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MATRIX RIGIDITY OF RANDOM

TOEPLITZ MATRICES

Oded Goldreich and Avishay Tal

Abstract. A matrix A is said to have rigidity s for rank r if A dif-
fers from any matrix of rank r on more than s entries. We prove
that random n-by-n Toeplitz matrices over F2 (i.e., matrices of the
form Ai,j = ai−j for random bits a−(n−1), . . . , an−1) have rigidity
Ω(n3/(r2 log n)) for rank r ≥ √

n, with high probability. This improves,
for r = o(n/ log n log log n), over the Ω(n2

r · log(n
r )) bound that is known

for many explicit matrices.
Our result implies that the explicit trilinear [n] × [n] × [2n] function
defined by F (x, y, z) =

∑
i,j xiyjzi+j has complexity Ω(n3/5) in the

multilinear circuit model suggested by Goldreich and Wigderson (Elec-
tron Colloq Comput Complex 20:43, 2013), which yields an exp(n3/5)
lower bound on the size of the so-called canonical depth-three circuits
for F . We also prove that F has complexity Ω̃(n2/3) if the multilinear
circuits are further restricted to be of depth 2.
In addition, we show that a matrix whose entries are sampled from
a 2−n-biased distribution has complexity Ω̃(n2/3), regardless of depth
restrictions, almost matching the known O(n2/3) upper bound for
any matrix. We turn this randomized construction into an explicit
4-linear construction with similar lower bounds, using the quadratic
small-biased construction of Mossel et al. (Random Struct Algorithms
29(1):56–81, 2006).
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1. Introduction

This paper concerns the construction of rigid matrices, a central
open problem posed by Valiant (1977), and its application to lower
bounds on canonical depth-three Boolean circuits (a restricted
model of depth-three circuits defined by Goldreich & Wigderson
(2013)). In particular, we improve the known lower bound on ma-
trix rigidity, but the improvement is for a range of parameters
that is not the one motivated by Valiant’s problem, but rather
the one that arises from Goldreich & Wigderson (2013). Indeed,
this improvement resolves open problems posed by Goldreich &
Wigderson (2013).

1.1. Matrix rigidity. The “Matrix Rigidity Problem” (i.e., pro-
viding explicit matrices of high rigidity) is one of the most alluring
problems in arithmetic circuits lower bounds. Introduced in 1977
by Valiant (1977), the problem was originally motivated by prov-
ing lower bounds for the computation of linear transformations.
Loosely speaking, a matrix is called rigid if it cannot be written as
a sum of a low rank matrix and a sparse matrix. Needless to say,
the actual definition specifies both parameters.

Definition 1.1 (Matrix rigidity, Valiant 1977). A matrix A over
a field F has rigidity s for rank r if every matrix of rank at most r
(over F) differs from A on more than s entries.

Valiant showed that any n-by-n matrix with rigidity n1+δ for
rank ω(n/ log log n), where δ is some constant greater than 0,
cannot be computed by a linear circuit of size O(n) and depth
O(log n). Valiant also proved that almost all n-by-n matrices,
over a finite field F (e.g., the two-element field F2), have rigid-
ity Ω((n − r)2/ log n) for rank r. Since then, coming up with an
explicit1 rigid matrix has remained a challenge. The best tech-
niques to date provide explicit n-by-n matrices of rigidity n2

r
log(n

r
)

for rank r (see Friedman (1993) and Shokrollahi et al. (1997)).
See Lokam (2009) for a survey on the subject.

1For an infinite I ⊆ N, the sequence of matrices, {An}n∈I such that An is
an n × n matrix, is called explicit if there exists a poly(n)-time algorithm that
on input n ∈ I outputs the matrix An (and outputs ⊥ if n �∈ I).
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To the best of our knowledge, this state of affairs also holds
for “simple” randomized constructions that use O(n) random bits.
The common belief is that rigidity bounds for such randomized
constructions can be used for proving lower bounds for explicit
computational problems that are related to the original ones. For
example, an adequate rigidity lower bound for random Toeplitz
matrices would yield a lower bound on the complexity of comput-
ing explicit bilinear transformations. Indeed, this is analogous to
Andreev’s proof of formula lower bounds (Andreev 1987), where a
lower bound for a randomized function is transformed into a lower
bound for an explicit function (which takes the O(n) random bits
of the construction as part of its input, increasing the input size
only by a constant factor).2

Our main result shows that random Toeplitz/Hankel matrices
are rigid with high probability. Recall that a Toeplitz matrix T =
(Ti,j) has constant diagonals (i.e., Ti,j = Ti+1,j+1 for every i, j).
Hankel matrices are obtained by turning Toeplitz matrices upside
down; that is, a Hankel matrix H = (Hi,j) has constant skew-
diagonals (i.e., Hi,j = Hi+1,j−1 for every i, j). Hence, any claim
regarding one family translates to an equivalent claim regarding
the other family.

Theorem 1.2 (On the rigidity of random Toeplitz/Hankel matri-
ces). Let A ∈ F

n×n
2 be a random Toeplitz/Hankel matrix. Then,

for every r ∈ [
√

n, n/32], with probability 1 − o(1), the matrix A
has rigidity Ω( n3

r2 log n
) for rank r.

Our bounds are asymptotically better than Ω(n2

r
log(n

r
)) for

rank r = o( n
log n·log log n

), alas Valiant’s original motivation refers to

r > n/ log log n. For rank r = n0.5+ε, where ε ∈ (0, 0.5), our bound
yields a significant improvement (i.e., n3

r2
= n2−2ε � n1.5−ε = n2

r
),

and this is actually the range that is relevant for the project of
Goldreich & Wigderson (2013).

2 Lower bounds for matrix multiplication and polynomial multiplication, in
the model of arithmetic circuits over the reals with bounded constants, were
previously achieved using this approach (Bürgisser & Lotz 2004; Raz 2003).
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1.2. Goldreich–Wigderson’s project. The work of Goldreich
& Wigderson (2013) provides another motivation for the study
of matrix rigidity. In fact, the problem of improving the rigidity
bounds for random Toeplitz matrices was posed explicitly there.
Specifically, proving a rigidity bound of n1.5+Ω(1) for rank n0.5+Ω(1)

for random Toeplitz matrices was proposed there as a possible next
step.

Lower Bounds for Depth Three Canonical Circuits.
H̊astad (1989) showed that any depth-three Boolean circuit3 com-
puting the n-way parity function must be of size at least exp(

√
n).

Though H̊astad’s bound was refined during the years (Paturi et al.
2005, 1999), to date, exp(Ω(

√
n)) is the best lower bound for an ex-

plicit function in the model of depth-three Boolean circuits. The
work of Goldreich & Wigderson (2013) put forward a model of
depth three canonical circuits, with the underlying long-term goal
to exhibit better lower bounds for general depth-three Boolean cir-
cuits computing explicit multi-linear functions.

Canonical circuits are restricted type of Boolean depth-three
circuits, which can be illustrated by considering the smallest known
depth-three circuits for n-way parity. The latter Õ(2

√
n)-size cir-

cuits are obtained by combining a CNF that computes a
√

n-way
parity with

√
n DNFs that compute

√
n-way parities of disjoint

blocks of the input bits. The construction suggests the following
scheme for obtaining Boolean circuits that compute multilinear
functions. First, construct an arithmetic circuit that uses arbi-
trary multilinear gates of parameterized arity, and then convert it
to a Boolean circuit whose size is exponential in the maximum be-
tween the arity and the number of gates in the arithmetic circuit.
The arithmetic model is outlined next.

Lower Bounds for Multilinear Circuits. Suppose we wish
to compute a t-linear function that depends on t blocks of inputs,
x(1), . . . , x(t), each of length n; that is, the function is linear in
each of the x(j)’s. We consider circuits that use arbitrary t-linear
gates of parameterized arity. That is, the circuits are directed

3 That is, a circuit of unbounded fan-in OR and AND gates with leaves
that are variables or their negations.
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acyclic graphs, where each internal node computes a t-linear func-
tion of its inputs. We further restrict our circuit such that each
internal gate computes a multilinear formal polynomial in the in-
puts x(1) . . . , x(t). We say that such a multilinear circuit is of AN-
complexity4 m if m equals the maximum between the number of
the circuit gates and the maximal arity of the gates. For a t-linear
function F , we denote by C(F ) the minimal AN-complexity of a
multilinear circuit which compute the function F . (We will abuse
notation and refer to the AN-complexity of a tensor/matrix as the
AN-complexity of the corresponding t-linear function.)

In the example of parity, we have a bottom layer of
√

n
gates each taking

√
n inputs and computing their parity. Above

these gates, we have a gate which takes the
√

n results and com-
putes their parity. Overall, we got a (multi)-linear circuit of AN-
complexity

√
n + 1.

Goldreich and Wigderson showed that any multilinear circuit
of AN-complexity m yields a depth-three Boolean circuit of size
exp(m) computing the same function (see Goldreich & Wigder-
son 2013, Prop. 2.9). In fact, these Boolean circuits have much
more structure, and are referred to by Goldreich and Wigderson as
canonical circuits. Thus, a preliminary step towards beating the
exp(Ω(

√
n)) lower bound on the size of depth-three Boolean cir-

cuits for explicit O(1)-linear functions,5 will be to beat the Ω(
√

n)
AN-complexity lower bound for such functions in the model of
multilinear circuits.

Again, as in Valiant’s question, if we just ask about the exis-
tence of hard t-linear functions, then most t-linear functions cannot
be computed by a multilinear circuit of AN-complexity smaller
than (nt)t/(t+1): See Goldreich & Wigderson (2013, Thm. 4.1),
which uses a counting argument. The more important and chal-
lenging problem is to came up with an explicit t-linear function
for which such bounds, or even just ω(

√
n) lower bounds, can be

proved.

4 Where AN stands for Arity and Number of gates.
5 Indeed, this suggestion presumes that there exist O(1)-linear functions

that require depth-three Boolean circuits of size exp(ω(
√

n)), which is also an
open problem suggested in Goldreich & Wigderson (2013).
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Reduction to (Structured) Rigidity. Goldreich and Wigder-
son reduce the problem of proving lower bounds for bilinear circuits
to the problem of rigidity (Goldreich & Wigderson 2013, Sect. 4.2).
They show that if a bilinear circuit is of AN-complexity m/2, then
its corresponding matrix is not m3 rigid for rank m (i.e., it can be
expressed as a sum of an m3-sparse matrix and a matrix of rank at
most m). Hence, any matrix that has rigidity m3 for rank m corre-
sponds to a bilinear function that cannot be computed by a bilin-
ear circuit of AN-complexity at most m/2. Furthermore, Goldreich
and Wigderson show that the sparse matrix arising from their re-
duction has an additional structure (to be specified later). This
leads to a weaker notion of rigidity (see Goldreich & Wigderson
(2013, Thm. 4.12) which establishes a separation), called structured
rigidity, for which it is potentially easier to prove lower bounds.

Open Problems in Goldreich-Wigderson. One open prob-
lem posed by Goldreich and Wigderson is proving that random
Toeplitz matrices have rigidity m3 (or just structured rigidity m3)
for rank m = n0.5+Ω(1). This would yield an AN-complexity lower
bound of m for the corresponding bilinear function (via the re-
duction in Goldreich & Wigderson 2013, Thm. 4.4)6 as well as a
similar lower bound for the following explicit trilinear function (via
Goldreich & Wigderson 2013, Prop. 4.6):

(1.3) Ftet(x, y, z) =
∑

i1,i2,i3∈[n]:
∑3

j=1 |ij−n/2|≤n/2

xi1yi2zi3 .

1.3. Resolving the foregoing open problems. We resolve
the aforementioned open problem (Goldreich & Wigderson 2013,
Prob. 4.8) by proving that random Toeplitz matrices have rigidity

m3 for rank m = Θ( n3/5

log1/5 n
), with high probability. This follows

from our main theorem (Theorem 1.2) by choosing r = m. Fur-

thermore, we can remove the logarithmic factor in the Ω̃ notation,
by proving a slightly better lower bound for structured rigidity.

6 For structured rigidity, we use Goldreich & Wigderson (2013, Thm. 4.10).
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Theorem 1.4 (On the structured rigidity of random Toeplitz
and Hankel matrices). Let A ∈ F

n×n
2 be a random Toeplitz/

Hankel matrix. Then, for every r ∈ [
√

n, n/32], the matrix A has
structured rigidity Ω(n3/r2) for rank r.

This implies (using Goldreich & Wigderson 2013, Thm. 4.10
and Goldreich & Wigderson 2013, Prop. 4.6) that the AN-
complexity of a random Toeplitz matrix is Ω(n3/5), and ditto for
the explicit trilinear function Ftet from Eq. (1.3). This resolves
Problems 4.7 and 4.2 in Goldreich & Wigderson (2013), resp. In
addition, we show that another explicit trilinear function has AN-
complexity Ω(n3/5).

Corollary 1.5 (AN-complexity lower bound for an explicit tri-
linear function). Let F : {0, 1}n × {0, 1}n × {0, 1}2n → {0, 1} be
the trilinear function defined by F (x, y, z) =

∑n
i=1

∑n
j=1 xiyjzi+j.

Then, C(F ) = Ω(n3/5).

New challenges. The most natural question that arises from
the foregoing results is to tighten the lower bound; that is, to
show that random Toeplitz matrices have AN-complexity Ω(n2/3)
as conjectured by Goldreich & Wigderson (2013). This would be
the best possible, since any bilinear function can be computed by a
bilinear circuit of AN-complexity O(n2/3); more generally, by Gol-
dreich & Wigderson (2013, Thm. 3.1), for any t ≥ 2, any t-linear
function can be computed by a t-linear circuit of AN-complexity
O((tn)t/(t+1)). Another natural follow up question is to exhibit an
explicit O(1)-linear function having AN-complexity Ω(nα) for some
constant α > 3/5; of course, the larger α, the better. Our progress
on these open problems is captured by the following two results.

Theorem 1.6 (Depth-two AN-complexity lower bound for ran-
dom Toeplitz matrices). Let F be a bilinear function that cor-
responds to a random Toeplitz matrix. Then, with probability
1 − o(1), the function F cannot be computed by multilinear cir-
cuits of depth two having AN-complexity n2/3/(log n)1/3.

Theorem 1.6 establishes the desired AN-complexity lower bound
for random Toeplitz matrices, but only for depth-two multilinear
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circuits. We note that the AN-complexity upper bound of Goldre-
ich & Wigderson (2013, Thm. 3.1) holds via depth-two circuits,
and so Theorem 1.6 is almost optimal with respect to depth-two
multilinear circuits. Theorem 1.6 implies that the trilinear function
F (x, y, z) =

∑n
i=1

∑n
j=1 xiyjzi+j cannot be computed by multilin-

ear circuits of depth two and AN-complexity n2/3/(log n)1/3.

Theorem 1.7 (Improved AN-complexity lower bound for explicit
4-linear functions). There exists an explicit 4-linear function hav-
ing AN-complexity Ω(n2/3/(log n)1/3).

Theorem 1.7 is proved by first showing that, with high probabil-
ity, bilinear functions associated with matrices that are sampled
from a 2−n-biased sample space (over {0, 1}n2

) have AN-complexity

Ω̃(n2/3). Note that by the aforementioned upper bound, this lower
bound is tight (up to logarithmic factors). Next, we note that
sampling such matrices can be done using O(n) random bits (Alon
et al. 1992; Mossel et al. 2006; Naor & Naor 1993), which matches
the amount of randomness used for sampling a random Toeplitz
matrix. Furthermore, in the explicit small-biased construction of
Mossel et al. (2006), each bit in the sampled string is a bilinear
function of the random bits, allowing us to give an explicit 4-linear
function with AN-complexity Ω̃(n2/3).

1.4. Overview of the Proof of Theorem 1.2. We give an
overview of the proof of Theorem 1.2 (for the case of Hankel ma-
trices). Recall that we wish to show that a random Hankel matrix
has rigidity Ω(n3/(r2 log n)) for rank r, with high probability. Let
A be a random n-by-n Hankel matrix, of the form Ai,j = ai+j for
independent random bits a2, . . . , a2n. We partition A into (n/2r)2

submatrices each of size 2r × 2r and show that with high proba-
bility each submatrix A′ has rigidity Ω(n/ log n) for rank r. This
easily implies that A has rigidity Ω((n/ log n)·(n/2r)2) = Ω( n3

r2 log n
)

for rank r, which will complete the proof.
Consider the partition of A into (n/2r) · (n/2r) submatrices,

each of size 2r × 2r, such that a generic submatrix consists of 2r
consecutive columns and 2r equally spaced rows (i.e., rows that
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are at distance n/2r apart). Next, we note that any of the above
submatrices of A are of the form

A′ =

⎛

⎜
⎜
⎝

ai+1 ai+2 . . . ai+2r

ai+k+1 ai+k+2 . . . ai+k+2r

. . . . . . . . . . . .
ai+(2r−1)k+1 ai+(2r−1)k+2 . . . ai+(2r−1)k+2r

⎞

⎟
⎟
⎠

where k = n/2r (≤ 2r, by the assumption r ≥ √
n), and i is

determined by the location of A′ in A (i.e., if A′ is the (i′, j)th
submatrix, then i = i′ −1+(j −1) ·2k). Notice that A′ is a 2r×2r
submatrix that depends on (2r − 1)k + 2r = Θ(n) random bits.
This allows us to handle up to exp(n) bad events when applying a
union bound.

In our main lemma, we show that for any fixed matrix S ′

(even if S ′ is not sparse) the submatrix matrix A′ − S ′ is of rank
greater than r with probability at least 1−2−Ω(n), where the prob-
ability is taken over the choice of A′ (equiv., over the choice of
ai+1, . . . , ai+(2r−1)k+2r). As the number of o(n/ log n)-sparse matri-
ces is 2o(n), we may apply a union bound over all possible sparse
submatrices and get that with high probability the submatrix A′

has rigidity Ω(n/ log n) for rank r.

1.5. Organization. Our main results (i.e., Theorem 1.2, The-
orem 1.4 and Corollary 1.5) are proved in Section 3, which fol-
lows a short preliminary section (Section 2). Next, Theorem 1.6
and 1.7 are proved, in two steps. In Section 4 we identify struc-
tural properties of matrices that correspond to bilinear functions
of low AN (and AN2) complexity. These properties correspond to
(even more) restricted notions of structured rigidity, and in Sec-
tion 5 we show that (with high probability) matrices drawn from
the two relevant distributions do not satisfy these properties. We
conclude, with a technical digest (Section 6.1), a remark on the
randomness-rigidity tradeoff (Section 6.2), and a list of some open
problems (Section 6.3).

In the appendices, we generalize Theorem 1.2 and 1.4 to general
finite fields (Appendix A.1) and prove that AN-complexity and
AN2-complexity are equivalent to restricted notions of structured
rigidity (Appendix A.3).
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2. Preliminaries

We denote by [n] = {1, . . . , n}. For n, k ∈ N, we denote by
(

n
≤k

)
=

∑k
i=0

(
n
i

)
, and use the following (crude) bound which suffices for

our argument

(2.1)

(
n

≤ k

)

≤ 2k

(
n

k

)

≤ min{(2n)k, (6n/k)k}.

For a matrix A, we denote its ith row by Ai, and its jth column
by A(j). We denote by wt(A) the number of non-zero entries in the
matrix A, and say that A is s-sparse if wt(A) ≤ s.

A Hankel matrix over a field F is a square matrix with constant
skew-diagonals; that is, any matrix A ∈ F

n×n of the form Ai,j =
ai+j for some a2, . . . , a2n ∈ F. A Toeplitz matrix over a field F is a
square matrix with constant diagonals, i.e. any matrix A ∈ F

n×n

of the form Ai,j = ai−j for some a−(n−1), . . . , an−1 ∈ F. Note that
a Hankel matrix is an “upside-down” Toeplitz matrix.

Throughout the paper, unless specified otherwise, we talk about
matrices over the field F2, and matrix rank refers to the rank over
F2.

Definition 2.2 (Structured rigidity, (Goldreich & Wigderson
2013, Def. 4.9)). We say that a matrix A has structured rigid-
ity (m1,m2,m3) for rank r if for every matrix R of rank at most
r and for every X1, . . . Xm1 , Y1, . . . , Ym1 ⊆ [n] such that |X1| =
· · · = |Xm1 | = m2 and |Y1| = · · · = |Ym1 | = m3 it holds that
A − R �

⋃m1

k=1 (Xk × Yk), where M ⊆ S means that all non-zero
entries of the matrix M reside in the set S ⊆ [n]× [n]. We say that
a matrix A has structured rigidity m3 for rank r if A has structured
rigidity (m,m,m) for rank r.

Indeed, any matrix that has rigidity s for rank r, also has struc-
tured rigidity s for rank r, but the other direction does not hold
(see Goldreich & Wigderson 2013, Thm. 4.12).

Definition 2.3 (Multilinear circuits). A multilinear circuit on t
blocks of inputs x(1), . . . , x(t) ∈ {0, 1}n is a directed acyclic graph
whose nodes are associated with arbitrary multilinear gates, such
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that if two gates have directed paths to them from the same block
of inputs, then the results of these two gates are not multiplied
together by another gate.

Definition 2.4 (The AN-complexity of multilinear circuits with
general gates, (Goldreich & Wigderson 2013, Def. 2.2)). The
arity of a multilinear circuit is the maximum arity of its (gen-
eral) gates. The AN-complexity of a multilinear circuit is the max-
imum between its arity and its number of gates (where we count
only the general gates and not the leaves, i.e., variables). The
AN-complexity of a multilinear function F , denoted C(F ), is the
minimum AN-complexity of a multilinear circuit that computes F .
The AN2-complexity of a multilinear function F , denoted C2(F ), is
the minimum complexity of a depth-two multilinear circuit that
computes F .

Theorem 2.5 (Goldreich & Wigderson 2013, Thm. 4.10). If A is
an n-by-n matrix that has structured rigidity m3 for rank m, then
the corresponding bilinear function F satisfies C(F ) ≥ m/2.

3. Main results

We prove our results bottom-up, starting with the main lemma, as
mentioned in the proof overview.

Lemma 3.1 (Main Lemma). Let m, k ∈ N, 16 ≤ k ≤ m. Let
A ∈ F

m×m
2 be the random matrix

⎛

⎜
⎜
⎝

a1 a2 a3 . . . am

ak+1 ak+2 ak+3 . . . ak+m

. . . . . . . . . . . . . . .
a(m−1)k+1 a(m−1)k+2 a(m−1)k+3 . . . a(m−1)k+m

⎞

⎟
⎟
⎠

where a1, . . . , a(m−1)k+m are uniform independent random bits, and
let S ∈ F

m×m
2 be some fixed matrix. Then, PrA[rank(S + A) ≤

m/2] ≤ 2−km/16.
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Note that for k = 1 the matrix in Lemma 3.1 is a random
Hankel matrix, and for k = m it is a totally random matrix. The
requirement k ≥ 16 is not essential in the lemma; it is used to
make expressions nicer. For k ≥ 1 and rank r ≤ m/2 the proof
gives PrA[rank(S + A) ≤ r] ≤ (

m
≤r

) · 2−mk/8.

Proof. For a fixed S and a random A as above, let B =
S + A. If r = rank(B) ≤ m/2, then one can construct a basis
Bi1 , Bi2 , . . . , Bir of the row space of B by the following iterative
process: Let i1 be the first nonzero row of B, let i2 > i1 be the
first row in B that is not spanned by row i1, let i3 > i2 be the first
row in B that is not spanned by rows i1 and i2, etc. We get that
i1 < i2 < · · · < ir and

1. For j < i1 the jth row of B is the all zeroes row.

2. For it−1 < j < it the jth row of B is spanned by rows
i1, . . . , it−1 of B.

3. For ir < j the jth row of B is spanned by rows i1, . . . , ir of
B.

More concisely, denoting by I = {i1, . . . , ir}, we get

(3.2) ∀j ∈ [m]\I : Bj ∈ span{Bi : i ∈ I, i < j} .

We bound the probability that such a sequence I = {i1, . . . , ir}
exists, where r ≤ m/2. We apply a union bound over all possible
sequences I, and for any fixed sequence of length at most m/2, we
shall show that (3.2) holds with very low probability. Given such a
sequence I, let J = [m]−I be its complement. Setting Δ = �m/k,
we can select an increasing sequence of |J |/Δ indices in J such that
each two indices differ by at least Δ.7 Take j1 < j2 < · · · < jt to be
such a sequence of indices, where t ≥ |J |

Δ
≥ m/2

�m/k� ≥ k
4

. For � ∈ [t],
let E� be the event that row j� is spanned by the rows indexed by
I ∩ [j� − 1]. Then,

Pr [Eq. (3.2) holds for I] ≤ Pr[E1, E2, . . . , Et]

= Pr[E1] · · ·Pr[Et|E1, . . . , Et−1](3.3)

7 One can construct such a set greedily: choose the minimal index j in J ,
remove all indices in J ∩ [j, j + Δ − 1]. Repeat until J is empty.
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Next, we show that for each � ∈ [t], we have Pr[E�|E1, . . . , E�−1] ≤
2−m/2. However, instead of conditioning on E1, . . . , E�−1, we shall
condition on a set of the random bits, to be specified next, that de-
termine rows B1, . . . , Bj�−1

on one hand, but are independent from
the random row Bj�

on the other hand. Since j� ≥ j�−1 + �m/k
by our design, we get (j� − 1)k ≥ (j�−1 − 1)k + m. Hence, the ran-
dom bits a1, . . . , a(j�−1)k determine B1, . . . , Bj�−1

, and leave the ran-
dom row Bj�

= (a(j�−1)k+1, . . . , a(j�−1)k+m) totally undetermined.
Conditioning on the worst-case assignment for the former ran-
dom variables (under which E1, . . . , E�−1 holds) yields an upper
bound on Pr[E�|E1, . . . , E�−1]. Thus, it is enough to show that
Pr[E�|a1, . . . , a(j�−1)k] ≤ 2−m/2 for any possible fixed choice of val-
ues to a1, . . . , a(j�−1)k.

To avoid multiple subscripts, we set for the rest of the proof j �
j�. Let us remark that after fixing a1, . . . , a(j−1)k, rows 1, . . . , j −
�m/k are completely fixed, rows j − �m/k + 1, . . . , j − 1 are
partially fixed, and row j is entirely undetermined. Based on that,
we shall show that

(3.4) Pr[E�|a1, . . . , a(j−1)k] ≤ 2−m/2 .

Let I ′ := I∩[j−1], and fix a linear combination of the rows indexed
by I ′, i.e.,

∑
i∈I′ ciBi, among all 2|I′| such linear combinations. We

show that the probability that

(3.5) Bj =
∑

i∈I′
ciBi

is 2−m. (This is similar, up to minor differences, to the folklore re-
sult that any fixed linear combination of rows in a random Toeplitz
matrix is distributed uniformly over F

m
2 – see Goldreich (2008,

Prop. 8.25). We give the details for completeness.) The prob-
ability that the first bit of Bj equals the first bit of the linear
combination in (3.5) is exactly 1/2, since Bj,1 = Sj,1 + a(j−1)k+1,
and all entries {Bi,1}i∈I′ involve only bits from a1, . . . , a(j−2)k+1,
which were already fixed (since (j − 2)k + 1 ≤ (j − 1)k). Fixing
a(j−1)k+1 such that equality on the first bit holds, the second bit
Bj,2 equals the resulting linear combination with probability 1/2
as well. This happens since Bj,2 equals Sj,2 + a(j−1)k+2, where
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a(j−1)k+2 wasn’t already fixed, and all entries {Bi,2}i∈I′ involve
only bits from a2, . . . , a(j−2)k+2, which were already fixed (since
(j − 2)k + 2 ≤ (j − 1)k + 1). And so on, every bit in the jth
row of B equals the resulting linear combination with probabil-
ity 1/2, conditioned on the fixing of the previous bits. Overall,
Bj =

∑
i∈I′ ciBi with probability 2−m for a fixed choice of coeffi-

cients {ci}i∈I′ .8 Taking a union bound over all possible coefficients
{ci}i∈I′ gives Pr[E�|E1, . . . , E�−1] ≤ 2|I′| · 2−m ≤ 2−m/2. Plugging
this bound into Eq. (3.3) we get

Pr [Eq. (3.2) holds for I] ≤ Pr[E1] · · ·Pr[Et|E1, . . . , Et−1]

≤ (
2−m/2

)t ≤ 2−mk/8 ,

where in the last inequality we used t ≥ k/4. Taking a union bound
over all possible sequences I of length at most m/2, whose number
is definitely less than 2m, and using k ≥ 16, we get

Pr[rank(S + A) ≤ m/2] ≤ 2m · 2−mk/8 ≤ 2−mk/16 . �

We continue with our main theorem.

Theorem 3.6 (Random Hankel matrices are rigid). Let A ∈
F

n×n
2 be a random Hankel matrix Ai,j = ai+j where a2, . . . , a2n

are uniform independent random bits. Then, for every
√

n ≤
r ≤ n/32, with probability 1 − o(1), the matrix A has rigidity

n3

160r2 log(960r2/n)
for rank r.

Before proving Theorem 3.6, we state an immediate corollary
of it.

Corollary 3.7. Let A ∈ F
n×n
2 be a random Hankel matrix.

Then, there exists a universal constant c > 0 such that for every
ε > 0

(i) With probability 1 − o(1), the matrix A has rigidity cn2 for
rank

√
n.

8 Alternatively, conditioned on a1, . . . , a(j−1)k and the choice of the linear
combination, there exist exactly one choice for a(j−1)k+1, . . . , a(j−1)k+m that
satisfies Eq. (3.5).
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(ii) With probability 1 − o(1), the matrix A has rigidity
cn2−2ε/ log n for rank n1/2+ε.

(iii) With probability 1 − o(1), the matrix A has rigidity m3 for

rank m = c · n3/5

log1/5 n
.

(iv) With probability 1 − o(1), the matrix A has rigidity
cn1+2ε/ log n for rank n1−ε.

Proof of Theorem 3.6. Suppose towards contradiction that
A can be represented as a sum of a matrix R of rank at most
r, and an s-sparse matrix S, where s ≤ n3/(160r2 log(960r2/n)).
Let m = 2r, and assume for convenience that k = n/m is an
integer. Consider the following partition of A’s entries into (n/m)2

submatrices, each of dimension m × m. For i ∈ [n/m] and j ∈
[n/m], let

Ii = {i, i + k, . . . , i + (m − 1)k}(3.8)

Jj = {(j − 1)m + 1, (j − 1)m + 2, . . . , jm} .

Denote by Ai,j (Ri,j, Si,j, resp.) the matrix A (R, S, resp.) re-
stricted to rows Ii and columns Jj. See Figure 3.1 for an exam-

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a2 a3 a4 a5 a6 a7 a8 a9

a3 a4 a5 a6 a7 a8 a9 a10

a4 a5 a6 a7 a8 a9 a10 a11

a5 a6 a7 a8 a9 a10 a11 a12

a6 a7 a8 a9 a10 a11 a12 a13

a7 a8 a9 a10 a11 a12 a13 a14

a8 a9 a10 a11 a12 a13 a14 a15

a9 a10 a11 a12 a13 a14 a15 a16

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Figure 3.1: A submatrix A1,1 of the matrix A, for m = 4 and k = 2.

ple of such a submatrix. The main observation is that for each
(i, j) ∈ [n/m]2, the matrix Ai,j is of the form needed by the main
lemma. Another observation is that since the submatrices Si,j

partitions the sparse matrix S, one of them has sparsity at most
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s′ � s·m2

n2 . In addition, since rank of a submatrix may only decrease,
for every i, j, it holds that rank(Ri,j) ≤ rank(R) ≤ r.

We say that Ai,j is simple if it can be represented as a sum of
an s′-sparse matrix and a matrix of rank at most r. By the above
discussion, A can be represented as S + R where S is s-sparse
and R is of rank at most r, only if there exists a submatrix Ai,j

that is simple. We shall show that the latter occurs with very low
probability:

Pr
[∃i, j : Ai,j is simple

] ≤
∑

i,j

Pr[Ai,j is simple]

(Union Bound)

≤
∑

i,j

∑

S∈Fm×m
2 :

wt(S)≤s′

Pr[rank(Ai,j + S) ≤ m
2
](Union Bound)

≤
( n

m

)2

·
(

m2

≤ s′

)

· 2−mk/16(Lemma 3.1)

< n2 · (6m2/s′)s′ · 2−n/16 .(n = km and (2.1))

Using s′ ≤ n
40 log(240m2/n)

, which follows from s ≤ n3

160r2 log(960r2/n)
,

we get that

Pr
[∃i, j : Ai,j is simple

]

< n2 ·
(

6m2 · 40 log(240m2/n)

n

)n/40 log(240m2/n)

· 2−n/16

= n2 · (
(240m2/n) · log(240m2/n)

)n/40 log(240m2/n) · 2−n/16

≤ n2 · (
(240m2/n)2

)n/40 log(240m2/n) · 2−n/16

= n2 · 2n/20 · 2−n/16 = o(1). �

Note that the proof works as long as the number of possibilities
for an s′-sparse matrix Si,j is smaller than 2n/16/n2. Our next theo-
rem exploits the fact that there is a smaller number of possibilities
for submatrices of structured sparse matrices (as in Definition 2.2).
In fact, this is the only property of S that the foregoing proof uses.
This yields the following improved bound.
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Theorem 3.9 (Random Hankel matrices are structured rigid).
Let A ∈ F

n×n
2 be a random Hankel matrix. Then, for every√

n ≤ r ≤ n/32, and s ≤ n3/1000r2, with probability 1 − o(1), the
matrix A has structured rigidity s for rank r.

Before proving Theorem 3.9 we state three corollaries of it. The
first corollary is immediate by choosing r = n3/5.

Corollary 3.10. Let A ∈ F
n×n
2 be a random Hankel matrix.

Then, there exists a universal constant c > 0 such that with prob-
ability 1−o(1), the matrix A has structured rigidity cn9/5 for rank
n3/5.

The second corollary follows from the first corollary and Theo-
rem 2.5.

Corollary 3.11. Let A ∈ F
n×n
2 be a random Hankel matrix, and

let F (x, y) =
∑n

i=1

∑n
j=1 Ai,jxiyj. Then, with probability 1 − o(1),

it holds that C(F ) = Ω(n3/5).

The last corollary shows that there exists an explicit trilinear
form with AN-complexity Ω(n3/5). This is the first improvement
over the trivial Ω(

√
n) lower bound for explicit tensors, and in do-

ing so it solves Problem 4.2 from Goldreich & Wigderson (2013)
in the affirmative. Goldreich & Wigderson (2013, Prop. 4.6) show
that if some Toeplitz matrix has AN-complexity Ω(m), then Ftet

defined in Eq. (1.3) has AN-complexity Ω(m) has well. We fol-
low their method, but present a simpler argument for a different
trilinear function.

Corollary 3.12. Let F : {0, 1}n ×{0, 1}n ×{0, 1}2n → {0, 1} be
the trilinear function defined by F (x, y, z) =

∑n
i=1

∑n
j=1 zi+jxiyj.

Then, C(F ) = Ω(n3/5).

Proof. According to Corollary 3.11, there exists a Hankel ma-
trix A, defined by some diagonal values a2, . . . , a2n, such that the
bilinear form

∑
i,j ai+jxiyj has AN-complexity Ω(n3/5).

Let C be a trilinear circuit computing F with minimal AN-
complexity, and denote its complexity by m. Fixing the values of
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the variables zi to ai, for all i ∈ {2, . . . , 2n}, we get a bilinear circuit
in x and y of AN-complexity at most m. Thus, m = Ω(n3/5). �

We return to prove Theorem 3.9.

Proof of Theorem 3.9. The proof follows the lines of the
proof of Theorem 3.6. We let m = 2r, k = n/m, and t = s1/3.
We assume towards contradiction that A = S + R, where R is of
rank at most r, and S is a sum of t matrices S1, . . . , St ∈ F

n×n
2 ,

such that the ones in each matrix S� are a subset of some X� × Y�,
where |X�|, |Y�| ≤ t. Denote by T the n-by-n matrix over F2 with
Ti,j = 1 iff (i, j) is contained in at least one X� × Y�. It is clear
from T ’s definition that the ones in S are a subset of the ones in
T . As in Theorem 3.6, we partition A,R, S, and also T , to (n/m)2

submatrices, according to the partition of row indices I1, . . . , In/m

and column indices J1, . . . , Jn/m, defined as in the proof of The-
orem 3.6 (see Eq. (3.8)). For a random (i, j) ∈ [n/m]2, it holds
that

E
i,j

[
wt(T i,j)

] ≤ t3 · m2

n2
,

E
i,j

[
t∑

�=1

|X� ∩ Ii|
]

≤ t · t · m

n
,

E
i,j

[
t∑

�=1

|Y� ∩ Jj|
]

≤ t · t · m

n
.

We say that a submatrix T i,j is good if

wt(T i,j) ≤ 4t3 · m2

n2
,

t∑

�=1

|X� ∩ Ii| ≤ 4t · t · m

n
,

t∑

�=1

|Y� ∩ Jj| ≤ 4t · t · m

n
.

Using Markov’s inequality, each of the above three events hap-
pen with probability at least 3/4. Using union bound (on the
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complement events) with probability at least 1/4 all events occur
simultaneously, making T i,j good.

Next, we count the number of possible good submatrices T i,j.
Each such submatrix is uniquely determined by the sets X ′

1, . . . , X
′
t

and Y ′
1 , . . . , Y

′
t , where X ′

� = X� ∩ Ii and Y ′
� = Y� ∩Jj. Furthermore,

a collection (X ′
1, ...., X

′
t) such that

∑
� |X ′

�| ≤ 4t2m
n

corresponds to a

set X ′ ⊆ Ii × [t] of size at most 4t2m
n

such that (p, �) ∈ X ′ iff p ∈ X ′
�

(and similarly for (Y ′
1 , . . . , Y

′
t )). Hence, the number of possible

good submatrices is at most

∣
∣
∣
∣

{

X ′ ⊆ Ii × [t] : |X ′| ≤ 4t2m

n

}∣
∣
∣
∣

2

=

(
mt

≤ 4t2m/n

)2

≤
(
(2mt)4t2m/n

)2

≤ n16t2m/n .

We say that Si,j is good if T i,j is good, and we say that Ai,j is
simple if it is the sum of a good Si,j and a matrix of rank at most
r. Next, we count the number of possible good submatrices Si,j.
Since the ones of Si,j are a subset of the ones in T i,j, the number
of possibilities for Si,j is at most

n16t2m/n · 2wt(T
i,j)24t3m2/n2

.

Using the bound on the number of possible good submatrices Si,j,
we may bound the probability that some Ai,j is simple:

Pr
[∃i, j : Ai,j is simple

] ≤
∑

i,j

∑

Si,j good

Pr[rank(Ai,j + Si,j) ≤ m
2
]

(Union Bound)

≤
( n

m

)2

· n16t2m/n · 24t3m2/n2 · 2−mk/16(Lemma 3.1)

Recall that m = 2r and k = n/m to get

Pr
[∃i, j : Ai,j is simple

] ≤ 22 log n + 32 log n·t2r/n + 16t3r2/n2 − n/16 ,

which is o(1) for t3 ≤ n3

1000r2
and r ≥ √

n. �
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Generalization to Larger Fields. The choice of field F2 was
not crucial in the proofs of Lemma 3.1, Theorem 3.6 and The-
orem 3.9. One can syntactically replace the field size 2 by any
prime power q, keeping the proofs intact. Furthermore, in Theo-
rem 3.6, we slightly benefit from taking a larger field. For details
see Appendix A.1.

4. The structure of matrices of small bilinear
circuits

In this section we shall further refine the structure of matrices asso-
ciated with small bilinear circuits, beyond the structure captured
by Definition 2.2 and Theorem 2.5. We begin by explicitly stat-
ing structural results that are implicit in the proof of Goldreich
& Wigderson (2013, Thm. 4.4): Section 4.1 refers to the struc-
ture of bilinear functions that are computed by depth-2 bilinear
circuits of small AN-complexity, whereas Section 4.2 refers to gen-
eral bilinear circuits. These statements can be viewed as relating
AN-complexity to finer notions of structured rigidity (than the
one of Definition 2.2). In Section 4.3 we go beyond Goldreich &
Wigderson (2013), and analyze the structure of the submatrices of
matrices associated with small bilinear circuits, by starting with
the foregoing structural results (of Goldreich & Wigderson (2013))
and proceeding analogously to the first part of the proof of Theo-
rem 3.9. The results of Section 4.3 will play a pivotal role in the
improved lower bounds proved in Section 5.

4.1. The structure of matrices associated with depth two
bilinear circuits. We say a row/column in a matrix is m-sparse
if it contains at most m non-zero entries. Likewise, a linear function
�(x) (resp. �′(y)) is m-sparse if it depends on at most m entries
in x (resp. y). Lastly, recall that by Definition 2.4, C2(F ) is the
minimal AN-complexity of a depth-two bilinear circuit computing
F .

Proposition 4.1 (Structure of functions computed by depth two
bilinear circuits (Goldreich & Wigderson 2013, Thm. 4.4)). Let F
be a bilinear function over x, y ∈ {0, 1}n with C2(F ) ≤ m. Then,
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F can be expressed as

(4.2)
∑

(i,j)∈P

Li(x)L′
j(y) +

m∑

�=1

Q�(x, y)

where P is a subset of [m] × [m], L1, . . . , Lm and L′
1, . . . , L

′
m are

m-sparse linear functions, and each Q� is a bilinear function of at
most m variables from x and at most m variables from y. The
matrix associated with F has the form

(4.3) A = Lcol · P · Lrow +
m∑

�=1

S�

where Lcol is an n×m matrix with m-sparse columns, P is a general
m × m matrix, Lrow is an m × n matrix with m-sparse rows, and
each S� is an n×n matrix whose ones reside in an m×m rectangle.

Proposition 4.1 is proved explicitly in the warm-up part of the
proof of Goldreich & Wigderson (2013, Thm. 4.4). The following
proposition asserts that the converse holds as well. This implies
that the characterization of Proposition 4.1 captures C2 completely.

Proposition 4.4. Any bilinear form F that can be written as in
Eq. (4.2), has C2(F ) = O(m).

We defer the proof of this proposition to Appendix A.3.

4.2. The structure of matrices associated with general
bilinear circuits

Proposition 4.5 (Structure of functions computed by general bi-
linear circuits). Let F be a bilinear function over x, y ∈ {0, 1}n

with C(F ) ≤ m. Then, F can be expressed as

(4.6)
m∑

i=1

Li(x)L′
i(y) +

m∑

i=1

M ′
i(x)Mi(y) +

m∑

�=1

Q�(x, y)

where L1, . . . , Lm and M1, . . . ,Mm are m-sparse linear functions,
L′

1, . . . , L
′
m and M ′

1, . . . ,M
′
m are general linear functions, and each
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Q� is a bilinear function of at most m variables from x and at most
m variables from y. The matrix associated with F has the form

(4.7) A = LcolB + CLrow +
m∑

�=1

S�

where Lcol is an n×m matrix with m-sparse columns, B is a general
m×n matrix, C is a general n×m matrix, Lrow is an m×n matrix
with m-sparse rows, and each S� is an n × n matrix whose ones
reside in an m × m rectangle.

Proposition 4.5 is only implicit in the proof of Goldreich
& Wigderson (2013, Thm. 4.4), and we include its proof in
Appendix A.2. The following proposition asserts that the converse
holds as well for m ≥ √

n. This implies that the characterization
of Proposition 4.5 captures C.

Proposition 4.8. Any bilinear form F that can be written as in
Eq. (4.6), has C(F ) = O(m +

√
n).

We defer the proof of this proposition to Appendix A.3.

4.3. Substructures. In this subsection, similarly to the first
part of the proof of Theorem 3.9, we find a structured submatrix
of the matrix associated with any bilinear function with low AN-
complexity. In Section 5, we prove that random Toeplitz matrices
and small-biased matrices do not have these structured submatri-
ces, with high probability. This ultimately proves AN-complexity
lower bounds for such random matrices.

Let F be a bilinear function over x, y ∈ {0, 1}n with C(F ) ≤ m.
Starting with Proposition 4.5, we write the matrix A associated
with F as

A = LcolB + CLrow +
m∑

�=1

S�

such that the non-zero entries of S� are a subset of X� × Y�, where
|X�|, |Y�| ≤ m. Denote by T =

⋃m
�=1 X� × Y�, and note that |T | ≤

m3.
Let I1, . . . , In/2m and J1, . . . , Jn/2m be some fixed equipartition

of the row indices and column indices of A, respectively, where each
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Ii and Jj is of size 2m. This partition naturally defines (n/2m)2

submatrices as follows. For any (i, j) we denote by Ai,j (resp. Si,j
� )

the matrix A (resp. S�) restricted to rows Ii and columns Jj. For
any i (resp. j) we denote by Li

col and Ci (resp. Bj and Lj
row) the

matrices Lcol and C (resp,. B and Lrow) restricted to Ii (resp. Jj).
Then, one can write

(4.9) Ai,j = Li
colB

j + CiLj
row +

m∑

�=1

Si,j
� ,

where Si,j
� ⊆ T ∩ (Ii ×Jj). Next, we show that there exists a choice

of (i, j) with favorable properties of the submatrices of Li
col, L

j
row

and of the subsets {X� ∩ Ii}�, {Y� ∩ Jj}�, and T ∩ (Ii × Jj).

Proposition 4.10. (Structure of submatrix of matrices associ-
ated with small bilinear circuits). For every � ∈ [m], let S� ⊆
X� × Y�, where |X�|, |Y�| ≤ m, and T =

⋃m
�=1 X� × Y�. Let

I1, . . . , In/2m ⊆ [n] and J1, . . . , Jn/2m ⊆ [n] be two partitions
of [n] where each Ii and Jj is of size 2m. Let Ai,j, Li

col and
Lj

row be as in (4.9). Then, there exists an (i, j) ∈ [n/2m]2 such
that: (1) |T ∩ (Ii × Jj)| ≤ 24m5

n2 , (2)
∑m

�=1 |X� ∩ Ii| ≤ 12m3

n
, (3)

∑m
�=1 |Y� ∩ Jj| ≤ 12m3

n
, (4) wt(Li

col) ≤ 12m3

n
, and (5) wt(Lj

row) ≤
12m3

n
.

If C2(F ) ≤ m, then starting with Proposition 4.1, we can express
Ai,j as Li

col ·P ·Lj
row +

∑m
�=1 Si,j

� and Proposition 4.10 holds as well
in this case.

Proof. For a uniformly random (i, j) ∈ [n/2m]2, it holds that

E
i,j

[|T ∩ (Ii × Jj)|] ≤ m3 · (2m)2

n2

E
i,j

[
m∑

�=1

|X� ∩ Ii|
]

≤ m · m · 2m
n

E
i,j

[
m∑

�=1

|Y� ∩ Jj|
]

≤ m · m · 2m
n

E
i,j

[wt(Li
col)] ≤ m · m · 2m

n

E
i,j

[wt(Lj
row)] ≤ m · m · 2m

n
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Using Markov’s inequality, each of the following “bad” events occur
with probability at most 1/6

|T ∩ (Ii × Jj)| ≥ 6m3 · (2m)2

n2

m∑

�=1

|X� ∩ Ii| ≥ 6m · m · 2m
n

m∑

�=1

|Y� ∩ Jj| ≥ 6m · m · 2m
n

wt(Li
col) ≥ 6m · m · 2m

n

wt(Lj
row) ≥ 6m · m · 2m

n

By union bound, with probability at least 1−5/6 over the choice of
(i, j), none of the “bad” events occur, which completes the proof.

�

We wish to express the structure captured by Eq. (4.9) in terms
of linear equations on the entries of the matrix Ai,j − ∑

� Si,j
� . To

do so we need the following definition.

Definition 4.11 (Orthogonal complement of a matrix). Let m ≤
n. If A is an n × m matrix, and B is a (n − m) × n matrix of rank
n − m such that BA = 0 then we say that B is a left orthogonal
complement of A. If A is an m × n matrix, and B is a n × (n − m)
matrix of rank n − m such that AB = 0 then we say that B is a
right orthogonal complement of A.

Remark 4.12. Note that there are many possible choices of an
orthogonal complement of a given matrix. Therefore, we shall re-
fer to the left (right, resp.) orthogonal complement of A as some
canonical choice of a left (right, resp.) orthogonal complement of
A, say the first such matrix according to lexicographical order (over
a finite field F).

It is well known that any matrix over a field has an orthogonal
complement. Now, suppose that Ai,j − ∑

� S�
i,j = Li

colB
j + CiLj

row

(as in Eq. (4.9)). Let D be an m × 2m matrix which is the left
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orthogonal complement of Li
col, and let E be a 2m × m matrix

which the right orthogonal complement of Lj
row. Then,

(4.13) D · (Ai,j −
∑

�

S�
i,j) · E = 0m×m .

In the case of depth-2 circuits we have Ai,j−∑
� S�

i,j = Li
col·P ·Lj

row.
Using E, the right orthogonal complement of Lj

row as above, we can
write

(4.14) (Ai,j −
∑

�

S�
i,j) · E = 02m×m .

In the next section, we shall design tests based on Equations (4.13)
and (4.14).

5. Tests for AN complexity and AN2
complexity

Having identified (in Section 4.3) structural properties that are sat-
isfied by any matrix associated with any bilinear function with low
AN-complexity, we prove lower bounds on the AN-complexity of
explicit distributions of matrices by showing that (with high prob-
ability) these distributions do not satisfy these properties. We do
so by designing a test that always accepts matrices that have these
properties, but rejects (with high probability) matrices drawn from
certain explicit distributions. (Since the test is merely a mental ex-
periment, i.e., we do not intend to actually run it, the test could
be inefficient.) Specifically, for a complexity bound m, any matrix
rejected by the corresponding test must have complexity greater
than m. We will show that a random Toeplitz matrix, as well as a
matrix whose entries are sampled from an 2−n-biased distribution,
are rejected by the corresponding test with overwhelming proba-
bility, thus proving complexity lower bounds for such matrices.

Actually, we will present two tests: One for AN-complexity, re-
jecting most matrices taken from a small-biased space, and one for
AN2-complexity, rejecting most Toeplitz matrices, see Section 5.1
and 5.3, respectively. In Section 5.2 we show that the lower bound
for matrices taken from a small-biased space yields a similar lower
bound for an explicit 4-linear function.



330 Goldreich & Tal cc 27 (2018)

5.1. Lower bounds for the AN-complexity of small-biased
matrices. For i ∈ [n/2m] and j ∈ [n/2m], let9

(5.1)
Ii = {i, i + (n/2m), . . . , i + (2m − 1) · (n/2m)} ,
Jj = {(j − 1) · (2m) + 1, (j − 1) · (2m) + 2, . . . , j · (2m)} .

and denote by Ai,j the 2m-by-2m sub-matrix of A obtained by
restricting A to rows Ii and columns Jj. Consider the following test,
where Ai,j is viewed as indexed by [2m]×[2m] rather than by Ii×Jj.

Test 1 AN-Complexity Test

Input: Matrix A ∈ F
n×n
2 and parameter m ∈ [n]

1: for i = 1, . . . , n/2m and j = 1, . . . , n/2m do
2: for all subsets {X i

�}m
�=1 of [2m] with

∑
� |X i

�| ≤ 12m3

n
do

3: for all subsets {Y j
� }m

�=1 of [2m] with
∑

� |Y j
� | ≤ 12m3

n
do

4: Let T :=
⋃m

�=1 X i
� × Y j

� .

5: if |T | ≤ 24m5

n2 then
6: for all matrices Li

col of dimension 2m×m and sparsity

at most 12m3

n
do

7: Let D be the left orthogonal complement of Li
col

(recall Remark 4.12).
8: for all matrices Lj

row of dimension m × 2m and
sparsity at most 12m3

n
do

9: Let E be the right orthogonal complement of
Lj

row.
10: if there exists N ∈ F

2m×2m
2 such that N ⊆ T ,

and D(Ai,j − N)E = 0m×m then
11: return “Pass”.
12: return “Fail”.

The following is an immediate corollary of Proposition 4.10 and
Eq. (4.13).

Corollary 5.2. Every matrix associated with a bilinear circuit
of AN-complexity at most m passes Test 1 with parameter m.

9 The specific choice for Ii and Jj is not crucial for our argument in this
subsection, however it will be important in the next subsection. Hence, since
we need to pick some partition, we might as well choose this one.
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We consider a distribution of matrices whose entries are chosen
from a small biased sample space. Specifically, we shall use a sam-
ple space over strings of length N = n2 in order to define n-by-n
matrices. We shall show that almost all such matrices are rejected
by Test 1 with parameter m. But we need a few preliminaries first.

Preliminaries. Recall the definition of an ε-biased distribution
from Naor & Naor (1993).

Definition 5.3 (Small-biased distribution). A distribution X
over {0, 1}N is said to be ε-biased if for every non-empty set
S ⊆ [N ], it holds that

∣
∣
∣ E
x∼X

[(−1)
∑

i∈S xi ]
∣
∣
∣ ≤ ε.

We shall use the following property of ε-biased distributions (im-
plicit in Naor & Naor (1993)).

Lemma 5.4 (Alon et al. 1992, Lem. 1). Let X be an ε-biased dis-
tribution over {0, 1}N . Let �1, . . . , �t be linearly independent lin-
ear functions on x1, . . . , xN . Then, the probability that all linear
functions evaluate to 0 on x ∼ X is at most ε + 2−t. Then, the
probability that all linear functions equal 0 simultaneously is at
most ε + 2−t.

We shall also use the following simple fact from linear algebra.

Fact 5.5. Let t, n,m ∈ N such that t ≤ m ≤ n. Let �1, . . . , �t

be a sequence of linearly independent linear functions (over F) on
x1, . . . , xn. Then, �1, . . . , �t span at least t−m linearly independent
functions that involve only the variables xm+1, . . . , xn.

Proof. Think of the linear functions as vectors in F
n, and let

V = span{�1, . . . , �t}. Consider the subspace U = span{em+1, . . . ,
en}, where ei ∈ F

n is the unit vector with 1 in the ith coordinate
and 0 elsewhere. Then, dim(U ∩ V ) ≥ dim(U) + dim(V ) − n =
(n − m) + t − n = t − m, whereas U ∩ V is the span of �1, . . . , �t

that is supported only on the last n − m coordinates. �
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Actual Results. We are now ready to analyze the probability
that a matrix sampled from a small biased space passes Test 1.
The core of the analysis refers to a single application of Step 10,
which refers to a specific choice of i, j, {X i

�}m
�=1, {Y j

� }m
�=1 as well as

Li
col, L

j
row (which in turn, fixes D and E as well).

Lemma 5.6 (Core of the analysis of Test 1). Fix i, j, {X i
�}m

�=1 and
{Y j

� }m
�=1 that pass the check of Step 5, and fix Li

col and Lj
row (which

in turn, fixes D and E as well). Then, a matrix A whose entries
are sampled from an ε-biased distribution satisfies the condition in
Step 10 with probability at most

ε + 2−m2+24m5/n2

.

Proof. For a fixed choice of i, j, {X i
�}m

�=1, {Y j
� }m

�=1, L
i
col and Lj

row

as above, we consider a specific submatrix of dimension 2m × 2m
of A, denoted Ai,j. Note that the corresponding left (resp. right)
orthogonal complement of Li

col (resp. Lj
row) is a m-by-2m (resp.

2m-by-m) matrix of rank m, denoted by D (resp. E). Recall
that Ai,j is a submatrix whose entries are sampled according to
an ε-biased distribution. Our goal is to show that the equation
D(Ai,j − N)E = 0 (checked in Step 10) implies a lot of linearly
independent linear equations on the entries of Ai,j.

Let Z be a 2m × 2m matrix of (2m)2 Boolean variables, where
we will later take Z to be Ai,j −N . Interpret the equations DZE =
0m×m as m2 linear equations on the (2m)2 variables in Z. For
i ∈ [m] and j ∈ [m], we have an equation of the form DiZE(j) = 0,
where Di is the ith row of D and E(j) is the jth column of E. We
can write

DiZE(j) =
2m∑

k=1

2m∑

�=1

Di,kZk,�E�,j =
∑

k,�

(Di ⊗ E(j))k,�Zk,�;

that is, the coefficients of the equation are the tensor product of
the vector Di with the vector E(j). Thinking of these m2 linear
equations on (2m)2 variables as a big matrix of dimension m2 ×
(2m)2, we note that this matrix of linear equations is the tensor
product of D and E	, since the (i, j) row equals to Di ⊗ E(j)

(viewed as a (2m)2-bit long vector).
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It is a known fact that the rank of the tensor product of any
two matrices is the product of their rank; hence, we get rank(D ⊗
E	) = rank(D) · rank(E	) = m2. In other words, we have a
linearly independent set of m2 linear equations on the variables Z.
However, we want to get linear equations over the variables of A,
where Z = A − N . Say that Zk,� is a noisy variable if (k, �) ∈ T .
It will be enough to show that there are many independent linear
equations which involve only non-noisy variables of the matrix.
Since the number of noisy variables is |T |, by Fact 5.5 we can find
at least m2 − |T | independent linear equations that do not involve
noisy variables.

Overall, we got m2 − |T | independent linear equations on Ai,j.
By Lemma 5.4, a submatrix Ai,j whose entries are sampled accord-
ing to an ε-biased distribution satisfies all m2 −|T | equations with
probability at most ε+2−m2+|T |. Lastly, the fact that {X i

�}m
�=1 and

{Y j
� }m

�=1 passed the check of Step 5 means that |T | ≤ 24m5/n2,
which finishes the proof. �

Theorem 5.7 (Almost all ε-biased matrices have high AN-
complexity). A matrix A whose entries are sampled from an ε bi-
ased distribution is rejected by Test 1 with parameter m (which im-
plies that the corresponding bilinear function has AN-complexity
greater than m), with probability at least

1 −
( n

2m

)2

·
(

2m2

≤ 12m3/n

)4

·
(
ε + 2−m2+24m5/n2

)

.

In particular, for ε = 2−n and m = n2/3

10(log n)1/3 , this probability is at

least 1 − 2−n/2, for sufficiently large n.

Proof. We use a union bound over all possible i, j, {X i
�}m

�=1,
{Y j

� }m
�=1, L

i
col and Lj

row that can be selected by the test, and employ
Lemma 5.6 for each possibility. The number of options for choosing
(i, j) is (n/2m)2; the number of options for choosing {X i

�}m
�=1 (resp.,

{Y j
� }m

�=1) is at most
(

2m2

≤12m3/n

)
; the number of options for choosing

Li
col (resp., Lj

row) is at most
(

2m2

≤12m3/n

)
. �



334 Goldreich & Tal cc 27 (2018)

5.2. Explicit 4-Linear Functions with AN-Complexity
Ω̃(n2/3). We show that based on the ε-biased generator of Mossel
et al. (2006) (described next), the AN-complexity lower bound for
the randomized bilinear function in Theorem 5.7 yields a similar
lower bound on an explicit 4-linear function.

To describe Mossel et al.’s construction, we begin with some
preliminaries. Let N be a natural number, denote by F = GF (2N),
and suppose we have an explicit representation of F as the quotient
F2[x]/(p(x)) where p(x) is an irreducible polynomial over F2 of
degree N . We remark that for N = 2 ·3k, the polynomial p(x) may
be chosen to be x2·3k

+ x3k
+ 1 (cf. Lidl & Niederreiter 1997, Ex.

3.96).10 Then, 1, x, x2, . . . , xN−1 is a basis for GF (2N) over F2. The
map φ : F → F defined by φ : z �→ z · x is a linear transformation
over F2, thus may be represented by a matrix A ∈ F

N×N
2 . The

Frobenius transformation ϕ : F → F defined by ϕ : z �→ z2 is also a
linear transformation over F2, thus may be represented by a matrix
B ∈ F

N×N
2 . Given the polynomial p(x), the matrix A (resp. B) can

be computed in poly(N) time by writing the images of the basis
elements φ(1), φ(x), . . . , φ(xN−1) (resp. ϕ(1), ϕ(x), . . . , ϕ(xN−1))
as polynomials modulo p(x).

The generator of Mossel et al. is given 2N input bits c1, . . . , cN

and d1, . . . , dN , and outputs N · n bits where 1 ≤ n ≤ N , such
that each output bit is a bilinear function in c = (c1, . . . , cN) and
d = (d1, . . . , dN). The output of the generator on vectors c, d ∈ F

N
2

is the N · n bits gi,j = c	(AiBj)d for i ∈ {0, . . . , N − 1} and
j ∈ {0, . . . , n − 1}. Mossel et al. (2006) proved that this is an
ε-bias generator.

Theorem 5.8 (Mossel et al. 2006, Thm. 6). The bias of any non-

trivial linear combination of the gi,js is at most 2− N−n
2 .

Corollary 5.9. Let N = 2 · 3k and let A and B be the ex-
plicit matrices as above for the field GF (2N). Let n = N/3 and
let F : {0, 1}n × {0, 1}n × {0, 1}N × {0, 1}N be the 4-linear func-

10 For general N , it is not known how to find such a polynomial p(x) without
advice or randomness (Kopparty et al. 2014).
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tion defined by F (a, b, c, d) =
∑n−1

i=0

∑n−1
j=0 aibj · (cT AiBjd). Then,

C(F ) = Ω(n2/3/ log1/3 n).

Proof. For a fixed value of c and d, denote by Fc,d the bi-
linear function defined by Fc,d(a, b) = F (a, b, c, d). By Theo-
rem 5.8 for a random c, d the random matrix Fc,d is an n-by-n
matrix whose entries are drawn from an ε-bias distribution, for
ε = 2−(N−n)/2 = 2−(3n−n)/2 = 2−n. By Theorem 5.7, this means
that there exists a choice for c and d under which Fc,d satis-

fies C(Fc,d) ≥ Ω(n2/3/ log1/3 n), for a large enough n (in fact, at
least 1 − 2−n/2 fraction of the choices have this property). By
the fact that the AN-complexity of F is at least as large as the
AN-complexity of Fc,d (see the proof of Corollary 3.12), we get

C(F ) ≥ Ω(n2/3/ log1/3 n). �

5.3. Lower bounds for the AN2-complexity of random
Toeplitz matrices. The following is a degenerate version of
Test 1. Recall the definition of Ii and Jj from Eq. (5.1), and the
definition of Ai,j.

Test 2 AN-2-Complexity Test

Input: Matrix A ∈ F
n×n
2 and parameter m ∈ [n]

1: for i = 1, . . . , n/2m and j = 1, . . . , n/2m do
2: for all subsets {X i

�}m
�=1 of [2m] with

∑
� |X i

�| ≤ 12m3

n
do

3: for all subsets {Y j
� }m

�=1 of [2m] with
∑

� |Y j
� | ≤ 12m3

n
do

4: Let T :=
⋃m

�=1 X i
� × Y j

� .

5: if |T | ≤ 24m5

n2 then
6: for all matrices Lj

row of dimension m × 2m and spar-
sity at most 12m3

n
do

7: Let E be the right orthogonal complement of Lj
row.

8: if there exists N ∈ F
2m×2m
2 such that N ⊆ T , and

(Ai,j − N)E = 02m×m then
9: return “Pass”.

10: return “Fail”.

The following is an immediate corollary of Proposition 4.10 and
Eq. (4.14).
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Corollary 5.10. Every matrix associated with a bilinear circuit
of AN2-complexity at most m passes Test 2 with parameter m.

Lemma 5.11 (Core of the analysis of Test 2). Fix i, j, {X i
�}m

�=1

and {Y j
� }m

�=1 that pass the check of Step 5, and fix Lj
row (which in

turn, fixes E as well). Then, a random Hankel matrix A satisfies
the condition in Step 8 with probability at most

2−n/2+6m3/n

Proof. For a fixed choice of i, j, {X i
�}m

�=1, {Y j
� }m

�=1 and Lj
row, we

consider a specific submatrix of dimension 2m × 2m of A, denoted
Ai,j. Note that the corresponding right orthogonal complement
of Lj

row is a 2m-by-m matrix of rank m, denoted by E. By the
definition of Ii and Jj in Eq. (5.1), Ai,j is of the form

⎛

⎜
⎜
⎝

a1 a2 a3 . . . a2m

ak+1 ak+2 ak+3 . . . ak+2m

. . . . . . . . . . . . . . .
a(2m−1)k+1 a(2m−1)k+2 a(2m−1)k+3 . . . a(2m−1)k+2m

⎞

⎟
⎟
⎠

where k = n/(2m) and a1, . . . , a(2m−1)k+2m are uniform indepen-
dent random bits. Our goal will be to show that the equation
(Ai,j − N) · E = 02m×m implies a lot of linearly independent linear
equations on the random variables a1, . . . , a(2m−1)k+2m.

First think of a generic 2m×2m matrix Z as a matrix of (2m)2

variables, and interpret the equations ZE = 02m×m as linear equa-
tions on Z. For each row � ∈ [2m], we have m equations corre-
sponding to Z�E = 01×m, which are linearly independent. Denote
by T� the intersection of T with the indices corresponding to the
�th row of the submatrix, i.e. T� = T ∩ ({�} × [2m]). Say that
Z�,�′ is a noisy variable if (�, �′) ∈ T . By Fact 5.5, we can get at
least m − |T�| independent linear equations on the �th row of Z
that do not involve noisy variables. Summing over all �’s we have
at least

∑2m
�=1 (m − |T�|) = 2m2 − |T | independent linear equations

that do not involve the noisy entries of the matrix, and such that
each equation involves only variables from one row of Z. Take
Z = Ai,j − N ; since we got equations on Z that do not involve
noisy entries, these are actually equations on Ai,j as well.
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The main difficulty is that we want to exhibit linearly indepen-
dent linear equations on the variables a1, . . . a(2m−1)k+2m, but the
equations we got may not be linearly independent once we identify
multiple entries in the matrix Ai,j with the same variable.11 To
solve this issue, we shall look for a set of equations which remains
linearly independent after this identification. Let n� = m − |T�| be
number of linearly independent equations we got on the �th row.
Let s = �(2m)2/n, and consider all rows starting from some index
r ∈ [s], and taking jumps of s. Then, by the pigeon-hole principle
there exists a r ∈ [s] such that

∑

�:�≡r mod s

n� ≥ (2m2 − |T |)/s .

A key point is that by our choice of s, the �th row and the
(� + s)th row of Ai,j depend on disjoint sets of random vari-

ables, since s · k ≥ (2m)2

n
· n

2m
= 2m. Thus, the sets of variables

out of a1, . . . , a(2m−1)k+2m that participate in rows with index in
{� : � ≡ r mod s} are pairwise disjoint, and the equations we
got on these rows are linearly independent as equations over the
variables a1, . . . , a(2m−1)k+2m. Since we got at least (2m2 − |T |)/s
independent linear equations on completely random bits, all equa-
tions hold simultaneously with probability at most 2(−2m2+|T |)/s.
The fact that {X i

�}m
�=1 and {Y j

� }m
�=1 passed the check in Step 5

means that |T | ≤ 24m5/n2, and using s = 2m2/n, we get a proba-

bility bound of 2(−2m2+24m5/n2)· n
4m2 , which completes the proof. �

Theorem 5.12 (Almost all random Hankel matrices have high
AN2-complexity). A random Hankel matrix A is rejected by
Test 2 with parameter m (which implies it has direct complexity
at least m) with probability at least

1 −
( n

2m

)2

·
(

2m2

≤ 12m3/n

)3

· 2−n/2+6m3/n
.

11 In fact, we cannot expect this set of equations to be linearly indepen-
dent simply because there are too many equations (i.e., more equations than
variables).
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In particular, for m = n2/3

10(log n)1/3 , this probability is at least 1 −
2−n/4, for large enough n.

Proof. We use a union bound over all the
(

n
2m

)2 · (
2m2

≤12m3/n

)3

possible ways to pick i, j, {X i
�}m

�=1, {Y j
� }m

�=1 and Lj
row, and employ

Lemma 5.11 to bound each possibility. �

Explicit 3-Linear Functions with C2 = Ω̃(n2/3). The following
is a corollary of Theorem 5.12.

Corollary 5.13. Let F : {0, 1}n ×{0, 1}n ×{0, 1}2n → {0, 1} be
the trilinear function defined by F (x, y, z) =

∑n
i=1

∑n
j=1 zi+jxiyj.

Then, C2(F ) = Ω(n2/3/ log1/3 n).

We omit the proof, since it is identical to that of Corollary 3.12.

6. Digest and open problems

6.1. Digest. It is well known that random matrices have high
rank; specifically, a random n-by-n matrix has rank at least n/2
with probability at least 1 − exp(−Ω(n2)). Our basic strategy is
to obtain similar bounds for pseudorandom matrices, where the
bound is “similar” in the sense that it is exponentially (in the
randomness complexity) close to 1. We restrict ourselves to ran-
domness complexity O(n), since we aim at replacing the random
bits by auxiliary inputs, making the construction explicit (to en-
sure multilinearity, we also use the fact that the sampled matrix is
multilinear in the randomness). This means that we can afford a
union bound over exp(n)-many events.

The first instantiation of our strategy appears in the proof of
Theorem 3.6, where we handle random Toeplitz matrices. Firstly,
we consider a partition of the random n-by-n matrix into m-by-m
matrices such that each submatrix depends on Θ(n) random bits.
Next, using Lemma 3.1 and a union bound over all m-by-m ma-
trices that are s′-sparse, we prove that (with high probability) all
submatrices have rigidity s′ = Ω(n/ log n) for rank m/2. It follows

that a random Toeplitz matrix has rigidity (n/m)2 ·s′ = Ω̃(n3/m2)
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for rank m/2, which yields new results for any m ∈ [n0.51, n0.99].
A slightly better result is obtained for structured rigidity, since in
this case we may consider slightly less sparse matrices.

More radical savings appear in Section 5, where the structured
rigidity is exploited much further. Here we are considering a num-
ber of bad events that exceeds exp(O(n)), whereas our random-
ness complexity is still O(n). This is done by “covering” these bad
events by a “net” of exp(n) bad super-events and taking a union
bound on the latter (partially explicitly and partially implicitly).
Firstly, since we start with restricted notions of structured rigidity
(which suffice for our application), we can upper bound the num-
ber of linear dependencies (in the 2m-by-2m submatrix) by exp(n)
(rather than by exp(m2)). Secondly, relying on structured rigidity,
we cover all relevant s′′-sparse 2m-by-2m matrices by exp(n) such
matrices, where s′′ = m2/poly log(n) and T covers S if the non-zero
entries of S are a subset of the non-zero entries of T . Finally, rather
than considering the probability that some m2 linear equations in-
volving the elements of R + S hold, where R is a pseudorandom
matrix and S is a fixed matrix, we consider all matrices covered by
some matrix T simultaneously. We do so by considering the prob-
ability that some m2 − s′′ related linear equations involving only
the elements of R hold, where the latter equations are obtained
by eliminating the variables corresponding to non-zero entries of
T from the former equations. We stress that the final step ac-
counts for more than 2s′′

sparse matrices, whereas the amount of
randomness is O(n) � s′′.

6.2. Randomness-rigidity tradeoff. We would like to remark
that it is straight-forward to derive other rigidity results if we allow
different amounts of randomness. Naturally, the results gets better
as the randomness increases. We quantify the number of random
bits by �, and towards applying Lemma 3.1 choose m = 2r and k =
�/2m, while assuming � ≥ 2m and m ≥ k. Applying Lemma 3.1,
we get that Pr[rank(A + S) ≤ r] ≤ 2−Ω(�) where S is any fixed
matrix and the probability is over the random bits of A (recall
that A is a random Hankel-like matrix with k new bits in each
row). The number of random bits used is mk + m − k ≤ � by our
assumptions.
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Next, we consider the n×n matrix consisting of (n/m)2 copies
of A. Any sparse n × n matrix with sparsity s will have an m × m
submatrix S whose sparsity is at most s′ = sm2/n2 and on this
submatrix the rank of A + S will be at most r with probability at
most

(
m2

≤s′
) · 2−Ω(�). Hence we can handle sparsity s ≤ c0 · n2

m2 log n
· �

for some universal constant c0. Overall, we get an n × n matrix
using � bits of randomness, which has rigidity Ω( n2�

r2 log n
) for rank

r ∈ [
√

�, �/4] (where the lower bound follows from the assumption
k ≤ m = 2r, and the upper bound from the assumption 2r = m ≤
�/2).

6.3. Open problems. Our work brings up a lot of natural open
problems; some of which are stated next. We state all problems in
the affirmative, although we actually do not know whether or not
they can be resolved in that direction.

Random Toeplitz matrices. While Theorem 1.6 provides an
almost tight lower bound on the AN2-complexity of the correspond-
ing bilinear functions, their AN-complexity remains undetermined:
Theorem 1.4 asserts a Ω(n0.6) lower bound, whereas Goldreich &
Wigderson (2013, Thm. 3.1) states an O(n2/3) upper bound.

Open Question 6.1 (Tight AN-complexity lower bound for ran-
dom Toeplitz matrices). Prove that, with high probability, bilin-
ear functions that correspond to random Toeplitz matrices have
AN-complexity Ω(n2/3).

The above would be resolved by proving the following rigidity
bound12

Open Question 6.2 (Rigidity of random Toeplitz matrices).
Prove that, with high probability, random Toeplitz matrices have
rigidity Ω(n2) for rank Ω(n2/3).

A similar challenge holds with respect to matrices sampled from
an 2−n-biased distribution. In fact, it may be easier to settle the
following:

12 Indeed, a bound on structured rigidity (or even on the restricted notions
of structured rigidity considered in Section 4) would suffice.
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Open Question 6.3. (Rigidity of small-biased distribution of
matrices). Prove that, with high probability, a matrix sam-
pled from an 2−n-biased sample space has rigidity Ω(n2) for rank
Ω(n2/3).

Recall that the proof of Theorem 1.7 establishes an almost tight
lower bound on the AN-complexity of the corresponding bilinear
functions, but this is done via a much more restricted notion of
rigidity. We also mention that it is easy to prove that these matri-
ces have rigidity Ω̃(n3/r2) for rank r ∈ [

√
n, n/32] (by degenerating

the proof of Theorem 3.6).13

Explicit matrices and bilinear functions. Our lower bounds
refer to distributions over n-by-n matrices that are generated using
O(n) random bits, and we obtain explicit multilinear functions by
using these random bits as auxiliary variables (hence these func-
tions are trilinear or 4-linear, depending on the way the distrib-
ution is generated). The begging challenges are to get rid of the
randomness.

Open Question 6.4 (AN-complexity lower bound for explicit bi-
linear function). For any α ∈ (0.5, 2/3], present an explicit bilin-
ear function that has AN-complexity Ω(nα).

Needless to say, the larger the α, the better. Even an AN2-
complexity lower bound would be welcome. Open Question 6.4
would be resolved by proving the following rigidity bound

Open Question 6.5 (Rigidity of some explicit matrices). For
any α ∈ (0.5, 2/3], present an explicit matrix that has rigidity
Ω(n3α) for rank Ω(nα).

13 Specifically, Lemma 3.1 can be replaced by a simpler proof that refers to
an m-by-m submatrix whose entries are taken from an 2−n-biased distribution
over {0, 1}m2

. In this case, it is easy to bound the probability that the subma-
trix has rank at most r = m/2 ≤ m−(n/m) by

(
m
r

)·(2r)n/m·(2−(n/m)·m+2−n),
where the bound holds by considering n/m rows that depend on at most r other
rows (which cover the row basis). Using r = m/2, we get a probability bound
of 2m · 2n/2 · 2−n+1. For the rest of the proof, one may select an arbitrary par-
tition of the n-by-n matrix to m-by-m submatrices, since any such partition
will yield submatrices as above.
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As noted in Section 1.1, this rigidity challenge refers to a range
of parameters that differs from the standard one.

Higher AN-complexity lower bounds. Theorem 1.7 provides
an AN-complexity lower bound of Ω(n2/3/(log n)1/3) for some ex-
plicit 4-linear function. This is not necessarily tight, since by Gol-
dreich & Wigderson (2013, Thm. 3.1) any t-linear function has
AN2-complexity O((tn)t/(t+1)). More importantly, we wish to sur-
pass the aforementioned lower bound.

Open Question 6.6 (AN-complexity lower bounds for explicit
multilinear functions). For any α ∈ (2/3, 1), present an explicit
O(1)-linear function that has AN-complexity Ω(nα).

By the strategy outlined in Section 5.2, it suffices to meet this
challenge with a random tensor of constant dimension sampled
using O(n) random bits, provided that its entries may be expressed
as O(1)-linear functions in the random bits. Here too, even an
AN2-complexity lower bound would be welcome.
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A. Appendices

A.1. Generalization to larger fields. As stated in Section 3,
the choice of field F2 was not crucial in the proofs of Lemma 3.1,
Theorem 3.6 and Theorem 3.9. One can syntactically replace the
field size 2 by any prime power q, keeping the proofs intact. Fur-
thermore, in Theorem 3.6, we slightly benefit from taking a larger



cc 27 (2018) Matrix rigidity of random Toeplitz matrices 343

field. We state the generalized theorems and point to the improve-
ments over Theorem 3.6.

Lemma A.1 (Main Lemma for Fq). Let m, k ∈ N, 16 ≤ k ≤ m.
Let A ∈ F

m×m
q be the random matrix

⎛

⎜
⎜
⎝

a1 a2 a3 . . . am

ak+1 ak+2 ak+3 . . . ak+m

. . . . . . . . . . . . . . .
a(m−1)k+1 a(m−1)k+2 a(m−1)k+3 . . . a(m−1)k+m

⎞

⎟
⎟
⎠

where a1, . . . , a(m−1)k+m are uniform scalars from Fq, and let S ∈
F

m×m
q be some fixed matrix. Then, PrA[rank(S + A) ≤ m/2] ≤

q−km/16.

The proof of Lemma A.1 is identical to the original proof of
Lemma 3.1, replacing 2 with q.

Theorem A.2 (random Hankel matrices over Fq are rigid).
Let A ∈ F

n×n
q be a random Hankel matrix Ai,j = ai+j where

a2, . . . , a2n are uniform independent scalars from Fq. Then, for
every

√
n ≤ r ≤ n/32, with probability 1 − o(1), the matrix A has

rigidity n3

80r2 logq(qn2)
for rank r. In particular, if q ≥ nΩ(1), then we

get rigidity Ω(n3

r2
) for rank r.

Proof. We highlight the difference from the proof of Theo-
rem 3.6. When considering the probability that A is simple we
can write

Pr
[∃i, j : Ai,j is simple

] ≤
∑

i,j

Pr[Ai,j is simple]

(Union Bound)

≤
∑

i,j

∑

S∈Fm×m
q :

wt(S)≤s′

Pr[rank(Ai,j + S) ≤ m
2
](Union Bound)

≤
( n

m

)2

·
(

m2

s′

)

· qs′ · q−mk/16(Lemma A.1)

< n2 · (m2q)s′ · q−n/16
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Using s′ ≤ n
20 logq(qm2)

, which follows from s ≤ n3

80r2 logq(qn2)
, we get

Pr[∃i, j : Ai,j is simple] = o(1), which completes the proof.
�

Theorem A.3 (random Hankel matrices over Fq are structured
rigid). Let A ∈ F

n×n
q be a random Hankel matrix. Then, for every√

n ≤ r ≤ n/32 and s ≤ n3/1000r2, with probability 1 − o(1), the
matrix A has structured rigidity s for rank r.

The proof of Theorem A.3 is identical to the original proof of
Theorem 3.9, replacing 2 with q.

A.2. The structure of matrices associated with general bi-
linear circuits. The following proof is essentially given in Gol-
dreich & Wigderson (2013, Thm. 4.4), although the result is not
spelled out. We give it here for completeness.

Proposition A.4 (Proposition 4.5, restated). If C(F ) = m, then
F can be expressed as

(Eq. (4.6))
m∑

i=1

Li(x)L′
i(y) +

m∑

i=1

M ′
i(x)Mi(y) +

m∑

�=1

Q�(x, y)

where L1, . . . , Lm and M1, . . . ,Mm are m-sparse linear functions,
L′

1, . . . , L
′
m and M ′

1, . . . ,Mm are general linear functions, and each
Q� is a bilinear function of at most m variables from x and at most
m variables from y. The matrix associated with F has the form

(Eq. (4.7)) A = LcolB + CLrow +
m∑

�=1

S�

where Lcol is an n×m matrix with m-sparse columns, B is a general
m×n matrix, C is a general n×m matrix, Lrow is an m×n matrix
with m-sparse rows, and each S� is an n × n matrix whose ones
reside in an m × m rectangle.

Proof. We are given a bilinear circuit computing F of AN-
complexity m, and we wish to show that we can write F as in
Eq. (4.6). The deduction of Eq. (4.7) from Eq. (4.6) is obvious.
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We perform simplification rules on the circuit. Let F1, . . . ,Fm

denote the gates of the circuits, where Fm is the output gate. For
any i < m, if Fj appears as a free term in Fi (i.e., the ith gate adds
Fj to its output), then we can “delay” this addition by feeding Fj

to the gates that are fed by Fi, and performing the addition there.
If Fj was only added to Fi we omit Fj from Fi (i.e., omit the
edge feeding Fj into the ith gate).14 We repeat this simplification
rule until one cannot perform it anymore. Since the circuit is a
directed acyclic graph, the process will stop. Call a gate an x-gate
(resp. y-gate) if there are directed paths only from the x variables
(resp. y variables) to this gate, and call it an xy-gate if there
are paths both from x and from y. Recall that by multilinearity
(Definition 2.3) an x-gate (resp. y-gate) cannot be multiplied by
another x-gate (resp. y-gate), and an xy-gate cannot be multiplied
at all. We observe that after the transformation the circuit is of
height at most 3 (where the height of a gate is the longest path
from an input variable to it). This is shown as follows.

• Next to the inputs (i.e., at height 1) we have either x-gates
(resp. y-gates) computing linear functions in x (resp. y) on
m variables, or xy-gates computing a bilinear function on m
variables from both x and y.

• For i < m, if Fi is at height 2, then it must be an xy-gate, since
by the simplification rules it must multiply two of its inputs,
and these inputs must come from different blocks of variables.

• By the same reasoning, if Fi is of height 3, then it must be the
output gate (i.e., i = m), since otherwise it must be fed by an
xy-gate of height 2, which cannot be added nor multiplied.

We shall express the functions computed by gates at heights 1, 2,
and finally by the output gate.

Height-1 Gates: Denote by L1, . . . , Lk (resp., M1, . . . ,Mk′)
the linear functions computed by x-gates (resp. y-gates) at
height 1. Denote by Qi(x, y) the bilinear function computed by

14 The condition accounts for the case that Fi does not compute a homoge-
neous polynomial. In that case it is possible that the value of Fj appears in
the output of Fi both as a free term and as a factor in a product with some
other gate or variables (e.g., F2(x, y) = x7 · F1(y) + x2y3 + F1(y)).
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an xy-gate Fi at height 1. Each of Li,Mi and Qi computes a func-
tion that depends on at most m variables from x and at most m
variables from y.

Height-2 Gates: Each xy-gate Fi (which is not the output
gate) at height 2 is fed with x-gates, y-gates and variables (we may
assume that it is not fed by xy-gates by the simplification rule). It
computes a sum of products of terms in x and terms in y; we break
these products according to whether or not each term is a gate or an
input variable. For any linear function Lj(x), we gather all linear
functions in y and all variables in y that are multiplied by Lj in the
computation of gate Fi; this gives a general (not necessarily sparse)
linear function in y, denoted Li,j(y). For any linear function Mj(y),
we gather all variables from x that are multiplied by Mj to get a
linear function in x, denoted by Mi,j(x). Letting Qi(x, y) be the
bilinear function with all variable by variable products, we get

(A.5) Fi(x, y) =
k∑

j=1

Lj(x)Li,j(y) +
k′

∑

j=1

Mi,j(x)Mj(y) + Qi(x, y) ,

where Qi depends on at most m variables from x and at most m
variables from y.

Output Gate: If the output gate is at height 2, then we are
done. Otherwise, we may assume that the output gate is only fed
by xy-gates, since if it is fed by some other gates (or variables)
then their contribution (multiplied by other gates or variables) can
be computed by an auxiliary xy-gate (of height 2) that feeds the
output gate. Hence, the output gate computes the sum of at most
m gates, each of which computes a bilinear function as in Eq. (A.5),
where this also covers xy-gates of height 1 (since they also compute
a function of this very form). Overall, we get that

F (x, y) =
m∑

i=1

(
k∑

j=1

Lj(x)Li,j(y) +
k′

∑

j=1

Mi,j(x)Mj(y) + Qi(x, y)

)

=
k∑

j=1

Lj(x) ·
(

m∑

i=1

Li,j(y)

)

+
k′

∑

j=1

(
m∑

i=1

Mi,j(x)

)

· Mj(y)

+
m∑

i=1

Qi(x, y)
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Letting L′
j(y) =

∑m
i=1 Li,j(y) and M ′

j(x) =
∑m

i=1 Mi,j(x), we get

F (x, y) =
k∑

j=1

Lj(x)L′
j(y) +

k′
∑

j=1

M ′
j(x)Mj(y) +

m∑

i=1

Qi(x, y)

where the Lj’s are m-sparse linear functions in x, the L′
j’s are

general linear functions in y, the M ′
j’s are general linear functions

in x, the Mj’s are m-sparse linear functions in y, and each Qi is
a bilinear function that depends on at most m variables in x and
y. �

A.3. Characterization of AN-complexity for bilinear
forms. In this section, we prove Proposition 4.8 and 4.4, which
show that Proposition 4.5 and 4.1 capture C(F ) and C2(F ), respec-
tively.

Proposition A.6 (Proposition 4.4, restated). Any bilinear form
F that can be written as in Eq. (4.2), has C2(F ) = O(m).

Proof. We start by recalling Eq. (4.2). Let F be a bilinear form
that can be written as

F (x, y) =
∑

(i,j)∈P

Li(x)L′
j(y) +

m∑

�=1

Q�(x, y)

where P ⊆ [m] × [m], the Li-s and the L′
j-s are m-sparse linear

functions and the Q�-s are bilinear functions that depend on at
most m variables from x and at most m variables from y. We shall
build a depth-2 bilinear circuit computing F of AN-complexity
O(m).

The construction is straightforward: We compute each Q� by a
single gate which is fed by the 2m input variables on which it de-
pends. Similarly, we compute each Li (L′

j, resp.) by a single linear
gate fed by at most m input variables from x (y, resp.). Lastly, we
feed the output gate with the aforementioned 3m gates (computing
Li, L

′
j and Q� for i, j, � ∈ [m]); that is, the output gate computes∑

(i,j)∈P Li(x)L′
j(y)+

∑m
�=1 Q�(x, y) by simply multiplying the Li-s

with the L′
j-s according to the subset P and adding all the bilin-

ear functions Q1, . . . , Qm. Hence, we have built a bilinear circuit
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computing F of depth-2 with 3m+1 gates and fan-in at most 3m,
and C2(F ) ≤ 3m + 1 follows. �

Proposition A.7 (Proposition 4.8, restated). Any bilinear form
F that can be written as in Eq. (4.6), has C(F ) = O(m +

√
n).

Proof. We start by recalling Eq. (4.6). Let F be a bilinear form
that can be written as

F (x, y) =
m∑

i=1

Li(x)L′
i(y) +

m∑

i=1

M ′
i(x)Mi(y) +

m∑

�=1

Q�(x, y)

where L1, . . . , Lm and M1, . . . ,Mm are m-sparse linear functions,
L′

1, . . . , L
′
m and M ′

1, . . . ,Mm are general linear functions, and each
Q� is a bilinear function of at most m variables from x and at most
m variables from y. We shall show how to compute F (x, y) by a
bilinear circuit of AN-complexity O(m +

√
n).

As in the proof for the depth-2 case, we compute each Q� by
a single gate which is fed by 2m input variables on which it de-
pends. We compute each Li (Mi, resp.) by a single linear gate
fed by at most m input variables from x (y, resp.). To compute∑m

i=1 Li(x)L′
i(y) we partition the variables in y to

√
n buckets of

size
√

n each. For k ∈ [
√

n] we denote the kth bucket by Bk; for
a concrete choice let Bk = {(k − 1)

√
n + 1, . . . , k

√
n}. We write

L′
i(y) =

∑n
j=1 ai,jyj where ai,j ∈ F2. For k ∈ √

n, we denote by

L′
i,k(y) �

∑
j∈Bk

ai,jyj . Clearly

m∑

i=1

Li(x)L′
i(y) =

m∑

i=1

√
n∑

k=1

Li(x)L′
i,k(y) =

√
n∑

k=1

m∑

i=1

Li(x)L′
i,k(y) .

For a given k ∈ [
√

n] we denote the inner sum in the RHS of the
last equation by Fk(x, y) �

∑m
i=1 Li(x)L′

i,k(y). For k ∈ [
√

n], we
compute Fk by a single gate which is fed by the linear functions
L1(x), . . . , Lm(x), which have been computed already, and the vari-
ables {yj : j ∈ Bk}. The gate multiplies each Li(x) with the vari-
ables in y according to L′

i,k, and then sums up all the products
yielding Fk(x, y). We put a gate summing all Fk-s together to get
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∑√
n

k=1 Fk(x, y) =
∑m

i=1 Li(x)L′
i(y). In a completely symmetric fash-

ion we compute using
√

n + 1 additional gates
∑m

i=1 M ′
i(x)Mi(y).

To wrap up, we feed the output gate by the m gates com-
puting Q1, . . . , Qm, in addition to the two gates computing∑m

i=1 Li(x)L′
i(y) and

∑m
i=1 M ′

i(x)Mi(y) respectively. The output
gate adds up all its entries to output the required function. Over-
all, we constructed a bilinear circuit computing F with O(m+

√
n)

gates and fan-in O(m+
√

n), which shows that C(F ) = O(m+
√

n).
�
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