacent balls of
radius d − 1 and all variables Xu1 , . . . , Xuw are assigned in
these balls, then their assignments must satisfy all applicable
constraints in ηd. If at least one of these variables is assigned
outside of Dd, the constraint is vacuous.

Note that if all η1, . . . , ηh are 2-CSP (which is the case we are
mostly interested in), then their lexicographic product is also a
2-CSP.

We are now ready to formulate the main result of this section.

Lemma 6.9. Assume that η1(X1, . . . , X�), . . . , ηh(X1, . . . , X�) are
multi-valued 2-CSPs such that VSpace(ηd � 0) = 1 (d ∈ [h]) but
any refutation π of ηd with VSpace(π) = 1 must have length > T ,

and let η
def
= ηh · . . . · η1 be their lexicographic product. Then

VSpace(η � 0) = 1 (in particular, η is a contradiction), but any its
refutation π with VSpace(π) ≤ h/2−1 must also have length ≥ T .

For the rest of Section 6.3 we fix η1, . . . , ηh, η and the length
upper bound T as in the statement of Lemma 6.9.

6.3.3. Upper bound. In this section we prove that VSpace(η �
0) = 1. We follow the intuition outlined at the beginning of Section
6.3.2 and construct the intended refutation lexicographically. As
we do not attempt to store information about different levels, its
meagre amount we do carry around can be easily fit into a single
literal. This will allow us to stay within space 1.

For every d ∈ [h] fix a refutation

πd = 1, X
A(d,1)
i(d,1) , . . . , X

A(d,T−1)
i(d,T−1) , 0

538 Alexander Razborov cc 27 (2018)

of length T , where i(d, t) ∈ [�] and A(d, t) ⊆ Dd. For the uni-

formity of notation, we also let i(d, 0)
def
= i(d, 1), A(d, 0)

def
= Dd

and, likewise, i(d, Td)
def
= i(d, Td − 1), A(d, Td)

def
= ∅. Denote by

L(d, t)
def
= X

A(d,t)
i(d,t) (t = 0..T) the corresponding generalized literal.

For �t = (th, . . . , th−1, . . . , t1) ∈ [0..T]h, let v(�t)
def
= (i(h, th), i(h−

1, th−1), . . . , i(1, t1)) ∈ V (this is a good place to recall that we

enumerate everything from the leaves to the root!) and L(�t)
def
=

X
A(h,th)∪···∪A(1,t1)

v(
t)
be the corresponding generalized D-valued literal.

We claim that the sequence of generalized literals L(�t), taken in
the lexicographic order, makes a refutation of η.

Indeed, L(0, 0, . . . , 0)=XD
v(0,...,0) ≡1 and L(T, . . . , T) = X∅

v(T,...,T)

≡ 0, as required. Given �t
= (T, . . . , T), let d ∈ [h] be the smallest
index such that td
= T , say td = s, so that the next term in the

lexicographic order is �t′ def
= (th, . . . , td+1, s + 1, 0 . . . , 0). We have

L(�t) = X
B∪A(d,s)

v(
t)
and L(�t′) = X

B∪A(d,s+1)∪Dd−1∪···∪D1

v(t′) for the same

B ⊆ Dh ∪ · · · ∪ Dd+1.

From the refutation πd we know that X
A(d,s)
i(d,s) ∧ ηd

[{Xi(d,s), Xi(d,s+1)}] |= X
A(d,s+1)
i(d,s+1) in the Dd-valued logic. Then η

[{Xv(
t), Xv(
t′)}] entails, due to the second group of axioms, that

(XDd

v(
t)
∧ XDd

v(
t)′) → ηd[X
t, X
t′]. Also, as long as v(�t)
= v(�t′),
η[{Xv(
t), Xv(
t′)}] also contains the first group of axioms
Cond(Xv(
t), Xv(
t′)). The required implication

X
B∪A(d,s)

v(
t)
∧ η[{Xv(
t), Xv(
t′)}] |= X

B∪Ad,s+1∪Dd−1∪···∪D1

v(t′)

follows straightforwardly. This completes the proof of VSpace(τ �
0) ≤ 1.

6.3.4. Lower bound. Our overall strategy is quite typical for
space complexity: we define a collection of “admissible” configu-
rations A that is simple enough to be controlled and, on the other
hand, everything that we can infer in small space can be majorated
by an admissible configuration from A. The only twist is that since
we are proving a length lower bound, this construction must nec-
essarily be dynamic as well and consist of an increasing sequence

cc 27 (2018) On space and depth in resolution 539

A0 ⊆ A1 ⊆ · · · ⊆ As ⊆ · · · , where configurations in As majorate
everything that can be inferred in small space and length ≤ s. A
relatively simple implementation of this idea was already used in
the proof of Lemma 6.3.

Let us now start the formal argument.

Definition 6.10 (normal terms). Let B be a ball of radius r, 0 ≤
r ≤ h − 1, and let A ⊆ Dr+1 be such that A
= ∅ and, moreover,
A
= D1 if r = 0. Then we denote by tB,A the following term:

(6.11) tB,A
def
=

∧

v∈B
XDh∪···∪Dr+2∪A

v .

A term t is normal if it can be represented as

(6.12) t = tB1,A1 ∧ · · · ∧ tBw,Aw ,

where all balls are pairwise disjoint.

Remark 6.13. For any D-valued literal XB
v , the set B uniquely

determines the term tB,A in which it may possibly appear. Hence
the representation (6.12) of a normal term is unique and it what
follows we will not distinguish between the two.

Remark 6.14. The reader willing to compare this definition with
the informal discussion at the beginning of Section 6.3.2, should
be aware that the term tB,A corresponds not to the literal Y A

B but
rather to its “monotone closure” asserting that either YB ∈ A or
B is a proper sub-ball of a member B′ of the partition; the exact
value of YB′ is irrelevant as long as it is not ∗. This monotonicity
reflects the inherently lexicographic nature of all our definitions
and proofs.

Definition 6.15 (sparse terms). A normal term t as given in
(6.12) is sparse if no two balls Bi,Bj in it are adjacent.

Definition 6.16 (complexity of normal terms). Let a ball B of
radius r corresponds to a prefix (ih, . . . , ir+1) ∈ V +, iν ∈ [�]. For
A ⊆ Dr+1, let L(tB,A) be the minimal length of a space 1 Dr+1-

540 Alexander Razborov cc 27 (2018)

valued proof of the generalized literal XA
ir+1

from ηr+1. For a normal

term (6.12), we let L(t)
def
= max1≤j≤w L(tBj ,Aj

).

Now we are ready to define the sets of admissible configurations
As.

Definition 6.17 (admissible configurations). For a term t, we let

t∗ def
= t ∧ η[V ars(t)].

We let As consist of all t∗, where t is a normal sparse term with
L(t) ≤ s. Note that obviously 1 = 1∗ ∈ A0 ⊆ A1 ⊆ A2 ⊆ · · · .

Now, to get a better feeling of all these definitions we start with
the (simpler) end task. As this kind of reasoning will be recurrent
in the proof of much more difficult Lemma 6.19, we outline the
argument in perhaps more meticulous way than it deserves.

Lemma 6.18. 0
∈ AT−1.

Proof. Let t = tB1,A1 ∧ · · · ∧ tBw,Aw be a normal sparse term
with L(t) ≤ T − 1, that is such that L(tBj ,Aj

) ≤ T − 1 for all j; we
need to construct an assignment satisfying t∗.

Note first that the property L(tBj ,Aj
) ≤ T − 1 in particular

implies that there exists aj ∈ Aj satisfying ηd[X
Aj

i(j)], where d
def
=

r(Bj) + 1 and Xi(j) is the Dd-valued variable corresponding to the
ball Bj as in Definition 6.16. Indeed, otherwise we could have

inferred 0 from X
Aj

i(j) in just one step, in contradiction with the
assumption in Lemma 6.9 that ηd does not possess any variable
space 1 length T refutations.

Now, assign all variables Xv with v ∈ Bj to aj and assign all
other variables (they do not appear in t∗) arbitrarily. Then this
assignment clearly satisfies t and it also satisfies all the consistency
axioms Cond(Xu, Xv) for Xu, Xv ∈ V ars(t). For the latter, note
that if u and v are in the same ball Bj, the axiom is satisfied as
Xu, Xv are assigned to the same value aj, and if Xu, Xv are in
different balls, then it is satisfied vacuously as both Xu and Xv

take values in D1 ∪ · · · ∪ Dd (in fact, even in D1 ∪ · · · ∪ Dd−1 due
to sparsity but we do not need it).

cc 27 (2018) On space and depth in resolution 541

As for the axioms ̂C(Xu1 , . . . , Xuw) with {Xu1 , . . . , Xuw} ⊆
V ars(t), we invoke the sparsity condition that implies that either
all Xu1 , . . . , Xuw are in the same ball Bj or w = 1. In the first case,
̂C is vacuously satisfied due to the left-hand side in (6.8). In the

second case, let, say, u1 ∈ B1. The axiom ̂C(Xu1) may actually
come from an arbitrary level d, not necessarily the relevant one
d = r(B1) + 1. But if d = r(B1) + 1, then C is an axiom of τd and
hence is satisfied by a1 due to its choice. On the other hand, if
d
= r(B1) + 1, then ̂C(a1) = 1 simply because it becomes vacuous
according to (6.8). Hence the assignment we have constructed sat-
isfies η[V ars(t)] as well. �

The lower bound in Lemma 6.9 now readily follows from the
following, which is the heart of our argument.

Lemma 6.19. Let 1 = f0, . . . , f1 . . . , fs be a D-valued semantical
proof from ηh·ηh−1·. . .·η1 of variable space ≤ h/2−1 with s ≤ T−1.
Then there exists f ∈ As such that f |= fs.

Proof of 6.19. By induction on s. The base case s = 0 is
obvious.

For the inductive step, let t = tB1,A1 ∧ · · · ∧ tBw,Aw be a normal
sparse term such that L(t) ≤ s, where s ≤ T −2, with t∗ |= fs. Our
goal is to construct a normal sparse term ̂t such that L(̂t) ≤ s + 1
and ̂t∗ |= fs+1. This will complete the proof of Lemma 6.19.

Let7 V0
def
= V ars(fs)∪V ars(fs+1); note that |V0| ≤ 2(h/2−1) =

h − 2. We have fs ∧ η[V0] |= fs+1, and hence it is sufficient to
construct a normal sparse term ̂t with L(̂t) ≤ s + 1 satisfying

(6.20) ̂t∗ |= fs ∧ η[V0].

Fix a collection of balls {B∗
1, . . . ,B∗

w∗} satisfying the conclusion
of Lemma 6.6. This collection is not a priori related anyhow to
the collection {B1, . . . ,Bw} underlying the normal sparse term t,
and our task is to merge the two. Let us start with a brief intu-
itive explanation of what we are going to do and what we hope to

7 From this point on we freely identify sets of variables and their indices
whenever it does not create confusion.

542 Alexander Razborov cc 27 (2018)

achieve: the rest of the proof of Lemma 6.19 will basically consist
of implementing these ideas (and circumventing a few technical
difficulties). Before reading the explanation below, the reader is
strongly encouraged to refresh elementary properties of balls we
stated in Section 6.3.1.

The terms tB1,A1 , . . . , tBw,Aw carry all the information our refuta-
tion has been able to achieve so far and the balls {B∗

1, . . . ,B∗
w∗} con-

tain all variables that are kept in memory at the moment. Unlike
B1, . . . ,Bw, these latter balls are new-born and are not equipped
with any particular terms yet. Let us, however, postpone this issue
and discuss geometry first.

Ideally, we would like to keep in the game all balls

(6.21) {B1, . . . ,Bw,B∗
1, . . . ,B∗

w∗}

but this is of course impossible because of potential conflicts be-
tween them. These conflicts can be of one of the two types: con-
tainment conflicts and adjacency conflicts.

Due to the fact that both collections of balls are individu-
ally conflict-free (and {B∗

1, . . . ,B∗
w∗} satisfies even a much stronger

property), the picture is actually less chaotic than it may appear
on the first glance. No ball in (6.21) may both contain another
ball and be (properly) contained in one. The adjacency relation,
when restricted to (6.21), is a matching. Yet another important
observation is that no ball in {B1, . . . ,Bw} may be involved in both
containment and adjacency conflicts. Indeed, if Bγ were in an adja-
cency conflict with B∗

μ and in a containment conflict with B∗
μ′ then

(B∗
μ)+ ⊃ Bγ would have a non-empty intersection with B∗

μ′ which
is impossible due to the way these balls were chosen (see the state-
ment of Lemma 6.6). This may happen for a new ball B∗

μ, though;
this issue will be addressed when we will talk about designing sets
A∗

μ for those balls.
With these remarks in mind, we resolve all containment con-

flicts in favor of the larger ball and remove the smaller. Adjacency
conflicts (Bγ ,B∗

μ) are always resolved in favor of B∗
μ: Bγ gets re-

moved. This will define the geometry of the term ̂t, it will be
normal and sparse as we have resolved all conflicts, and it will
contain all variables in V0 due to the way we have resolved them.

cc 27 (2018) On space and depth in resolution 543

It remains to explain how to transfer information from a term
tBγ ,Aγ to the new generation of balls if Bγ was slated for extermina-
tion, and we still have to define A∗

μ for those new balls B∗
μ. There

are two reasons why Bγ can be removed: since Bγ ⊂ B∗
μ for some μ

(containment conflict) or because it is adjacent to some B∗
μ. In the

first case we need not worry, the information will be automatically
passed to B∗

μ due to monotonicity (cf. Remark 6.14). The second
case is more interesting, and the rest of the proof will essentially
consist in showing that this is the only way the refutation can
do anything meaningful, namely apply an inference X

Aγ

i |= XA
j

from ηd, for d, i, j chosen in an obvious way. But then among all
potential As with this property there is a minimal one (their inter-
section), and we adorn the ball B∗

μ with this A, thus converting it
into a normal term. It is crucially important for this step, of course,
that Bγ is the only ball adjacent to B∗

μ; otherwise, the argument
would have completely broken apart.

Let us now continue with a formal argument.
Let Γ0 ⊆ [w] consist of those γ for which Bγ is properly con-

tained in a ball B∗
μ (μ ∈ [w∗]). Let M0 ⊆ [w∗] be the set of all

those μ for which B∗
μ is contained (not necessarily properly) in one

of the Bγ (γ ∈ [w]). By ultrametricity, all balls {Bγ | γ
∈ Γ0},
{B∗

μ | μ
∈ M0

}

are pairwise disjoint. They still may contain adja-
cent balls, though.

Let Γ1 ⊆ [w] be the set of all balls Bγ such that Bγ ⊆ (B∗
μ)+\B∗

μ

for at least one μ ∈ [w∗]. Note that if Bγ is adjacent to a ball
B∗

μ then γ ∈ Γ1. Also, since all (B∗
μ)+ (μ ∈ [w∗]) are pairwise

disjoint, it follows that for any γ ∈ Γ1, Bγ is disjoint with all balls
B∗

μ (μ ∈ [w∗]), including μ ∈ M0. Hence, in particular, Γ0 ∩Γ1 = ∅.
Moreover, the ball B∗

μ with Bγ ⊆ (B∗
μ)+\B∗

μ is uniquely defined,
and we let

Γμ
1

def
=

{

γ
∣

∣ Bγ ⊆ (B∗
μ)+\B∗

μ

}

;

thus, Γ1 =
.
⋃

μ∈[w∗]Γ
μ
1 . A word of warning: Γμ

1 may be non-empty

even if μ ∈ M0 (more precisely, when B∗
μ = Bγ′ for some γ′ ∈ [w],

see Claim 6.24 below).

Now, the balls {Bγ | γ
∈ Γ0 ∪ Γ1} ,
{B∗

μ | μ
∈ M0

}

are not only
pairwise disjoint but also (due to the definition of Γ1) pairwise non-

544 Alexander Razborov cc 27 (2018)

adjacent. They will make the support of the sparse term ̂t we are
constructing, that is

(6.22) ̂t =
∧

γ �∈Γ0∪Γ1

tBγ ,Aγ ∧
∧

μ �∈M0

tB∗
μ,A∗

μ
,

where for μ
∈ M0 the sets A∗
μ are defined as follows. Let μ
∈ M0

and r
def
= r(B∗

μ).

Case 1. r(Bγ) < r for any γ ∈ Γμ
1 (which in particular

includes the case Γμ
1 = ∅).

We simply let A∗
μ

def
= Dr+1 unless r = 0 in which case, due to

our convention, we simply remove tB∗
μ,A∗

μ
from (6.22).

Case 2. There exists γ ∈ Γμ
1 with r(Bγ) = r.

First note that γ with this property is unique since t is sparse.
Bγ and B∗

μ are defined by two prefixes of the form (ih, ih−1, . . . ,
ir+2, i) and (ih, ih−1, . . . , ir+2, j) with i
= j. We let A∗

μ be the
minimal subset of Dr+1 for which

(6.23) X
Aγ

i ∧ η[Xi, Xj] |= X
A∗

μ

j

in the Dr+1-valued logic. We note that L(tBμ,A∗
μ
) ≤ s+1 and hence

(this is quite essential for the upcoming argument!) A∗
μ
= ∅ due to

the assumption s ≤ T − 2.

This completes the construction of the sparse term ̂t, and all
that remains is to prove (6.20). Let us first state formally a few
observations that we already made in our informal explanation
above.

Claim 6.24. If Γμ
1
= ∅ then ̂t contains a sub-term of the form

tB∗
μ,A for some A.

Proof of 6.24. If μ
∈ M0, this is obvious. If μ ∈ M0 then
B∗

μ ⊆ Bγ for some γ and there is another γ′ with Bγ′ ⊆ (B∗
μ)+\B∗

μ.
We necessarily must have B∗

μ = Bγ (otherwise, Bγ′ ⊆ Bγ). Clearly,

γ
∈ Γ0 ∪ Γ1 and hence tBγ ,Aγ = tB∗
μ,Aγ appears in ̂t. �

cc 27 (2018) On space and depth in resolution 545

Claim 6.25. V0 ⊆ V ars(̂t).

Proof of 6.25. Every v ∈ V0 is contained in one of the balls
B∗

μ. If μ
∈ M0, we are done; otherwise, there exists γ ∈ [w] with
B∗

μ ⊆ Bγ . Like in the proof of Claim 6.24, γ
∈ Γ0 ∪Γ1, hence tBγ ,Aγ

appears in ̂t and thus v ∈ V ars(̂t). �

As an immediate consequence, the second part of the implica-
tion in (6.20) is automatic, and we only have to prove that ̂t∗ |= fs.
Again, let us begin with a simple observation.

Claim 6.26. Let α be an arbitrary assignment satisfying a term
tB,A of the form (6.11). Then α satisfies all axioms Conρ(u,v)(xu, xv)
(u, v ∈ B) if and only if α is constant on B.

Proof of 6.26. By an easy inspection. �

Our strategy for proving ̂t∗ |= fs given that V ars(fs) ⊆ V ars(̂t)
(by Claim 6.25) and t∗ |= fs is typical for this kind of arguments
in proof complexity. Namely, fix an assignment α ∈ V D satisfying
̂t∗. In order to prove that fs(α) = 1, we only have to show how to
modify α to another assignment β such that:

1. α and β agree on V0;

2. t∗(β) = 1.

This β will be obtained from α by the “reverse engineering”
of the intuition for the construction of ̂t we provided above. The
terms tBγ ,Aγ with γ ∈ Γ0 will be trivially satisfied by monotonicity,
we need not worry about them. If γ ∈ Γ1, i.e., Bγ is removed in
favor of an adjacent ball B∗

μ, then, due to the minimality in (6.23),
every assignment a ∈ A∗

μ can be extended to an assignment b ∈ Aγ

satisfying the left-hand side, and we use this b to re-assign variables
in the ball Bγ .

Formally, consider an individual Bγ , γ ∈ Γμ
1 and let r

def
= r(B∗

μ).

By Claim 6.24, B∗
μ ⊆ V ars(̂t), and then by Claim 6.26 (since α

satisfies η[B∗
μ]), α|B∗

μ
is a constant a with a ∈ Dh ∪ · · · ∪Dr+2 ∪A∗

μ.

546 Alexander Razborov cc 27 (2018)

Case 1. a ∈ Dh ∪ · · · ∪ Dr+2.
We simply let β|Bγ ≡ a.

Case 2.1. a ∈ A∗
μ and r(Bγ) = r, i.e., Bγ and B∗

μ are adjacent.
In the notation of (6.23), there exists b ∈ Aγ such that η

[{Xi, Xj}](b, a) = 1; otherwise a could have been removed from
A∗

μ in violation of the minimality of (6.23). Pick arbitrarily any
such b and define β|Bγ ≡ b.

Case 2.2. a ∈ A∗
μ, r(Bγ) < r.

We let β|Bγ ≡ b, where b ∈ Dr(Bγ)+1 is chosen in such a way
that η[{Xi}](b) = 1. Here, as before, i is the last entry in the prefix
describing the ball Bγ.

The construction of β is complete.

Claim 6.27. α and β agree on all balls B∗
μ and on all balls Bγ (γ
∈

Γ1).

Proof of 6.27. Follows from the above remarks that the balls
Bγ (γ ∈ Γ1) are disjoint from anything else. �

In particular, α and β agree on V0, and it remains to show that
t∗(β) = 1.

First we check that t(β) = 1, that is tBγ ,Aγ (β) = 1 for any
γ ∈ [w]; this part is relatively easy and was already sufficiently
explained above. There are three possibilities.

Case 1. γ ∈ Γ0.
We have Bγ ⊂ B∗

μ for some μ
∈ M0, and by Claim 6.27, α and
β coincide on B∗

μ. Since r(Bγ) ≤ r(B∗
μ)−1, we have tB∗

μ,A∗
μ

|= tBγ ,Aγ

regardless of the particular value of A∗
μ (over which we do not have

any control). But tB∗
μ,A∗

μ
appears in ̂t and hence tB∗

μ,A∗
μ
(α) = 1.

tBγ ,Aγ (β) = 1 follows.

Case 2. γ ∈ Γ1.
In this case tBγ ,Aγ (β) = 1 directly follows from the way the

assignment β was constructed.

Case 3. γ
∈ Γ0 ∪ Γ1.
Once again, α and β coincide on Bγ , and tBγ ,Aγ also appears in

̂t. Hence tBγ ,Aγ (β) = 1.

cc 27 (2018) On space and depth in resolution 547

So far we have proved t(β) = 1, and what still remains is to
show that η[V ars(t)](β) = 1, i.e., we should take care of the “en-
vironment” of the term t. This part is technically unpleasant, we
have tried several natural possibilities (like modifying the predicate
|= in the statement of Lemma 6.19 to pertain to legal assignments
only), and none of them has been fully satisfactory. Perhaps, the
best intuition toward the remaining part of the proof below is that
we have defined both the “forward” construction t =⇒ ̂t and the
“reverse” one α =⇒ β as natural as possible so that the “sup-
plementary” information contained in η[V ars(t)] “floats around”
both ways. Let us at least briefly explain a (typical) example of
the constraint Cond(Xu, Xv), where u ∈ Bγ , v ∈ Bγ′ and γ
= γ′.
A problem occurs when at least one of the balls Bγ ,Bγ′ is removed,
and, moreover, when it is removed due to an adjacency conflict
(containment conflicts only increase V ars(t)). If, say, Bγ is re-
moved in favor of an adjacent ball B∗

μ
⊇ Bγ′ , then we will still have
that ρ(B∗

μ,Bγ′) = ρ(Bγ,Bγ′) = d and hence our constraint Cond

still makes perfect sense (and the same content, too) between B∗
μ

and Bγ′ . We replace Xu in it with Xu∗ , where u∗ ∈ B∗
μ is arbitrary,

and show that Cond(αu∗ , βv) = 1 implies Cond(βu∗ , βv) = 1. An-
other kind of care should be given to constraints of width 1, for
the same reasons as in the proof of Lemma 6.18, but perhaps at
this point it will be simpler just to start the formal argument.

Let us fix C ∈ η with V ars(C) ⊆ V ars(t). We need to prove
that

(6.28) C(β) = 1.

Case 1. V ars(C) ⊆ Bγ for some γ.

Let r
def
= r(Bγ).

Case 1.1. C = ̂C0(Xu, Xv) (u, v ∈ Bγ), where C0 ∈ ηd, d
def
=

ρ(u, v).
This case is immediate from the already established fact t(β) =

1 since it implies βu, βv ∈ Dh ∪ · · · ∪ Dr+1, while d ≤ r.

Case 1.2. C = Conρ(u,v)(Xu, Xv).
For every ball B occurring in the right-hand side of (6.22), α|B

is constant by Claim 6.26 since α satisfies all consistency axioms

548 Alexander Razborov cc 27 (2018)

Conρ(u,v)(Xu, Xv) with u, v ∈ B ⊆ V ars(̂t). Following the same
reasoning as in the proof of t(β) = 1 above, β|Bγ is also a constant
hence C(β) = 1 by Claim 6.26.

So far we have treated axioms C of width 2 with V ars(C) ⊆ Bγ.
We divide the analysis of the case when C is of width 1 into two
subcases, according to whether γ ∈ Γ1 or not.

Case 1.3. C = ̂C0(Xu), where C0 ∈ ηd for some d and γ
∈ Γ1.
Since Xu ∈ V ars(̂t), C(αu) = 1, and since γ
∈ Γ1, C(βu) =

C(αu). This gives (6.28).

Case 1.4. C = ̂C0(Xu), where, as before, C0 ∈ ηd for some d
but γ ∈ Γ1.

Let γ ∈ Γμ
1 and R

def
= r(B∗

μ) ≥ r. From our construction,
either α|B∗

μ
∈ Dh ∪ · · · ∪ DR+2 and β|Bγ ≡ α|B∗

μ
, or b ∈ Dr+1 and

η[Xi](b) = 1, where i is again the last entry in the prefix describing
Bγ .

Case 1.4.1. β|Bγ ≡ α|B∗
μ

∈ Dh ∪ · · · ∪ DR+2 (= a).
We may assume d ≥ R+2 as otherwise the statement is trivial.

Pick arbitrarily u∗ ∈ B∗
μ, then ρ(u, u∗) = R + 1. Hence u and u∗

share the prefix of length h−d ≤ h−R−2, that is ̂C0(Xu∗) is also

in η. Now ̂C0(a) = 1 follows from Xu∗ ∈ V ars(̂t).

Case 1.4.2. b ∈ Dr+1 and η[i](b) = 1.
Again, this is obvious if d
= r+1 and follows from C0 ∈ ηd[{i}]

otherwise.

We have completed the analysis of the case V ars(C) ⊆ Bγ for
a single ball Bγ. In particular, we can and will now assume that
the width of the constraint C is exactly 2:

Case 2. V ars(C) = {u, v}, u ∈ Bγ and v ∈ Bγ′ with γ
= γ′.

Let d
def
= ρ(u, v), r

def
= r(Bγ), r′ def

= r(Bγ′), so that r, r′ ≤ d − 1
and, moreover, at least one of this inequalities is strict (since the
balls Bγ , Bγ′ are non-adjacent).

Case 2.1. γ
∈ Γ1 and γ′
∈ Γ1.
This case is immediate: βu = αu, βv = αv and (6.28) simply

follows from the fact that α satisfies η[V ars(̂t)].

cc 27 (2018) On space and depth in resolution 549

Case 2.2. γ ∈ Γ1.

Let γ ∈ Γμ
1 and R

def
= r(B∗

μ) so that R ≥ r. Let also a
def
= α|B∗

μ
;

a ∈ Dh ∪ · · · ∪ DR+1.

The rest of the analysis splits into two rather different cases
according to whether v ∈ (B∗

μ)+ or not.

Case 2.2.1. v ∈ (B∗
μ)+, that is d ≤ R + 1.

Case 2.2.1.1. a ∈ Dh ∪ · · · ∪ DR+2.

According to the construction, βu = βv = a. Cond(βu, βv) = 1

follows immediately, and for ̂C0(βu, βv) (C0 ∈ τd) we only have to
remark that a
∈ Dd since d ≤ R + 1.

Case 2.2.1.2. a ∈ DR+1.

Case 2.2.1.2.1. v ∈ B∗
μ.

From our construction, d = R + 1, βv = a, and βu ∈ Dr+1.
Thus, βu, βv ∈ Dd ∪ · · · ∪ D1, and this proves Cond(βu, βv) = 1, as

well as ̂C0(βu, βv) = 1 unless r = R, that is the balls Bγ and B∗
μ

are adjacent. In this latter case ̂C0(βu, a) = 1 is guaranteed by our
choice of βu.

Case 2.2.1.2.2. v ∈ (B∗
μ)+\B∗

μ. In this case γ′ ∈ Γμ
1 as well,

and, according to our construction, βu ∈ Dr+1 and βv ∈ Dr′+1.
Recalling that r + 1, r′ + 1 ≤ d and, moreover, at least one of the
inequalities here is strict, both Cond(βu, βv) and ̂C0(βu, βv) (C0 ∈
τd) are satisfied for trivial reasons.

At this moment, we are done with the case v ∈ (B∗
μ)+.

Case 2.2.2. v
∈ (B∗
μ)+ or, in other words, d ≥ R + 2.

Pick arbitrarily u∗ ∈ B∗
μ. Since ρ(u, u∗) = R + 1, by the ul-

trametric triangle inequality we get ρ(u∗, v) = d. In particular,
C(Xu∗ , Xv) is also an axiom of η.

Claim 6.29. C(βu, βv) = C(αu∗ , βv).

Proof of 6.29. Readily follows from the dichotomy βu = βu∗ =
αu∗ or βu, αu∗ ∈ DR+1 ∪ · · · ∪ D1 ⊆ Dd−1 ∪ · · · ∪ D1. �

550 Alexander Razborov cc 27 (2018)

Thus, if γ′
∈ Γ1 then {u∗, v} ⊆ V ars(̂t), βv = αv and we are done

since α satisfies ̂t∗. On the other hand, if γ′ ∈ Γμ′
1 for some μ′
= μ

then u∗
∈ (B∗
μ′)+, and we simply apply Claim 6.29 once more, this

time with u = v, v = u∗, u∗ = v∗, where v∗ ∈ B∗
μ′ .

This finally completes our case analysis. To re-cap the over-
all argument, we have proved (6.28) for any axiom C ∈ η with
V ars(C) ⊆ V ars(t). That is, for any assignment α ∈ DV with
̂t∗(α) = 1 we were able to modify it to some β ∈ V D so that α and
β agree on V0 and t∗(β) = 1. This implies (6.20) and completes
the inductive step. �
As we observed above, the lower bound in Lemma 6.9 follows im-
mediately.

6.4. From multi-valued logic to the Boolean one. Finally,
we need to transfer the tradeoff resulting from Lemmas 6.3, 6.9 to
the Boolean setting. This involves two different tasks: the con-
version per se and a variable compression in the style of Razborov
(2016) that is certainly needed here since the number of variables
in the lexicographic product is huge (exponential in h). We will
combine both tasks into a single statement, but first we need a few
definitions.

Definition 6.30 (Alekhnovich & Razborov 2008). A function g :
{0, 1}s −→ D is r-surjective if for any restriction ρ assigning at
most r variables, the restricted function g|ρ is surjective.

Definition 6.31 (cf. Razborov 2016). Let A be an m×n 0-1 ma-
trix in which every row has precisely s ones and g : {0, 1}s −→ D
be a function. Let g[A] : {0, 1}n −→ Dm be naturally defined as

g[A](x1, . . . , xn)(i)
def
= g(xj1 , . . . , xjs),

where j1 < j2 < · · · < js is the enumeration of ones in the ith
row of A. For a D-valued Boolean function f : Dm −→ {0, 1},
we let the Boolean function f [g, A] : {0, 1}n −→ {0, 1} be the
composition f ◦ g[A]. Finally, for a D-valued CSP η(Y1, . . . , Ym),

we let η[g, A]
def
= {C[g, A] | C ∈ η}.

cc 27 (2018) On space and depth in resolution 551

Definition 6.32. Let A be a m × n 0-1 matrix. For i ∈ [m], let

Ji(A)
def
= {j ∈ [n] | aij = 1}

be the set of all ones in the ith row. For a set of rows I ⊆ [m], the
boundary ∂A(I) of I is defined as

∂A(I)
def
= {j ∈ [n] | | {i ∈ I | j ∈ Ji(A)} | = 1} ,

i.e., it is the set of columns that have precisely one 1 in their
intersections with I. A is an (r, c)-boundary expander if |∂A(I)| ≥
c|I| for every set of rows I ⊆ [m] with |I| ≤ r.

Lemma 6.33. Let A be an m × n
(

2h, 3
4
s
)

-boundary expander in
which every row has precisely s elements. Let D be a finite domain,
η(Y1, . . . , Ym) be a D-valued h-CSP and g : {0, 1}s −→ D be an
(3s/4)-surjective function. Assume that there exists a semantic
(Boolean) refutation π from η[g, A] with VSpace(π) ≤ (hs)/16.
Then there exists a D-valued refutation π̂ of η with VSpace(π̂) ≤ h
and |π̂| = |π|.
Proof. In the notation of this lemma, fix a semantical (Boolean)
refutation π = (f0, . . . , fT) from η[g, A] with VSpace(π) ≤ (hs)/16.
In order to convert π to a D-valued refutation, we need to recall a
few rudimentary facts about expanders.

Definition 6.34. For a set of columns J ⊆ [n], let

Ker(J)
def
= {i ∈ [m] | Ji(A) ⊆ J }

be the set of rows completely contained in J . Let A\J be the sub-
matrix of A obtained by removing all columns in J and all rows in
Ker(J).

The following is a part of (Razborov 2016, Lemma 4.4).

Proposition 6.35. Let A be an (m×n) (r, c)-boundary expander
in which every row has at most s ones, let c′ < c, and let J ⊆ [n]

satisfy |J | ≤ r
2
(c − c′). Then there exists ̂J ⊇ J such that A\ ̂J is

an (r/2, c′)-boundary expander and | ̂J | ≤ |J | (1 + s
c−c′

)

.

552 Alexander Razborov cc 27 (2018)

We now return to the proof of Lemma 6.33. Let8 Jt
def
= V ars(ft);

|Jt| ≤ (hs)/16. Apply to this set Proposition 6.35 with r = 2h, c =

3s/4 and c′ = 5s/8. We will get ̂Jt ⊇ Jt such that A\ ̂Jt is an

(h, 5s/8)-boundary expander and | ̂Jt| ≤ 9|Jt| ≤ 9hs/16. Let It
def
=

Ker(̂Jt); we claim that |It| ≤ h. Indeed, assuming the contrary,

pick a set I ′
t ⊆ It with |I ′

t| = h. Then |∂A(I ′
t)| ≤ | ̂Jt| ≤ 9hs/16,

contrary to the fact that A is an (h, 3s/4)-boundary expander.

We now let ̂ft be the minimal D-valued function in the variables
{yi | i ∈ It } such that

(6.36) ft |= ̂ft[g, A]

in the Boolean logic. Then
∣

∣

∣V ars(̂ft)
∣

∣

∣ ≤ h and all that remains to

show is that (̂f0, ̂f1, . . . , ̂fT) is indeed a D-valued semantic refuta-
tion, that is

(6.37) ̂ft ∧ η[It ∪ It+1] |= ̂ft+1,

for all t.
Let α ∈ Dm be any assignment satisfying the left-hand side in

(6.37). Due to the minimality of ̂ft, if we re-define it to 0 on the
input α|It , this will violate (6.36). In other words, there exists a
Boolean assignment a ∈ {0, 1}n such that ft(a) = 1 and

(6.38) g
(

a|Ji(A)

)

= αi,

for any i ∈ It. We note that these two properties of a depend only
on those values aj for which j ∈ ̂Jt; thus, we can view a as an

assignment in {0, 1} ̂Jt , discarding all other values. Our goal is to

extend a to an assignment in {0, 1} ̂Jt∪ ̂Jt+1 in such a way that (6.38)
will be satisfied for all i ∈ It+1 as well.

This is done by a fairly standard argument. Let I
def
= It+1\It.

Since A\ ̂Jt is an (h, 5s/8)-boundary expander and |I| ≤ |It+1| ≤ h,

we have
∣

∣

∣∂A(I)\ ̂Jt

∣

∣

∣ ≥ 5s
8
|I|. Hence for at least one i ∈ I,

∣

∣

∣

∣

∣

∣

Ji(A)\
⎛

⎝ ̂Jt ∪
⋃

i′∈I\{i}
Ji′(A)

⎞

⎠

∣

∣

∣

∣

∣

∣

≥ 5s

8
≥ s

4
.

8 Recall that we often identify sets of variables with sets of their indices.

cc 27 (2018) On space and depth in resolution 553

Removing this i from I and arguing by reverse induction, we can
order all rows in I in such a way I = {i1, i2 . . . , ir} that

(6.39)
∣

∣

∣Jiν (A)\
(

̂Jt ∪ Ji1(A) ∪ · · · ∪ Jiν−1(A)
)∣

∣

∣ ≥ s

4

for all ν = 1..r. Using now (3s/4)-surjectivity of g, we consecu-

tively extend a to ̂Jt ∪Ji1(A)∪ · · · ∪Jiν (A) enforcing all conditions
(6.38).

The partial assignment a ∈ {0, 1} ̂Jt∪ ̂Jt+1 we have constructed

still satisfies ft; we claim that it also satisfies η[g, A]
[

̂Jt ∪ ̂Jt+1

]

⊇
η[g, A][Jt ∪ Jt+1].

Indeed, for any C ∈ η[It ∪It+1] this simply follows from the fact
that C(α) = 1 and the consistency conditions (6.38). One thing we

still have to make sure is that η[g, A]
[

̂Jt ∪ ̂Jt+1

]

does not contain

any other, “accidental” constraints.

Claim 6.40. If C is any constraint of width ≤ h and V ars(C[g, A])

⊆ ̂Jt ∪ ̂Jt+1 then V ars(C) ⊆ It ∪ It+1.

Proof of 6.40. By a relatively simple modification of the ar-

gument above. Let I
def
= V ars(C); |I| ≤ h, and assume the con-

trary, that is that there exists i ∈ I\(It ∪ It+1). Fix two assign-
ments α, β ∈ DI differing only in the ith coordinate but such that
C(α)
= C(β). We claim that there exist a, b ∈ {0, 1}n such that
(cf. (6.38))

(6.41) g
(

a|Ji(A)

)

= αi, g
(

b|Ji(A)

)

= βi,

for all i ∈ I while a|
̂Jt∪ ̂Jt+1

= b|
̂Jt∪ ̂Jt+1

: the first property will imply

C[g, A](a)
= C[g, A](b), and that will contradict V ars(C[g, A]) ⊆
̂Jt ∪ ̂Jt+1 by the second property.

We construct the promised a, b in two stages. Let I ′ def
= I ∩ (It ∪

It+1); thus, α and β agree on I ′. As before, order the rows in I ′ in
such a way I ′ = {I1, . . . , Ir} that

∣

∣Jiν (A)\(Ji1(A) ∪ · · · ∪ Jiν−1(A))
∣

∣ ≥ s/4

554 Alexander Razborov cc 27 (2018)

holds for all ν (cf. (6.39)), and then satisfy (6.41) with the same

assignment to Ji1(A)∪· · ·∪Jir(A). Extend it to ̂Jt∪ ̂Jt+1 arbitrarily;

let c ∈ {0, 1} ̂Jt∪ ̂Jt+1 be the resulting assignment.

Now, let I ′′ def
= I\(It ∪ It+1), and let A∗ be the matrix obtained

from A by removing all columns Jt, Jt+1 and all rows It, It+1. Since
both A\Jt and A\Jt+1 are (h/2, 5s/8)-expanders, clearly A∗ is still
an (h, s/4)-expander (s

4
= 2 · (

5
8
s
) − s). This expansion property

allows us to extend c, by the same argument as above, to a, b ∈
{0, 1}n that will satisfy (6.41) for i ∈ I ′′ as well. But, as we
remarked above, (6.41) is in contradiction with V ars(C[g, A]) ⊆
̂Jt ∪ ̂Jt+1. �

Since η is an h-CSP by the assumption of Lemma 6.33, we can
apply Claim 6.40 to any C ∈ η. This gives us that all constraints

in η[g, A]
[

̂Jt ∪ ̂Jt+1

]

are indeed coming from η[It ∪ It+1]. As we

already remarked above, this implies that all of them are satis-
fied by the assignment a, and since (f0, f1, . . . , fT) is a semantical
refutation from τ [g, A], we conclude that ft+1(a) = 1. By (6.36),
̂ft+1[g, A] = 1, and since a satisfies (6.38) for all i ∈ It+1, this

means ̂ft+1(α) = 1.

We have established (6.37) by showing that any D-valued as-
signment α satisfying its left-hand side also satisfies the right-hand
side. Thus, (̂f0, ̂f1, . . . , ̂fT) is indeed a semantical refutation. This
completes the proof of Lemma 6.33. �

6.5. Putting it all together.

Proof of 3.3. We are given a function s = s(n) ≤ n1/2. We

let h
def
= �εs� ≤ εn/s, where ε is a sufficiently small constant. We

now need the following standard fact:

Proposition 6.42 (Razborov 2016, Lemma 2.2). Let n → ∞ and
m, s, c be arbitrary integer parameters possibly depending on n
such that c ≤ 3

4
s and

(6.43) r ≤ o(n/s) · m− 2
s−c .

cc 27 (2018) On space and depth in resolution 555

Then for sufficiently large n there exist m × n (r, c)-boundary ex-
panders in which every row has ≤ s ones.

Note that (6.43) is satisfied with m := 4h, c := 3
4
s and r := 2h (the

term m− 2
s−c becomes Ω(1)). This gives us an (2h, 3

4
s)-boundary

expander with m = 4h rows in which every row has ≤ s ones. By
adding ≤ s extra columns if necessary, we can assume w.l.o.g. that
every row has exactly s ones.

Next, we claim that if s is sufficiently large (that we can clearly
assume w.l.o.g.) a random function g : {0, 1}s −→ D is (3s/4)
surjective for |D| = 2s/8, with probability 1−o(1). This is straight-
forward:

P[g is not (3s/4) − surjective]

≤ 23s/4

(

s

3s/4

)

P[g|ρ is not surjective]

≤ exp(O(s)) · (1 − |D|−1)2s/4 ≤ o(1),

where ρ is a fixed restriction assigning (3s/4) variables. Pick
any such g arbitrarily, and split D into h nearly equal parts,
D = D1

.∪ · · · .∪ Dh. Let ηd be the Dd-valued 2-CSP in four vari-
ables given by Lemma 6.3, that is such that VSpace(ηd � 0) = 1
but any its refutation π with VSpace(π) = 1 must have length

≥ exp
(|Dd|Ω(1)

) ≥ exp(exp(Ω(s))). Let η
def
= ηh · . . . · η1. The

D-valued 2-CSP η has m = 4h variables, say, Y1, . . . , Ym and still
satisfies VSpace(η � 0) = 1 but now any its refutation π̂ with
VSpace(π̂) ≤ h/2 − 1 has length exp(exp(Ω(s))). The desired con-
tradiction τn will be η[g, A].

First of all, τn has a semantical refutation with variable space
≤ s. It is obtained simply by taking a D-valued refutation of η
with variable space 1 (that is, consisting of generalized literals) and
applying the operator Y P

i �→ Y P
i [g, A] to its configurations. On the

other hand, applying Lemma 6.33 in the contrapositive form, every
Boolean refutation π from ηg[A] with VSpace(π) ≤ (h/2 − 1)s/16
must have length ≥ exp(exp(Ω(s)))/ exp(O(h)). As h = Θ(s), this
is exp(exp(Ω(s))). �

556 Alexander Razborov cc 27 (2018)

7. Conclusion

In this paper we have studied two complexity measures of propo-
sitional proofs, variables space and depth, that in our view have
been somewhat neglected in the past. We hope that perhaps the
nature of the results proved in this paper would help them to find
the place in the overall hierarchy that, in our opinion, they fully
deserve by the token of being very clean, robust and natural.

That said, the most interesting question about them remains
open: whether variable space and depth are polynomially related
or, equivalently, whether there exists a supercritical tradeoff be-
tween them. In a slightly less precise form this was asked in
(Urquhart 2011, Problem 7.2); we have proved a quadratic gap,
but the general problem looks quite challenging.

A positive answer to this question would immediately imply
that clause space is polynomially bounded by variable space. Even
if these two problems seem to be extremely tightly related, we still
would like to ask this separately: is it correct that

CSpace(τn � 0) ≤ (VSpace(τn � 0) log n)O(1)?

In the opposite range, of (barely) constant variable space, all
refutations a priori have small length, and we have shown that the
depth can be reduced to, say, n while keeping the variable space
constant and length polynomial. We would like to take this oppor-
tunity and re-iterate an interesting question of (somewhat) similar
flavor asked in (Nordström 2013, Open Problem 16). Assume that
we have a configurational refutation of constant clause space. Is it
always possible to reduce length to polynomial while keeping the
clause space constant? As with our first question, this one also
looks quite challenging.

Finally, there still remains a considerable amount of work to be
done on refining simulations in Theorem 3.1. For example, let us
take a closer look at (1.6). By Bonacina’s result (1.5), every O(1)-
CNF τn with w(τn � 0) = Θ(n) automatically provides an example
with TSpace(τn � 0) = Θ(D2) (= Θ(n2)). But what about the
lower bound in (1.6)? Can, say, TSpace be sub-linear in depth or

the bound can be improved to ˜Ω(D)? This does not seem to easily
follow from any known results.

cc 27 (2018) On space and depth in resolution 557

Acknowledgements

This work was supported by the Russian Science Foundation, grant
14-50-00005.

The author is deeply indebted to anonymous referees of this
paper for constructive criticism and a great deal of very useful
remarks.

References

M. Alekhnovich, E. Ben-Sasson, A. Razborov & A. Wigderson

(2002). Space complexity in propositional calculus. SIAM Journal on
Computing 31(4), 1184–1211.

M. Alekhnovich & A. Razborov (2008). Resolution is not autom-
atizable unless W [P] is tractable. SIAM Journal on Computing 38(4),
1347–1363.

A. Atserias & V. Dalmau (2008). A combinatorial characterization
of resolution width. Journal of Computer and System Sciences 74(3),
323–334.

L. Babai & A. Seress (1992). On the Diameter of Permutation
Groups. European Journal of Combinatorics 13, 231–243.

B. Barak & D. Steurer (2014). Sum-of-squares proofs and the quest
toward optimal algorithms. In Proceedings of International Congress of
Mathematicians (ICM), volume IV, 509–533.

C. Beck, J. Nordström & B. Tang (2013). Some trade-off results
for polynomial calculus: extended abstract. In Proceedings of the 45th
ACM Symposium on the Theory of Computing, 813–822.

E. Ben-Sasson (2009). Size-space tradeoffs for resolution. SIAM Jour-
nal on Computing 38(6), 2511–2525.

E. Ben-Sasson & A. Wigderson (2001). Short Proofs are Narrow -
Resolution made Simple. Journal of the ACM 48(2), 149–169.

C. Berkholz & J. Nordström (2016a). Near-Optimal Lower Bounds
on Quantifier Depth and Weisfeiler-Leman Refinement Steps. In Pro-
ceedings of the 31st Annual ACM/IEEE Symposium on Logic in Com-
puter Science, 267–276.

558 Alexander Razborov cc 27 (2018)

C. Berkholz & J. Nordström (2016b). Supercritical Space-Width
Trade-offs for Resolution. In Proceedings of the 43rd International Col-
loquium on Automata, Languages and Programming, 57:1–57:14.

A. Blake (1937). Canonical expressions in Boolean algebra. Ph.D.
thesis, University of Chicago.

I. Bonacina (2016). Total space in Resolution is at least width squared.
In Proceedings of the 43rd International Colloquium on Automata, Lan-
guages and Programming, 56:1–56:13.

S. A. Cook & A. R. Reckhow (1979). The relative efficiency of
propositional proof systems. Journal of Symbolic Logic 44(1), 36–50.

J. L. Esteban & J. Torán (2001). Space bounds for resolution.
Information and Computation 171(1), 84–97.

Y. Filmus, M. Lauria, M. Mikša, J. Nordström & M. Vinyals

(2015). From Small Space to Small Width in Resolution. ACM Trans-
actions on Computational Logic 16(4), article 28.

D. Grigoriev (2001). Linear lower bounds on degrees of Postivestel-
lensatz calculus proofs for the parity. Theoretical Computer Science
259, 613–622.

J. Nordström (2013). Pebble Games, Proof Complexity and Time-
Space Trade-Offs. Logical Methods in Computer Science 9, 1–63.

A. Razborov (2016). A New Kind of Tradeoffs in Propositional Proof
Complexity. Journal of the ACM 62(3), article 16.

A. Razborov (2017). On the Width of Semi-Algebraic Proofs and
Algorithms. Mathematics of Operation Research http://pubsonline.
informs.org/doi/abs/10.1287/moor.2016.0840.

J. A. Robinson (1965). A machine-oriented logic based on the resolu-
tion principle. Journal of the ACM 12(1), 23–41.

A. Urquhart (2011). The Depth of Resolution Proofs. Studia Logica
99, 349–364.

http://pubsonline.informs.org/doi/abs/10.1287/moor.2016.0840
http://pubsonline.informs.org/doi/abs/10.1287/moor.2016.0840

cc 27 (2018) On space and depth in resolution 559

Manuscript received 7 December 2016

Alexander Razborov

University of Chicago
Chicago IL 60637, USA
razborov@math.uchicago.edu

Steklov Mathematical Institute
Moscow 117418 Russia
razborov@mi.ras.ru.

	On space and depth in resolution
	Introduction
	Notation and preliminaries
	Main results
	Proofs of simulations
	Very small space
	A supercritical tradeoff between variable space and length
	Multi-valued logic
	Supercritical tradeoff against variable space 1
	Supercritical tradeoffs against logarithmic variablespace
	Combinatorial and geometric set-up
	Lexicographic products and the main lemma
	Upper bound
	Lower bound

	From multi-valued logic to the Boolean one
	Putting it all together

	Conclusion
	Acknowledgements
	References

