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Abstract. The question of list-decoding error-correcting codes over finite
fields (under the Hamming metric) has been widely studied in recent years.
Motivated by the similar discrete linear structure of linear codes and point
lattices in RY, and their many shared applications across complexity theory,
cryptography, and coding theory, we initiate the study of list decoding for lat-
tices. Namely: for a lattice £ C R, given a target vector 7 € RY and a
distance parameter d, output the set of all lattice points w € L that are within
distance d of 7.

In this work, we focus on combinatorial and algorithmic questions related to
list decoding for the well-studied family of Barnes—Wall lattices. Our main
contributions are twofold:

1. We give tight combinatorial bounds on the worst-case list size, showing
it to be polynomial in the lattice dimension for any error radius bounded
away from the lattice’s minimum distance (in the Euclidean norm).

2. We use our combinatorial bounds to generalize the unique-decoding
algorithm of Micciancio and Nicolosi (IEEE International Symposium
on Information Theory 2008) to work beyond the unique-decoding
radius and still run in polynomial time up to the list-decoding radius.
Just like the Micciancio—Nicolosi algorithm, our algorithm is highly
parallelizable, and with sufficiently many processors, it can run in par-
allel time only poly-logarithmic in the lattice dimension.
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1. Introduction

A linear error-correcting code C of block length N and dimension K
over a field IF is a K-dimensional subspace of F", generated as all
F-linear combinations of K linearly independent vectors. The code’s
minimum distance, denoted d(C), is the minimum Hamming distance
between any two distinct codewords in C, or equivalently the minimum
Hamming weight over all nonzero codewords. It is often convenient
to normalize distances by the dimension, yielding the relative (mini-
mum) distance §(C) = d(C)/N of the code. Similarly, a point lattice of
dimension N and rank K (where often K = ) is a discrete additive
subgroup of RY (or C%), generated as all integer linear combinations of
K linearly independent vectors. The lattice’s minimum distance (L)
is the minimum Euclidean norm over all nonzero lattice points x € L.
Here it can also be convenient to normalize by the dimension, and for a
closer analogy between the Hamming and Euclidean distances, in what
follows we work with the relative squared distance (abbreviated rsd)
§(z,y) = d(z —y) on RN or CV, where §(2) = L ||2|]> = & SN |2
The relative squared minimum distance (abbreviated rsmd) §(L) of a
lattice is therefore (L) = A(L£)?/N.

Codes and lattices are well-studied studied objects, with many
applications in computational complexity, cryptography, and coding
theory. In particular, both kinds of objects can be used to encode data in
order to achieve reliable communication in noisy channels: While error-
correcting codes are used over discrete channels, in which symbols are
possibly flipped during transmission, lattices are used over Gaussian
noise channels, in which the noise is usually modeled by a normal dis-
tribution.

A central question associated with codes is unique decoding: given
a received word r € Y within relative Hamming distance less than
d(C)/2 of some codeword w € C, find w. Similarly, the unique (also
known as bounded-distance) decoding problem on lattices is: given a
received word r € RY within rsd less than §(L£)/4 of some lattice
vector v € L, find v. (Note that the 1/4 factor arises because distances
are squared in our formulation.)

It is also possible that the noise amount affecting the transmission
exceeds the regime of unique decoding. To model this situation, Elias
(1957) and Wozencraft (1958) proposed extending the classical unique-
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decoding problem for error-correcting codes to settings where the
amount of error could cause ambiguous decoding. More precisely,
the goal of list decoding is to find all codewords within a certain
relative distance (typically exceeding d(C)/2) of a received word; in
many cases, the list is guaranteed to contain few codewords. The
first breakthrough algorithmic list-decoding results were due to Gol-
dreich & Levin (1989) for the Hadamard code and to Sudan (1997)
and Guruswami & Sudan (1999) for Reed—Solomon codes. These
results and others have had countless applications, e.g., in building
hard-core predicates for one-way functions Goldreich & Levin (1989),
in hardness amplification Sudan et al. (2001), in learning Fourier coef-
ficients Akavia et al. (2003); Gilbert et al. (2002); Kushilevitz & Man-
sour (1993), and in constructing randomness extractors Guruswami
et al. (2009); Ta-Shma & Zuckerman (2001); Trevisan (2001).

There are two central tasks associated with list decoding: combi-
natorially bounding the number of codewords within a given radius
of a received word, and algorithmically finding these codewords. An
important question in understanding list decodability is finding the
list-decoding radius of the code, i.e., the maximum distance from a
received word within which the number of codewords is guaranteed to
be polynomial in the input parameters.

The Johnson bound. Under the Hamming metric, the Johnson
bound gives a distance up to which list decoding is guaranteed to be
combinatorially efficient. One version of the Johnson bound states that
for any code C of relative distance ¢, a Hamming ball of relative radius
J(0) — € contains at most 1/¢* codewords, and a ball of relative radius
J(0) contains at most  N?|F| codewords, where J(§) = 1 — /1 — 4.
The Johnson bound is generic since it does not use any structure of the
code (not even linearity), and in many cases it is not necessarily the
same as the list-decoding radius. It is, however, a barrier in the current
analysis of combinatorial list decoding for many well-studied families
like Reed—Solomon codes, algebraic geometry codes, Chinese remain-
der codes, and others. The breakthrough works of Parvaresh & Vardy
(2005) and Guruswami & Rudra (2006) gave families of codes which
could be (efficiently) list decoded beyond the Johnson bound, and were
followed by several related combinatorial and algorithmic results for
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other codes (e.g., Dinur et al. (2008); Gopalan et al. (2011, 2008); Kauf-
man et al. (2010)). For more detailed surveys on list decoding of codes,
we refer to Guruswami (2004, 2006, 2010); Sudan (2000).

1.1. Contributions. Motivated by the common discrete linear struc-
ture of codes and lattices, we initiate the study of efficient list decod-
ing for lattices, from both a combinatorial and algorithmic perspective.
The problem of finding all the lattice points within a given distance
from a target is also the problem of lattice enumeration, a technique
commonly used in classical computational problems on lattices (e.g.,
Kannan (1987); Pujol & Stehlé (2008)), but with exponential running
time in general lattices. Conway & Sloane (1998) promoted the appli-
cability of lattices in practice as alternatives to codes. Therefore, our
study of efficient list decoding is motivated by practical applications
in error-tolerant communication, but primarily by the naturalness of
the list-decoding problem from a mathematical and computational per-
spective, and we hope that our work will find other applications in the-
oretical computer science.

In this work, we focus on the Barnes—Wall (BW) Barnes & Wall
(1959) family of lattices in C”, which have been well studied in cod-
ing theory (see, e.g., Amir H. Banihashemi (1998); Forney (1988); For-
ney & Vardy (1996); Nebe et al. (2001); Salomon & Amrani (2005))
and share many connections to the Reed—Muller Muller (1954); Reed
(1954) family of error-correcting codes (we elaborate below). Barnes—
Wall lattices were first constructed in order to demonstrate dense sphere
packings, a feature that makes them useful in communications settings.
Specifically, Barnes—Wall lattices are particularly useful instantiations
of ‘Construction-D’ lattices, which themselves provide a general frame-
work for constructing lattices approaching the capacity of band-limited
channels. (For further details, see, e.g., Conway & Sloane (1998); For-
ney (1988).)

Minimum distance decoding algorithms for BW lattices were given
in Forney (1988); Ran & Snyders (1998), but they are either for fixed
low dimensions or have runtimes exponential in the lattice dimen-
sion N. Micciancio & Nicolosi (2008) gave the first poly(/V)-time
algorithms for bounded-distance (unique) decoding of any BW lattice
up to /4 relative error. In fact, Micciancio & Nicolosi (2008) give two
algorithms, a sequential one with O(N log N) running time and a par-
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allelizable one with O(N?) circuit size. They also posed list decoding
of BW lattices as an open problem.
Our main contributions are twofold:

1. We give tight (up to polynomials) combinatorial bounds on the
worst-case list size for BW lattices, showing it to be polynomial
in the lattice dimension N for any relative squared distance (rsd)
bounded away from the rsmd ¢ of the lattice. (See Theorem 1.2
and Theorem 1.3 below for precise statements.) We note that it
was already known that the list size is super-polynomial N©{g )
when the rsd equals 0 (see, e.g., (Conway & Sloane 1998, Chap-
ter 1, §2.2, page 24)).

2. We give a corresponding list-decoding algorithm that, for any
rsd, runs in time polynomial in the lattice dimension and worst-
case list size. Our algorithm generalizes the Micciancio—Nicolosi
parallel algorithm, and with sufficiently many processors it runs
in only poly-logarithmic O(log® N) parallel time. (See Section 3
for further details.)

We note that Johnson-type bounds for lattices are known and easy
to obtain (in fact, the Johnson bound for codes under the Hamming
metric is typically proved by reducing it to a packing bound in RY
under the Euclidean norm; see, e.g., Bollobds (1986); Guruswami &
Sudan (2001); Micciancio & Goldwasser (2002); Sudan (2001)). For a
lattice £ C C¥ with rsmd J, the list size for rsd § - (% — €) is at most %,
and for rsd g is at most 4N (see Lemma 2.3). Interestingly, the latter
bound is tight for BW lattices (see Corollary 2.4). Since 6 = 1 for
every BW lattice, our combinatorial and algorithmic results for rsd up
to 1 therefore apply far beyond the Johnson bound.

To describe our results in more detail, we need to define Barnes—
Wall lattices. Let G = Z[i] be the ring of Gaussian integers, and let

p=1+i€G.

DEFINITION 1.1 (Barnes—Wall lattice). The nth Barnes—Wall lattice
BW,, C G" of dimension N = 2" is defined recursively as BW; = G,
and for positive integern > 1 as

BW,, = {[u,u+ ¢v] : u,v € BW,,_1}.
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One can check that BW,, is a lattice; indeed, it is easy to verify that
it is generated as the G-linear combinations of the rows of the n-fold
Kronecker product

) e
W{Ogb] eC .

A simple induction proves that the minimum distance of BW,, is v/N,
i.e., its rsmd is = 1.! Also observe that if [u, w = u + ¢v] € BW,
for u,w € CN/2, then [w,u] € BW,,: indeed, we have w, —v € BW,,_;
and so [w,u = w + ¢ - —v] € BW,,. The mathematical and cod-
ing properties of Barnes—Wall lattices have been studied in numerous
works, e.g., Agrawal & Vardy (2000); Conway & Sloane (1998); For-
ney (1988); Forney & Vardy (1996); Micciancio & Nicolosi (2008);
Nebe et al. (2001); Salomon & Amrani (2005).

Combinatorial bounds. Let /(7,n) denote the worst-case list size
(over all received words) for BW,, at rsd 1. We prove the following
upper bound.

THEOREM 1.2. For any integern > 0 and € € (0, 1], we have
0(1—en) <4- (1))t = NOUos(1/e),

Moreover, we show that the dependence on log(1/¢) in the exponent is
necessary, and thus, the above bound is tight, up to polynomials.

THEOREM 1.3. For any integern > 0 and € € [27", 1], we have
01— e,n) > 20 log ) log 5

In particular, for any constant e > 0 (or even any e > N~ ¢ forc < 1),
we have ((1 — e, n) = Nlog(1/)),

! The fundamental volume of BW,, in CV is det(1W) = 2"V/2, 50 its determinant-
normalized minimum distance is /N / det(WW)/(?N) = {/N. This is better than the
normalized minimum distance 1 of the integer lattice GV, but worse that the largest
possible of ©(v/N) for N-dimensional lattices.
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As previously mentioned, it is also known that at rsd n = 1, the
maximum list size £(1,n) is quasi-polynomial N®(°¢N) in the lattice
dimension and is achieved by letting the received word be any lattice
point (Conway & Sloane 1998, Chapter 1, §2.2, page 24). Because the
rsmd of BW,, is exactly 1, here we are just considering the number of
lattice points at minimum distance from the origin, the so-called kissing
number of the lattice.

List-decoding algorithm. We complement the above combinatorial
bounds with an algorithmic counterpart, which builds upon the unique
(bounded-distance) decoding algorithm of Micciancio & Nicolosi
(2008) for rsd up to }l.

THEOREM 1.4. There is a deterministic algorithm that, given any
received word r € CN and n > 0, outputs the list of all points in
BW,, that lie within rsd 1) of r, and runs in time O(N?) - £(n, n)>.

We also remark that the algorithm can be parallelized just as
in Micciancio & Nicolosi (2008) and it runs in only polylogarithmic
O(log® N) parallel time on p > N2 - {(n,n)? processors.

Theorem 1.2 and Theorem 1.4 immediately imply the following corol-
lary forn =1 —e.

COROLLARY 1.5. There is a deterministic algorithm that, given a
received word r € CVN and ¢ > 0, outputs the list of all lattice

points in BW,, that lie within rsd (1 — €) of r, and runs in time
(1/€)0) = NOUos(l/e)),

Given the lower bounds, our algorithm is optimal in the sense that
for any constant € > 0, it runs in poly(/N) time for rsd 1 — ¢, and that
list decoding in poly(/N) time is impossible (in the worst case) at rsd 1.

1.2. Proof overview and techniques.

Combinatorial bounds. Our combinatorial results exploit a few sim-
ple observations, some of which were initially used in obtaining the
algorithmic results of Micciancio & Nicolosi (2008). The first is that by
the Pythagorean theorem, if 7 = §(r, w) is the rsd between a received
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vector r = [rg,r;] € CV and a lattice vector w = [wy, w;] € BW,
(where ; € CN/2 and w; € BW,,_;), then d(ry, wp) < n for some
b € {0,1}. The second observation (proved above) is that BW lat-
tices are closed under the operation of swapping the two halves of their
vectors, namely [wg, wq] € BW,,, if and only if [w;, wy] € BW,,. There-
fore, without loss of generality we can assume that § (7, wg) < 7, while
incurring only an extra factor of 2 in the final list size. A final impor-
tant fact is the relationship between the rsd’s for the two Barnes—Wall
vectors u = wy, v = é(wl — wp) € BW,,_; that determine w; namely,
we have

n= %(5(7"07u) + (5(%(7“1 —u),v).

(See Lemma 2.1.) Since (7o, u) < 7, we must have (5(%(7"1 —u),v) =
1 — 30(ro, wo) € [1/2,7).

Our critical insight in analyzing the list size is to carefully parti-
tion the lattice vectors in the list according to their distances from the
respective halves of the received word. Informally, a larger distance
on the left half (between 7y and ) allows for a larger list of u’s, but
also implies a smaller distance on the right half (between %(rl —u)
and v), which limits the number of possible corresponding v’s. We
bound the total list size using an inductive argument for various care-
fully chosen ranges of the distances at lower dimensions. Remarkably,
this technique along with the Johnson bound allows us to obtain tight
combinatorial bounds on the list size for distances all the way up to the
minimum distance.

As a warm-up example, which also serves as an important step
when analyzing larger rsd’s, Lemma 2.5 gives a bound of ¢(2,n) <
4 -24™ = poly(N) for rsd n = 2. This bound is obtained by partition-
ing according to the two cases d(ro,u) € [0, ) and d(ro, u) € [, %],
which imply that the rsd between v and é(ﬁ — u) is at most 3 and 3,
respectively. When bounding the corresponding number of «’s and v’s,
the rsd’s up to 5 < % are handled by the Johnson bound, and rsd’s up
to g are handled by induction on the dimension.

To extend the argument to rsd’s up to 7 = 1 —¢, we need to partition
into three cases, including ones which involve rsd’s 1 — % and %. In
turn, the bound for rsd % also uses three cases, plus the above bound

for rsd g Interestingly, all our attempts to use fewer cases or a more



cc 26 (2017) List-Decoding Barnes—Wall Lattices 373

direct analysis resulted in qualitatively worse list size bounds, such as
NOUg®(1/e) or worse.

Lastly, our lower bounds from Theorem 1.3 are obtained by using a
representation of BW lattices in terms of RM codes (see Fact 1.9) and
by adapting the lower bounds from Gopalan et al. (2008) for RM codes
to BW lattices.

List-decoding algorithm. A natural approach to devising a list-
decoding algorithm using the above facts (also used in the context of
Reed—Muller codes Gopalan et al. (2008)) is to first list decode the left
half 7, of the received word to get a list of u’s and then sequentially run
through the output list to decode the right half %(rl —u) and get a corre-
sponding list of v’s for each value of u. However, because the recursion
has depth n, the straightforward analysis reveals a super-polynomial
runtime N for rsd > 1/2, because the list size at depth d can be
> 4N /2,

Instead, our list-decoding algorithm is based on the elegant divide-
and-conquer algorithm of Micciancio & Nicolosi (2008) for bounded-
distance (unique) decoding, which decodes up to half the minimum dis-
tance (i.e., 7 = i) in quasi-linear O(N ) time, or even poly-logarithmic
O(log® N) parallel time on a sufficiently large poly (V) number of pro-
CESSOrS.

The main feature of the algorithm, which we exploit in our algo-
rithm as well, is the use of a distance-preserving linear automorphism
7T of the BW lattice, i.e., 7 (BW,,) = BW,, (see Fact 3.1). In particular,
a lattice vector w € BW,, can be reconstructed from just one arbitrary
half of each of w = [wy, w;] and 7 (w) = [To(w), 7;(w)]. Recall that
for a received word r = [rg, r1] (Where r; € CN/2), we are guaranteed
that 0 (rp, w,) < 0(r,w) for some b € {0, 1}, and similarly for 7 (r) and
7T (w). These facts straightforwardly yield a divide-and-conquer, par-
allelizable list-decoding algorithm that recursively list decodes each of
the four halves r¢, r1, Ty (r), 71 (r) and reconstructs a list of solutions by
combining appropriate pairs from the sub-lists and keeping only those
that are within the distance bound. The runtime of this algorithm is only
quadratic in the worst-case list size, times a poly (V) factor (see Sec-
tion 3). We emphasize that the only difference between our algorithm
and the Micciancio—Nicolosi algorithm is the simple but crucial obser-
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vation that one can replace single words by lists in the recursive steps.
The runtime analysis, however, is entirely different, because it depends
on the combinatorial bounds on list size.

1.3. Comparison with Reed—Muller codes. Here we discuss sev-
eral common and distinguishing features of Barnes—Wall lattices and
Reed—Muller codes.

DEFINITION 1.6 (Reed—Muller code). For integers d,n > 0, the
Reed—Muller code of degree d in n variables (over Fy) is defined as

RM;, = {{p(@))acry : p € Fafzy, ..., 2,), deg(p) < d} .

An equivalent recursive definition is RM? = {0,1} C F2" for any
integern > 0, and

RM! = {[u,u+v]:u€RM._;,v € RMI_}.

Here if u € RM®_,,v € RM""} correspond to polynomials p,, p, €
Fy[x1, ... 2, 1], respectively, then the codeword [u, u + v] € RM? cor-
responds to the polynomial p = p, + x,, - p, € Folz1, ..., x,].

The recursive definition of RM codes already hints at structural sim-
ilarities between BW lattices and RM codes. Indeed, BW lattices can
be equivalently defined as evaluations modulo ¢" of (Gaussian) integer
multilinear polynomials in n variables over the domain {0, ¢}". Recall
that an integer multilinear polynomial p € G[z1, ..., x,] is one whose
monomials have degree at most one in each variable (and hence total
degree at most n), i.e.,

p(1,...,x,) = Z as-Hx,»

Se{0,1}» 1€S

where each ag € G. A simple inductive argument proves the following
lemma.

LEMMA 1.7.

BW,, = {{p(2))sciosy : pEGx1, ..., x,] is multilinear} +¢"G>".
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Thus, while RM? codewords correspond to low-degree polynomials
(when d is small), BW lattice points correspond to possibly high-degree
polynomials. As an immediate application, our main theorems imply
the following corollary regarding the set of integer multilinear polyno-
mials that approximate a function f: {0, ¢}" — C.

COROLLARY 1.8. Given a map f : {0,¢}" — C (represented as a
lookup table) and € = (N ) for some ¢ < 1 and N = 2", there exists
an algorithm that outputs in time N°°e(1/<)) a]l the integer multilinear
polynomials g: {0,¢}" — C such that || f — g||* < (1 —€)N.

Just as in our algorithmic results for BW lattices, the recursive
structure of RM codes is critically used in list-decoding algorithms for
these codes, but in a different way than in our algorithm. The list-
decoding algorithm for RM? given in Gopalan et al. (2008) recursively
list decodes one of the halves of a received word, and then, for each
codeword in the list it recursively list decodes the other half of the
received word. The recursion has depth d and thus has a total running
time of poly () -£(n)¢, where £(n) is the list size at relative (Hamming)
distance 7). As mentioned above, a similar algorithm can work for BW
lattices, but the natural analysis implies a super-polynomial ¢(n)™ lower
bound on the running time, since now the recursion has depth n. The
reason we can overcome this potential bottleneck is the existence of
the linear automorphism 7 of BW,,, which allows us to make only a
constant number of recursive calls (independently of each other), plus
a poly(N) - £(n)*-time combining step, which yields a runtime of the
form O(1)" - poly(N) - £(n)* = poly(N) - £(n)*.

We note that RM? codes are efficiently list decodable up to a radius
larger than the minimum distance Gopalan et al. (2008) and remark
that while RM codes are some of the oldest and most intensively stud-
ied codes, it was not until recently that their list-decoding properties
have been very well understood Gopalan et al. (2008); Kaufman et al.
(2010); Pellikaan & Wu (2004).

We finally note that the connection to Reed—Muller codes can also
be made more explicit in the following alternate description of BW
lattices, which we use in Section 2.3.
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FACT 1.9 (Forney 1988, §IV.B).

n—1
BW,, = {Z¢d-cd+¢" - Cp, Withcy € RMZ, and
d=0
0<d<n-—1, andc, € GV}

where the embedding of 5 into C is given by 0 — 0 and 1 — 1. In
particular, any codeword c¢; € RM; gives rise to a lattice point ¢d-cy €
BW,,

1.4. Other related work. Cohn & Heninger (2015) study a list-
decoding model on polynomial lattices, under both the Hamming met-
ric and certain ‘non-Archimedian’ norms. Their polynomial analogue
of Coppersmith’s theorem Coppersmith (2001) implies, as a special
case, Guruswami and Sudan’s result on list-decoding Reed—Solomon
codes Guruswami & Sudan (1999).

Decoding and list decoding in the Euclidean space has been also
considered for embeddings into real vector spaces of codes classically
defined over finite fields. These embeddings can give rise to so-called
spherical codes, where the decoding problem has as input a received
vector on the unit sphere and is required to output the points in the code
(also on the unit sphere) that form a small angle with the given target.
Another related decoding model is soft-decision decoding, where for
each position of the received word, each alphabet symbol is assigned
a real-valued weight representing the confidence that the received sym-
bol matches it. Soft-decision unique decoding for RM codes was stud-
ied in Dumer & Krichevskiy (2000); Dumer & Shabunov (2006a,b),
and list-decoding algorithms were shown in Dumer et al. (2008); Four-
quet & Tavernier (2008).

Further, the question of decoding lattices is related to the well-
studied vector quantization problem. In this problem, vectors in the
ambient space need to be rounded to nearby points of a discrete lattice;
for further details on this problem, see, for example, Conway & Sloane
(1998).

Organization. In Section 2, we prove our combinatorial upper and
lower bounds for BW lattices. In Section 3, we present and analyze our
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main list-decoding algorithm. We conclude in Section 4 with several
open problems.

2. Combinatorial bounds

We start with a few basic definitions. For a lattice £, a vector r €
C™ (often called a received word) and any n > 0, define L.(r,n) =
{z € L:5(r,x) <n} to be the list of lattice points w € L such that
d(r,w) < 1. We often omit the subscript £ when the lattice is clear
from context. For 7 > 0 and nonnegative integer n with N = 2", we
define ¢(n,n) = max,ccr|Lpw, (r,7)| to be the maximum list size for
rsd 7, for the nth Barnes—Wall lattice.

2.1. Helpful lemmas. We start with two simple but important obser-
vations about Barnes—Wall lattices. The first relates the rsd’s between
the respective ‘left’ and ‘right’ halves of a received word and a lattice
point. The second relates the list sizes for the same rsd but different
dimensions.

LEMMA 2.1. Letr = [rg,r1] € CN with ro,r; € CV/?, and w =
[u,u+ ¢v| € BW,, foru,v € BW,,_1. Letn = 6(r,w), 19 = §(ro, u)
andm = 0(3(r1 — u),v). Thenn =% + .

PROOF. We have

d(ro,w) + 0(r1,u + ¢v)

d(r,w) = 5
_ "o n |6]? - 5(%(7“1 —u),v)
2 2
= % + 7

O

LEMMA 2.2. Foranyn > 0andn > 1, we have {(n,n—1) < {(n,n).

PROOF. Let r € CM?2 and w € L(r,n) € BW,_;. Then
S([r,r], [w,w]) = o(r,w), and since [w,w] € BW,, (because w €
BW,,_;) it follows that [w, w] € L([r,r],n). O
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We next state a Johnson-type bound on the list size for arbitrary
lattices; see, e.g., Bollobas (1986); Guruswami & Sudan (2001); Mic-
ciancio & Goldwasser (2002); Sudan (2001) for proofs. Note that
these sources work in R”; our form follows because the standard iso-
morphism between CV and R?" as real vector spaces also preserves
Euclidean norm.

LEMMA 2.3 (Johnson bound). Let £ C CV be a lattice of rsmd § =
§(L) and letr € CN. Then

(i) |L(r,2)| < 4N, and
(i) |L(r,6- (5 —€))| < o forany e > 0.

(In reading these bounds, recall that 6(L£)/4, not §(L)/2, is the
relative unique-decoding distance of L, because §(L) is the relative
squared minimum distance of the lattice.)

COROLLARY 2.4. For the lattice BW,, C CV and any € > 0, we have
((3,n) =4N and ((5 — e,n) < o-.
PROOF. Since 6(BW,,) = 1, the upper bounds follow immediately
by Lemma 2.3. For the lower bound ¢(3,n) > 4N, we give an induc-

tive argument, showing that |L(r, )| > 4N for the received word

¢ 9) € CN. To do this, we show by induction on n that

r=(%...,
L(r, %)2contaiils 2N pairwise disjoint (unordered) pairs {w;, w;} where
w; —w, € ¢-BW,,.

For the base case n = 0, notice that L($, 1) = {0,1,4,1 + i}, and
that (1+i) —0=¢ € ¢ -BWoandi —1 = ¢-i € ¢ - BW,. Next,
let {w;, w}} denote the pairs guaranteed by the inductive hypothesis for
some 7, and recall that [a,b] € BW,,.; if and only if a,b € BW,, and
a—b € ¢-BW,,. Itis easy to verify that the pairs {[w;, w;], [w], w}]} and
{[w;, w}], [w}, w;]} establish the inductive hypothesis for n + 1. Indeed,
[wi, w;] — Wi, w)] = ¢ - [w,w] € ¢ - BW,4; for some w € BW,,
and similarly, [w;, w}] — [w}, w;]| = ¢ - [w, —w] € ¢ - BW,, 1, because
w— (—w) = 2w € ¢ -BW,,. Also, 6([r, 7], [w;, w;]) = é(r,w;) < 3
and similarly for the other vectors. U
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2.2. Beyond the Johnson bound. In this section, we prove our
main combinatorial bounds on the list size for Barnes—Wall lattices
BW, C GY. Our main result is that the list size at rsd (1 — ) is
(1/€)0) = NOUes(1/9) for any ¢ > 0. The proof strategy is inductive
and is based on a careful partitioning of the lattice vectors in the list
according to the distances of their left and right halves from the respec-
tive halves of the received word. Intuitively, the larger the distance
on one half, the smaller the distance on the other (Lemma 2.1 above
makes this precise). The total list size can therefore be bounded using
list bounds for various carefully chosen distances at lower dimensions.
Our analysis relies on a poly(N) list-size bound for rsd 2, which in
turn relies on a poly(/N') bound for rsd g. We first prove these simpler
bounds, also using a partitioning argument. (Note that the concrete
constants appearing below are chosen to simplify the analysis and are
likely not optimal.)

LEMMA 2.5. For any integern > 0, we have £(2,n) < 424"

PROOF. For n = 0, it is easy to see that for all n < 1, there are at
most 4 Gaussian integers within a ball of radius n from any r € G,
so £(n,0) < 4. Suppose now that n > 1 with N = 2". Letr =
[ro, 1] € CN with ro,7; € CN/? be an arbitrary received word, and let
w = [u,u+ ¢v] € L(r,2) for u,v € BW,_y. Let n = 6(r,w) < 2,
no = 6(ro,u) and ny = 5(;(7"1 —u),v).

Note that from Lemma 2.1 we have that np = L+ = 1(6(ro, u) +
6(r1,u + ¢v)) < 2. Without loss of generahty, we can assume that
no = d(ro,u) < %. For if not, then we would have (71, u + ¢v) < g,
and since [a, b] € BW,, implies [b, a] € BW,, for a,b € G"/2, we could
instead work with the received word r’ = [rq, r¢] and w’ = [u+¢v,u] €
L(r', —) This incurs a factor of at most 2 in the total list size, which we
account for in the analy31s below.

Assumlng o < 5 , we now split the analysis into two cases: 7y €
%) and 770 €[, 8] By Lemma 2.1, these cases correspond to 7; <

[0,
2a nd m < respectively. Since u € L(rg,m9) and v € L

5
12>

), m ), after combining the lists we obtain at most £(5,n—1)-
1) +£(2,n — 1) - £(35,n — 1) potential vectors in the list.

Finally, after incorporating the factor of 2 from the argument above,

=
(G
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we have (where for conciseness we write £(n) for £(n,n — 1)):

2) (Corollary 2.4)

<244 (g, 0). (unwind the recurrence)

O

LEMMA 2.6. For any integer n > 0, we have K(i—i, n) <4247,

PROOF. As noted in the proof of Lemma 2.5, the claim is clearly true
for n = 0, so suppose n > 1; we proceed by induction on n. Define the
same notation as in the proof of Lemma 2.5, using rsd bound % instead
of 2.

As before, we assume that 7y < % and account for the accompany-
ing factor of 2 in the list size. This time we split the analysis into three
cases: 19 € [0, ) 770 € [4, g) and 770 € [2,2]. By Lemma 2.1, these
correspond to 7, < 4, m < and m < 176, respectively.

For conciseness, in the calculation below we write £(n) for ¢(n,n —
1). We have

0(F,m) <2 (0(3) - €3 +U(3) - £(3) +£(3) - U(35))
<2-(248)-4(3)+2-£(8)
< 204242000 4 39 242(n—1)
< 4247

where we used Corollary 2.4, the induction hypothesis, and Lemma 2.5.
O

We are now ready to prove our main combinatorial bound (Theo-
rem 1.2). We restate it here for convenience.

THEOREM 1.2. For any integern > 0 and € € (0, 1], we have

0(1—e,n) <4- (1))t = NOUosll/e),
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PROOF. We need to show that /(1 —¢,n) < 4-(1/¢)1%" foranyn > 0
and € > 0; obviously, we can assume € < 1 as well. As noted in the
proof of Lemma 2.5, the claim is clearly true for n = 0. We proceed
by induction on n; namely, we assume that for all v > 0 it is the case
that /(1 —v,n — 1) < 4 - (1/4)'"=1_ Define the same notation as in
the proof of Lemma 2.5, using rsd bound 1 — ¢ instead of g

As in earlier proofs, we assume that 17, < 1 — ¢ and account for
the accompanying factor of 2 in the list size. We split the analysis into
three cases: 19 € [0, 5 —¢€),m0 € [ —€,1—%),and o € [1 -2, 1 —¢].
By Lemma 2.1, these correspond to7; < 1 —¢, 1y < 3 — £ < 3 and
m < 3 — <, respectively.

For conciseness, in the calculation below we write ¢(n) for £(n,n —
1). It follows that (1 — €, n) is bounded by

2(0(1—e)l(E —e)+ (1 —e)l(3 — )+ 0(1—29)0(3))
<UL—e)(z+3)+20(1-5)-4
- 242~ (Corollary 2.4, Lemma 2.6)
(1 =€) +8-242D g1 — &)
1

)16 n—1) 32 X 242(1171)
16(n

mlw o ot

<
2

)l
)l

, (induction hypothesis)
(20 +32- (247 (5)')"7Y)
16(n—1) (g_)

(
4 - ( )16n

(
> (
)

|>~/’\

(

A= o

IA A

whene < 2. If e € (3,1], then £(1 —¢,n) = 1 < 4-(£)'%", and the
proof is complete. O

Notice that in the above proof, it is important to use an upper bound
like 7o < 1—2¢ in one of the cases, so that the factor (2)'6"*~) from the
inductive list bound can cancel out the corresponding factor of 24%(»=1)
for the corresponding rsd bound 7; < %. This allows the recurrence to
be dominated by the term

(=) 3= =0() (1—e),

€

yielding a solution of the form (1/¢)°™
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2.3. Lower bounds. For our lower bounds, we make use of the
relationship between Barnes—Wall lattices and Reed—Muller codes
from Fact 1.9 and then apply known lower bounds for the latter.

FACT 2.7 (MacWilliams & Sloane 1981, Chap. 13, §4).

(i) The minimum distance of RMZ is 2"~9. In particular, the charac-
teristic vector ¢y € F3 of any subspace V' C F% of dimension
k > n — d is a codeword of RM".

(The characteristic vector cs € F3" of a set S C F?% is defined by
indexing the coordinates of F5' by elements o € T3, and letting
(¢s)o = lifand only ifa € S.)
n—d—1 9Qn—i _
(ii) Thereare2¢- []

i 17 24(n=d) subspaces of dimension
i=0 —
n—dinFy.

We now prove Theorem 1.3, restated here for convenience.
THEOREM 1.3. For any integern > 0 and € € [27™, 1], we have
0(1 — ¢,n) > 2(nloa2)loa g

In particular, for any constant € > 0 (or even any ¢ > N~ ¢ forc < 1),
we have ((1 — ¢, n) = N®(os(1/9),

PROOF. Let £ > 0 be an integer such that 2"¢ < 2k < ontle Let the
received word be r = ¢* - [1,0,...,0] € G, where we assume that
the first coordinate is indexed by 0" € F7. By Fact 2.7 and Fact 1.9,
for any subspace H C F?% of dimension n — k, we have ¢* - c;; € BW,,.
Notice that

lr = ¢" - cull® = 16" - llesr — [1,0,..., 0]
=2"—2F <2"(1 — ).

By Fact 2.7, there are at least 28("%) > 2(n=log ) log 3. gybspaces H C
F? of dimension n — k, which completes the proof. U
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3. List-decoding algorithm

In this section, we give a list-decoding algorithm that runs in time poly-
nomial in /V and the list size; in particular, by Theorem 1.2 it runs in
time N©(e(1/€) for rsd (1 — ¢) for any fixed € > 0. This runtime and
error tolerance are optimal (up to polynomial overhead) in the sense
that the list size can be N(°¢(1/<)) by Theorem 1.3 and can be super-
polynomial in NV for rsd 1 or more.

Our list-decoding algorithm is very similar to the (parallel) bounded-
distance decoding algorithm of Micciancio & Nicolosi (2008), which
outputs the unique lattice point within rsd n < }L of the received word
(if it exists). In particular, both algorithms work by recursively (and
independently) decoding four words of dimension N/2 that are derived
from the received word and then combining the results appropriately.
In our case, the runtime is strongly influenced by the sizes of the
lists returned by the recursive calls, and so the combinatorial bounds
from Section 2 are critical to the runtime analysis.

We need the following easily verified fact regarding the symmetries
(automorphisms) of BW,,.

FACT 3.1. For N = 2", the linear transformation T : CN — CV given
by T ([u,v]) = £ [u+v,u— ] is a distance-preserving automorphism
of BW,,, namely T (BW,,) = BW,, and 6(z) = §(7 (z)) forallx € CV.

The following theorem, when combined with our combinatorial
upper bound (Theorem 1.2), yields Theorem 1.4 as an immediate corol-
lary.

THEOREM 3.2. Algorithm 1 is correct and runs in O(N?) - {(n,n)?
scalar operations over C.

PROOF. We need to show that on input » € CV and n > 0, Algo-
rithm 1 runs in time O(N?) - ¢(n,n)? and outputs L = L(r,n).

We first prove correctness, by induction. The algorithm is clearly
correct for n = 0; now suppose that n > 1 and the algorithm is correct
for n— 1. Adopt the notation from Algorithm 1, and let w = [wy, w1] €
L(r,n) for wy,w; € BW,,_; be arbitrary. Since é(w,r) < n, we have
d(ro,wp) < mor §(ry,wy) < norboth, so wy € L(rg,n) or wy €
L(ry,n) or both. The same is true about the corresponding vectors after
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Algorithm 1 LISTDECODEBW: List-decoding algorithm for Barnes—

Wall lattices.

Input: r € CV (for N = 2") and n > 0.

Output: The list L(r,n) C BW,,.

: if n = 0 then

output L(r,n) C G by enumeration.

3: parse 7 = [rg, 1] for ro,r; € CV/2, and let ry = %(ro + r1) and
r_ = ¢(7’0 —1r1),80 [ry,r_] =T (r).

4: forall j € {0,1,+,—} do

5:  let L; = LISTDECODEBW(r;, 7).

6: foreach (b, s) € {0,1} x{+, —} and (wy, ws) € Ly x L, compute
the corresponding candidate vector w = [wy, w;] € BW,, as the
appropriate one of the following:

N =

['U)(], %er - w0]7 ['U)(), Wo — %w,],
[%w-f— — Wy, wl]? [%w— + wi, wl}'

7: remove all candidate vectors w such that §(r, w) > 7.

8: sort the remaining list of candidates lexicographically and remove
all duplicates.

9: return the set L of all the candidate vectors remaining.

applying the automorphism 7. Namely, letting [w,,w_] =
BW,, for w,,w_ € BW,,_1, we have [w,,w_] € L([ry,r_],
wy € L(ry,m) orw_ € L(r_,n) or both.

T(w) €
n) and so

By the inductive hypothesis and the above observations, we will
have (w,, ws) € Ly X Lg for at least one choice of (b,s) € {0,1} x
{+, —}. The algorithm calculates the vector w = [wy, w;] as a candi-
date, simply by solving for wy, w; using wy, w, and the definition of 7.
Therefore, w will appear in the output list L. And because L C L(r,n)
by Step 7, the claim follows.

We now analyze T'(IV), the number of operations over C for an
input of dimension N = 2". We first observe that after filtering (Step 7),
each remaining vector can appear at most four times in the list. Indeed,
by induction Lg, L1, L and L_ themselves do not contain any dupli-
cates, and no two distinct elements from one of these lists can give rise
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to the same lattice point in BW,,. Therefore, sorting and de-duplicating
(Step 8) take O(N) - £(n,n)? operations, which implies that T'(N) sat-
isfies

T(N)=4-T(N/2)+4-O(N)-€(n,n —1)*>+ O(N) - £(n,n)?
=4-T(N/2) + O(N) - {(n,n)*
= O(N?) - (n,n)*

by the Master Theorem for recurrences (since ¢(n,n — i) < ¢(n,n) for
all 7 > 0). U

REMARK 3.3. We note that the above algorithm, like the unique
decoder of Micciancio & Nicolosi (2008), can be easily parallelized.
On p processors, the parallel runtime (measured in number of opera-
tions over C) satisfies the recurrence

T(N.p) = T(N), ifn=0o0rp <4
PIEY TN 2, p/4) +O(N - £(n, n—1)2/p+1og N), otherwise,

where T'(N) is as in the proof of Theorem 3.2. This is because it
takes O(N - {(n,n — 1)?/p) operations per processor to combine the
lists in Step 6, and computing each of the {(n,n — 1)? distances in
Step 9 requires computing a sum of N real numbers, for a total of
O(N - 4(n,n — 1)?/p+ log N) parallel runtime. Notice that when p >
N?.-4(n,n — 1), the algorithm runs in only polylogarithmic O(log® N)
parallel time. Note also that when the list size {(n,n — 1) = 1, this
analysis specializes exactly to that of Micciancio & Nicolosi (2008).

4. Discussion and open problems

Some immediate open questions arise from comparison to the results
of Micciancio & Nicolosi (2008). Motivated by the sequential unique
decoder proposed in Micciancio & Nicolosi (2008), is there a (possibly
sequential) list decoder that runs in time quasi-linear in N and the list
size, rather than quadratic? Also, as asked in Micciancio & Nicolosi
(2008), 1s there an efficient algorithm for solving the Closest Vector
Problem (i.e., minimum distance decoding) on Barnes—Wall lattices?
Note that our combinatorial lower bounds do not rule out the existence
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of such an algorithm, since for the Closest Vector Problem the algo-
rithm only needs to output a single vector, not the list of all closest
vectors.

An important variant of the list-decoding problem for codes is local
list decoding. In this model, the algorithm is required to run in time
polylogarithmic in the block length, and output succinct representa-
tions of all the codewords within a given radius. Defining a meaning-
ful notion of local decoding for lattices (and BW lattices in particu-
lar) would require additional constraints, since lattice points do not in
general admit succinct representations (since one needs to specify an
integer coefficient for each basis vector). While by the Johnson bound,
we have a poly(n) list size for rsd up to 1/2 — poly(1/n), achieving a
meaningful notion of local decoding in this context would be interest-
ing.

Another interesting direction is to find (or construct) more asymp-
totic families of lattices with nice list-decoding properties. In particu-
lar, are there generic operations, which, when applied to lattices, guar-
antee good list-decoding properties? For codes, list decodability has
been shown to behave well under the tensoring and interleaving opera-
tions, as demonstrated in Gopalan et al. (2011). Tensoring is also well
defined for lattices, but it does not behave so well as in codes. For
example, tensoring a code with itself results in a code whose minimum
distance is squared, while tensoring a lattice with itself does not square
the distance. This issue has appeared in deciding NP-hardness of the
Shortest Vector Problem Haviv & Regev (2012); Micciancio (2012)
where the tensoring technique turned out to be much trickier than a
tensoring approach for deciding the NP-hardness of the analogous min-
imum distance problem in codes Dumer et al. (2003) 2. Understanding
how list decoding behaves in the context of tensoring could bring up
novel aspects of lattice list decoding, and it remains an intriguing fur-
ther direction.

Finally, it would be also interesting and potentially useful to con-
sider list decoding for norms other than the Euclidean norm, such as
the /., or £y norms.

2 We thank an anonymous reviewer for pointing this out to us.
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