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Abstract. Schubert polynomials were discovered by A. Lascoux and M.
Schützenberger in the study of cohomology rings of flag manifolds in 1980s.
These polynomials generalize Schur polynomials and form a linear basis of
multivariate polynomials. In 2003, Lenart and Sottile introduced skew Schu-
bert polynomials, which generalize skew Schur polynomials and expand in the
Schubert basis with the generalized Littlewood–Richardson coefficients. In
this paper, we initiate the study of these two families of polynomials from the
perspective of computational complexity theory. We first observe that skew
Schubert polynomials, and therefore Schubert polynomials, are in #P (when
evaluating on nonnegative integral inputs) and VNP. Our main result is a de-
terministic algorithm that computes the expansion of a polynomial f of degree
d in Z[x1, . . . , xn] on the basis of Schubert polynomials, assuming an oracle
computing Schubert polynomials. This algorithm runs in time polynomial in
n, d, and the bit size of the expansion. This generalizes, and derandomizes,
the sparse interpolation algorithm of symmetric polynomials in the Schur ba-
sis by Barvinok and Fomin (Adv Appl Math 18(3):271–285, 1997). In fact,
our interpolation algorithm is general enough to accommodate any linear basis
satisfying certain natural properties. Applications of the above results include
a new algorithm that computes the generalized Littlewood–Richardson coeffi-
cients.
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1. Introduction

Polynomial interpolation problem. The classical polynomial in-
terpolation problem starts with a set of data points, (a1, b1), . . . , (an+1,
bn+1), where ai, bi ∈ Q, ai �= aj for i �= j, and asks for a univariate
polynomial f ∈ Q[x] s.t. f(ai) = bi for i = 1, . . . , n + 1. While such a
polynomial of degree ≤ n exists and is unique, depending on different
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choices of linear bases, several formulas, under the name of Newton,
Lagrange, and Vandermonde, have become classical.

In theoretical computer science (TCS), the following problem also
bears the name interpolation of polynomials, studied from 1970s: given
a black-box access to a multivariate polynomial f ∈ F[x1, . . . , xn] (F a
field), compute f by writing out its sum-of-monomial expression. Sev-
eral algorithms have been proposed to solve this problem (Ben-Or & Ti-
wari 1988; Kaltofen & Lakshman 1988; Klivans & Spielman 2001; Zippel
1979, 1990). A natural generalization is to consider expressing f using
the more powerful arithmetic circuits. In this more general setting, the
problem is called the reconstruction problem for arithmetic circuits (Sh-
pilka & Yehudayoff 2010, Chap. 5), and the sum-of-monomial expres-
sion of f is viewed as a subclass of arithmetic circuits, namely depth-2
ΣΠ circuits. Reconstruction problems for various models gained quite
momentum recently (Arvind et al. 2010; Bshouty & Cleve 1998; Gupta
et al. 2011, 2012, 2014; Karnin & Shpilka 2009; Kayal 2012; Shpilka
2009; Shpilka & Volkovich 2015).

As mentioned, for interpolation of univariate polynomials, differ-
ent formulas depend on different choices of linear bases. On the other
hand, for interpolation (or more precisely, reconstruction) of multivari-
ate polynomials in the TCS setting, the algorithms depend on the com-
putation models crucially. In the latter context, to the best of our
knowledge, only the linear basis of monomials (viewed as depth-2 ΣΠ
circuits) has been considered.

Schubert polynomials. In this paper, we consider the interpolation
of multivariate polynomials in the TCS setting, but in another linear
basis of multivariate polynomials, namely the Schubert polynomials.
This provides another natural direction for generalizing the multivariate
polynomial interpolation problem. Furthermore, as will be explained
below, such an interpolation algorithm can be used to compute certain
quantities in geometry that are of great interest, yet not well under-
stood.

Schubert polynomials were discovered by Lascoux and
Schützenberger (Lascoux & Schützenberger 1982) in the study of co-
homology rings of flag manifolds in 1980s. See Definition 3.1 or Def-
inition 5.3 for the formal definition,1 and Macdonald (1991); Manivel

1 Definition 5.3 is one of the classical definitions of Schubert polynomials, while
Definition 3.1 defines Schubert polynomials in the context of skew Schubert polyno-
mials.



cc 26 (2017) Polynomial interpolation in the Schubert basis 883

(2001) for detailed results. For now, we only point out that (1) Schu-
bert polynomials in Z[x1, . . . , xn] are indexed by v = (v1, . . . , vn) ∈ N

n,
denoted by Yv;2 (2) Yv is homogeneous of degree

∑n
i=1 vi.3

Schubert polynomials have many distinguished properties. They
form a linear basis of multivariate polynomials and yield a general-
ization of the Newton interpolation formula to the multivariate case
(Lascoux 2003, Sec. 9.6). Also, Schur polynomials are special Schu-
bert polynomials (Fact 5.4 (1)). A Schubert polynomial can contain
exponentially many monomials: The complete homogeneous symmetric
polynomials are special Schubert polynomials (Fact 5.4 (2)). It is not
clear to us whether Schubert polynomials have polynomial-size arith-
metic circuits. Because of these reasons, interpolation in the Schubert
basis could not be covered by the aforementioned results for the recon-
struction problems, unless the arithmetic circuit complexity of Schubert
polynomials is understood better: At present, we are only able to put
Schubert polynomials in VNP.

While Schubert polynomials are mostly studied due to their deep
geometric meanings (see, e.g., Knutson & Miller 2005), they do have
certain algorithmic aspects that have been studied shortly after their in-
troduction in 1982. Indeed, an early paper on Schubert polynomials by
Lascoux and Schützenberger was concerned about using them to com-
pute the Littlewood–Richardson coefficients (Lascoux & Schützenberger
1985). That procedure has been implemented in the program sys-
tem Symmetrica (Kerber et al. 1992), which includes a set of rou-
tines to work with Schubert polynomials. On the other hand, the
complexity-theoretic study of the algorithmic aspects of Schubert poly-
nomials seems lacking, and we hope that this paper serves as a modest
step toward this direction.

Our results. Our main result is about deterministic interpolation
of sparse polynomials with integer coefficients in the Schubert basis,
modulo an oracle that computes Schubert polynomials. The complexity
is measured by the bit size of the representation.

2 In the literature, it is more common that Schubert polynomials indexed by
permutations instead of N

n. These two index sets are equivalent, through the cor-
respondence between permutations and N

n as described in Section 2. We adopt N
n

in the introduction because they are easier to work with when dealing with a fixed
number of variables.

3 Algorithms in this work run in time polynomial in the degree of the polynomial.
By (2), this is equivalent to that the indices of Schubert polynomials are given in
unary.
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Theorem 1.1. Suppose we are given (1) black-box access to some poly-
nomial f ∈ Z[x1, . . . , xn], f =

∑
v∈Γ avYv, av �= 0 ∈ Z with the promise

that deg(f) ≤ d and |Γ| ≤ m; (2) an oracle that computes the eval-
uation of Schubert polynomials on nonnegative integral points. Then,
there exists a deterministic algorithm that outputs the expansion of
f on the basis of Schubert polynomials. The algorithm runs in time
polynomial in n, d, m, and log(

∑
v∈Γ |av|).

In fact, Theorem 1.1 relies on the algorithm in Theorem 4.3 which
applies to a more general setting: Intuitively, it only requires the linear
basis to satisfy that the leading monomials are “easy to isolate.” See
Our techniques for a more detailed discussion.

Theorem 1.1 generalizes and derandomizes a result by Barvinok
and Fomin, who in Barvinok & Fomin (1997) present a randomized
algorithm that interpolates sparse symmetric polynomials in the Schur
basis. As mentioned, Schur polynomials are special Schubert polynomi-
als, and the Jacobi–Trudi formulas for Schur polynomials yield efficient
algorithms to compute them. So to recover Barvinok and Fomin’s re-
sult, apply our interpolation algorithm to symmetric polynomials and
replace the #P oracle computing Schubert polynomials by the efficient
algorithm computing Schur polynomials. Likewise, for those Schubert
polynomials with efficient evaluation procedures,4 we can get rid of the
#P oracle to obtain a polynomial-time interpolation algorithm.

Our second result concerns the evaluation of Schubert polynomials.
In fact, we shall work with a generalization of Schubert polynomials,
namely skew Schubert polynomials as defined by Lenart and Sottile
(Lenart & Sottile 2003). We will describe the definition in Section 2.
For now, we only remark that skew Schubert polynomials generalize
Schubert polynomials in a way analogous to how skew Schur polynomi-
als generalize Schur polynomials. A skew Schubert polynomial, denoted
by Yw/v, is indexed by v ≤ w ∈ N

m where ≤ denotes the Bruhat or-
der.5 Schubert polynomials can be defined by setting w to correspond
to the permutation maximal in the Bruhat order.

4 For example, there are determinantal formulas (Manivel 2001, Sec. 2.6) for
Schubert polynomials indexed by 2143-avoiding permutations (�i < j < k < �
s.t. σ(j) < σ(i) < σ(�) < σ(k)), and 321-avoiding permutations (�i < j < k
s.t. σ(k) < σ(j) < σ(i)). 2143-avoiding permutations are also known as vexillary
permutations and form a generalization of Grassmannian permutations.

5 Bruhat order on codes is inherited from the Bruhat order on permutations
through the correspondence between codes and permutations as in Section 2.
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Theorem 1.2. Given v,w ∈ N
m in unary, and a ∈ N

n in binary,
computing Yw/v(a) is in #P.

Corollary 1.3. Given v ∈ N
n in unary, and a ∈ N

n in binary, com-
puting Yv(a) is in #P.

Note that in Theorem 1.2, we have v,w ∈ N
m, while in Corol-

lary 1.3, we have v ∈ N
n. This is because, while for Schubert polyno-

mials we know Yv for v ∈ N
n depends on n variables, such a relation is

not clear for skew Schubert polynomials.
Finally, we also study these polynomials in the framework of alge-

braic complexity.

Theorem 1.4. Skew Schubert polynomials, and therefore Schubert
polynomials, are in VNP.

Applications of our algorithms. A long-standing open problem
about Schubert polynomials is to give a combinatorially positive rule, or
in other words, a #P algorithm for the generalized
Littlewood–Richardson (LR) coefficients, defined as the coefficients of
the expansion of products of two Schubert polynomials in the Schubert
basis. They are also the coefficients of the expansion of skew Schu-
bert polynomials in the Schubert basis (Lenart & Sottile 2003). These
numbers are of great interest in algebraic geometry, since they are the
intersection numbers of Schubert varieties in the flag manifold. See
Assaf et al. (2014); Mészáros et al. (2014) for recent developments on
this.

The original LR coefficients are a special case when replacing Schu-
bert with Schur in the above definition. It is known that the original
LR coefficients are #P-complete, by the celebrated LR rule, and a re-
sult of Narayanan (2006). Therefore, the generalized LR coefficients are
also #P-hard to compute, while as mentioned, putting this problem in
#P is considered to be very difficult—in fact, we were not aware of any
non-trivial complexity-theoretic upper bound. Furthermore, there are
few non-trivial algorithms for computing these numbers. On the other
hand, by interpolating skew Schubert polynomials in the Schubert basis,
we have the following.

Corollary 1.5. Given w,v ∈ N
m, let Γ = {u ∈ N

m | av,u
w �= 0}.

Then, there exists a deterministic algorithm that, given access to an
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#P oracle, computes (av,u
w |u ∈ N

m) in time polynomial in |w|, |Γ|, and
log(

∑
u∈Γ av,u

w ).

The algorithm in Corollary 1.5 has the benefit of running in time
polynomial in the bit size of av,u

w . Therefore, when |Γ| is small com-
pared to

∑
w av,u

w , our algorithm is expected to lead to a notable saving,
compared to those algorithms that are solely based on positive rules,
e.g., Kogan (2001). (Kogan 2001 furthermore only deals with the case
of Schubert times Schur.) Of course, in practice, we need to take into
account the time for evaluating skew Schubert polynomials.

In addition, we note that Barvinok and Fomin’s original motivation
is to compute the Littlewood–Richardson coefficients, Kostka numbers,
and the irreducible characters of the symmetric group. See Barvinok
& Fomin (1997, Sec. 1) for the definitions and importance of these
numbers. Since our algorithm can recover theirs (without referring to
a #P oracle), it can be used to compute these quantities as well. Note
that our algorithm is moreover deterministic.

Our original motivation of this work was to better understand this
approach of Barvinok and Fomin to compute the LR coefficients. This
topic recently receives attention in complexity theory (Bürgisser & Iken-
meyer 2013; Mulmuley et al. 2012; Narayanan 2006), due to its con-
nection to the geometric complexity theory (GCT) (Mulmuley 2011;
Mulmuley et al. 2012). Though this direction of generalization does
not apply to GCT directly, we believe it helps in a better understand-
ing (e.g., a derandomization) of this approach of computing the LR
coefficients.

Our techniques. We achieve Theorem 1.1 by first formalizing some
natural properties of a linear basis of (subrings of) multivariate polyno-
mials (Section 4.1). These are helpful for the interpolation purpose. If a
basis satisfies these properties, we call this basis interpolation-friendly,
or I-friendly for short. Then, we present a deterministic interpolation
algorithm for I-friendly bases (Theorem 4.3). We then prove that the
Schubert basis is interpolation-friendly6 (Section 5).

6 While the proofs for these properties of Schubert polynomials are easy, and
should be known by experts, we include complete proofs as we could not find complete
proofs or explicit statements. Most properties of Schubert polynomials, e.g., the #P
result, Lemma 5.6, Proposition 5.9, can also be obtained by a combinatorial tool
called RC graphs (Bergeron & Billey 1993). We do not attempt to get optimal
results (e.g., in Corollary 5.8 and Proposition 5.9), but are content with bounds that
are good enough for our purpose.
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Technically, for the interpolation algorithm, we combine the struc-
ture of the Barvinok–Fomin algorithm with several ingredients from
the elegant deterministic interpolation algorithm for sparse polynomi-
als in the monomial basis by Klivans and Spielman (Klivans & Spielman
2001). We deduce the key properties for Schubert polynomials to be
I-friendly, via the transition formula of Lascoux and Schützenberger
(Lascoux & Schützenberger 1985). The concept of I-friendly bases and
the corresponding interpolation algorithm may be of independent in-
terest, since they may be used to apply to other bases of (subrings of)
the multivariate polynomial ring, e.g., Grothendieck polynomials and
Macdonald polynomials (Lascoux 2013).

We would like to emphasize a subtle point of Schubert polynomials
that is crucial for our algorithm: For Yv, if the monomial xu is in Yv,
then v dominates u reversely, that is, vn ≥ un, vn + vn−1 ≥ un + un−1,
. . . , vn+ · · ·+v1 ≥ un+ · · ·+u1. While by no means a difficult property,
and clearly known to experts, it is interesting that the only reference we
can find is a footnote in Lascoux’s book (Lascoux 2013, pp. 62, footnote
4), so we prove it in Lemma 5.6. On the other hand, in the literature,
a weaker property is often mentioned, that is, v is no less than u in the
reverse lexicographic order. However, this order turns out to not suffice
for the purpose of interpolation.

Comparison with the Barvinok–Fomin algorithm. The under-
lying structures of the Barvinok–Fomin algorithm and ours are quite
similar. There are certain major differences though.

From the mathematical side, note that Barvinok and Fomin used the
dominance order of monomials, which corresponds to the use of upper
triangular matrix in Section 4.1. On the other hand, we make use of
the reverse dominance order, which corresponds to the use of lower
triangular matrix in Proposition 5.10. It is not hard to see that the
dominance order could not work for all Schubert polynomials. We also
need to upgrade several points (e.g., the computation and the bounds
on coefficients) from Schur polynomials to Schubert polynomials.

From the algorithmic side, both our algorithm and the Barvinok–
Fomin algorithm reduce multivariate interpolation to univariate inter-
polation. Here are two key differences. Firstly, Barvinok and Fomin
relied on randomness to obtain a set of linear forms s.t. most of them
achieve distinct values for a small set of vectors. We resort to a de-
terministic construction of Klivans and Spielman for this set, therefore
derandomizing the Barvinok–Fomin algorithm. Secondly, our algorithm
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has a recursive structure as the Barvinok–Fomin algorithm. But in each
recursive step, the approaches are different; ours is based on the method
of the Klivans–Spielman algorithm. As a consequence, our algorithm
does not need to know the bounds on the coefficients in the expan-
sion, while the basic algorithm in Barvinok & Fomin (1997, Sec. 4.1)
does. Barvinok and Fomin avoided the dependence on this bound via
binary search and probabilistic verification in Barvinok & Fomin (1997,
Sec. 4.2). However, it seems difficult to derandomize this probabilistic
verification procedure.

Organization. In Section 2, we present certain preliminaries. In Sec-
tion 3, we define skew Schubert polynomials and Schubert polynomials,
and present the proof for Theorem 1.2, Corollary 1.3, and Theorem 1.4.
In Section 4, we define interpolation-friendly bases and present the inter-
polation algorithm in such bases. In Section 5, we prove that Schubert
polynomials form an I-friendly basis, therefore proving Theorem 1.1.
We remind the reader that skew Schubert polynomials are only studied
in Section 3.

2. Preliminaries

Notations. For n ∈ N, [n] := {1, . . . , n}. Let x = (x1, . . . , xn) be
a tuple of n variables. When no ambiguity, x may represent the set
{x1, . . . , xn}. For e = (e1, . . . , en) ∈ N

n, the monomial with exponent
e is xe := xe1

1 . . . xen
n . Given f ∈ Z[x] and e ∈ N

n, Coeff(e, f) denotes
the coefficient of xe in f . xe (or e) is in f if Coeff(e, f) �= 0, and
Ef := {e ∈ N

n | xe ∈ f}. Given two vectors c = (c1, . . . , cn) and
e = (e1, . . . , en) in Q

n, their inner product is 〈c, e〉 =
∑n

i=1 ciei. Each
c ∈ Q

n defines a linear form c�, which maps e ∈ Q
n to 〈c, e〉.

Codes and permutations. We call v = (v1, . . . , vn) ∈ N
n a code.

We identify v with v′ = (v1, . . . , vn, 0, . . . , 0) ∈ N
m, for m ≥ n. The

weight of the code v, denoted by |v|, is
∑n

i=1 vi. A code v ∈ N
n

is dominant if v1 ≥ v2 ≥ · · · ≥ vn. We define a partition to be a
dominant code and often represent it using α. v is anti-dominant if
v1 ≤ v2 ≤ · · · ≤ vk and vk+1 = · · · = vn = 0.

For N ∈ N, SN is the symmetric group on [N ]. A permutation
σ ∈ SN is written as σ(1), σ(2), . . . , σ(N). We identify σ with σ′ =
σ(1), . . . , σ(N), N + 1, . . . , M ∈ SM , for M ≥ N . The length of σ,
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denoted by |σ|, is the number of inversions of σ. That is, |σ| = |{(i, j) :
i < j; σ(i) > σ(j)}|.

Given a permutation σ ∈ SN , we can associate a code v ∈ N
n,7 by

assigning vi = |{j : j > i, σ(j) < σ(i)}|. On the other hand, given a
code v ∈ N

n, we associate a permutation σ ∈ SN (N ≥ n) as follows. (N
will be clear from the construction procedure.) To start, σ(1) is assigned
as v1 +1. σ(2) is the (v2 +1)th number, skipping σ(1) if necessary (i.e.,
if σ(1) is within the first (v2 + 1) numbers). σ(k) is then the (vk + 1)th
number, skipping some of σ(1), . . . , σ(k − 1) if necessary. For example,
it can be verified that 316245 gives the code (2, 0, 3, 0, 0, 0) = (2, 0, 3)
and vice versa.

Given a code v, its associated permutation is denoted as 〈v〉. Con-
versely, the code of a permutation σ ∈ SN is denoted as c(σ). It is clear
that |σ| = |v|.

Bases. Let R be a (possibly nonproper) subring of the polynomial ring
Z[x]. Suppose M is a basis of R as a Z-module. M is usually indexed by
some index set Λ, and M = {tλ | λ ∈ Λ}. For example, Λ = N

n for R =
Z[x], and Λ = {partitions in N

n} for R = {symmetric polynomials}.
f ∈ R can be expressed uniquely as f =

∑
λ∈Γ aλtλ, aλ �= 0 ∈ Z,

tλ ∈ M , and a finite Γ ⊆ Λ.

A construction of Klivans and Spielman. We present a construc-
tion of Klivans and Spielman that is the key to the derandomization
here. Given positive integers m, n, and 0 < ε < 1, let t = 	m2n/ε
.
Let d be another positive integer and fix a prime p larger than t and d.
Now, define a set of t vectors in N

n as KS(m, n, ε, d, p) := {c(1), . . . , c(t)}
by c(k)

i = ki−1 mod p, for i ∈ [n]. Note that c(k)
i ≤ p = O(m2nd/ε).

The main property we need from KS is as follows.

Lemma 2.1 (Klivans & Spielman 2001, Lemma 3). Let e(1), . . . , e(m)

be m distinct vectors from N
n with entries in {0, 1, . . . , d}. Then,

Pr
k∈[t]

[〈c(k), e(j)〉 are distinct for j ∈ [m]] ≥ 1 − m2n/t ≥ 1 − ε

7 This is known as the Lehmer code of a permutation; see, e.g., Manivel (2001,
Section 2.1).
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On #P and VNP. The standard definition of #P is as follows: func-
tion f : ∪n∈N{0, 1}n → Z is in #P, if there exists a polynomial-time
Turing machine M and a polynomial p, s.t. for any x ∈ {0, 1}n,
f(x) = |{y ∈ {0, 1}p(n) s.t. M accepts (x, y)}|. In the proof of Theo-
rem 1.2 in Section 3, we find it handy to consider the class of Turing
machines that output a nonnegative integer (instead of just accept or re-
ject), and functions f : ∪n∈N{0, 1}n → N s.t. there exists a polynomial-
time Turing machine M and a polynomial p, s.t. for any x ∈ {0, 1}n,
f(x) =

∑
y∈{0,1}p(n) M(x, y). As described in de Campos et al. (2013),

such functions are also in #P, as we can construct a usual Turing ma-
chine M ′, which takes 3 arguments (x, y, z), and M ′(x, y, z) accepts if
and only if z < M(x, y). Then,

∑
y,z M ′(x, y, z) =

∑
y M(x, y). Note

that z ∈ {0, 1}q(n) for some polynomial q as M is polynomial time.
The reader is referred to Shpilka & Yehudayoff (2010) for basic

notions like arithmetic circuits. VP denotes the class of polynomial
families {fn}n∈N s.t. each fn is a polynomial in poly(n) variables, of
poly(n) degree, and can be computed by an arithmetic circuit of size
poly(n). VNP is the class of polynomials {gn}n∈N s.t. gn(x1, . . . , xn) =∑

(c1,...,cm)∈{0,1}m fn(x1, . . . , xn, c1, . . . , cm) where m = poly(n), and
{fn}n∈N is in VP. Valiant’s criterion is useful to put polynomial families
in VNP.

Theorem 2.2 (Valiant’s criterion, Valiant 1979). Suppose φ : {0, 1}�

→ N is a function in #P/poly. Then, the polynomial family {fn}n∈N

defined by fn =
∑

e∈{0,1}n φ(e)xe is in VNP.

3. Skew Schubert polynomials in #P and VNP

In this section, we first define skew Schubert polynomials via the la-
beled Bruhat order as in Lenart & Sottile (2003). We also indicate how
Schubert polynomials form a special case of skew Schubert polynomials.
We then put these polynomials, and therefore Schubert polynomials, in
#P and VNP. Also note that it is more convenient to work with per-
mutations instead of codes in this section.

Definition of skew Schubert polynomials. The Bruhat order on
permutations in SN is defined by its covers: For σ, π ∈ SN , σ <̇ π if (i)
σ−1π is a transposition τik for i < k, and (ii) |σ| + 1 = |π|. Assuming
(i), condition (ii) is equivalent to:

(a) σ(i) < σ(k);
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(b) for any j such that i < j < k, either σ(j) > σ(k), or σ(j) < σ(i).

This is because π gets an inversion added due to the transposition τik.
So in no position between i and k can σ take a value between σ(i)
and σ(k). Else, the number of inversions in π will change by more
than 1. Taking the transitive closure gives the Bruhat order (≤). The
maximal element in Bruhat order is π0 = N, N − 1, . . . , 1, whose code
is d = (N − 1, N − 2, . . . , 1).

The labeled Bruhat order is the key to the definition of skew Schubert
polynomials. While naming it as an order, it is actually a directed graph
with multiple labeled edges, with the vertices being the permutations
in SN . For σ <̇ π s.t. σ−1π = τst, s ≤ j < t and b = σ(s) = π(t), add a

labeled direct edge as σ
(j,b)−−→ π. That is, for each σ <̇ π, there are t − s

edges between them.
For any saturated chain C in this graph, we associate a monomial

xe(C), where e(C) = (e1, . . . , eN−1), and ei counts the number of i
appearing as the first coordinate of a label in C. A chain

σ0
(j1,b1)−−−−→ σ1

(j2,b2)−−−−→ . . .
(jm,bm)−−−−−→ σm

is increasing if its sequence of labels is increasing in the lexicographic
order on pairs of integers.

Now, we arrive at the definition of skew Schubert polynomials.

Definition 3.1. Let d and π0 be as above. Given two permutations σ
and π, s.t. σ is no larger than π in the Bruhat order (σ ≤ π), the skew
Schubert polynomial

Yπ/σ(x) :=
∑

C

xd/xe(C), (3.2)

summing over all increasing chains in the labeled Bruhat order from σ
to π. The Schubert polynomial Yσ := Yπ0/σ.

Now, in the increasing chain (or any chain in the labeled Bruhat
order), each edge increases |σ| by 1. So the number of edges in an
increasing chain from σ to π is |π| − |σ|.

Skew Schubert polynomials in #P and VNP. Before describing
the #P algorithm for skew Schubert polynomials, we note the following.
First, by the correspondence between codes and permutations, from a
code v ∈ N

n we can compute 〈v〉 ∈ SN in time polynomial in |v|. Also,



892 Mukhopadhyay & Qiao cc 26 (2017)

we have N = maxi∈[n]{vi + i} ≤ |vi| + n ≤ |v0| + n. Second, the length
of the path from σ to π is |π| − |σ|.

To start with, let us see how Corollary 1.3 follows from Theorem 1.2.

Proof (Proof of Corollary 1.3). Given v, we can compute 〈v〉 ∈ SN .
Note that N ≤ |v| + n. Then, form w = (N − 1, N − 2, . . . , 1). Invoke
Theorem 1.2 with (v,w,a). �

Proof (Proof of Theorem 1.2). Consider the following Turing ma-
chine M : the input to M is (1) codes v,w ∈ N

m in unary; (2) a =
(a1, . . . , an) ∈ N

n in binary; and (3) a sequence s of triplets of integers
(si, ji, ti) ∈ [N ] × [N ] × [N ] where si ≤ ji < ti, N = |w| + m, and
i ∈ [	], 	 = |w| − |v|. (Note that all the conditions on s can be checked
efficiently.) The output of M is a nonnegative integer.

Given the input (v,w,a, s), M uses s as a guide to compute an
increasing chain from 〈v〉 to 〈w〉 in the labeled Bruhat order of SN . Let

σ0 = 〈v〉. Suppose the chain to be constructed is σ0
(j1,b1)−−−−→ σ1

(j2,b2)−−−−→
· · · (j�,b�)−−−−→ σ�. At step i, 0 ≤ i < 	, M also maintains an exponent vector
ei ∈ N

N−1, and the label (ji, bi).
To start, M sets e0 = (0, . . . , 0), and (j0, b0) = (0, 0) (lexicographi-

cally minimal). Then, when the step i − 1 finishes, M maintains ei−1,
σi−1, and (ji−1, bi−1). Then, at step i, based on (si, ji, ti), M performs
the following. First, it computes σi = σi−1τsiti , and checks whether
|σi−1| + 1 = |σi|: If equal, then continue, otherwise return 0 (not a
valid chain). Second, it sets ei by adding 1 to the jith component
of ei−1, and keeping the other components same. Third, it computes
bi = σi(ti) and checks whether (ji, bi) is larger than (ji−1, bi−1) in the
lexicographic order: If it is larger, then continue, otherwise return 0
(not a valid chain).

When the 	th step finishes, M obtains σ� and e�. It first checks
whether σ� = 〈w〉: If equal, then continue, otherwise return 0 (not a
valid chain). M then computes ad/ae� as the output.

This finishes the description of M . Clearly, M runs in time polyno-
mial in the input size. M terminates within 	 steps where 	 = |w| − |v|
and recall that w and v are given in unary.

Finally, note that Yw/v(a) is equal to
∑

s M(v,w,a, s), where s runs
over all sequences of triplets of indices as described at the beginning of
the proof. By the discussion of #P at the end of Section 2, this puts
the evaluation of Yw/v in #P. �
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Proof (Proof of Theorem 1.4). Let us outline the proof of
Theorem 1.4, which basically follows from the proof of Theorem 1.2.
By Valiant’s criterion (Theorem 2.2), to put Yw/v in VNP, it suffices to
show that the coefficient of any monomial in Yw/v is in #P. Therefore,
we consider the following Turing machine M ′, which is modified from
the Turing machine M in the proof of Theorem 1.2 as follows. Firstly,
M ′ takes input (v,w,a, s), where a is thought of as an exponent vector
and is given in unary. Second, in the last step, M ′ checks whether d−e�

equals a or not. If equal, then output 1. Otherwise, output 0. It is clear
that this gives a #P algorithm to compute the coefficient of xa. The
only small problem here is that in the literature (Bürgisser (2000, Prop.
2.20), Koiran (2005, Thm. 2.3)) we can find, Valiant’s criterion is only
stated for multilinear polynomials.8 But it only takes a little more effort
to overcome this; essentially, this is because the degree is assumed to be
polynomially bounded, so a can be given in unary. First, note that N
(as in the beginning of the proof of Theorem 1.2) is an upper bound on
the individual degree for each xi and then introduce N copies for each
variable xi. Since a = (a1, . . . , an) is given in unary, we can assume
w.l.o.g. that each ai is an N -bit string (ai,1, . . . , ai,N ), and if ai = k,
the first k bits are set to 1, and the rest 0. (These conditions are easy to
enforce in the definition of M ′.) We then use ai,j to control whether we
have the jth copy of xi, or 1, using the formula ai,jxi + 1 − ai,j . After
this slight modification, the Valiant’s criterion applies, and the proof is
concluded. �

4. Sparse interpolation in an interpolation-friendly basis

4.1. Interpolation-friendly bases. Let M = {tλ | λ ∈ Λ} be a
basis of a Z-module R ⊆ Z[x1, . . . , xn], indexed by λ ∈ Λ. Given a
function K : Λ × N → R

+, M is called K-bounded, if ∀tλ ∈ M , the
absolute values of the coefficients in the monomial expansion of tλ ∈ M ,
tλ ∈ Z[x1, . . . , xn] are bounded by K(λ, n).9

For a (0, 1), non-singular matrix A, LA := {c� ∈ (Qn)� | ∃c′ ∈
(Z+)n, c = Ac′}. Note that c′ is a vector with positive integer compo-
nents. Also recall that for c ∈ Q

n, c� denotes the linear form determined

8 It is well known though that Valiant’s criterion works for even non-multilinear
polynomials. However, the only reference we are aware of is Saptharishi (2016, pp.
10, Footnote 1), where no details are provided. Therefore, we describe the procedure
to overcome this for completeness.

9 Note that while Λ depends on n already, we feel that it is clearer to explicitly
designate n as a parameter of K, as shown, e.g., in Proposition 5.9.
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by c. M is LA-compatible, if for every tλ ∈ M , we can associate an ex-
ponent eλ s.t. (1) for any c� ∈ LA, c� achieves the maximum uniquely
at eλ over Etλ = {e ∈ N

n | xe ∈ tλ}; (2) eλ �= eλ′ for λ �= λ′; (3)
the coefficient of xeλ in tλ is 1. xeλ (resp. eλ) is called the leading
monomial (resp. leading exponent) of tλ w.r.t. LA. By the conditions
(1) and (2), the leading monomials are distinct across M , and for each
tλ, the leading monomial is unique. We assume that from λ, it is easy
to compute eλ, and vice versa. In fact, for Schubert polynomials, λ is
from Λ = Z

n, and e = λ.
Combining the above two definitions, we say that M is (K, LA)-

interpolation-friendly, if (1) M is K-bounded; (2) M is LA-compatible.
We also call it (K, LA)-friendly for short, or I-friendly when K and LA

are understood from the context.

◦ A trivial example is the monomial basis for Z[x], where K = 1, A
is the identity transformation, and a leading monomial for xe is
just itself;

◦ For symmetric polynomials, the basis of Schur polynomials (in-
dexed by partitions α) is (K, LA)-friendly, where (1) K(α, n) =√|α|! by Proposition 5.2, (2) A = (ri,j)i,j∈[n] where ri,j = 0 if
i > j, and 1 otherwise, by the fact that every exponent vector in
sα is dominated by α (Barvinok & Fomin (1997, Sec. 2.2)). (A is
the upper triangular matrix with 1’s on the diagonal and above.)
The associated leading monomial for sα is xα. In retrospect, the
fact that Schur polynomials form an I-friendly basis is the math-
ematical support of the Barvinok–Fomin algorithm (Barvinok &
Fomin 1997).

4.2. Sparse interpolation in an interpolation-friendly basis. In
this section, we perform deterministic sparse polynomial interpolation
in an interpolation-friendly basis. The idea is to combine the struc-
ture of the Barvinok–Fomin algorithm with some ingredients from the
Klivans–Spielman algorithm.

We first briefly review the idea of the Klivans–Spielman algorithm
(Klivans & Spielman 2001, Section 6.3). Suppose we want to interpolate
f ∈ Z[x1, . . . , xn] of degree d with m monomials. Their algorithm makes
use of the map

φc(x1, . . . , xn) = (yc1 , . . . , ycn) (4.1)

where c = (c1, . . . , cn) ∈ (Z+)n. If c satisfies the property: ∀e �=
e′ ∈ f, 〈c, e〉 �= 〈c, e′〉, then we can reduce interpolation of multivariate
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polynomials to interpolation of univariate polynomials: first apply the
univariate polynomial interpolation (based on the Vandermonde ma-
trix) to get a set of coefficients. Then to recover the exponents, modify
φc as

φ′
c(x1, . . . , xn) = (p1y

c1 , . . . , pnycn), (4.2)

where pi’s are distinct primes and get another set of coefficients. Com-
paring the two sets of coefficients, we can compute the exponents. Note
that the components of c need to be small for the univariate interpola-
tion to be efficient. To obtain such a c, Klivans and Spielman exhibit
a small—polynomial in n, m, d, and an error probability ε ∈ (0, 1)—
set of test vectors c s.t. with probability 1 − ε, a vector from this set
satisfies the above property. Furthermore, the components of these vec-
tors are bounded by O(m2nd/ε). Their construction was reviewed in
Lemma 2.1, Section 2.

Now, suppose M is a (K, LA)-friendly basis for R ⊆ Q[x], and we
want to recover f =

∑
λ∈Γ aλtλ of degree ≤ d, and |Γ| = m. To apply

the above idea to an arbitrary I-friendly basis M , the natural strategy
is to extract the leading monomials w.r.t. LA. However, as each basis
polynomial can be quite complicated, there are many other non-leading
monomials which may interfere with the leading ones. Specifically, we
need to explain the following:

(1) Whether extremely large coefficients appear after the map φc,
therefore causing the univariate interpolation procedure to be in-
efficient?

(2) Whether some leading monomials are preserved after the map φc?
(That is, will the image of every leading monomial under φc be
canceled by non-leading monomials?)

It is immediate to realize that I-friendly bases are designed to over-
come the above issues. (1) is easy: By the K-bounded property, for
any monomial xu in f , the absolute value of Coeff(u, f) is bounded by
K · (

∑
λ |aλ|). Therefore, the coefficients of the image of f under φc

are bounded by O
((

n+d
d

) · K · (
∑

λ |aλ|)). (2) is not hard to overcome
either; see the proof of Theorem 4.3 below. These properties are used
implicitly in the Barvinok–Fomin algorithm.

There is one final note: If, unlike in the monomial basis case, the
procedure cannot produce all leading monomials at one shot, we may
need to get one tλ and its coefficient, subtract that off, and recurse.
This requires us to compute tλ efficiently. As this is the property of tλ,
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not directly related to the interpolation problem, we assume an oracle
which takes an index λ ∈ Λ and an input a ∈ N

n, and returns tλ(a).

Theorem 4.3. Let M = {tλ | λ ∈ Λ} be a (K, LA)-friendly basis
for R ⊆ Z[x], K = K(λ, n), A a (0, 1) invertible matrix. Given an
access to an oracle O = O(λ,a) that computes basis polynomial tλ(a)
for a ∈ N

n, there exists a deterministic algorithm that, given a black
box containing f =

∑
λ∈Γ aλtλ, aλ �= 0 ∈ Z with the promise that

deg(f) ≤ d and |Γ| ≤ m, computes such an expansion of f in time
poly(n, d, m, log(

∑
λ |aλ|), log K).

Proof. We first present the algorithm. Recall the maps φc and φ′
c

defined in (4.1) and (4.2).

Input: A black box B containing f ∈ R ⊆ Z[x1, . . . , xn] with the
promises: (1) deg(f) ≤ d; (2) f has ≤ m terms in the M -basis.
An oracle O = O(λ,a) computing tλ(a) for a ∈ N

n.

Output: The expansion f =
∑

λ∈Γ aλtλ.

Algorithm: 1. By Lemma 2.1, construct the Klivans–Spielman set
KS = KS(m, n, 1/3, nd, p).

2. For every vector c in KS, do:

(a) fc ← 0. i ← 0. d ← Ac.
(b) While i < m, do:

i. Apply the map φd to B−fc (with the help of O), and
use the univariate interpolation algorithm to obtain
g(y) =

∑k
i=0 biy

i. If g(x) ≡ 0, break.
ii. Apply the map φ′

d to B−fc (with the help of O), and
use the univariate interpolation algorithm to obtain
g′(y) =

∑k
i=0 b′

iy
i.

iii. From bk and b′
k, compute the corresponding mono-

mial xe, and its coefficient ae. From xe, compute
the corresponding label ν ∈ Λ, and set aν ← ae.

iv. fc ← fc + aνtν . i ← i + 1.

3. Take the majority of fc over c and output it.

We prove the correctness of the above algorithm. As before, let
eλ be the leading vector of tλ w.r.t. LA. Note that as AT is (0, 1)-
matrix, entries in the vector ATeλ are in {0, 1, . . . , nd}. By the property
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of KS(m, n, 1/3, nd, p), no less than 2/3 fraction of the vectors from
c ∈ KS satisfy that 〈c, ATeλ〉 are distinct over λ ∈ Γ; call these vectors
“distinguishing.” We shall show that for any distinguishing vector, the
algorithm outputs the correct expansion, so step (3) would succeed.

Fix a distinguishing vector c. As eλ �= eλ′ for λ �= λ′ and A is
invertible, there exists a unique ν ∈ Λ s.t. eν achieves the maximum
at 〈c, ATeλ〉 over λ ∈ Γ. As 〈c, ATeλ〉 = 〈Ac, eλ〉 = 〈d, eλ〉, by the
definition of M being LA-compatible, we know that within each tλ, d�

achieves the unique maximum at eλ over Etλ , the set of all exponent
vectors in tλ. Thus, over all e ∈ f , d� achieves the unique maximum
at eν . This means that y〈d,eν〉 is the monomial in g(y) of maximum
degree and could not be affected by other terms. As Coeff(eν , tν) = 1,
Coeff(eν , f) is just the coefficient of tν in the expansion of f . So we
have justified that from Step (2.b.i) to (2.b.iii), the algorithm extracts
the monomial of maximum degree in g(y), computes the corresponding
coefficient and exponent in f , and interprets as a term aλtλ.

To continue computing other terms, we just need to note that c is
still distinguishing w.r.t. (f−some of the terms within f). This justifies
Step (2.b.iv).

To analyze the running time, the FOR-loop in Step (2) and the
WHILE-loop in Step (2.b) take O(m2n) and m rounds, respectively.
In the univariate polynomial interpolation step, as the components in
c are bounded by O(m2n · nd) and A is (0, 1), the components in d
are bounded by O(m2n3d). It follows that k = deg(g) = 〈d, eν〉 =
O(m2n3d2). By the K-bounded property, the coefficients of g(y) are
of magnitude O

((
n+d

d

) · K · (
∑

λ |aλ|)). So the running time for the
univariate interpolation step, and therefore for the whole algorithm, is
poly(m, n, d, log(

∑
λ |aλ|), log K). �

5. Schubert polynomials form an interpolation-friendly
basis

In this section, our ultimate goal is to prove Propositions 5.9 and 5.10,
which establish that Schubert polynomials form an I-friendly basis. The
main theorem Theorem 1.1 follows immediately. For this, we need to
review some properties of Schur polynomials, the definition of Schubert
polynomials via divided differences, and the transition formula (Lascoux
& Schützenberger 1985). The transition formula is the main technical
tool to deduce the properties of Schubert polynomials we shall need for
Propositions 5.9 and 5.10. These include Lemma 5.6 which helps us



898 Mukhopadhyay & Qiao cc 26 (2017)

to find the matrix A needed for the LA-compatible property, and an
alterative proof for Schubert polynomial in #P.

Schur polynomials. For a positive integer 	, the complete symmetric
polynomial h�(x) ∈ Z[x] is the sum over all monomials of degree 	,
with coefficient 1 for every monomial. We also define h0(x) = 1, and
h�(x) = 0 for any 	 < 0. For a partition α = (α1, . . . , αn) in N

n,
the Schur polynomial sα(x) in Z[x] can be defined by the Jacobi–Trudi
formula as sα(x) = det[hαi−i+j(x)]i,j∈[n]. Note that deg(sα(x)) = |α|.
Via this determinantal expression, we have

Proposition 5.1 (Barvinok & Fomin 1997, Sec. 2.4). For a ∈ Z
n,

sα(a) can be computed using O(|α|2 · n + n3) arithmetic operations,
and the bit lengths of intermediate numbers are polynomial in those of
a.

Littlewood’s theorem shows Schur polynomials have positive coefficients.
We also need the following bound on coefficients—the Kostka numbers—
in sα(x).

Proposition 5.2 (Barvinok & Fomin 1997, Sec. 2.2). For any e ∈
N

n, 0 ≤ Coeff(e, sα(x)) ≤ √|α|!.

Definition of Schubert polynomials via divided differences.
We follow the approach in Lascoux (2003, 2008). For i ∈ [n − 1], let χi

be the switching operator on Z[x1, . . . , xn]:

fχi(x1, . . . , xi, xi+1, . . . , xn) := f(x1, . . . , xi+1, xi, . . . , xn).

Then, the divided difference operator ∂i on Z[x1, . . . , xn] is ∂i(f) :=
f−fχi

xi−xi+1
.

Definition 5.3. For v = (v1, . . . , vn) ∈ N
n, the Schubert polynomial

Yv ∈ Z[x1, . . . , xn] is defined recursively as follows:

(i) If v is dominant, then Yv = xv1
1 xv2

2 . . . xvn
n .

(ii) If vi > vi+1, then Yv′ = ∂iYv where v′ = (v1, . . . , vi+1, vi −
1, . . . , vn).

It is not hard to see that this defines Yv for any v. We list some
basic facts about Schubert polynomials.
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Fact 5.4 (Manivel 2001). (i) If v = (v1, . . . , vn) is anti-dominant
with k being the last nonzero index, Yv equals the Schur poly-
nomial sα(x1, . . . , xk) where α = (vk, . . . , v1).

(ii) As a special case of (1), if v = (0, . . . , 0, w, 0, . . . 0) where w is at
the kth position, then Yv(x) is the complete homogeneous sym-
metric polynomial hw(x1, . . . , xk).

(iii) If v = [v1, . . . , vk, 0, . . . , 0] ∈ N
n, then Yv ∈ Z[x1, . . . , xk].

The transition formula and its applications. Given a code v ∈
N

n, let k be the largest t s.t. vt is nonzero, and v′ = [v1, . . . , vk −
1, 0, . . . , 0]. For convenience, let σ = 〈v′〉. Then, the transition formula
of Lascoux and Schützenberger (Lascoux & Schützenberger 1985) is:

Yv = xkYv′ +
∑

u

Yu,

where u ∈ N
n satisfies that: (i) 〈u〉σ−1 is a transposition τik for i < k;

(ii) |u| = |v|. Assuming (i), condition (ii) is equivalent to:

(a) σ(i) < σ(k); (b) for any j s.t. i < j < k,

either σ(j) > σ(k), or σ(j) < σ(i). (5.5)

Let Ψv be the set of codes with weight |v| appearing in the transition
formula for v, and Φv = Ψv∪{v′}. Any u ∈ Ψv is uniquely determined
by the transposition τik, therefore, by some i ∈ [k − 1].

The transition formula yields the following simple, yet rarely men-
tioned10 property of Schubert polynomials. This is the key to show
that the Schubert basis is LA-compatible for some appropriate A. For
completeness, we include a proof here.

Given v and u in N
n, v dominates u reversely, denoted as v  u, if

vn ≥ un, vn + vn−1 ≥ un + un−1, . . . , vn + · · · + v2 ≥ un + · · · + u2,
vn + · · · + v1 = un + · · · + u1.

Lemma 5.6. For u ∈ N
n, if xu is in Yv, then v  u. Furthermore,

Coeff(v, Yv) = 1.

Proof. We first induct on the weight. When the weight is 1, the
claim holds trivially. Assume the claim holds for weight ≤ w, and

10 The only reference we know of is in Lascoux (2013, pp. 62, Footnote 4).
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consider v ∈ N
n with |v| = w + 1. We now induct on the reverse

dominance order, from small to large. The smallest one with weight
w + 1 is [w + 1, 0, . . . , 0]. As Y[w+1,0,...,0] = xw+1

1 , the claim holds.
For the induction step, we make use of the transition formula. Sup-

pose k is the largest i s.t. vi is nonzero, v′ = [v1, . . . , vk − 1, 0, . . . , 0],
and σ = 〈v′〉. Then, by the transition formula, Yv = xkYv′ +

∑
u Yu,

where u ∈ N
n satisfies that: (i) 〈u〉σ−1 is a transposition τik for i < k;

(ii) |u| = |v|. Assuming (i), the condition (ii) is equivalent to that:
(a) σ(i) < σ(k); (b) for any j s.t. i < j < k, either σ(j) > σ(k), or
σ(j) < σ(i). Thus, u and v′ can only differ at positions i and k, and
ui > v′

i = vi, uk ≤ v′
k < vk. It follows that v  u, and it is clear that

v �= u. By the induction hypothesis on |v|, each monomial in Yv′ is
reverse dominated by v′, and Coeff(v′, Yv′) = 1. As Yv′ depends only
on x1, . . . , xk by Fact 5.4 (3), each monomial in xkYv′ is reverse dom-
inated by v. By the induction hypothesis on the reverse dominance
order, every monomial in Yu is reverse dominated by u, thus is reverse
dominated by v and cannot be equal to v. Thus, Coeff(v, Yv) = 1,
which is from xkYv′ . This finishes the induction step. �

We then deduce another property of Schubert polynomials from the
transition formula. Starting with v0, we can form a chain of transitions
v0 → v1 → v2 → · · · → vi → . . . where vi ∈ Ψvi−1 . The following
lemma shows that long enough transitions lead to anti-dominant codes.

Lemma 5.7 (Lascoux & Schützenberger 1985, Lemma 3.11). Let v0 →
v1 → · · · → v� be a sequence of codes in N

n, s.t. vi ∈ Ψvi−1 , i ∈ [	]. If
none of vi’s are anti-dominant, then 	 ≤ n · |v0|.

Based on Lemma 5.7, we have the following corollary. Recall that
for v ∈ N

n, Φv is the collection of codes (not necessarily of weight |v|)
in the transition formula for v.

Corollary 5.8. Let v0 → v1 → · · · → v� be a sequence of codes in
N

n, s.t. vi ∈ Φvi−1 , i ∈ [	]. If none of vi’s are anti-dominant, then
	 ≤ n · (|v0|2 + |v0|).

Proof. For w ∈ [|v0|], let iw be the last index i in [	] s.t. vi is of
weight w. As none of vis are anti-dominant, by Lemma 5.7, iw−1−iw ≤
n · w + 1 ≤ n · |v0| + 1. The result then follows. �
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In fact, by following the proof of Lemma 5.7 as in
Lascoux & Schützenberger (1985), it is not hard to show that in
Corollary 5.8, the same bound as in Lemma 5.7, namely 	 ≤ n · |v0|,
holds.

From Corollary 5.8, a #P algorithm for Schubert polynomials can
also be derived.

Proof (An alternative proof of Corollary 1.3). Consider the follow-
ing Turing machine M : The input to M is a code v ∈ N

n in unary,
a point a = (a1, . . . , an) ∈ N

n in binary, and a sequence s of pairs of
indices (si, ti) ∈ [n] × [n], si ≤ ti, and i ∈ [	] where 	 := n · (|v|2 + |v|).
The output of M is a nonnegative integer. Given the input (v,a, s), M
computes a sequence of codes v0 → v1 → · · · → v�, and keeps track of
a monomial xe0 → xe1 → · · · → xe� , where ei ∈ N

n. The pair of indices
(si+1, ti+1) is used as the instruction to obtain vi+1 from vi, and ei+1

from ei.
To start, v0 = v, and e = (0, . . . , 0). Suppose at step i, ei =

(e1, . . . , en), and vi = (v1, . . . , vk, 0, . . . , 0), vk �= 0. (k is the maximal
nonzero index in vi.)

If vi is anti-dominant, then Yvi equals to some Schur polynomial by
Fact 5.4 (1). Using Proposition 5.1, M can compute the evaluation of
that Schur polynomial on a efficiently, and then multiply with the value∏

i∈[n] a
ei
i as the output. Note that as will be seen below, the weight

of ei is 	 ≤ n · |v0|2, so the bit length of
∏

i∈[n] a
ei
i is polynomial in the

input size.
In the following, vi is not anti-dominant. M checks whether ti+1 =

k. If not, M outputs 0.
In the following, ti+1 = k. M then checks whether si+1 = ti+1.
If si+1 = ti+1, M goes to step i + 1 by setting vi+1 = (v1, . . . , vk −

1, 0, . . . , 0), and ei+1 = (e1, . . . , ek−1, ek + 1, ek+1, . . . , en).
If si+1 < ti+1, then M tests whether si+1 is an index in Ψvi , as

follows. It first computes the permutation σ := 〈(v1, . . . , vk−1, vk −
1, 0, . . . , 0)〉 ∈ SN , using the procedure described in Section 2. Note
that N = maxi∈[n]{vi + i} ≤ |vi| + n ≤ |v0| + n. Then, it tests whether
si+1 is in Ψvi , using (5.5). If si+1 is not in Ψvi , then M outputs 0.
Otherwise, M goes to step i + 1 by setting vi+1 = c(στsi+1,ti+1), and
ei+1 = ei.

This finishes the description of M . Clearly, M runs in time polyno-
mial in the input size. M terminates within 	 steps by Corollary 5.8.
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M always outputs a nonnegative integer as Schur polynomials are poly-
nomials with positive coefficients.

Finally note that Yv(a) is equal to
∑

s M(v,a, s), where s runs over
all the sequences of pairs of indices as described at the beginning of the
proof. By the discussion on #P in Section 2, this puts evaluating Yv

on a in #P. �

The Schubert basis is interpolation-friendly. Now we are in the
position to prove that the Schubert basis is interpolation-friendly.

Proposition 5.9. {Yv ∈ Z[x1, . . . , xn] | v ∈ N
n} is K-bounded for

K(v, n) = n2n·(|v|2+|v|) · √|v|!.

Proof. The alternative proof of Corollary 1.3 for Schubert polyno-
mials implies that Yv can be written as a sum of at most (n2)n·(|v|2+|v|)

polynomials f , where f is of the form xe · sα, |α| + |e| = |v|. The
coefficients in Schur polynomial of degree d are bounded by

√
d! by

Proposition 5.2. The claim then follows. �

Proposition 5.10. {Yv ∈ Z[x1, . . . , xn] | v ∈ N
n} is LA-compatible

for A = (ri,j)i,j∈[n], ri,j = 0 if i < j, and 1 otherwise. The leading
monomial of Yv w.r.t. LA is xv.

The matrix A in Proposition 5.10 is the lower triangular matrix of 1’s
on the diagonal and below. Compare with that for Schur polynomials,
described in Section 4.1.

Proof. This follows easily from Lemma 5.6: note that for any c =
(c1, . . . , cn) ∈ (Z+)n, u ∈ Yv, 〈Ac,u〉 = c1(u1 + · · ·+un)+ c2(u2 + · · ·+
un)+· · ·+cnun ≤ c1(v1+· · ·+vn)+c2(v2+· · ·+vn)+· · ·+cnvn = 〈Ac,v〉.
As ci > 0, the equality holds if and only if u = v. �

Now we conclude the article by proving the main Theorem 1.1.

Proof (Proof of Theorem 1.1). Note that n2n·(|v|2+|v|) · √|v|! is up-
per bounded by 2O(n log n·(|v|2+|v|)+|v| log(|v|)), and recall |v| = deg(Yv).
Then combine Proposition 5.9, Proposition 5.10, and Theorem 4.3. �
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A. An alternative proof of skew Schubert polynomials in
VNP

By Equation (3.2), skew Schubert polynomial can be written as:

Yπ/σ(x) = Yπ/σ(x1, x2, . . . xN )

:=
∑

C

xd/xe(C) =
∑

C

N−1∏

i=1

xN−i−ei
i (A.1)

Note that eN = 0.
Let m be the length of an increasing chain. The first and second

indices of each label in an increasing chain are encoded by N × m 0 − 1
matrices g and b, respectively. In these matrices, the variables are listed
along the row and the edges of a chain along the column. So for each
column, there will be a 1 in the row which corresponds to the index
that appears in that label. Thus, in case of the g matrix, it indicates
which variable should be multiplied in the monomial.

All permutations are represented by N × N 0 − 1 matrices, acting
on length-N column vectors. W0 and V , representing permutations
σ and π, respectively, are given. Let W1, . . . Wm be the intermediate
permutations in the increasing chain.

Now consider the following polynomials.

h1N =
N∏

i=1

x
(N−i)
i

m∏

j=1

(
N∑

k=1

x−1
k gkj) (A.2)

h1N encodes the monomial for a given increasing chain, which depends
on g.

http://mathoverflow.net/q/186603
http://mathoverflow.net/q/186603
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In the following, we shall gradually build up a series of polynomials,
which basically characterize the property that g and b form an increasing
chain.

h2N =
m∏

t=1

[(
∏

i,j,l,k

(1 − (Wt)ij(Wt)lk)) · (
N∏

i=1

N∑

j=1

(Wt)ij)] (A.3)

where the second product is over all 1 ≤ i, j, l, k ≤ N such that i = l iff
j �= k. h2N encodes valid permutation matrices. That is, it is nonzero
iff W1, . . . Wm are valid permutation matrices, that is, each row and
column contains exactly one 1.

h3N = [
∏

i,j,k

(1 − gikgkj)] · [
∏

i,j,k

(1 − bikbkj)] (A.4)

where both the products are over all 1 ≤ k ≤ m and 1 ≤ i, j ≤ N such
that i �= j. h3N is nonzero iff each column of g and b has at most one 1.

h4N = [
m∏

j=1

N∑

k=1

gkj ] · [
m∏

j=1

N∑

k=1

bkj ] (A.5)

h4N is nonzero iff there is at least one 1 in each column of g and b.

h5N =
N∏

i,j=1

[1 − ((Wm)ij − Vij)] · [1 + ((Wm)ij − Vij)] (A.6)

h5N is nonzero iff Wm = V .

h6ijt =
N∏

a,b=1

[1−((Wt)ab−(Wt−1τij)ab)].[1+((Wt)ab−(Wt−1τij)ab)]·bjt

(A.7)

h6ijt is nonzero iff for a particular transposition (i, j) and for a pair
of consecutive permutations Wt−1 and Wt, (a) Wt = Wt−1τij and (b)
second index of the label is given according to the definition of labeled
Bruhat order.

h7t =
N∑

i,j=1

N∑

k,l=1
k<l

(Wt−1)ik · (Wt−1)jl ·
∏

i<a<j
k<b<l

[1 − (Wt−1)ab] · h6ijt (A.8)
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h7t is nonzero iff for any pair of consecutive permutations σ′, π′ being
encoded by Wt−1 and Wt, respectively, such that π′ = τijσ

′ , we have
σ′(i) < σ′(j) (i < j) and for every i < k < j, either σ′(k) < σ′(i) or
σ′(k) > σ′(j). That is, σ′ < π′ in the Bruhat order.

h8N =
m∏

t=1

h7t

∑

i≤s<j

gst (A.9)

where 1 ≤ s < N . h8N is nonzero iff the sequence of permutations
is correct, namely maintaining the Bruhat order so that the labels are
given accordingly.

h9N =
m−1∏

t=1

N∑

i=1

git[
N∑

j=i+1

gj,t+1 + gi,t+1(
N∑

k=1

bkt ·
N∑

l=k

bl,t+1)] (A.10)

h9N is nonzero iff each pair of labels in a chain respects the increasing
lexicographic order.

We define the polynomial:

hN (x1, . . . xN , g, b, W1, . . . Wm)
= h1N · h2N · h3N · h4N · h5N · h8N · h9N (A.11)

For each assignment to g, b, Wi, hN is either 0, or a monomial corre-
sponding to one correct increasing chain. It is clear that the size of a
straight line program to evaluate hN is polynomial in N . So hN is in
VP.

The skew Schubert polynomial then can be given by

Yπ/σ(x1, . . . xN ) =
∑

g,b,W1,...Wm

hN (x1, . . . xN , g, b, W1, . . . Wm) (A.12)

g and b have mN elements and since m is O(N2) so each has O(N3)
elements. Each Wi has N2 entries. Thus, the summation is over 0–1
strings of polynomial length.

This proves Yπ/σ(x) is p-definable and hence is in VNP.
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Karola Mészáros, Greta Panova & Alexander Postnikov (2014).
Schur Times Schubert via the Fomin-Kirillov Algebra. Electr. J. Comb.
21(1), P1.39. URL http://www.combinatorics.org/ojs/index.php/eljc/
article/view/v21i1p39.

Ketan Mulmuley (2011). On P vs. NP and geometric complexity theory:
Dedicated to Sri Ramakrishna. J. ACM 58(2), 5. URL http://doi.acm.
org/10.1145/1944345.1944346.

Ketan D Mulmuley, Hariharan Narayanan & Milind Sohoni (2012).
Geometric complexity theory III: on deciding nonvanishing of Littlewood-
Richardson coefficient. Journal of Algebraic Combinatorics 36(1), 103–110.

Hariharan Narayanan (2006). On the complexity of computing Kostka
numbers and Littlewood-Richardson coefficients. Journal of Algebraic Combi-
natorics 24(3), 347–354.

R. Saptharishi (2016). A survey of lower bounds in arithmetic circuit com-
plexity. https://github.com/dasarpmar/lowerbounds-survey/releases.
Version 3.0.0.

Amir Shpilka (2009). Interpolation of Depth-3 Arithmetic Circuits with Two
Multiplication Gates. SIAM J. Comput. 38(6), 2130–2161.

Amir Shpilka & Ilya Volkovich (2015). Read-once polynomial identity
testing. Computational Complexity 24(3), 477–532. URL http://dx.doi.
org/10.1007/s00037-015-0105-8.

http://igm.univ-mlv.fr/~al/ARTICLES/CoursYGKM.pdf
http://igm.univ-mlv.fr/~al/ARTICLES/CoursYGKM.pdf
http://books.google.com.au/books?id=yz7gyKYgIuwC
http://books.google.com.au/books?id=yz7gyKYgIuwC
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v21i1p39
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v21i1p39
http://doi.acm.org/10.1145/1944345.1944346
http://doi.acm.org/10.1145/1944345.1944346
https://github.com/dasarpmar/lowerbounds-survey/releases
http://dx.doi.org/10.1007/s00037-015-0105-8
http://dx.doi.org/10.1007/s00037-015-0105-8


cc 26 (2017) Polynomial interpolation in the Schubert basis 909

Amir Shpilka & Amir Yehudayoff (2010). Arithmetic Circuits: A survey
of recent results and open questions. Foundations and Trends in Theoretical
Computer Science 5, 207–388. ISSN 1551-305X. URL http://dx.doi.org/
10.1561/0400000039.

Leslie G. Valiant (1979). Completeness Classes in Algebra. In Proceedings
of the 11h Annual ACM Symposium on Theory of Computing, April 30 - May
2, 1979, Atlanta, Georgia, USA, Michael J. Fischer, Richard A. De-

Millo, Nancy A. Lynch, Walter A. Burkhard & Alfred V. Aho, ed-
itors, 249–261. ACM. URL http://doi.acm.org/10.1145/800135.804419.

Richard Zippel (1979). Probabilistic algorithms for sparse polynomi-
als. In Symbolic and Algebraic Computation, EdwardW. Ng, editor, vol-
ume 72 of Lecture Notes in Computer Science, 216–226. Springer Berlin
Heidelberg. ISBN 978-3-540-09519-4. URL http://dx.doi.org/10.1007/
3-540-09519-5_73.

Richard Zippel (1990). Interpolating Polynomials from Their Values. J.
Symb. Comput. 9(3), 375–403.

Manuscript received 2 November 2015

Priyanka Mukhopadhyay

Centre for Quantum Technologies
National University of Singapore
Singapore 117543, Singapore
mukhopadhyay.priyanka@gmail.com

Youming Qiao

Centre for Quantum Computation
and Intelligent Systems
University of Technology Sydney
Sydney, NSW 2007, Australia
jimmyqiao86@gmail.com

http://dx.doi.org/10.1561/0400000039
http://dx.doi.org/10.1561/0400000039
http://doi.acm.org/10.1145/800135.804419
http://dx.doi.org/10.1007/3-540-09519-5_73
http://dx.doi.org/10.1007/3-540-09519-5_73

	Sparse multivariate polynomial interpolation on the basis of Schubert polynomials
	Introduction
	Preliminaries
	Skew Schubert polynomials in #P and VNP 
	Sparse interpolation in an interpolation-friendly basis
	Interpolation-friendly bases
	Sparse interpolation in an interpolation-friendly basis

	Schubert polynomials form an interpolation-friendly basis
	Acknowledgements
	An alternative proof of skew Schubert polynomials in VNP
	References




