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Abstract. In this paper, we study the computational complexity of
computing the noncommutative determinant. We first consider the
arithmetic circuit complexity of computing the noncommutative deter-
minant polynomial. Then, more generally, we also examine the com-
plexity of computing the determinant (as a function) over noncommu-
tative domains. Our hardness results are summarized below:

◦ We show that if the noncommutative determinant polynomial has
small noncommutative arithmetic circuits then so does the non-
commutative permanent. Consequently, the commutative perma-
nent polynomial has small commutative arithmetic circuits.

◦ For any field F we show that computing the n × n permanent
over F is polynomial-time reducible to computing the 2n × 2n
(noncommutative) determinant whose entries are O(n2) × O(n2)
matrices over the field F.

◦ We also derive as a consequence that computing the n × n per-
manent over nonnegative rationals is polynomial-time reducible
to computing the noncommutative determinant over Clifford al-
gebras of nO(1) dimension.

Our techniques are elementary and use primarily the notion of the
Hadamard Product of noncommutative polynomials.
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1. Introduction

In a breakthrough paper (Nisan 1991), Nisan systematically stud-
ied the problem of proving lower bounds for noncommutative com-
putation. The focus of his study was noncommutative arithmetic
circuits, noncommutative arithmetic formulas and noncommuta-
tive algebraic branching programs. In his central result based on
a rank argument, Nisan shows that the noncommutative perma-
nent or determinant polynomials in the ring F〈x11, . . . , xnn〉 require
exponential size noncommutative algebraic branching programs.

Nisan’s results are over the free noncommutative ring F〈X〉.
Chien & Sinclair (2007) explore the same question over other non-
commutative algebras. They refine Nisan’s rank argument to show
exponential size lower bounds for formulas computing the perma-
nent or determinant over specific noncommutative algebras, like
the algebra of 2 × 2 matrices over F, the quaternion algebra, and
a host of other examples.

However, the question of whether there is a small noncommuta-
tive circuit for the determinant or permanent remains unanswered.
(Indeed, no explicit lower bounds are known for the general non-
commutative circuit model.) Since the existence of small noncom-
mutative arithmetic circuits for the permanent would imply the
existence of small commutative arithmetic circuits for the perma-
nent, we have a good reason to believe that the permanent does not
have small noncommutative arithmetic circuits. However, as far as
we know, before this work, no such argument has been given for
the case of the noncommutative determinant. Indeed, since Nisan
(1991) has also shown an exponential separation between the power
of noncommutative formulas and circuits, it may very well be that
the noncommutative determinant has polynomial-sized arithmetic
circuits.

Another motivation for studying the computational difficulty of
computing the noncommutative determinant (as a function) is an
approach to designing randomized approximation algorithms for
the 0-1 permanent by designing good unbiased estimators based
on the determinant. This approach has a long history starting
with Godsil & Gutman (1981) and Karmarkar et al. (1993). Of
specific interest are the works of Barvinok (2000); Chien et al.
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(2003) and more recently that of Moore & Russell (2012). Barvi-
nok (2000) defines a variant of the noncommutative determinant
called the symmetrized determinant and shows that given inputs
from a constant-dimensional matrix algebra, the symmetrized de-
terminant over these inputs can be evaluated in polynomial time.
He uses these to define a series of algorithms that he conjectures
might yield progressively better randomized approximation algo-
rithms for the (commutative) permanent. Chien, Rasmussen, and
Sinclair (Chien et al. 2003) show that efficient algorithms to com-
pute the determinant over Clifford algebras of polynomial dimen-
sion would yield efficient approximation algorithms for the perma-
nent. Moore & Russell (2012) provide evidence that Barvinok’s
approach might not work, but their results also imply that com-
puting the symmetrized or standard noncommutative determinant
over polynomial-dimensional matrix algebras would give a good
estimator for the permanent.

Our results.

1. We provide evidence that the noncommutative determinant is
hard. We show that if the noncommutative determinant1 can
be computed by a small noncommutative arithmetic circuit,
then so can the noncommutative permanent and therefore,
the commutative permanent has small commutative arith-
metic circuits. This is in marked contrast to the commutative
case, where the determinant is known to be computable by
polynomial-sized circuits, but the permanent is not known
(or expected) to have subexponential-sized arithmetic cir-
cuits.

2. We show that computing the noncommutative determinant
over matrix algebras of polynomial dimension is as hard as
computing the commutative permanent. We also derive as a
consequence that computing the n × n permanent over non-
negative rationals is polynomial-time reducible to computing

1 We have not yet formally defined the noncommutative determinant and
there are, in fact, many ways of doing it. See Section 2.
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the noncommutative determinant over Clifford algebras of
poly(n) dimension.

This points to the intractability of carrying over Barvinok’s
approach for large dimension, and also to the possibility that
the approach of Chien, Rasmussen, and Sinclair might be
computationally infeasible.

We stress that our result here is potentially more useful than
a noncommutative circuit lower bound for the determinant,
from an algorithmic point of view. This is because an arith-
metic circuit lower bound result would not rule out the pos-
sibility of a polynomial-time algorithm for the noncommuta-
tive determinant over even polynomial dimension matrix al-
gebras. For example, Barvinok’s algorithm (Barvinok 2000)
computes the symmetrized determinant over constant-
dimensional matrix algebras, whereas any algebraic branch-
ing program that computes the symmetrized determinant
over constant-dimensional matrix algebras must be of expo-
nential size (Chien & Sinclair 2007).

Independent work of Hrubeš, Wigderson, and Yehuday-
off (Hrubeš et al. 2010). In an independent work, Hrubeš
et al. (2010) consider arithmetic circuits over domains which may
be noncommutative as well as non-associative. By adapting the
proof method of Valiant, they show that the permanent, when suit-
ably defined, remains “complete” for the class VNP in this world.
It follows from this that the permanent is VNP-complete in the
noncommutative setting as well. This gives a converse of our main
theorem statement i.e. that if the noncommutative permanent has
small arithmetic circuits, then so does the noncommutative deter-
minant.2

For the determinant, it is shown that they are hard for the class
of polynomials computable by polynomial-sized formulas.

2 There is a small caveat here, since the result of Hrubeš et al. (2010) is
stated for one of the flavours of the noncommutative determinant and per-
manent, namely the Cayley variant, but our result holds for some others as
well.
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Subsequent work. Subsequent to a preliminary version of our
results, there have been a few other results that proved hardness re-
sults for computing the noncommutative determinant. Chien et al.
(2011) and Bläser (2015) showed that the problem of computing
the determinant over many constant-dimensional algebras, such
as constant-dimensional matrix algebras, is #P-hard if the field is
Q and ModkP-hard if the field has constant characteristic k > 0;
both these results were proved by suitably modifying #P-hardness
proofs for the permanent. An alternate proof, by using ideas from
the proof of Barrington’s theorem (Barrington 1989), was recently
found by Gentry (2014).

While the above proofs work in some settings where our proofs
do not, the theorems we present still have merit for many reasons.
For one, the proofs of the theorems above work for a particular def-
inition of the noncommutative determinant (specifically the Cay-
ley determinant) and not others: indeed, one of the variants we
consider (the symmetrized determinant) can be computed in poly-
nomial time over constant-dimensional matrix algebras. Secondly,
it is unclear if these results also give the same consequences for
noncommutative arithmetic circuits that we get here. Finally, the
proofs we give below, especially in the arithmetic circuit setting,
are, in our opinion, considerably simpler than the proofs of the
above-mentioned theorems.

2. Preliminaries

For any set of variables X, let F〈X〉 denote the ring of noncom-
muting polynomials over X. Let M(X) denote the set of non-
commutative monomials over X; given d ∈ N, let Md(X) denote
the monomials over X of degree exactly d. For f ∈ F〈X〉 and
m ∈ M(X), we will denote by f [m] the coefficient of the mono-
mial m in f .

For any ring R, we use Mn(R) to denote the ring of n × n
matrices with entries from R.

Fix X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn}, two disjoint
sets of variables. Given f ∈ F〈X〉, matrices Ai ∈ Mk(F〈Y 〉) for 1 ≤
i ≤ m, and i0, j0 ∈ [k], we use f(A1, A2, . . . , Am)(i0, j0) to denote
the (i0, j0)th entry of the matrix f(A1, A2, . . . , Am) ∈ Mk(F〈Y 〉).
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2.1. Noncommutative determinants and permanents.
Given X = {xij | 1 ≤ i, j ≤ n} for n ∈ N, we define the n × n non-
commutative determinant and permanent polynomials over the set
of variables X. By fixing the order of multiplication in each mono-
mial of the commutative determinant/permanent polynomials in
different ways, one can obtain many different reasonable ways of
defining the n × n noncommutative determinant and permanent,
and indeed many of these definitions have been studied (see (Aslak-
sen 2009), which surveys various flavours of the noncommutative
determinant). The most straightforward definitions are those of
the Cayley determinant and Cayley permanent—we will denote
these by Cdetn(X) and Cpermn(X), respectively—which use the
row order of multiplication. That is,

Cdetn(X) =
∑

σ∈Sn

sgn(σ) x1,σ(1) · x2,σ(2) · · ·xn,σ(n),

Cpermn(X) =
∑

σ∈Sn

x1,σ(1) · x2,σ(2) · · ·xn,σ(n).

We also define the Moore determinant and Moore permanent—
denoted Mdetn(X) and Mpermn(X), respectively—by ordering the
variables in each monomial using the cyclic order of the correspond-
ing permutation. Given σ ∈ Sn, we can write it uniquely as a prod-
uct of rσ disjoint cycles (nσ

11 · · ·nσ
1l1

)(nσ
21 · · ·nσ

2l2
) · · · (nσ

rσ1 · · ·nσ
rσlrσ )

such that for any i ∈ [rσ] and j ∈ [li] \ {1}, we have nσ
i1 < nσ

ij and
nσ
11 > nσ

21 > · · · > nσ
rσ1. The Moore determinant and permanent

are defined as

Mdetn(X) =
∑

σ∈Sn

sgn(σ) xnσ
11,nσ

12
· · · xnσ

1lrσ
,nσ

11
· · · xnσ

rσ1,nσ
rσ2

· · · xnσ
rσlrσ

,nσ
rσ1

,

Mpermn(X) =
∑

σ∈Sn

xnσ
11,nσ

12
· · · xnσ

1lrσ
,nσ

11
· · · xnσ

rσ1,nσ
rσ2

· · · xnσ
rσlrσ

,nσ
rσ1

.

In the setting of a field F of characteristic 0, Alexander Barvi-
nok, in Barvinok (2000), has studied another variant of the non-
commutative determinant called the symmetrized determinant,
which is denoted sdetn(X). It is defined as follows:

sdetn(X) =
1

n!

∑

σ,τ∈Sn

sgn(σ)sgn(τ) xτ(1),σ(1)xτ(2),σ(2) · · ·xτ(n),σ(n).
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Barvinok (2000) shows that, for any fixed-dimensional associa-
tive algebra A over F of characteristic zero, there is a polynomial-
time algorithm which, on input an n×n matrix A with entries from
A, computes sdetn(A). It is not known whether such algorithms
exist for the Cayley or Moore determinants.

2.2. Models for noncommutative arithmetic computation.
A noncommutative arithmetic circuit C over a field F is defined as
follows: C is a directed acyclic graph and every leaf of the graph
is labelled with either an input variable from the set of variables
X or an element from F. Every internal node is labelled by either
(+) or (×)—meaning that it is either an addition or multiplication
gate, respectively—and has fanin two. Since we are working over
noncommutative domains, we will assume that each multiplication
gate has a designated left child and a designated right child. Each
gate of the circuit computes a polynomial in F〈X〉 in the natural
way: the polynomials computed at the leaves are the polynomials
labelling the leaves; the polynomial computed at an internal node
labelled by + (resp. ×) is the sum (resp. product in left-to-right
order) of the polynomials computed at its children. The polynomial
computed by C is the polynomial computed at a designated output
node of the circuit.

We also recall the definition of an algebraic branching program
(ABP) computing a noncommutative polynomial in F〈X〉 (Nisan
(1991); Raz & Shpilka (2005)). An ABP is a directed acyclic graph
with one vertex of in-degree zero, which is called the source, and
one vertex of out-degree zero, which is called the sink. The vertices
of the graph are partitioned into levels numbered 0, 1, . . . , d. Edges
may only go from level i to level i + 1 for i = 0, 1, . . . , d − 1. The
source is the only vertex at level 0, and the sink is the only vertex
at level d. Each edge is labelled with a homogeneous linear form
in the variables X. The size of the ABP is the number of vertices.

The ABP computes a degree d homogeneous polynomial f ∈
F〈X〉 as follows. Fix any path γ from source to sink with edges
e1, e2, . . . , ed, where ei is the edge from level i − 1 to level i, and
let �i denote the linear form labelling edge ei. We denote by fγ

the homogeneous degree d polynomial �1 · �2 · · · �d (note that the
order of multiplication is important). The polynomial f computed
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by the ABP is simply

f =
∑

γ∈P
fγ

where P is the set of all paths from the source to the sink.
We will also consider a slight variant of the above definition

where we allow multiple sources and sinks. A multi-output ABP P
is defined exactly as above, except that we allow multiple sources
at level 0 and multiple sinks at level d. For each source s and sink
t, an ABP Ps,t may be obtained from P by removing all sources
other than s and sinks other than t. Let S = {s1, s2, . . . , sa} and
T = {t1, t2, . . . , tb} denote the sets of sources and sinks, respectively
in P . The ABP P will be thought of as computing the ab many
polynomials computed by the ABPs Psi,tj . More precisely, the
output of the ABP P is an a × b matrix A with entries from F〈X〉
such that the (i, j)th entry of A, denoted A(i, j), is the polynomial
computed by the ABP Psi,tj . It is easily seen that we can write A as∑

m∈Md(X) Amm, where Am ∈ F
a×b; we will call Am the coefficient

matrix of the monomial m in the matrix A.

3. The Hadamard product

A key notion we require for all our reductions is the Hadamard
product of polynomials that was introduced in Arvind et al. (2009).

Definition 3.1. Given polynomials f, g ∈ F〈X〉, their Hadamard
product h = f ◦ g is defined as follows: h is the unique polynomial
in F〈X〉 such that for any monomial m ∈ M(X), the coefficient
h[m] = f [m] · g[m].

In Arvind et al. (2009, Theorem 5), it is shown how, given a
noncommutative circuit for polynomial f and an ABP for poly-
nomial g, we can efficiently compute a noncommutative circuit for
their Hadamard product f◦g. However, the construction in Arvind
et al. (2009) modifies the noncommutative circuit for the polyno-
mial f . Hence, it will not work if we are allowed only black-box
access to f , which we require for certain applications in this paper.

Suppose we have an efficient black-box algorithm for evaluating
the polynomial f ∈ F〈X〉, where the variables in X take values in
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some matrix algebra (say, n × n matrices over a field F). Further-
more, suppose we are given an ABP for the polynomial g. Ideally,
we would like to obtain an efficient algorithm for computing their
Hadamard product f ◦ g over the same matrix algebra.

However, what we can show is that we can put together the
ABP and the black-box algorithm for f to obtain an efficient algo-
rithm that computes f ◦ g over F. This turns out to be sufficient
to prove all our hardness results for the different noncommutative
determinants.

Theorem 3.2. Fix d ∈ N. Let Z = {z1, z2, . . . , zn} be a set of
noncommuting variables and g ∈ F〈Z〉 be a homogeneous poly-
nomial of degree d such that g is computed by an ABP P of size
S. Then, there exist matrices A1, A2, . . . , An ∈ MS(F) such that
for any homogeneous polynomial f ∈ F〈Z〉 of degree d, f ◦ g =
f(A1z1, A2z2, . . . , Anzn)(1, S). Moreover, given the ABP P , the
matrices A1, A2, . . . , An can be computed in time polynomial in
the size of the description of P .

Proof (Theorem 3.2). Let the vertices of P be named 1, 2, . . . , S
where 1 is the source of the ABP and S is the sink. Define the
matrices A1, A2, . . . , An ∈ MS(F) as follows: Ai(k, l) is the coeffi-
cient of the variable zi in the linear form labelling the edge that
goes from vertex k to vertex l; if there is no such edge, the entry
Ai(k, l) = 0. For any monomial m = zi1zi2 . . . zid ∈ Md(Z), let Am

denote the matrix Ai1Ai2 . . . Aid . We see that

f(A1z1, A2z2, . . . , Anzn)

=
∑

i1,i2,...,id∈[n]
f [zi1zi2 · · · zid ](Ai1zi1)(Ai2zi2) · · · (Aidzid)

=
∑

i1,i2,...,id∈[n]
f [zi1zi2 · · · zid ](Ai1Ai2 · · ·Aid)(zi1zi2 · · · zid)

=
∑

m∈Md(Z)

f [m]Amm.

Note that the coefficient g[m] of a monomial m = zi1zi2 · · · zid

in g is just Am(1, S) =
∑

k1,k2,...,kd−1∈[S]
∏d

j=1 Aij(kj−1, kj), where
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k0 = 1 and kd = S. Putting the above observations together, we see
that f(A1z1, A2z2, . . . , Anzn)(1, S) =

∑
m∈Md(Z) f [m]Am(1, S)m =∑

m∈Md(Z) f [m]g[m]m = f ◦ g. Since the entries of the matrices
A1, A2, . . . , An can be read off from the labels of P , it can be seen
that A1, A2, . . . , An can be computed in polynomial time given the
ABP P . This completes the proof. �

Remark 3.3. We note that the matrices Ai in the statement of
Theorem 3.2 can actually be computed from the ABP even more
efficiently, say, in uniform AC0.

The following corollary is immediate.

Corollary 3.4 (Arvind et al. 2009). Given a noncommutative
circuit of size S ′ for f ∈ F〈Z〉 and an ABP of size S for g ∈ F〈Z〉, we
can efficiently compute a noncommutative circuit of size O(S ′S3)
for f ◦ g.

The next corollary is also quite useful for this paper.

Corollary 3.5. Let Z = {z1, . . . , zn}. Suppose A is a polynom-
ial-time algorithm for computing a homogeneous degree d polyno-
mial f ∈ F〈Z〉 for matrix inputs from MS(F). Given as input an
ABP P , with S nodes, computing a homogeneous degree d poly-
nomial g ∈ F〈Z〉, and scalars a1, a2, . . . , an ∈ F, we can compute
f ◦ g(a1, a2, . . . , an) in polynomial time.

Proof (Corollary 3.5). We first compute matrices A1, A2, . . . ,
An, described in the Theorem 3.2, in time polynomial in the de-
scription of the ABP P . Then we invoke the given algorithm A on
input (A1a1, . . . , Anan) to obtain as output an S ×S matrix whose
(1, S)th entry contains f ◦ g(a1, a2, . . . , an). Clearly, the simulation
runs in polynomial time. �

Remark 3.6. The statement can be generalized to any unital al-
gebra in place of the field F.
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4. The hardness of the Cayley determinant

We consider polynomials over an arbitrary field F (for the algo-
rithmic results F is either Q or a finite field). The main result of
this section is that if there is a polynomial-time algorithm to com-
pute the 2n × 2n Cayley determinant over inputs from MS(F) for
S = c·n2 (for a suitable constant c) then there is a polynomial-time
algorithm to compute the n × n permanent over F.

Throughout this section let X denote {xij | 1 ≤ i, j ≤ 2n}, and
Y denote {yij | 1 ≤ i, j ≤ n}. Our aim is to show that if there
is a polynomial-time algorithm for computing Cdet2n(X) where
xij takes values in MS(F) then there is a polynomial-time algo-
rithm which, on being given yij ∈ F (i, j ∈ [n]) as input, computes
Cpermn(Y ) (which is the same as the standard permanent in the
commutative setting).

The 2n × 2n determinant has (2n)! many signed monomials of
degree 2n of the form x1,σ(1)x2,σ(2) · · ·x2n,σ(2n) for σ ∈ S2n. We will
identify n! of these monomials, all of which have the same sign.
More precisely, we will design a small ABP with which we will be
able to pick out these n! monomials of the same sign.

We now define these n! many permutations from S2n which have
the same sign and the corresponding monomials of Cdet2n that can
be picked out by a small ABP.

Definition 4.1. Let n ∈ N. For each permutation π ∈ Sn, we
define a permutation ρ(π) in S2n, called the interleaving of π, as
follows:

ρ(π)(i) =

{
π( i+1

2
), if i is odd,

n + π( i
2
), if i is even.

That is, the elements ρ(π)(1), ρ(π)(2), · · · , ρ(π)(2n) are simply
π(1), (n + π(1)), π(2), (n + π(2)), · · · , π(n), (n + π(n)).

The following lemma states a crucial property of the permuta-
tion ρ(π).

Lemma 4.2. The sign of the permutation ρ(π) is independent of π.
More precisely, for every π ∈ Sn, we have sgn(ρ(π)) = sgn(ρ(1n)),
where 1n denotes the identity permutation in Sn.
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Proof (Lemma 4.2). For each π ∈ Sn we can define the permu-
tation π2 ∈ S2n as π2(i) = π(i) for 1 ≤ i ≤ n and π2(n + j) = n +
π(j) for 1 ≤ j ≤ n. It is easy to verify that sgn(π2) = sgn(π)2 = 1
for every π ∈ Sn. To see this we write π2 as a product of dis-
joint cycles and notice that every cycle size occurs an even number
of times. Furthermore, we can check that ρ(π) = ρ(1n)π2, where
we evaluate products of permutations as we do for general func-
tions, i.e. from right to left. Hence it follows that sgn(ρ(π)) =
sgn(ρ(1n))sgn(π2) = sgn(ρ(1n)). �

We will denote by ρ0 the permutation ρ(1n), where 1n denotes
the identity permutation in Sn.

For σ ∈ S2n, we denote by mσ the monomial x1,σ(1) · · ·x2n,σ(2n) ∈
M(X). For σ, τ ∈ S2n, we denote xσ(1),τ(1) · · ·xσ(2n),τ(2n) by mσ,τ .

In the next lemma, we show that there is an ABP that will
filter out monomials that are not of the form mρ(π) from among
the mσ.

Lemma 4.3. There is an ABP P of size O(n2) and width n that
computes a homogeneous polynomial F ∈ F〈X〉 of degree 2n such
that for any σ, τ ∈ S2n,

◦ F [mσ] = 1 if σ = ρ(π) for some π ∈ Sn, and 0 otherwise.

◦ F [mσ,τ ] = 0 unless σ = 12n, where 12n denotes the identity
permutation in S2n.

Moreover, the above ABP P can be computed in time poly(n).

Proof (Lemma 4.3). The ABP is essentially just a finite au-
tomaton over the alphabet X with the following properties: for
input monomials of the form mσ it accepts only those monomials
that are of the form mρ(π). Further, for input monomials of the
form mσ,τ it accepts only those monomials of the form m12n,τ . We
give the formal description of this ABP P below.

The ABP P contains 2n + 1 layers, labelled {0, 1, . . . , 2n}. For
each even i ∈ {0, 1, . . . , 2n}, there is exactly one node qi at level i;
for each odd i ∈ {0, 1, . . . , 2n}, there are n nodes pi,1, pi,2, . . . , pi,n

at level i. We now describe the edges of P : for each even i ∈
{0, 1, . . . , 2n − 2} and j ∈ [n], there is an edge from qi to pi+1,j
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labelled xi+1,j; for each odd i ∈ {0, 1, . . . , 2n} and j ∈ [n], there is
an edge from pi,j to qi+1 labelled xi+1,n+j.

It is easy to see that P as defined above satisfies the require-
ments of the statement of the lemma. It is also clear that the ABP
P can be computed in polynomial time. �

Note that the ABP P of Lemma 4.3 can in fact be constructed
in uniform AC0.

Remark 4.4. For this section, we require only the first part of
Lemma 4.3. The second part of Lemma 4.3 is used in Section 6.

We are now ready to prove that if there is a small noncom-
mutative arithmetic circuit that computes the Cayley determinant
polynomial, then there is a small noncommutative arithmetic cir-
cuit that computes the Cayley permanent polynomial.

Theorem 4.5. For any n ∈ N, if there is a circuit C of size s
computing Cdet2n(X), then there is a circuit C ′ of size polynomial
in s and n that computes Cpermn(Y ).

Proof (Theorem 4.5). Assuming the existence of the circuit C
as stated above, by Corollary 3.4, there is a noncommutative
arithmetic circuit C ′′ of size poly(s, n) that computes the poly-
nomial F ′′ = Cdet2n ◦ F , where F is the polynomial referred to in
Lemma 4.3. For any monomial m, if m �= mσ for any σ ∈ S2n,
then Cdet2n[m] = 0 and hence, in this case, F ′′[m] = 0; moreover,
for m = mσ, we have F [m] = 1 if σ = ρ(π) for some π ∈ Sn, and
0 otherwise. Hence, we see that

F ′′(X) =
∑

π∈Sn

sgn(ρ(π))mρ(π) = sgn(ρ0)

(
∑

π∈Sn

mρ(π)

)

where the last equality follows from Lemma 4.2.
Let C ′ be the circuit obtained from C ′′ by substituting xij with

y 1+i
2

,j if i is odd and j ∈ [n], and by 1 if i is even or j /∈ [n], and

by multiplying the output of the resulting circuit by sgn(ρ0). Let
F ′ denote the polynomial computed by C ′. Then, we have
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F ′(X) =
∑

π∈Sn

m′
ρ(π)

where m′
ρ(π) denotes the monomial obtained from mρ(π) after the

substitution. It can be checked that for any π ∈ Sn, the monomial
m′

ρ(π) = y1,π(1)y2,π(2) · · · yn,π(n). Hence, the polynomial F ′ computed

by C ′ in indeed Cpermn(Y ). It is easily seen that the size of C ′ is
poly(s, n). �

We now show that evaluating the polynomial Cdet2n over MS

(F), for S = c·n2 for suitable c > 0, is at least as hard as evaluating
the permanent over F.

Theorem 4.6. If there is a polynomial-time algorithm A that
computes the 2n × 2n Cayley determinant of matrices with en-
tries in MS(F), for S = c · n2 for suitable c > 0, then there is
a polynomial-time algorithm that computes the n × n permanent
over F.

Proof (Theorem 4.6). This is an easy consequence of
Corollary 3.5. Consider the algorithm given by Corollary 3.5 for
computing Cdet2n ◦ F over the field F, where the ABP in
Corollary 3.5 is the ABP of Lemma 4.3 computing F .

In order to evaluate the permanent over inputs aij (1 ≤ i, j ≤ n)
we will substitute x2i−1,j = aij for 1 ≤ i, j ≤ n and we put xi,j = 1
when i is even or j > n. As in the proof of Theorem 4.5 it follows
that for this substitution the algorithm computing Cdet2n ◦ F will
output sgn(ρ0)Cpermn(a11, . . . , ann). Since sgn(ρ0) can be easily
computed, we have a polynomial-time algorithm for computing
the n × n permanent over F. �

Remark 4.7. The above result has a stronger consequence: for
any fixed ε > 0, if there is a polynomial-time algorithm that com-
putes the m × m Cayley determinant over Mmε(F), then there is
a polynomial-time algorithm that computes Ω(mε/2)×Ω(mε/2) per-
manents over F, hence implying that permanent over F is
polynomial-time computable.
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5. The Cayley determinant over Clifford
algebras

We now consider the complexity of computing the determinant over
real Clifford algebras of polynomially large dimension. We show via
a polynomial-time reduction that computing the permanent over
the rationals is reducible to this problem. Indeed, by inspecting
our result we can observe that even approximating the determi-
nant over such Clifford algebras would yield similar approximation
algorithms for the permanent over the reals.

We first define the basic notions in the theory of Clifford al-
gebras. A more thorough treatment can be found in Chien et al.
(2003) and the references therein. Fix m ∈ N. The (real) Clifford
algebra CL′

m is a 2m-dimensional vector space over R with basis
elements of the form ei1ei2ei3 · · · eik where i1 < i2 < i3 · · · < ik are
elements from [m]. Multiplication between elements of the basis is
defined by the following rules: e2i = 1 and eiej = −ejei for distinct
i, j ∈ [m]; this is extended linearly to all pairs of elements from
the Clifford algebra. Given i1 < i2 < · · · < ik from [m], we denote
by eS the basis element ei1ei2 · · · eik , where S = {i1, i2, . . . , ik}.
Each element of the Clifford algebra is uniquely expressible as∑

S⊆[m] cSeS, where cS ∈ R for each S. (Note that e∅ and 1 both

refer to the multiplicative identity of the algebra.) An idempo-
tent of the Clifford algebra is an element e such that e2 = e. Given

h =
∑

S⊆[m] cSeS in CL′
m, we define its norm |h| to be

√∑
S⊆[m] c

2
S.

The subset of basis elements {eS | |S| even} generates a strict
subalgebra of CL′

m. We will denote this subalgebra by CLm. This
is the algebra of interest to us. The term ‘Clifford algebra’ will
henceforth refer to CLm for some m ∈ N.

Chien, Rasmussen, and Sinclair (Chien et al. 2003) have shown
that a polynomial-time algorithm that, when given as input an
n×n matrix B with entries from CLm for m = 2 log n+2, computes
|Cdetn(B)|2 can be used to design a randomized polynomial-time
algorithm to approximate the 0-1 permanent (over Q).

In this section, we prove that if there is a polynomial-time algo-
rithm to compute either |Cdetn(B)|2 or Cdetn(B), then the perma-
nent (over inputs from Q) can actually be computed in polynomial
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time. For an n×n real matrix A, let permn(A) denote the perma-
nent of A.

Remark 5.1. In a sense, our result in this section should not be
surprising. We have already proved (in Theorem 4.6) that com-
puting the determinant over matrix algebras is at least as hard as
computing the permanent. Also, it is known that Clifford alge-
bras of polynomial dimension are isomorphic to matrix algebras of
polynomial dimension (see, for example, (Lam 2005, Chapter 5)).
However, in this section we actually give an explicit polynomial-
time reduction showing that computing the permanent over the
reals is reducible to computing either |Cdetn(B)|2 or Cdetn(B)
where the entries of B are from the Clifford algebra CLm.

Suppose we wish to compute the permanent of an n×n matrix
with entries from Q. W.l.o.g., we assume that n = 2� for some
� ∈ N. Let m denote 5�. The next lemma is about the existence
of certain elements in the algebra CLm useful for the reduction.

Lemma 5.2. Let n, �,m be as above. Then, there exist h1, h2, . . . ,
hn, h′

1, h
′
2, . . . , h

′
n ∈ CLm and an idempotent e ∈ CLm such that:

◦ For all j, hjh
′
j = e.

◦ For all j �= k, hjh
′
k = 0.

◦ |e|2 = 1
2� .

Moreover, the elements h1, h2, . . . , hn, h′
1, h

′
2, . . . , h

′
n and e can be

constructed in time poly(n).

We defer the proof of the above lemma and first prove the main
result of this section.

Theorem 5.3. Let n, �,m be as above. There is a polynomial-
time algorithm which, when given any matrix A ∈ Mn(R), com-

putes a B ∈ M2n(CLm) such that |Cdet2n(B)|2 = permn(A)2

2� .

Proof (Theorem 5.3). The matrix B will be the following: for
any odd i ∈ [2n] and any j ∈ [2n], set B(i, j)—the (i, j)th entry of
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B—to be A( i+1
2

, j)hj if j ≤ n and 0 if j > n; for any even i ∈ [2n]
and any j ∈ [2n], set B(i, j) to be h′

j−n if j > n and 0 otherwise.
Clearly, B can be computed in polynomial time given A. Note the
following property of B: for any odd i ∈ [2n] and j, k ∈ [2n]

B(i, j)B(i + 1, k) =

{
A( i+1

2
, j)e if j ≤ n and k = n + j,

0 otherwise.

Here e denotes the idempotent from Lemma 5.2. The following
claim is easy to see.

Claim 5.4. For any bijection σ ∈ S2n, the product
∏2n

i=1 B(i, σ(i))
= (

∏n
i=1 A(i, π(i)))e if σ = ρ(π) for some π ∈ Sn and it is 0 other-

wise.

Let us consider Cdet2n(B). We have:

Cdet2n(B) =
∑

σ∈S2n

sgn(σ)B(1, σ(1)) · B(2, σ(2)) · · · B(2n, σ(2n))

=
∑

π∈Sn

sgn(ρ(π))(
n∏

i=1

A(i, π(i)))e

= sgn(ρ0)permn(A)e.

Thus, we see that |Cdet2n(B)|2 = permn(A)2 |e|2 = permn(A)2

2� . �

We have the following easy consequence of the above theorem.

Corollary 5.5. Fix any ε > 0, and suppose there is a polyno-
mial-time algorithm that computes |Cdetn(B)|2 on input an n × n
matrix B with entries from CLm for m = ε log n. Then there is a
polynomial-time algorithm that computes the n × n permanent of
matrices with nonnegative rational entries.

Proof (Corollary 5.5). The statement directly follows from
Theorem 5.3 for m = �5 log n	. To prove hardness for m = ε log n,
we note that a polynomial-time algorithm to compute |Cdetn(B)|2
over CLε logn can be used to compute |Cdetnε/5(B)|2 over CL5 lognε/5

in polynomial time. �
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A δ-approximation algorithm A for a function f : Σ∗ −→ Q is
an algorithm such that for each x ∈ Σ∗

(1 − δ)f(x) ≤ A(x) ≤ (1 + δ)f(x).

Our reduction from computing the permanent for nonnegative
entries to computing |Cdetn(B)|2 actually yields an approximation
preserving reduction. We formalize this in the next corollary.

Corollary 5.6. Fix any δ > 0 and ε > 0. Suppose there is a
polynomial-time δ-approximation algorithm for the function that
on input an n×n matrix B with entries from CLm for m = ε log n
takes the value |Cdetn(B)|2. Then there is a polynomial-time δ-
approximation algorithm for the n×n permanent with nonnegative
rational entries.

We now prove Lemma 5.2.

Proof (Lemma 5.2). Let e1, e2, . . . , em denote the generators of
CL′

m. Partition the set [m] into � subsets of size 5 as follows: set
Si = {5(i − 1) + j | j ∈ [5]} for each i ∈ [�]. For each i ∈ [�], let
Si,0 = {5(i − 1) + 1, 5(i − 1) + 2, 5(i − 1) + 3, 5(i − 1) + 5} and
Si,1 = {5(i − 1) + 2, 5(i − 1) + 3, 5(i − 1) + 4, 5(i − 1) + 5}.

Using the fact that e2i = 1 and eiej = −ejei for i �= j it easily
follows that for any two disjoint sets S, T ⊆ [m] such that |S|, |T |
are even, we have eSeT = eT eS. Hence, the elements eSi,b1

and
eSj,b2

commute for i �= j and any b1, b2 ∈ {0, 1}. Furthermore,

for all i ∈ [�] and b ∈ {0, 1} we have e2Si,b
= 1. Also, we have

eSi,0
eSi,1

= −eSi,1
eSi,0

. Finally, notice that eSi,b
for 1 ≤ i ≤ � and

b ∈ {0, 1} are all elements of CLm.

For i ∈ [�] and b ∈ {0, 1}, set gi,0 =
1+eSi,1

2
and gi,1=

eSi,0
(1−eSi,1

)

2
.

Also, set g′
i,0 = gi,0 and g′

i,1 =
eSi,0

(1+eSi,1
)

2
. Notice that g2

i,0 = gi,0.
We also note an additional relation eSi,0

(1− eSi,1
) = (1+ eSi,1

)eSi,0
.

Using these we can easily derive the following crucial properties of
these elements of CLm.

◦ For each i ∈ [�] and b ∈ {0, 1}, gi,bg
′
i,b = gi,0.

◦ For each i ∈ [�] and b ∈ {0, 1}, gi,bg
′
i,1−b = 0.
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◦ For i1 �= i2 and any b1, b2 ∈ {0, 1}, the elements gi1,b1 and
g′

i2,b2
commute.

Finally, we define hj, h
′
j for a fixed j ∈ [n]. Let b1b2 . . . b� be

the binary representation of the integer j − 1 (recall that n = 2�).
We define hj = g1,b1g2,b2 · · · g�,b�

and h′
j = g′

1,b1
g′
2,b2

· · · g′
�,b�

. Also,
we define e to be g1,0g2,0 · · · g�,0, which is the same as h1 and h′

1.
We now prove that the hj, h

′
j (j ∈ [n]) and e satisfy the prop-

erties claimed in the statement of the lemma. Fix any j ∈ [n] and
let b1b2 . . . b� be the binary representation of j − 1. We have

hjh
′
j = g1,b1g2,b2 · · · g�,b�

g′
1,b1

g′
2,b2

· · · g′
�,b�

= (g1,b1g
′
1,b1

) · (g2,b2g
′
2,b2

) · · · (g�,b�
g′

�,b�
)

= g1,0g2,0 · · · g�,0 = e

The second equality follows from the fact that gi1,b and g′
i2,b com-

mute for any distinct i1 and i2. The third equality follows from
the fact that for any i and b, gi,bg

′
i,b = gi,0. This proves the first

property claimed in the statement of the lemma. Similarly, we can
see that e is an idempotent: e2 = h2

1 = e.
Fix any distinct j, k ∈ [n]. Let b1b2 . . . b� and b′

1b
′
2 . . . b′

� be the
binary representations of j and k. Since j �= k, we can fix some i
such that b′

i = 1 − bi. We have

hjh
′
k = g1,b1g2,b2 · · · g�,b�

g′
1,b′

1
g′
2,b′

2
· · · g′

�,b′
�

= (g1,b1g
′
1,b1

) · (g2,b2g
′
2,b2

) · · · (gi,bi
g′

i,b′
i
) · · · (g�,b�

g′
�,b�

)

= (g1,b1g
′
1,b1

) · (g2,b2g
′
2,b2

) · · · 0 · · · (g�,b�
g′

�,b�
) = 0

where the third equality follows from the fact that we have gi,bg
′
i,1−b

= 0. This proves the second claim made in the lemma.
Finally, we note that

|e|2 = |g1,0g2,0 · · · g�,0|2 =

∣∣∣∣∣
1

2�

∑

T⊆�

∏

i∈T

eSi,1

∣∣∣∣∣

2

=
1

4�

∣∣∣∣∣
∑

T⊆�

∏

i∈T

eSi,1

∣∣∣∣∣

2

=
2�

4�
=

1

2�
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It is easily seen from their definitions that the hj, h
′
j and e can be

computed in time poly(n). This completes the proof of the lemma.
�

6. The symmetrized determinant

In this section, we observe that the 2n × 2n symmetrized deter-
minant over O(n2)-dimensional matrix algebras is at least as hard
to compute as the permanent. This may be compared to the re-
sult of Barvinok (2000), who shows that over constant-dimensional
matrix algebras, the symmetrized determinant is polynomial-time
computable.

In this section, let F denote a field of characteristic 0. Let
X = {xij | 1 ≤ i, j ≤ 2n} and Y = {yij | 1 ≤ i, j ≤ n}. Recall that
for σ, τ ∈ S2n, the monomial mσ,τ is xσ(1),τ(1)xσ(2),τ(2) · · ·xσ(2n),τ(2n),
and the monomial mσ is x1,σ(1)x2,σ(2) · · · x2n,σ(2n).

Theorem 6.1. If the sdet2n(X) polynomial over F can be com-
puted by a polynomial-sized noncommutative arithmetic circuit,
then the polynomial Cpermn(Y ) can be computed by a polynomial-
sized noncommutative arithmetic circuit.

Proof (Theorem 6.1). Assume that sdet2n(X) is computed by
a circuit C of size s. As in Theorem 4.5, we will proceed by taking
Hadamard product. Let P be the ABP defined in Lemma 4.3 and
F (X) the polynomial it computes. Let F ′′ denote the polynomial
sdet2n(X)◦F . Note that by Corollary 3.4, F ′′ can be computed by a
circuit C ′′ of size poly(s, n). From Lemma 4.3, we have F [mσ,τ ] = 0
unless σ = 12n, the identity permutation in S2n; moreover, we also
have F [m12n,τ ] = F [mτ ] which is 1 if τ = ρ(π) for some π ∈ Sn and
0 otherwise. By the above reasoning,

F ′′(X) =
1

(2n)!

∑

π∈Sn

sgn(ρ(π))mρ(π) =
sgn(ρ0)

(2n)!

∑

π∈Sn

mρ(π)

where ρ0 = ρ(1n) and 1n the identity permutation in Sn.
Now, we substitute each xij by y 1+i

2
,j if i is odd and j ∈ [n] and

by 1 if i is even or j /∈ [n] in the circuit C ′′. The effect of this sub-
stitution is to transform mρ(π) into y1,π(1)y2,π(2) · · · yn,π(n) for each
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π ∈ Sn. Hence, the resulting polynomial is simply sgn(ρ0)Cpermn(Y )
(2n)!

.

Thus, by multiplying by sgn(ρ0)(2n)!, we obtain a circuit C ′ of size
poly(s, n) that computes Cpermn(Y ). �

Theorem 6.2. If there is a polynomial-time algorithm A that
computes the 2n × 2n symmetrized determinant of matrices with
entries in MS(F), for S = c · n2 for suitable c > 0, then there is
a polynomial-time algorithm that computes the n × n permanent
over F.

Proof (Theorem 6.2). The proof is almost exactly identical to
that of Theorem 4.6. Consider the algorithm given by Corol-
lary 3.5 for computing sdet2n◦F over the field F, where the ABP in
Corollary 3.5 is the ABP of Lemma 4.3 computing F .

In order to evaluate the permanent over inputs aij, 1 ≤ i, j ≤ n
we will substitute x2i−1,j = aij for 1 ≤ i, j ≤ n and we put xi,j = 1
when i is even or j > n. As in the proof of Theorem 6.1, it
follows that for this substitution the algorithm computing sdet2n◦F
will output sgn(ρ0)

(2n)!
Cpermn(a11, . . . , ann). Since sgn(ρ0) and (2n)!

are easily computable, we have a polynomial-time algorithm for
computing the n × n permanent over F. �

7. The Moore determinant

We demonstrate by a simple reduction that the Moore determinant
and permanent are inter-reducible. We also show that the comput-
ing the Moore determinant over a field of characteristic zero is at
least as hard as counting the number of directed Hamilton Cycles
of a directed graph, which is a well-known #P-complete problem.
If the field is of characteristic k, then computing the Moore deter-
minant over the field is at least as hard as counting the number of
Hamilton cycles of a directed graph modulo the prime k, which is
hard for ModkP.

Assume X = {xij | 1 ≤ i, j ≤ n}. Given a permutation σ ∈ Sn,
we write σ as a product of r = r(σ) disjoint cycles as follows: we
write σ = (nσ

11 · · ·nσ
1l1

)(nσ
21 · · ·nσ

2l2
) · · · (nσ

r1 · · ·nσ
rlr

) with nσ
i1 < nσ

ij

for all i ∈ [r] and j ∈ [li] \ {1} and satisfying nσ
11 > nσ

21 > · · · >
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nσ
r1. Let wσ denote the monomial xnσ

11,nσ
12

· · ·xnσ
1lr

,nσ
11

· · ·xnσ
r1,nσ

r2
· · ·

xnσ
rlr

,nσ
r1

.
Let Cn denote the set of all 1-cycles in Sn, i.e permutations

whose cycle decomposition consists of a single cycle of length n.
Define the polynomial HCn(x11, . . . , xnn) ∈ F〈X〉 to be

∑
σ∈Cn

wσ.
Fix any directed graph G on n vertices with adjacency matrix A.
Let H(G) denote HCn(A(1, 1), . . . , A(n, n)). The quantity H(G)
has a simple description: if F is of characteristic 0, then H(G) is
the number of directed Hamiltonian cycles in G; and if F is of char-
acteristic k > 0, then H(G) is the number of directed Hamiltonian
cycles of G modulo k.

We have the following easy lemma:

Lemma 7.1. There are ABPs P ′
1 and P ′

2 of size O(n2) and width
n that compute homogeneous polynomials F ′

1, F
′
2 ∈ F〈X〉 of degree

n such that for any σ ∈ Sn, we have

◦ F ′
1[wσ] = sgn(σ).

◦ F ′
2[wσ] = sgn(σ) if σ ∈ Cn and 0 otherwise.

Moreover, the above ABPs can be computed in time poly(n).

Proof (Lemma 7.1). Recall that given a permutation σ ∈ Sn,
the quantity sgn(σ) is (−1)n+cσ , where cσ is the number of cycles
in σ. Moreover, note that if σ as a product of disjoint cycles is

(nσ
11 · · ·nσ

1l1
)(nσ

21 · · ·nσ
2l2

) · · · (nσ
r1 · · ·nσ

rlr)

as above, the value cσ is simply the number of left-to-right minima
in this representation, i.e the number of nσ

ij such that nσ
ij < nσ

kl for
all nσ

kl to the left of nσ
ij.

Using this observation, it is easy to design an ABP P ′
1 that

keeps track of the sign of the permutation and the last left-to-right
minimum seen, and computes a polynomial F ′

1 as above. This can
be done by maintaining at each layer d ∈ {0, 1, . . . , n−1}, a vertex
for each pair (m1,m2) of integers from {0, . . . , n}—the vertex is
named (d,m1,m2)—where m1 is the least i such that a variable of
the form xi,j has been encountered along the path from the source
vertex (0, 0, 0) on layer 0 to (d,m1,m2) and m2 is the number of
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left-to-right minima seen so far along this path. Each outgoing
edge is now labelled by a variable from X multiplied by ±1. If
this variable is xi,j where i ≥ m1, then the edge is routed to vertex
(d + 1,m1,m2).

3 If this variable is xi,j where i < m1, then the
edge is labelled with −xi,j and routed to (d + 1, i,m2 + 1). All
the vertices on layer n are identified and become the sink node
of the ABP. This ABP performs exactly as intended except that
the polynomial F ′′

1 computed satisfies F ′′
1 [wσ] = (−1)nsgn(σ). It is

easy to now produce P ′
1 as necessary by multiplying all the edges

between (say) the first two layers with (−1)n.
The ABP P ′

2 can be constructed similarly; the main difference
from the case of P ′

1 is that the ABP must produce the coefficient
0 unless nσ

11 = 1. We omit the formal descriptions of the ABPs. �

The analogue of Theorem 4.5 for the Moore determinant follows
below. The statement here is stronger: we show that the arithmetic
circuit complexity of Mdetn(X) is polynomial if and only if the
arithmetic circuit complexity of Mpermn(X) is polynomial.

Theorem 7.2. The Moore determinant polynomial Mdetn(X) can
be computed by a polynomial-sized noncommutative arithmetic
circuit if and only if the Moore permanent polynomial Mpermn(X)
can be computed by a polynomial-sized noncommutative arith-
metic circuit.

Proof (Theorem 7.2). As in the proof of Theorem 4.5, we will
use the Hadamard product; this time, it can be used to erase or in-
troduce the signs of the permutations corresponding to each mono-
mial wσ. Formally, we have Mpermn(X) = Mdetn(X) ◦F ′

1(X) and
Mdetn(X) = Mpermn(X) ◦ F ′

1(X), where F ′
1(X) is the polynomial

defined in the statement of Lemma 7.1. Hence, if Mdetn(X) (resp.
Mpermn(X)) is computed by a noncommutative arithmetic circuit
of size s, then by applying Corollary 3.4, we see that Mpermn(X)
(resp. Mdetn(X)) is computed by a noncommutative arithmetic
circuit of size poly(s, n). �

3 Strictly speaking, the case i = m1 is irrelevant since in each wσ for each
i, only one variable of the form xi,j can occur.
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Remark 7.3. Note that Theorem 7.2 proves an equivalence (up
to polynomial factors) between the arithmetic circuit complexities
of the Moore determinant and permanent. This is a stronger state-
ment than we obtained in the case of the Cayley determinant and
permanent, where we only showed (roughly) that the Cayley de-
terminant is at least as hard to compute as the Cayley permanent.
The reason for this is that we are unable to obtain a small ABP
that performs the function of P ′

1 for the monomials mσ (defined
in Section 4): that is, a small ABP computing a polynomial F1

such that F1[mσ] = sgn(mσ) for every σ ∈ Sn. Nevertheless, such
a converse can be obtained by appealing to the result of Hrubeš
et al. (Hrubeš et al. 2010) who show that the Cayley Permanent
is complete for the complexity class VNP in the noncommutative
setting.

We now consider the complexity of computing the Moore deter-
minant over matrix algebras of polynomial dimension. We can, as
in the previous sections, show that this is at least as hard as com-
puting the permanent over matrices with entries from F, but we
take a different route this time. We show that if the Moore determi-
nant over a field of characteristic k can be computed in polynomial
time, then there is a polynomial-time algorithm to compute the
number of directed Hamilton cycles H(G) modulo k for an input
directed graph G. This allows us to draw stronger consequences,
namely that the Moore determinant is hard to compute even when
the field F is of characteristic 2, something that would not follow
if we reduced the permanent to this problem (since the permanent
is polynomial-time computable over fields of characteristic 2).

Theorem 7.4. If there is a polynomial-time algorithm A that
computes the n × n Moore determinant of matrices with entries in
MS(F), for S = c ·n2 for suitable c > 0, then there is a polynomial-
time algorithm that, on input a directed graph G, computes H(G).

Proof (Theorem 7.4). Note that HCn(X) = Mdetn(X) ◦ F ′
2,

where F ′
2 is the polynomial computed by ABP P ′

2 constructed in
Lemma 7.1. Moreover, H(G) = HCn(A(1, 1), . . . , A(n, n)), where
A is the adjacency matrix of the graph G. Hence, to compute
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H(G), we need to compute HCn(A(1, 1), . . . , A(n, n)), which can
be done in polynomial time by Corollary 3.5. �

8. Completeness results

In this section, we observe that the noncommutative Cayley deter-
minant over integer matrices is complete for GapP w.r.t. polynomi-
al-time Turing reductions. Likewise, the noncommutative Cayley
determinant over a finite field of characteristic k �= 2 is hard for
the modular counting complexity class ModkP w.r.t. polynomial-
time Turing reductions. These observations also hold for the sym-
metrized determinant. For the Moore determinant, we prove the
above results without any restriction on the characteristic of the
underlying field. We formally describe these observations.

Definition 8.1 (Beigel & Gill 1992; Fenner et al. 1994). A func-
tion f : Σ∗ −→ Z is in GapP if there is a polynomial-time NDTM
M such that for each x ∈ Σ∗ the value f(x) is accM(x) − rejM(x).

For a prime k, the class ModkP consist of languages L ⊆ Σ∗

such that for some function f ∈ GapP we have x ∈ L if and only
if f(x) ≡ 0(mod k).

By Valiant’s result (Valiant 1979) it is known that the inte-
ger permanent is GapP-complete with respect to polynomial-time
Turing reductions. Furthermore, the permanent over Fk is ModkP-
hard for prime k �= 2.

Now, for n ∈ N, consider the Cayley determinant for 2n ×
2n matrices with entries from MS(Z), where S = cn2 for some
constant c. By Theorem 4.6, there is a fixed c > 0 such that
computing the integer permanent for n×n matrices is polynomial-
time reducible to computing the (1, S)th entry of such a Cayley
determinant. The same observation holds modulo k for a prime k.

Furthermore, the problem of computing the (1, S)th entry of
such a Cayley determinant over Z is easily seen to be in GapP:
we can design a polynomial-time NDTM which takes as input a
2n × 2n matrix with entries from MS(Z) and the difference in the
number of accepting and rejecting paths is the (1, S)th entry of
its Cayley determinant. A similar argument, using Theorem 6.2,
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works for the Symmetrized determinant as well. Hence we have
the following.

Corollary 8.2. There exists a constant c such that the follow-
ing holds. For S = cn2, computing the (1, S)th entry of the Cayley
determinant or the Symmetrized determinant for 2n× 2n matrices
with entries from MS(Z) is GapP-complete w.r.t. polynomial-time
Turing reductions. Further, given a finite field F of characteristic
k �= 2, computing the (1, S)th of the Cayley determinant for 2n×2n
matrices over MS(F) is hard w.r.t. polynomial-time Turing reduc-
tions for ModkP.

Remark 8.3. As briefly remarked in the introduction, the above
result for the Cayley determinant has been superseded by results
of Bläser (2015); Chien et al. (2011); Gentry (2014). The work
of Bläser (2015) additionally obtains hardness over characteristic
2. However, we have kept the above result in its entirety for the
simplicity of its proof.

For the Moore determinant, by Theorem 7.4, we obtain hard-
ness for all characteristics.

Corollary 8.4. There exists a constant c such that the following
holds. For S = cn2, computing the (1, S)th entry of the Moore
determinant for 2n×2n matrices with entries from MS(Z) is GapP-
complete w.r.t. polynomial-time Turing reductions. Given a finite
field F of any characteristic k > 1, computing the (1, S)th of the
Moore determinant for 2n × 2n matrices over MS(F) is hard w.r.t.
polynomial-time Turing reductions for ModkP.

Proof (Corollary 8.4). The result follows from Theorem 7.4 and
the following observations: computing H(G) over the rationals on
an input graph G is GapP-complete w.r.t. polynomial-time Turing
reductions; similarly, computing H(G) over a field F of character-
istic k (including k = 2) is hard for ModkP w.r.t. polynomial-time
Turing reductions. �
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