
comput. complex. 27 (2018), 99 – 207

c© Springer International Publishing 2016

1016-3328/18/010099-109

published online June 3, 2016

DOI 10.1007/s00037-018-0136-9 computational complexity
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PROXIMITY
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Abstract. We initiate a study of non-interactive proofs of proximity.
These proof systems consist of a verifier that wishes to ascertain the
validity of a given statement, using a short (sublinear length) explicitly
given proof, and a sublinear number of queries to its input. Since the
verifier cannot even read the entire input, we only require it to reject
inputs that are far from being valid. Thus, the verifier is only assured of
the proximity of the statement to a correct one. Such proof systems can
be viewed as the NP (or more accurately MA) analogue of property
testing.
We explore both the power and limitations of non-interactive proofs
of proximity. We show that such proof systems can be exponen-
tially stronger than property testers, but are exponentially weaker than
the interactive proofs of proximity studied by Rothblum, Vadhan and
Wigderson (STOC 2013). In addition, we show a natural problem that
has a full and (almost) tight multiplicative trade-off between the length
of the proof and the verifier’s query complexity. On the negative side, we
also show that there exist properties for which even a linearly long (non-
interactive) proof of proximity cannot significantly reduce the query
complexity.

Keywords. Property testing, probabilistic proof systems, proofs of
proximity.

Subject classification. F.0 [Theory of Computation]: General

1. Introduction

Understanding the power and limitations of sublinear-time algo-
rithms is a central question in the theory of computation. The
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study of property testing, initiated by Rubinfeld & Sudan (1996)
and Goldreich et al. (1998), aims to address this question by con-
sidering highly efficient randomized algorithms that solve approx-
imate decision problems, while only inspecting a small fraction
of the input. Such algorithms, commonly referred to as property
testers, are given oracle access to some object, and are required to
determine whether the object has some predetermined property, or
is far (say, in Hamming distance) from every object that has the
property. Remarkably, it turns out that many natural properties
can be tested by making very few queries to the object.

Once a model of computation has been established, a funda-
mental question that arises is to understand the power of proof
systems in this model. Recall that a proof system consists of a pow-
erful prover that wishes to convince a weak verifier, which does not
trust the prover, of the validity of some statement. Since verifying
is usually easier than computing, using the power of proofs, it is
often possible to overcome limitations of the basic model of compu-
tation. In this paper we study proof systems in the context of prop-
erty testing, with the hope that by augmenting testers with proofs
we can indeed overcome inherent limitations of property testers.

Thus, we are interested in proof systems in which the verifier
reads only a small fraction of the input. Of course we cannot hope
for such a verifier to reject every false statement. Instead, as is
the case in property testing, we relax the soundness condition and
only require that it be impossible to convince the verifier to accept
statements that are far from true statements. Such proof systems
were first introduced by Ergün et al. (2004) and were recently fur-
ther studied by Rothblum et al. (2013) who were motivated by
applications to delegation of computation in sublinear time. Roth-
blum et al. (2013) showed that by allowing a property tester to
interact with an untrusted prover (who can read the entire input),
sublinear-time verification is indeed possible for a wide class of
properties. As in the property testing framework, the tester is only
assured of the proximity of the input to the property and hence
such protocols are called interactive proofs of proximity (IPPs).

1.1. The notion of MAP. In this work, we also consider
proofs of proximity, but restrict the verification process to be non-
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interactive. In other words, we augment the property testing
framework by allowing the tester full and explicit access to an
(alleged) proof. Such a proof-aided tester for a property Π is given
oracle access to an input x and explicit access to a proof string w
and should distinguish between the case that x ∈ Π and the case
that x is far from Π while using a sublinear number of queries. We
require that for inputs x ∈ Π, there exists a proof that the tester
accepts with high probability, and for inputs x that are far from
Π no proof will make the tester accept, except with some small
probability of error.

This type of proof system can be viewed as the property test-
ing analogue of an NP proof system (whereas IPP is the property
testing analogue of IP). However, in contrast to polynomial-time
algorithms, sublinear-time algorithms inherently rely on random-
ization.1 Since an NP proof system in which the verifier is ran-
domized is known as a Merlin–Arthur (MA) proof system, we call
these sublinear non-interactive proof systems Merlin–Arthur proofs
of proximity or simply MAPs.

Following the property testing literature, we consider the num-
ber of queries that the tester makes as the main computational
resource. We ask whether non-interactive proofs can reduce the
number of queries that property testers make, and if so by how
much. (We note that Rothblum et al. (2013) showed that it is
possible to significantly reduce the query complexity of property
testers using interactive proofs, but their proof systems rely fun-
damentally on two-way interaction.)

Given the (widely believed) power of proofs in the context of
polynomial-time computation, one would hope that proofs can help
decrease the number of queries that is needed to test various prop-
erties. This is indeed the case. In fact, for every property Π, con-
sider a proof system for the statement x ∈ Π, wherein the proof w
is simply equal to x. In order to verify the statement, the tester
need only verify that indeed w ∈ Π and that w is close to x (i.e.,
that the relative Hamming distance between w and x is a small con-

1It is not difficult to see that the sublinear-time deterministic computation
or even verification is limited to trivial properties (cf. Goldreich & Sheffet
(2010)).
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stant). The former check can be carried out without any queries
to x, whereas for the latter a constant number of queries suffice.2

Thus, using a proof of length linear in the input size, any property
can be tested using a constant number of queries (furthermore, the
tester has one-sided error). In contrast, there exist properties for
which linear lower bounds on the query complexity of standard
property testers are known (cf. Goldreich et al. (1998)).

The foregoing discussion leads us to view the proof length,
in addition to the number of queries, as a central computational
resource, which we should try to minimize. Thus, we measure the
complexity of an MAP by the total amount of information avail-
able to the tester, namely the sum of the MAPs query complexity
(i.e., the number of queries that the tester makes) and proof com-
plexity (i.e., the length of the proof). In this work we study the
complexity of MAPs in comparison with property testers and with
the recently introduced IPPs. Our main results are outlined in
Section 1.2 and Section 1.3.

A concrete motivation. We note that the non-interactive
nature of such proof systems may have significant importance to
applications such as delegation of computation. Specifically, con-
sider a scenario wherein a computationally weak client has reliable
query access to a massive dataset x. The client wishes to compute
a function f on x, but its limited power, along with the massive
size of the dataset, prevents it from doing so. In this case, the
client can use a powerful server (e.g., a cloud computing provider)
to compute f(x) for it. However, the client may be distrustful of
the server’s answer (as it might cheat or make a mistake). Thus,
an MAP for f can be used to verify the correctness of the com-
putation delegated to the server: Given access to x, the server can
send the value y = f(x), together with a proof of proximity that
ascertains that x is close to a dataset x′ for which f(x′) = y. The
latter can be verified using an MAP verifier that makes only a
small number of queries to x.

2Note that for objects that are not binary strings (e.g., functions over finite
fields), each query returns an element of a set Σ that may require ω(1) bits to
represent.
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We emphasize that the advantage in using non-interactive
proofs of proximity (rather than interactive ones) is not only in
removing the need for two-way communication, but also: (1) the
proof can be “annotated” to the dataset by the server in a cheap
off-line phase; and (2) the proof can be reused for multiple clients.

The computational complexity of generating and verifying
the proof. As noted above, we view the number of queries and
proof length as the main computational resources. It is natural
to also consider the computational complexity of generating and
verifying the proof. However, in this work our main focus is on
the query and proof complexities. Still, we note that unless stated
otherwise, our protocols can be implemented efficiently; that is, the
proof can be generated in polynomial time and verified in sublinear
time.

Comparison with PCPs of proximity. PCPs of proximity
(PCPPs), first studied by Ben-Sasson et al. (2006) and by Dinur
& Reingold (2006) (where they are called assignment testers) are
also non-interactive proof systems in which the verifier has ora-
cle access to an object, and needs to decide whether the object
is close to having a predetermined property. However, PCPPs
differ from MAPs in that the verifier is only given query (i.e.,
oracle) access to the proof, whereas in MAPs, the verifier has
explicit access to the proof. Indeed, the proof string in PCPPs is
typically of super-linear length (but only a small fraction of it is
actually read at random), and in contrast, in MAPs (similarly to
limited-non-determinsm complexity (Papadimitriou & Yannakakis
1996), bounded-communication interactive proofs (Goldreich &
H̊astad 1998), and laconic-prover interactive proofs (Goldreich
et al. 2002)), the proof is short, and in particular, sublinear. Thus,
PCPPs may be thought of as the PCP analogue of property test-
ing, whereas MAPs are the NP analogue of property testing.

In fact, considering a variety of non-interactive proof systems
that differ in whether the main input and the proof are given explic-
itly or implicitly (i.e., via query access or explicit access), leads to
the taxonomy depicted in Table 1.1. Interestingly, the three other
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Access to proof
Access to main input No proof Explicit access Oracle access

Explicit access P NP or MA PCP
Oracle access Property testers MAP (this work) PCPP

Table 1.1: Taxonomy of non-interactive proof systems.

variants, corresponding to NP,PCP and PCPP , have all been
well studied. Thus, we view the notion of MAPs as completing
this taxonomy of non-interactive proof systems.

1.2. The power of MAP. The first question that one might
ask about the model of MAPs is whether proofs give a signifi-
cant savings in the query complexity of property testers (indeed,
such savings are the main reason to introduce a proof system in
the first place). Given the above discussion on the importance of
bounding the proof length, we seek savings in the query complex-
ity while using only a relatively short proof. Our first result shows
that indeed there exists a property for which a dramatic saving is
possible:

Theorem 1.1 (separating MAP from testers (informally stated,
see Theorem 3.1)). There exists a (natural) property that has an
MAP that uses a logarithmic-length proof and only a constant
number of queries, but requires n0.999 queries for every property
tester.

Here and throughout this work, n denotes the length of the object
being tested.

Having established an exponential separation between property
testers and MAPs, we continue our study of MAPs by asking
how many queries can be saved by slightly increasing the length
of the proof. The following result shows a property for which a
smooth multiplicative trade-off, which is (almost) tight, between
the number of queries and length of the proof holds:3

3We remark that the relation p · q ≈ Θ(n) is not the best possible for either
upper bounds (e.g., the empty language has an MAP with p = q = 0) or lower
bounds (see Theorem 1.4). Theorem 1.2 shows that there exists a property for
which a smooth trade-off is possible.
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Theorem 1.2 (proof-query trade-off (informally stated, see The-
orem 3.14)). There exists a (natural) property Π such that for
every p ≥ 1: (1) There is an MAP for Π that uses a proof of

length p and makes O
(

n0.999

p

)
queries, and (2) every MAP for Π

with proof length p must have query complexity Ω
(

n0.998

p

)
.

Next, recall that for property testers huge gaps may exist
between the query complexity of testers that have one-sided error
and the query complexity of testers that have two-sided error
(where a one-sided tester is one that accepts every object that has
the property with probability 1). Notable examples for properties
for which such gaps are known are Cycle-Freeness in the bounded-
degree graph model (see Czumaj et al. (2012)) and ρ-Clique in the
dense graph model (see Goldreich et al. (1998)). In contrast, we
observe that such gaps can not exist in the case of MAPs.

Theorem 1.3 (one-sided error MAP (informally stated, see The-
orem 4.3)). Any two-sided error MAP can be converted to have
one-sided error with only a poly-logarithmic overhead to the query
and proof complexities.

Since every property tester can be viewed as an MAP that uses
an empty proof, as an immediate corollary, we obtain a transfor-
mation from every two-sided error property tester into a one-sided
MAP that uses a proof of only poly-logarithmic length (with only
a poly-logarithmic increase in the query complexity). Moreover,
since (as noted above) there are well-known properties for which
one-sided error property testing is exponentially harder than two-
sided error property testing, Theorem 1.3 implies an exponential
separation between MAPs (with poly-logarithmically long proofs)
and one-sided error property testing. We note that Theorem 1.1
shows such a separation for the more general case of two-sided
error.

We note that all of the explicit properties that were discussed
thus far are properties “with distance”; that is, properties for which
every two objects that have the property are far apart. In other
words, the set of objects forms an error-correcting code. This
distance, along with a form of local self-correction, is a crucial
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ingredient of the foregoing MAPs. In contrast, all of the proper-
ties described next are properties “without distance.” Hence, the
power of MAPs is not limited to properties with distance.

MAPs for parameterized concatenation problems. We
identify a family of natural properties, for which it is possible to
construct efficient MAPs, by using a generic scheme. Specifi-
cally, for every problem that can be expressed as a parameter-
ized concatenation problem, we show how to construct an efficient
MAP that allows a trade-off between the query and proof com-
plexity. Loosely speaking, a property Π is a parameterized concate-
nation problem if Π = Πα1 × · · · × Παk

, for some integer k, where
each property Παi

is a property parameterized by αi (represented,
say, by a string). For example, the property of all n-bit strings
with Hamming weight w, denoted Hammingw

n , can be written as
Hammingw1

n/k × · · · × Hammingwk

n/k, where w1 + · · · + wk = w. Using
the aforementioned generic scheme, we obtain MAPs for a couple
of natural problems, including: (1) approximating the Hamming
weight of a string, and (2) graph orientation problems. (For more
details, see Section 6).

MAPs for graph properties. To see that MAPs are also use-
ful for testing graph properties, we consider the problem of testing
bipartiteness in the bounded-degree graph model. We construct an
MAP protocol for verifying bipartiteness of rapidly mixing graphs,
with proof complexity p and query complexity q, for every p and
q such that p · q ≥ N (where N is the number of vertices in the
graph). In particular, we obtain an MAP verifier that uses a
proof of length N2/3 and makes only N1/3 queries. This stands in
contrast to the Ω(

√
N) lower bound on the query complexity of

property testers (which do not use a proof), shown by Goldreich &
Ron (2002), which also holds for rapidly mixing graphs. We remark
that in (Rothblum et al. 2013) a (multi-round) IPP was given for
the same problem (see Section 7).

We note that in the dense graph model, testing bipartiteness
(or more generally k-colorability) can be easily done using only
O(1/ε) queries (where ε represents the desired proximity to the
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object) when given a proof that is simply the k-coloring of the
graph (which can be represented by N log2 k bits where N is the
number of vertices and k is the number of colors).4 In contrast,
for standard property testers such query complexity is impossible
(see Bogdanov & Trevisan (2004)). We note that a similar protocol
(described as a PCPP) for testing bipartiteness in the dense graph
model was suggested in (Ergün et al. 2004) and in (Ben-Sasson
et al. 2006).

MAPs for sparse properties. If a property is relatively sparse,
in the sense that it contains only t objects, then a proof of length
log2 t (which fully describes the object) can be used, and only
O(1/ε) queries suffice to verify the proof’s consistency with the
object. Using this observation we note that testing k-juntas and
k-linearity can be verified using only O(1/ε) queries and a proof
of length O(k log n), whereas a lower bound of Ω(k) queries is well
known for standard property testers (cf. Blais (2010)).

1.3. The limitations of MAP. In the previous section, we
described results that exhibit the power of MAPs. But what are
the limitations of MAPs? As discussed above, a proof of linear
length suffices to reduce the query complexity to O(1/ε). More-
over, Theorem 1.1 shows that even a logarithmically long proof
can be extremely useful for a specific property. Thus, it is natural
to ask whether a sublinear proof can reduce the query complexity
for every property. The following result shows that for almost all
properties, even a proof of length n/100 cannot improve the query
complexity by more than a constant factor.

Theorem 1.4 (a hard property for MAP (informally stated, see
Theorem 5.1)). For almost all properties, every MAP verifier that
uses a proof of length n/100 must make Ω(n) queries.5

4Note that the size of the tested object is N2, and so N log2 k is sublinear
in the input size. In order to verify this proof, the verifier chooses O(1/ε)
edges at random and accepts if all are properly colored.

5In fact, we show a general additive trade-off between proof and query
complexities; that is, every MAP verifier that uses a proof of length p must
make Ω̃(n − p) queries.
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Although Theorem 5.1 holds for most properties, finding an
explicit property for which a similar statement holds remains an
interesting open question. We note that Theorem 1.4 improves
upon a result of Fischer et al. (2014) (see discussion in Section 1.5).

Since Theorem 1.4 shows that even a relatively long proof can-
not help in general for every property, one might ask whether there
are specific properties for which short proofs do suffice. As was
shown in Theorem 1.1, this is indeed the case and a logarithmi-
cally long proof allows for an exponential improvement in the query
complexity for a specific property. But can an even shorter, say
constant-size proof, help? Unfortunately, the answer is negative
since an MAP with query complexity q and proof complexity p
can be emulated by a property tester that enumerates all possible
proofs and makes a total of Õ(2p · q) queries. Still, are there any
further limits to how proofs can help a tester?

We first note that the ability to query the object in a way that
depends on the proof is essential to the power of MAP . In con-
trast, consider proof-oblivious queries MAPs, which are MAPs in
which the verifer’s queries are independent of the provided proof.
Such MAPs can be viewed as a two-step process in which the ver-
ifier first (adaptively) queries the object and only then it receives
the proof and decides whether to accept or reject based on both
the answers and the proof. We say that such MAPs have proof-
oblivious queries. The following result shows that MAPs with
proof-oblivious queries can provide at most a quadratic improve-
ment over standard property testers.

Theorem 1.5 (emulating proof-oblivious MAP by testers (infor-
mally stated, see Theorem 4.2)). If a property Π has an MAP that
makes q proof-oblivious queries and uses a proof of length p, then
Π has a property tester that makes O(q · p) queries.

By Theorem 1.1, the restriction to proof-oblivious queries is a
necessary precondition for Theorem 1.5 (and indeed, the MAP
verifier of Theorem 1.1 must make proof-dependent queries).

Having inspected the relationship between MAPs and prop-
erty testing, we proceed to consider the relationship between
MAPs and IPPs. Recall that MAPs are actually a special case
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of IPPs in which the interaction is limited to a single message
sent from the prover to the verifier. When comparing MAPs and
IPPs it is natural to compare both the query complexity and the
total amount of communication with the prover (which in the case
of MAPs is simply the length of the proof).

The following theorem shows that IPPs are stronger than
MAPs not only syntactically but also in essence. We show that
even 3-message IPPs may have exponentially better query com-
plexity than MAPs (while using the same amount of communi-
cation). Moreover, we show that IPPs with poly-logarithmically
many messages of poly-logarithmic length can also have exponen-
tially better communication complexity.

Theorem 1.6 (separating IPP from MAP (informally stated,
see Theorem 3.23 and Theorem 3.28)). There exists a property Π
such that on the one hand, any MAP for Π with proof of length
at most n0.499+o(1) has query complexity at least n0.499−o(1), and on
the other hand, Π has:

(i) A 3-message IPP that makes polylog(n) queries while using
a total of n0.499+o(1) communication.

(ii) An IPP with only polylog(n) query and communication com-
plexities but using a poly-logarithmic number of messages.

1.4. Techniques. Several of our results (in particular Informal
Theorems Theorem 1.2 and Theorem 1.6) are based on a specific
algebraic property, which we call Sub-Tensor Sum and denote by
TensorSum (c.f. Lund et al. (1992)). Let F be a finite field and let
H ⊂ F be an arbitrary subset. We consider m-variate polynomials
over F that have individual degree d. The TensorSum property
contains all such polynomials whose sum on Hm equals 0.6 That
is, TensorSum contains all polynomials P : Fm → F of individual
degree d such that

∑
x∈Hm

P (x) = 0.

6The choice of the constant 0 is arbitrary.
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Selecting |F|,m, d and |H| suitably (as poly-logarithmic functions
in the input size n = |F|m), we obtain the following roughly stated
upper and lower bounds for TensorSum (for the formal statements,
see the technical sections):

1. PT : The query complexity of testing TensorSum (without a
proof) is Θ(n0.999±o(1)) queries.

2. MAP : The MAP complexity of TensorSum is Θ(
n0.499±o(1)

)
. Moreover, for every p ≥ 1, the MAP query

complexity of TensorSum with respect to proofs of length p

is Θ
(

n0.999±o(1)

p

)
.

3. IPP[3]: TensorSum has a 3-message IPP with query
complexity polylog(n) and communication complexity O(
n0.499+o(1)

)
.

4. IPP : TensorSum has an IPP with query and communica-
tion complexities polylog(n). However, in contrast to 3, this
IPP uses poly-logarithmically many messages.

To get a taste of our proofs, consider the (relatively) simple case
wherein we restrict the TensorSum property to dimension m = 2
and a field F of size

√
n (i.e., bivariate polynomials over a field of

size
√

n). Naturally, we call this variant the Sub-Matrix Sum prop-
erty and denote it by MatrixSum. Note that MatrixSum contains
all polynomials P : F2 → F of individual degree d = |F|/10 such
that

∑
x,y∈H

P (x, y) = 0.

As an MAP proof to the claim that the polynomial P

is in MatrixSum, consider the univariate polynomial Q(x)
def
=∑

y∈H P (x, y). To verify that P is indeed in MatrixSum the verifier
acts as follows:

1. If
∑

x∈H Q(x) �= 0, then reject.
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2. Verify that P is (close to) a low-degree polynomial and reject
if not. This can be done with O(d) queries via the classical
low-degree test (see Theorem A.7).

3. Verify that Q is consistent with P . Since both are low-degree
polynomials, it suffices for the verifier to check that Q(r) =∑

y∈H P (r, h) for a random r ∈ F.

Actually, a technical difficulty arises from the fact that P can
only be verified to be close to a low-degree polynomial. The
naive solution of reading every point via self-correction is too
expensive in the case of MatrixSum. While it is possible to
overcome this difficulty using a slightly more sophisticated
technique, the naive solution suffices for our actual setting of
parameters (for TensorSum) and so we ignore this difficulty
here.

By setting |H| = O(|F|) we obtain an MAP with proof and
query complexity O(

√
n) (since n = |F|2). Using more sophisti-

cated techniques in the same spirit, we obtain both MAP and
IPP upper bounds for the TensorSum problem.7

Parameterized concatenation problems. Our techniques for
showing MAPs for properties that do not have distance (and a
structure that allows for self-correction) differ from the above. One
class of problems that we consider is that of parameterized con-
catenation problems. Such properties consists of strings that are
a concatenation of sub-strings, where each sub-string satisfies a
particular parameterized property. The actual parameterization
is not known a priori to the tester, and so an MAP proof that
simply provides this parameterization turns out to be quite use-
ful. Given this parameterization, the MAP verifier can simply
test each substring individually (or a random subset of these sub-
strings). Actually, in order to solve the problem more efficiently,
the different sub-strings are tested with respect to different values

7We use TensorSum rather than MatrixSum because we do not know how
to obtain an IPP nor a full trade-off between proof and query complexities
for MatrixSum.
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of the proximity parameter by using a technique known as precision
sampling (see survey (Goldreich 2013, Appendix A)).

Verifying bipartiteness of well-mixing graphs. Our MAP
protocol for proving bipartiteness of a given well-mixing graph G =
(V,E) of size N = |V | proceeds as follows. The proof consists of
a subset W ⊆ V of vertices that are allegedly on the same side of
the graph. The verifier selects a random vertex s ∈ V and takes
roughly N/|W | random walks of length Θ(log n), starting at s. The
verifier rejects if two of the walks pass through vertices of the set
W , where the lengths of the paths from s to these vertices of W
have opposite parities. Indeed, such walks cannot occur in bipartite
graphs, assuming that all vertices in S are on the same side.

We show that if the graph is rapidly mixing and far from bipar-
tite, then, for a O(1/ log(N)) fraction of vertices s ∈ W , the prob-
ability that a random walk starting in s will end in W with odd
(respectively, even) parity is roughly |W |/N . Since the verifier
takes N/|W | random walks starting in s, with constant probabil-
ity, it will detect a violation and reject. The analysis of our protocol
is inspired by (Goldreich & Ron 2002). Interestingly, in contrast to
the analysis of the rapidly mixing case in (Goldreich & Ron 2002),
our analysis crucially relies on the random selection of the starting
vertex.

Lower bounds via MA communication complexity. as for
our property testing lower bounds, we base these on the recently
introduced technique of Blais et al. (2011). The (Blais et al. 2011)
methodology enables one to obtain property testing lower bounds
from communication complexity lower bounds. To obtain MAP
lower bounds, we extend the (Blais et al. 2011) framework. We
show that lower bounds on the MA communication complexity of
a communication complexity problem related to a property Π can
be used to derive lower bounds on the MAP complexity of Π.

MA communication complexity, introduced by Babai et al.
(1986), extends standard communication complexity by adding a
third player, Merlin, who sees both the input x of Alice and y of
Bob and attempts to convince them that f(x, y) = 1 where f is
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the function that they are trying to compute. We require that if
f(x, y) indeed equals 1, then there exists a proof for which Alice
and Bob output the correct value (with high probability), but if
f(x, y) = 0, then no proof will cause them to output a wrong value
(except with some small error probability).

In order to show lower bounds for MAP , we are thus left with
the task of showing lower bounds for related MA communication
complexity problems. Fortunately, citeKla03 showed a strong lower
bound for the set-disjointness problem, which we use in our reduc-
tions. Additionally, we extend a recent result of Gur & Raz (2013)
who give an MA communication complexity lower bound on the
classical problem of Gap Hamming Distance.

We note that nearly all of the lower bounds shown in (Blais
et al. 2011) are proved via reductions from the communication com-
plexity problems of set-disjointness and gap Hamming distance.
Since these communication complexity problems have known MA
communication complexity lower bounds (cf. Gur & Raz (2013);
Klauck (2003)), these reductions, together with our extension of
the Blais et al. (2011) framework to MAPs, give MAP lower
bounds for the problems studied in Blais et al. (2011) (e.g., testing
juntas, Fourier degree, sparse polynomials, monotonicity).

Lower bounds via the probabilistic method. Lastly, to
prove Theorem 1.4, which shows a property that requires Ω(n)
queries even from an MAP that has access to a proof of length
n/100, we use a technique that is inspired by (Goldreich et al.
1998), and also uses ideas from (Rothblum et al. 2013). In more
detail, we note that MAPs can be represented by a relatively small
class of functions. Since this class of functions is small, using the
probabilistic method, we argue that a “random property” (chosen
from an adequate distribution) fools every MAP verifier in the
sense that the verifier cannot distinguish between a random input
that has the property and a totally random input (which will be
far from the property).

1.5. Related works. The notion of interactive proofs of prox-
imity was first considered by Ergün et al. (2004) (where it was
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called approximate interactive proofs). More recently, Rothblum
et al. (2013) initiated a systematic study of the power of this
notion. Their main result is that all languages in NC have inter-
active proofs of proximity with query and communication com-
plexities roughly

√
n, and polylog(n) communication rounds. On

the negative side, Rothblum et al. (2013) show that there exists
a language in NC1 for which the sum of queries and communi-
cation in any constant-round interactive proof of proximity must
be polynomially related to n. We remark that a straightforward
application of the techniques in Rothblum et al. (2013) implies
an MAP lower bound of Ω(

√
n) for a non-explicit property and

a lower bound of Ω(n1/4) for an explicit property, whereas The-
orem 1.4 and Theorem 1.2 show an MAP lower bound of Ω(n)
for a non-explicit property and Ω(

√
n) for an explicit property

(respectively).

The study of interactive proof systems (in the polynomial-time
setting), of which the class MA is a special case, was initiated in
the seminal works of Goldwasser et al. (1989) and Babai (1985).
In the last decade, MA proof systems were introduced for vari-
ous computational models. There is a rich body of work in the
literature addressing MA communication complexity protocols
(e.g., Gavinsky & Sherstov (2010); Klauck (2003, 2011); Sherstov
(2012)). Aaronson & Wigderson (2009) used MA communica-
tion complexity lower bounds to show that, for many fundamen-
tal questions in complexity theory, any solution will require “non-
algebraizing” techniques.

Relation to annotated data streams. In a recent line of
research, the data stream model was extended to support sev-
eral interactive and non-interactive proof systems. The model of
streaming algorithms with non-interactive proofs was first intro-
duced in (Chakrabarti et al. 2014b) and extended in (Chakrabarti
et al. 2014a, 2015; Cormode et al. 2012, 2013; Daruki et al. 2015;
Gur & Raz 2013; Thaler 2014). We remark that there are several
related notions between MAPs and annotated data streams. For
example, MAPs that make proof-oblivious queries can be thought
of as analogous to online annotated data streams, and general
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MAPs can be thought of as analogous to prescient annotated data
streams (see (Chakrabarti et al. 2014b) for definitions).

Relation to partial testing (Fischer et al. 2014). Indepen-
dently of this work, Fischer et al. (2014) introduced the notion of
partial testing, which is closely related to MAPs. A property Π
is a said to be Π′-partially testable, for Π′ ⊆ Π, if inputs in Π′ can
be distinguished from inputs that are far from Π by a tester that
makes only few queries. As pointed out by (Fischer et al. 2014), an
MAP(p, q) for a property Π is equivalent to the existence of sub-
properties Π1, . . . , Π2p ⊆ Π such that ∪i∈[2p]Πi = Π and for every
i ∈ [2p], the property Π is Πi-partially testable using q queries.

In our terminology, the main result of (Fischer et al. 2014) is
that there exists a (natural) property Π such that every MAP(p, q)
for Π must satisfy that p·q = Ω(n). In contrast, Theorem 1.2 shows
a different property Π′ for which p ·q = Ω(n0.999). However, we also
show an (almost) matching upper bound for our property Π′ (see
Theorem 1.2). We also note that Theorem 1.4 (see Theorem 5.1),
which was discovered following the publication of (Fischer et al.
2014), shows a property for which every MAP(p, q) must satisfy
p + q = Ω(n); that is, if p = n/100, then q = Ω(n). We note
that the latter result also resolves (a natural interpretation of) a
question asked by (Fischer et al. 2014, Open Question 1.4).8

Applications of our work and follow-up works. Our work
has also found applications in unrelated studies. For example, in
the study of sample-based testers, Goldreich & Ron (2013) used
the separation between the power of MAPs and property testers
(see Theorem 3.1) in order to show that proximity-oblivious testers
do not necessarily imply fair proximity-oblivious testers (where
fair proximity-oblivious testers are testers in which every query
is almost uniformly distributed). Another example is an appli-
cation for testing dynamic environments. Specifically, the sepa-

8Loosely speaking, in the terminology of (Fischer et al. 2014), Theorem 5.1
implies that for every r there exists a property Π that can be tested with r
queries, but every partition of Π into k properties Π1, . . . ,Πk, such that Π is
Pi-partially testable with O(1) queries, must satisfy that k = 2Ω(r).
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ration between the power of standard MAPs and MAPs with
proof-oblivious queries (see Lemma 3.6 and Theorem 4.2) was used
to show that time-conforming testers can be exponentially weaker
than their non-time-conforming counterparts (see Goldreich & Ron
(2014) for details).

In addition, following the initial publication of this work, Gol-
dreich et al. (2014) improved on Theorem 1.1 by tightening the
separation between MAPs and testers (see Section 3.1 for more
details). Goldreich et al. (2015) constructed MAPs and IPPs
for context-free languages and languages accepted by read-once
branching programs. Kalai & Rothblum (2015) considered argu-
ments of proximity, in which soundness is only guaranteed against
polynomial-time cheating provers, and showed upper and lower
bounds (where their lower bound applies also to IPPs). Goldreich
& Gur (2016) studied MAPs in which the input is represented in
a concise encoding (also known as universal locally verifiable codes)
and showed upper and lower bound for any constraint satisfaction
problem (CSP).

Non-deterministic testing of graphs Last, we note that Alon
et al. (2009) discussed the notion of non-deterministic property
testing of graphs, which was formally stated recently by Lovász &
Vesztergombi (2012), and further studied by Gishboliner & Shapira
(2013). This model is a form of PCP of proximity in which both the
proof and verification procedure are restricted to be of a particular
form.

1.6. Organization. This paper’s organization differs from the
order in which our results were reviewed in the introduction, so that
technically related results are grouped together. In Section 2 we
formally define MAPs and property testers (which are essentially
MAPs with an empty string). In Section 3 we formally state
and prove all of our separation results, whereas in Section 4 we
prove our general transformation results. In Section 5 we show
a property that is hard for MAPs even given a (relatively) long
proof. In Section 6 we consider MAPs for concatenation problems,
and in Section 7 we show our MAP for verifying bipartiteness of
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rapidly mixing graphs in the bounded-degree model. Important
background material is provided in Appendix A.

2. Definitions

In this section we formally define Merlin–Arthur proofs of proxim-
ity. We start by introducing some relevant notations and standard
definitions.

A property may be defined as a set of strings. However, since we
mostly consider properties that consist of (non-Boolean) functions,
it will be useful for us to use the following (also commonly used)
equivalent definition.

For every n ∈ N, let Dn and Rn be sets. For simplicity we use
the convention that Dn = [n] (and Rn will usually be of size much
smaller than n). Let Fn be the set of all functions from Dn to Rn. A
property is an ensemble Π = ∪n∈N Πn, where Πn ⊆ Fn. In the (rare)
case that we test properties of strings (rather than functions), we
view the n-bit string x as a function Ix : [n] → {0, 1} where Ix(i) =
xi for all i ∈ [n]. For the rest of this work, it will sometimes
be convenient for us to refer to Π as a problem (rather than a
property), where we actually refer to the testing problems that are
associated with Π (and are defined in the following sub-sections).

Let x, y ∈ Σn be two strings of length n ∈ N over a (finite)
alphabet Σ. We define the (absolute) distance of x and y as

Δ (x, y)
def
= |{xi �= yi : i ∈ [n]}|. If Δ (x, y) ≤ ε · n, then we

say that x is ε-close to y, and otherwise we say that x is ε-
far from y. We define the distance of x from a set S ⊆ Σn as

Δ (x, S)
def
= miny∈S Δ (x, y). If Δ (x, S) ≤ ε · n, then we say that

x is ε-close to S and otherwise we say that x is ε-far from S. We
extend these definitions from strings to functions, while identifying
a function with its truth table.

Notation. For a finite set S, we denote by x ∈R S a random
variable x that is uniformly distributed in S. We denote by Af (x)
the output of an algorithm A given an explicit input x and implicit
(i.e., oracle) access to the function f . Last, given a binary string
s, we denote its Hamming weight by wt(x).
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Integrality issues. Throughout this work, for simplicity of nota-
tion, we use the convention that all (relevant) integer parameters
that are stated as real numbers are implicitly rounded to the near-
est integer.

2.1. Merlin–Arthur proofs of proximity. We are now ready
to define Merlin–Arthur proofs of proximity.

Definition 2.1 A Merlin–Arthur proof of proximity (MAP) for
a property Π = ∪n∈NΠn consists of a probabilistic algorithm V ,
called the verifier, that is given as explicit inputs an integer n ∈ N,
a proximity parameter ε > 0, and a proof string w ∈ {0, 1}∗; in
addition, it is given oracle access to a function f ∈ Fn. The verifier
satisfies the following two conditions:

(i) Completeness: For every n ∈ N and f ∈ Πn, there exists
a string w (referred to as a proof or witness) such that for
every proximity parameter ε > 0:

Pr
[
V f (n, ε, w) = 1

]
≥ 2/3.

where the probability is over the random coin tosses of the
verifier V .

(ii) Soundness: For every n ∈ N, function f ∈ Fn, string w, and
proximity parameter ε > 0, if f is ε-far from Πn, then:

Pr
[
V f (n, ε, w) = 1

]
≤ 1/3.

where the probability is over the random coin tosses of the
verifier V .

If the completeness condition holds with probability 1, then we
say that the MAP has a one-sided error and otherwise we say that
it has two-sided error.

We note that MAPs can be viewed as a restricted form of the
interactive proofs of proximity, studied by Rothblum et al. (2013)
(see Section 2.2 for the definition of IPP).
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An MAP is said to have query complexity q : N × R
+ → N if

for every n ∈ N, ε > 0, f ∈ Fn and any w ∈ {0, 1}∗, the verifier
makes at most q(n, ε) queries to f . The MAP is said to have proof
complexity p : N → N if for every n ∈ N and f ∈ Πn there exists
w ∈ {0, 1}p(n) for which the completeness condition holds.9 If the
MAP has query complexity q and proof complexity p, we say that

it has complexity t(n, ε)
def
= q(n, ε) + p(n).

For every pair of functions q : N × R
+ → N and p : N → N, we

denote by MAP2(p, q) (resp., MAP1(p, q)) the complexity class
of all properties that have an MAP with proof complexity O(p),
query complexity O(q), and two-sided error (resp., one-sided error).
We also use MAP as a shorthand for the class MAP2.

Note that we defined MAPs such that the proofs do not depend
on the proximity parameter ε. Since our focus is on demonstrating
the power of MAPs (and our lower bounds refer to fixed valued
of the proximity parameter), this makes our results stronger. Nev-
ertheless, see Section 2.1 for a discussion of the alternate notion,
in which the proof may depend on the proximity parameter.

Proof-oblivious queries. An aspect of MAP proof systems,
which turns out to be very important, is whether the queries that
the verifier makes depend on the proof. An MAP in which the
queries do not depend on the proof may be thought of as the fol-
lowing two-step process:

1. The verifier is given oracle access to the object being tested.
The verifier’s queries may be adaptively generated (based on
answers to previous queries).

2. After getting answers to all of its queries, the verifier is given
explicit and explicit access to the proof string (which is cho-
sen obliviously of the verifier’s queries). Based on the queries,

9Without loss of generality, using adequate padding, we assume that there is
a fixed proof length p(n) for objects of size n. The latter can be complemented
by restricting the soundness condition to hold only for strings of length p(n)
(rather than strings of arbitrary length), since the verifier can immediately
reject proofs that have length that is not p(n).



120 Gur & Rothblum cc 27 (2018)

answers, and the proof, the verifier decides whether to accept
or reject.

The foregoing discussion gives rise to the following definition.

Definition 2.2 An MAP verifier for a property Π ⊆ {Fn}n is
said to make proof-oblivious queries if for every n ∈ N, function
f ∈ Fn, proximity parameter ε > 0, random string r and two proof
string w,w′ ∈ {0, 1}∗, the MAP verifier, given oracle access to f ,
the random string r and explicit access to n, ε, and given either
the proof string w or w′, makes the same sequence of queries.

MA proximity-oblivious testing. We also present an MA
version of proximity-oblivious testing (defined in (Goldreich & Ron
2011)). Loosely speaking, a proximity-oblivious tester (POT) is a
testing algorithm that satisfies the following conditions: (1) It is
oblivious of the proximity parameter ε (i.e., it does not get ε as part
of its input) and (2) it rejects statements that are ε-far from true
statements with probability that is some non-decreasing function
of ε. A standard property tester can be obtained by repeating the
POT sufficiently many times.

We give a definition of one-sided error MA proximity-oblivious
testers, and note that a two-sided error variant of MA proximity-
oblivious testers can be defined similarly to (Goldreich & Shinkar
2012).

Definition 2.3 Let ρ : (0, 1] → (0, 1] be some increasing func-
tion. A (one-sided error) MA proximity-oblivious tester for a prop-
erty Π = ∪i∈NΠn with detection probability ρ consists of a proba-
bilistic verifier V that is given as explicit inputs an integer n ∈ N

and a proof string w ∈ {0, 1}∗, and is given oracle access to a func-
tion f ∈ Fn. The verifier satisfies the following two conditions:

(i) Completeness: For every n ∈ N and f ∈ Πn, there exists a
proof w such that:

Pr
[
V f (n,w) = 1

]
= 1.

(ii) Soundness: For every n ∈ N, function f ∈ Fn, and proof w,
if f is ε-far from Πn, then:
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Pr
[
V f (n,w) = 0

]
≥ ρ(ε).

(In both conditions the probability is over the random coin
tosses of the verifier V .)

We remark that a few of the MAPs presented in this work
are based on corresponding MA proximity-oblivious testers. The
most notable example is the MAP in Theorem 3.3.

MAPs with proximity-dependent proofs We defined the
notion of MAPs such that the proof of proximity is oblivious of
the proximity parameter ε. However, it is also natural to consider
a relaxation of MAPs wherein the proof of proximity may depend
on the proximity parameter. In fact, one can consider two levels
of relaxation: (1) The content of the proof but not its length may
depend on the proximity parameter, and (2) both the contents and
the length of the proof may depend on the proximity parameter.
We note that the first possibility is almost equivalent to the stan-
dard definition of MAP , since it always suffices to refer to only a
logarithmic number of values of ε (i.e., ε = 2i for all i ∈ [log n]), and
concatenate the proofs for these values, thus obtaining a standard
MAP with only a logarithmic overhead to the proof complexity.

Property testing The standard definition of property testing
may be derived from Definition 2.1 by restricting both the com-
pleteness and soundness conditions to hold when the proof length
is fixed to 0. Hence, MAPs are a strict syntactic generalization of
property testers. We will always refer to a tester that uses a proof
as an “MAP verifier” and reserve “tester” solely for (standard)
property testers that do not use a proof.

For a property Π and a proximity parameter ε > 0, we denote
by PTε(Π) the minimum, over all testers T for Π, of the query
complexity of T with respect to proximity ε. For every function
q : N × R

+ → N, we denote by PT 2(q) (resp., PT 1(q)) the class
MAP2(0, q) (resp., MAP1(0, q)). We also use PT as a shorthand
for the class PT 2.

For a detailed introduction to property testing, see the surveys
(Ron 2008, 2009) and the collection (Goldreich 2010a).
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2.2. Interactive proofs of proximity. In this section we define
interactive proofs of proximity, following Rothblum et al. (2013).10

For two interactive algorithms A and B, we denote by (Af , Bf )(x)
the output of (say) A when interacting with B when both algo-
rithms are given x as an explicit input and implicit (i.e., oracle)
access to the function f .

Definition 2.4 An interactive proof of proximity system (IPP)
for a property Π is an interactive protocol with two parties: a
(computationally unbounded) prover P and a verifier V , which is
a probabilistic algorithm. The parties send messages to each other,
and at the end of the communication, the following two conditions
are satisfied:

(i) Completeness: For every ε > 0, n ∈ N, and f ∈ Πn it holds
that,

Pr
[
(Vf ,Pf )(n, ε) = 1

]
≥ 2/3.

where the probability is over the coin tosses of V .

(ii) Soundness: For every ε > 0, n ∈ N, f ∈ Fn that is ε-far
from Πn and for every computationally unbounded (cheating)
prover P∗ it holds that

Pr
[
(Vf ,P∗)(n, ε) = 1

]
≤ 1/3.

where the probability is over the coin tosses of V .

If the completeness condition holds with probability 1, then we say
that the IPP has a one-sided error and otherwise the IPP is said
to have a two-sided error.

An IPP is said to have query complexity q : N×R
+ → N if for

every n ∈ N, ε > 0, f ∈ Fn and any prover strategy P∗, the verifier
makes at most q(n, ε) queries to f when interacting with P∗. The
IPP is said to have communication complexity c : N × R

+ → N if

10Our definition of IPP slightly differs from that of (Rothblum et al. 2013)
in that they consider the absolute distance of objects from the property rather
relative distance. (Needless to say, we take this into account when discussing
their results.)
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for every n ∈ N, ε > 0 and f ∈ Πn the communication between
V and P consists of at most c(n, ε) bits. If the IPP has query
complexity q and communication complexity c, we say that it has
IPP complexity q + c.

For every pair of functions c, q : N × R
+ → N, we denote by

IPP2(c, q) (resp., IPP1(c, q)) the complexity class of all properties
that have an IPP with communication complexity O(c), query
complexity O(q) and two-sided error (resp., one-sided error). We
also use IPP as a shorthand for the class IPP2.

An important parameter of an IPP is the number of messages
m sent between the two parties. We denote by IPP[m](c, q) the
set of properties that have m-message IPP protocols in which the
verifier uses at most O(c) bits of communication and makes at most
O(q) oracles queries.

2.3. Useful conventions

The proximity parameter. We view the proximity parameter
as a function ε = ε(n). For simplicity we assume that ε(n) is a
non-increasing function.

Our definition of MAPs requires that soundness hold with
respect to every value of ε > 0. However, throughout this work we
sometimes find it convenient to restrict the proximity to ε ∈ (0, ε0)
for some constant ε0 ∈ (0, 1). We note that latter type of MAPs
can be extended to the more general form by simply running the
base tester with respect to proximity ε′ = min(ε, ε0) (incurring
only a constant overhead).

Implicit input length and proximity parameter. Through-
out this work, for simplicity of notation, we use the convention that
the input length n and proximity parameter ε are given implicitly
to all testers and verifiers (e.g., when we write T f we actually mean
T f (n, ε)).

3. Separation results

In this section we explore the power of MAP verifiers in compar-
ison with other types of testers, such as property testers and IPP
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verifiers, and present properties that exhibit a separation between
these different types of testers.

In Section 3.1 we show an exponential gap between the com-
plexity of PT and MAP . In Section 3.2 we show a problem
that has an MAP with an (almost) tight multiplicative trade-
off between the proof length and number of queries. In Section 3.3
we consider 3-message IPP verifiers and show that they may have
exponentially smaller query complexity than MAP verifiers (when
using a proof of similar length). Finally, in Section 3.4 we also show
an exponential gap between the total complexity (i.e., query plus
proof/communication complexities) of MAP and general IPP
(which uses a poly-logarithmic number of messages).

3.1. Exponential separation between PT and MAP. In
this section we show an exponential separation between the power
of property testing and MAP . Roughly speaking, we show a prop-
erty that requires roughly n0.999 queries for every property tester
but has an MAP that, while using a proof of only logarithmic
length, requires only a constant number of queries. We prove the
following incomparable variants of this result.

Theorem 3.1 For every constant α > 0, there exists a property
Πα that has an MAP that uses a proof of length O(log n) and
makes poly(1/ε) queries for every ε > 1/polylog(n), but for which
every property tester must make Ω(n1−α) queries. Furthermore,
the MAP has one-sided error.

A limitation of the foregoing theorem is that the proximity
parameter is required to be larger than 1/polylog(n). We also con-
sider two incomparable variants of Theorem 3.1 that let us handle
general values of ε. In Theorem Theorem 3.2 we do so but at
the cost of increasing the MAP query complexity to depend poly-
logarithmically on n.

Theorem 3.2 For every constant α > 0, there exists a property
Πα that has an MAP that uses a proof of length O(log n) and
makes poly(log n, 1/ε) queries, but for which every property tester
must make Ω(n1−α) queries. Furthermore, the MAP has one-sided
error.
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The above separation results refer to the general (i.e., two-sided
error) class PT 2. As noted in the introduction, a more restricted
separation between the one-sided error classes (i.e., between PT 1

and MAP1) can be obtained by using Theorem 4.3. We remark
that the preliminary technical report (Gur & Rothblum 2013)
also contained a proof of the following (incomparable) variant,
which can handle all values of the proximity parameter while using
poly(1/ε) query complexity, at the cost of having a smaller (yet
still exponential) gap between the power of property testers and
MAPs.

Theorem 3.3 (Gur & Rothblum 2013). There exists a universal
constant c ∈ (0, 1) and a property Π that has an MAP that uses
a proof of length O(log n) and makes poly(1/ε) queries (without
limitation on ε), but for which every property tester must make nc

queries. Furthermore, the MAP has one-sided error.11

A different proof of Theorem 3.3 is sketched in (Fischer et al.
2014) who, using a result of Alon et al. (2000), showed a property
that requires Ω(

√
n) queries (without a proof) but can be tested

using only O(1/ε) queries and a proof of length O(log n).

Follow-up work. Following the initial publication of this work,
Goldreich et al. (2014) improved the separation between MAPs
and testers, achieving the best of Theorem 3.1 and Theorem 3.3
simultaneously; that is, they obtain a separation for all values of
the proximity parameter, with constant query complexity for the
MAPs, and nearly linear query complexity for testers.

Theorem 3.4 (Goldreich et al. 2014). For every constant α > 0,
there a property Πα that has an MAP that uses a proof of length
O(log n) and makes poly(1/ε) queries (without limitation on ε),
but for which every property tester must make n1−α queries. Fur-
thermore, the MAP has one-sided error.

In the next sub-sections we will show two lemmas (Lemma 3.5
and Lemma 3.6) that allow us to reduce the problem of separat-

11We remark that the proof of Theorem 3.3 can be adapted to yield an MA
proximity-oblivious tester (see Definition 2.3) for Π.
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ing the power of MAPs and testers to the problem of designing
error-correcting codes that are both locally testable and locally
decodable. Theorem 3.1, Theorem 3.3, and Theorem 3.4 are then
obtained by instantiating Lemma 3.5 and Lemma 3.6 with such
codes. Since the codes of Goldreich et al. (2014) improve upon the
codes that are used to obtain Theorem 3.1, Theorem 3.2, and The-
orem 3.3, we omit the more involved proof of Theorem 3.3, which
consists of a construction of a code with the desired properties (see
technical report (Gur & Rothblum 2013) for details and proof).
We provide the proofs of Theorem 3.1 and Theorem 3.2, which are
instantiations of Lemma 3.5 and Lemma 3.6 for known codes.

3.1.1. Our approach. The proof of Theorem Theorem 3.1 is
heavily based on error-correcting codes. Recall that a code is an
injective function C : Σk → Σn over an alphabet Σ. The relative
distance of the code is the minimal relative distance between every
two (distinct) codewords (i.e., the fraction of locations in which
the codewords differ), and the length of the code is n when viewed
as a function of k. Further necessary background is provided in
Appendix A.3.

As discussed in the introduction, the complexities of property
testers and MAP verifiers with proof-oblivious queries are poly-
nomially related (see Theorem 4.2). Thus, in order to show an
exponential separation between PT and MAP , one has to use an
MAP for which the queries inherently depend on the proof. That
is, the property Π should satisfy the following:

1. Π can be efficiently verified by an MAP in which the queries
are “strongly affected” by the proof;

2. Π is hard for property testers (and hence for MAPs with
proof-oblivious queries).

Thus, intuitively, we seek a property that is based on a “hidden
structure” that can be tested locally if one knows where to look
but cannot be tested locally otherwise.

As a first (naive) candidate, consider the property containing
the set of all nonzero strings. A short proof for this property could
direct us to the exact location of a nonzero bit, which can then be
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verified by a single query. However, the aforementioned property is
(almost) trivial—as all strings are close to a string with a nonzero
bit. Hence, we seek a robust version of this property.

This naturally leads us to consider an encoded version of the
foregoing naive property. Fix an error-correcting code C and con-
sider the property that contains all codewords that encode nonzero
strings. Assuming that the code is both locally testable and locally
decodable (i.e., both an LTC and an LDC, see Appendix A.3), it is
easy to test this property using an MAP that simply specifies a
nonzero coordinate of the encoded message. However, this prop-
erty may also be easy to test without a proof since all one needs
to do is test that the string is not the (single) encoding of the zero
message but is (close to) a codeword.

To overcome this difficulty, we consider a “twist” of the fore-
going property in which we consider two codewords that must be
nonzero on the same coordinate. That is, for every code C, we
define the encoded intersecting messages property, denoted by EIMC

as:

EIMC
def
=

{(
C(x), C(y)

)
:

x, y ∈ Σk, k ∈ N and ∃i ∈ [k] s.t.
xi �= 0 and yi �= 0

}
,

where we assume that 0 ∈ Σ. We note that we could have slightly
modified our definition by requiring that xi = yi = 1 (where the
choice of 1 is arbitrary) rather than xi, yi �= 0. Another notable
variant is obtained by requiring that Σ = {0, 1}; then the property
EIMC contains all pairs of codewords whose corresponding encoded
messages (viewed as sets) intersect (i.e., are not disjoint).

For the lower bound, we only require that C have constant
relative distance and the quality of the lower bound is directly
related to the length of the code. For the upper bound, in addition
to the constant relative distance, we need C to be both an LTC
and an LDC with small query complexities. Indeed, the query
complexity of the MAP that we construct is proportional to the
number of queries required by the LTC and LDC procedures.

It is well known that (a suitable instantiation of) the Reed–
Muller code is both an LTC and LDC with polylog(n) query com-
plexities, and almost linear length. By instantiating EIM with this
code, we can obtain Theorem 3.2, namely a property that has an
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MAP with a proof of length O(log n) and polylog(n) query com-
plexity, but requires an almost linear number of queries by any
(standard) property tester.

In order to obtain a result with constant MAP query com-
plexity (as in Theorem 3.1), we need a code that is both an LTC
and an LDC, with constant query complexities. While LTCs with
constant query complexity (and almost linear) are known, con-
structing LDCs with constant query complexity (and polynomial
length) is a major open problem in the theory of computation.
However, we observe that for our construction it actually suffices
that C be a relaxed-LDC. Relaxed-LDCs, introduced by Ben-Sasson
et al. (2006), are a weaker form of LDCs in which the decoder is
allowed to output a special abort symbol ⊥ in case it is unable to
decode a corrupt codeword. However, the decoder is not allowed
to abort when given as input a correct codeword. We refer the
reader to Definition A.4 for the formal definition.

Ben-Sasson et al. (2006) used PCPPs to construct an O(1)-
relaxed-LDC with almost linear length. Furthermore, Ben-Sasson
et al. (2006) argue that their relaxed-LDC is also a poly(1/ε)-LTC.
However, the LTC property only holds for proximity parameter
ε > 1/polylog(n). Thus, using the Ben-Sasson et al. (2006) code,
we (only) obtain Theorem 3.1. In addition, by combining ideas
and results of Ben-Sasson et al. (2006) and Goldreich & Sudan
(2006) we construct an O(1)-relaxed-LDC that is also a poly(1/ε)-
LTC for general values of ε > 0, albeit with polynomial (rather
than almost linear) length. Using the latter result, which may be
of independent interest, we obtain Theorem 3.3.

Organization. In Section 3.1.2 we show that for every code
C : Σk → Σn that is a t1-relaxed-LDC and a t2-LTC, it holds
that EIMC ∈ MAP

(
log k, t1(n/2)+ t2(n/2, ε/2)

)
. In Section 3.1.3

we show an Ω(k/ log |Σ|) lower bound on the query complexity of
testing EIMC (without a proof of proximity). In Section 3.1.4 we
state the result of Ben-Sasson et al. (2006) and derive Theorem 3.1,
and in Section 3.1.5 we prove Theorem 3.2 using an appropriate
instantiation of the Reed–Muller code.
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3.1.2. An MAP upper bound for EIM

Lemma 3.5 Let C : Σk → Σn be a code with constant relative
distance that is a t1-relaxed-LDC and also a t2-LTC. Then, EIMC ∈
MAP1

(
log k, t1(n/2) + t2(n/2, ε/2)

)
.

Proof. We prove Lemma 3.5 by showing an MAP proof system
for proving proximity to EIMC . The proof of proximity for the
statement (C(x), C(y)) ∈ EIMC is simply a coordinate i ∈ [k] such
that the messages x and y are nonzero i (i.e., xi, yi �= 0). Given the
proof i and oracle access to a pair of strings (α, β), it suffices for the
verifier to check that both α and β are close to codewords (using
the LTC property) and if so to reconstruct the ith symbol of the
underlying messages (using the relaxed-LDC property). (Lastly, it
verifies that both symbols are nonzero.)

The full protocol is described in Figure 3.1, where δ0 ∈ (0, 1)
denotes the relative distance of C, and δ ∈ (0, δ0/2) denotes the

MAP for EIMC (where C : Σk → Σn is a t1-relaxed-LDC and t2-LTC)

Input: a proximity parameter ε ∈ (0, 2δ) (where δ is the decoding
radius) and oracle access to a pair (α, β) ∈ Σn+n.

The Proof:

◦ Let x, y ∈ Σk be the unique messages encoded in α and β,
respectively; that is, C(x) = α and C(y) = β. Denote the ith

symbol of x by xi, and the ith symbol of y by yi.

◦ The proof consists of a coordinate i ∈ [k] such that xi = 0 and
yi = 0 (which exists, for (α, β) ∈ EIMC).

The Verifier:

1. Run the local testing algorithm of C on α and on β with respect
to proximity parameter ε/2 and reject if either test rejects.

2. Run the (relaxed) local decoding algorithm of C to obtain the
ith message symbol of α, denoted σ, and the ith message symbol
of β, denoted τ .

3. Accept if both σ = 0 and τ = 0, and reject otherwise.

Figure 3.1: MAP for EIMC
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decoding radius of C (i.e., strings that are δ-close to codewords are
correctly decoded by the relaxed-LDC procedure).

Since the code is a t1-relaxed-LDC and a t2-LTC, the query
complexity of the MAP is 2t1(n/2) + 2t2(n/2, ε/2), and the proof
complexity is log2 k. We proceed to show that both completeness
and soundness hold.

Completeness. If (α, β) ∈ EIMc, then there exist x, y ∈ Σk such
that α = C(x) and β = C(y), and therefore the local testing
algorithm succeeds. Since the proof consists of a coordinate i for
which xi, yi �= 0, and the local decoding algorithm always succeeds,
the MAP verifier always accepts.

Soundness. Suppose that (α, β) is ε-far from EIMC and let i ∈ [k]
be some alleged proof to the false statement (α, β) ∈ EIMC . There
are two possible scenarios to consider:

1. either α or β are ε/2-far from C; or

2. both α and β are ε/2-close to C.

In the first case, with probability at least 1/2, the local testing
algorithm will fail and therefore the MAP verifier rejects with
probability at least 1/2. We proceed to the second case.

Suppose that both α and β are ε/2-close to the code. Then,
there exist unique x, y ∈ Σk s.t. α is ε/2-close to C(x) and β is
ε/2-close to C(y), where uniqueness holds since ε/2 < δ < δ0/2.
However, since (α, β) is ε-far from having the property EIMC , this
implies that either xi = 0 or yi = 0 (where i is the alleged proof).
Thus, when running the relaxed local decoding algorithm (since
ε/2 < δ), with probability at least 2/3, the decoder will output
either 0 or ⊥ on one of the two codewords (with respect to coor-
dinate i), in which case the verifier rejects. We conclude that in
both scenarios the verifier rejects with probability at least 1/2.

�

3.1.3. A PT lower bound for EIM. Next, we show a that the
query complexity of property testing the EIM property must be
linear in k.
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Lemma 3.6 Let C : Σk → Σn be an error-correcting code with
relative distance at least δ0 ∈ (0, 1). Then, for any ε ∈ (0, δ0/2) it
holds that:

PTε

(
EIMC

)
= Ω(k/ log |Σ|)

The proof of Lemma 3.6 uses the framework of (Blais et al.
2011) for showing property testing lower bounds via communica-
tion complexity lower bounds. The necessary background on com-
munication complexity is provided in Appendix A.1 (for a compre-
hensive introduction to communication complexity, see (Kushile-
vitz & Nisan 1997)).

The basic approach of (Blais et al. 2011) is to reduce a hard
communication complexity problem to the property testing prob-
lem for which we want to show a lower bound. We follow (Blais
et al. 2011) by showing a reduction from the well-known communi-
cation complexity problem of set-disjointness. The aforementioned
framework allows us to obtain a lower bound on the query com-
plexity of testing the encoded intersecting messages property.

For the sake of self-containment, we state the relevant defini-
tions and lemmas that we need from Blais et al. (2011).

Definition 3.7 (Combining operators). A combining operator is
an operator ψ that takes as input two functions f, g : D → R
(where D and R are some finite sets) and returns a function hf,g.

We denote by |ψ| def
= log2 |R|. The combining operator is called sim-

ple if hf,g(x) can be computed from x, f(x) and g(x) (i.e., without
requiring access to f and g).

Let Π be a property, and let ψ be a combining operator. For
every integer n ∈ N and proximity parameter ε > 0, we denote by
CΠ

ψ,ε the communication complexity problem wherein Alice gets a
function f , and Bob gets a function g,12 and their goal is to decide
whether ψ(f, g) ∈ Π or ψ(f, g) is ε-far from Π.13 Next, we state
the main lemma from Blais et al. (2011).

12More formally, the parties get as input strings that represent the truth
table of the functions.

13Due to the symmetrical definition of the communication complexity model,
it is unimportant which of these cases (i.e., ψ ∈ Π or ψ that is ε-far from Π)
is viewed as a YES-instance of Π. In contrast, see Footnote 15.
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Lemma 3.8 For any simple combining operator ψ, any property
Π and any proximity parameter ε > 0, we have that:

PTε(Π) ≥
CC(CΠ

ψ,ε)

2|ψ|

where PTε(Π) refers to the query complexity of the property Π
with respect to proximity ε and CC(C) refers to the communication
complexity of C (see Appendix A.1).

Recall that the set-disjointness problem is the communication
complexity problem wherein Alice gets an n-bit string x, Bob gets
an n-bit string y, and their goal is to decide whether there exists
i ∈ [n] such that xi = yi = 1. Equivalently, Alice and Bob’s
inputs can be viewed as indicator vectors of sets A,B ⊆ [n]. In
this case, the goal of the players is to decide whether the sets
corresponding to their inputs intersect or not. Following many
works in the literature we consider the promise problem (sometimes
also called unique disjointness) in which the intersection is of size
at most 1. That is, the two parties need to distinguish between
the case that their intersection is empty, and the case that it is of
size exactly 1. We denote the latter problem by DISJn.

It is well known (see Appendix A.1) that the randomized com-
munication complexity of the set-disjointness problem is linear in
the size of the inputs, even under the promise that A and B inter-
sect in at most one element.

Theorem 3.9 (Kalyanasundaram & Schintger 1992). For every
n ∈ N,

CC(DISJn) = Ω(n).

Using the aforementioned results, we are ready to prove Lemma 3.6.

Proof (Proof of Lemma 3.6). Let C : Σk → Σn be an error-
correcting code with relative distance δ0 ∈ (0, 1) where we assume
without loss of generality that {0, 1} ⊆ Σ. Denote by Pair the
operator that takes two strings x, y ∈ Σk and returns a function
z : [k] → Σ that outputs (xi, yi) on input i ∈ [k]. Consider CEIMC

Pair,ε ,
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the communication complexity problem wherein Alice gets a string
x ∈ Σk, Bob gets a string y ∈ Σk, and their goal is to decide
whether (x, y) ∈ EIMC or (x, y) is ε-far from EIMC . Using the
results of (Blais et al. 2011) (see Lemma 3.8) we have,

PTε(EIMC) ≥ 1

2 log |Σ|CC
(
CEIMC
Pair,ε

)
.(3.10)

Since by Theorem 3.9 we have CC(DISJk) = Ω(k), then it suffices
to show that

CC
(
CEIMC
Pair,ε

)
≥ CC(DISJk).(3.11)

Toward this end, we show a reduction from the communication
complexity problem DISJk to the communication complexity prob-
lem CEIMC

Pair,ε . We note that, under the natural association of EIMC

with YES-instances and “far from EIMC” with NO-instances, our
reduction maps YES (resp., NO) instances of DISJk to NO (resp.,
YES) instances of EIMC . Let π be a protocol for CEIMC

Pair,ε with commu-
nication complexity c. Consider the following protocol for DISJk.

Let x, y ∈ {0, 1}k be the inputs of Alice and Bob (respectively)
for DISJk. Alice computes α = C(x). Bob computes β = C(y).
The players then run π on (α, β) and return the negation of its
output.

Indeed, if (x, y) ∈ DISJk (i.e., their intersection is empty), then
for every i ∈ [k], either xi = 0 or yi = 0. Since the relative
distance of C is at least δ0, it holds that (α, β) is (δ0/2)-far from
EIMc. On the other hand, if (x, y) �∈ DISJk (i.e., their intersection
is of size 1), then there exists i ∈ [k] such that xi = yi = 1. Hence,(
α, β

)
∈ EIMc. Moreover, note that the total number of bits that

were communicated is exactly c.

Using (3.10) and (3.11), together with Theorem 3.9, we con-
clude that for every ε > 0,

PTε(EIMc) ≥ 1

2 log |Σ|CC
(
CEIMC
Pair,ε

)
≥ 1

2 log |Σ|CC(DISJk) = Ω(k).

�
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3.1.4. Proof of Theorem 3.1. In order to obtain an O(1)-
relaxed-LDC that is also a poly(1/ε)-LTC, we shall use the following
construction of Ben-Sasson et al. (2006).

Theorem 3.12 (Ben-Sasson et al. 2006, Remark 4.6). For every
α > 0, there exists a binary code that is an O(1)-relaxed-LDC
and a t-LTC with constant relative distance and length n = k1+α,
where for ε > 1/polylog(n) it holds that t(n, ε) = poly

(
1
αε

)
.

Theorem 3.1 follows by combining Theorem 3.12 with Lemma 3.5
and Lemma 3.6.

3.1.5. Proof of Theorem 3.2. In this section we show that a
well-known variant of the Reed–Muller error-correcting code is a
polylog(n)-LDC (and in particular a polylog(n)-relaxed-LDC) and
a poly(log n, 1/ε)-LTC. Combining the latter with Lemma 3.5 and
Lemma 3.6, we prove Theorem 3.2.

Lemma 3.13 For every constant α > 0, there exists a polylog(n)-
LDC that is also a poly(log n, 1/ε)-LTC with length n = k1+α and
relative distance 1 − o(1).

Proof. We construct a code C : Σk → Σn as follows. Fix a
finite field F and an integer m such that |F|m = n. The alphabet
of the code is Σ = F. Consider an arbitrary subset H ⊂ F of
size k1/m. We view a message x ∈ F

k as a function x : Hm → F

by identifying Hm and [k] in some canonical way. The encoding
C(x) is the low-degree extension x̂ of x with respect to the field
F. Namely, the (unique) m-variate polynomial of individual degree
|H| − 1 that agrees with x on Hm.

The code stretches k = |H|m symbols to n = |F|m symbols, and
by the Schwartz–Zippel Lemma it has relative distance at least 1−
m|H|
|F| . Furthermore, the code can be locally tested using O(m|H| ·

poly(1/ε)) queries (see Theorem A.8), and locally decoded using
O(m|H|) queries (see Theorem A.6). Thus, to obtain our result
we need to set our parameters as to maximize the ratio |H|/|F|,
while minimizing m · |H| and keeping |F| > m · |H|.

For every constant α > 0 and every integer n ∈ N, we let
F be a finite field of size (log n)1/α, let m = α · log n

log log(n)
and let
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H be some fixed (arbitrary) subset of F of size |F|1−α. Hence,
m·|H|

|F| = α · log n
log log n

· |F|−α = o(1). The code has relative distance

1 − (|H|−1)·m
|F| = 1 − o(1), stretch n = |F|m = |H|m/(1−α) = k1/(1−α).

In addition, it can be locally tested using poly(log n, 1/ε) queries,
and locally decoded using polylog(n) queries. �

A natural property. We remark that when the encoded inter-
secting messages property is instantiated with the foregoing vari-
ant of the Reed–Muller code (known as the product Reed–Solomon
code), we obtain a natural property that consists of pairs (P,Q) of
low-degree polynomials, whose product P ·Q is nonzero on a given
subset of its domain. That is, the property is

ΠF,d,m,H =

{
(P,Q) :

P,Q :Fm → F have individual degree d
and

∑
x∈Hm(P · Q)(x) �= 0

}
.

3.2. Trade-off between query and proof complexity. In
this section we show a property that has a multiplicative trade-
off between proof and query complexities for MAP testing. We
show a property that can be tested with a nearly smooth trade-off
between the proof and query complexities.

Theorem 3.14 For every constant α > 0, there exists a property
Πα such that for every sublinear function p : N → N, the query
complexity of Π for MAP verifiers, which use proofs of length p,
is upper bounded by n1−α+o(1)

p
· poly(1/ε) and lower bounded by

Ω̃
(

n1−α

p

)
.

Our proof is heavily based on multivariate polynomials, and
we refer the reader to Appendix A.4 for the necessary background
(e.g., the Schwartz–Zippel lemma and low-degree testing). In fact,
the proof of Theorem 3.14 is based on a specific algebraic property
that we call Sub-Tensor Sum. We note that this property will also
be used in Section 3.3 and Section 3.4.

We proceed to describe the sub-tensor sum problem. Let F be
a finite field, let m, d ∈ N such that d ·m < |F|/10, and let H ⊂ F.
Consider the following property.
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Definition 3.15 The Sub-Tensor Sum property, which we denote
by TensorSumF,m,d,H , is parameterized by a field F, a dimension
m ∈ N, a degree d ∈ N, and a subset H ⊂ F, and contains all
polynomials P : Fm → F of individual degree d, such that

∑
x∈Hm

P (x) = 0

where the arithmetic is over F.

To obtain a tight trade-off, we shall be using some d = Θ(|H|).
To simplify the notation, when the parameters are clear from the
context, we shorthand TensorSum for TensorSumF,m,d,H . Next, we
proceed to show the (almost) tight multiplicative trade-off for the
property TensorSum. In Section 3.2.1 we prove the upper bound
and in Section 3.2.2 we prove the lower bound. Finally, in Sec-
tion 3.2.3 we set the parameters for proving Theorem 3.14.

3.2.1. MAP Upper bound for TensorSum. We start by prov-
ing the following upper bound.

Lemma 3.16 If dm < |F|/10, then, for every 	 ∈ {0, . . . ,m}, the
TensorSumF,m,d,H property has an MAP with proof complexity
(d + 1)� · log(|F|) and query complexity |H|m−� · (dm2 log |H|) ·
poly(1/ε). Furthermore, the MAP has a one-sided error.

We note that the additional parameter 	 essentially controls the
proof length (and will be set as roughly the logarithm of the desired
proof length). Moreover, d will be set such that d = Θ(|H|) and
therefore d� · |H|m−� ≈ |H|m and so we can set 	 to obtain the
desired trade-off between proof and query complexities.

Proof (Proof of Lemma 3.16). We prove the lemma by show-
ing an MAP protocol for the statement P ∈ TensorSum. The
main idea is to partition Hm into |H|� sub-tensors of the form
(x1, . . . , x�, ∗, ∗, . . . , ∗) for every x1, . . . , x� ∈ H, and use a low-
degree 	-variate polynomial Q such that Q(x1, . . . , x�) equals the
sum of the (x1, . . . , x�)

th tensor over Hm−�. Specifically, we refer
to the polynomial:

Q(x1, . . . , x�) =
∑

x�+1,...,xm∈H

P (x1, . . . , xm).
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Thus, the MAP proof for the statement P ∈ TensorSum, con-
sists of the polynomial Q. The verifier checks that (1) P is (close
to) a low-degree polynomial, (2) the sum of Q on H� is 0, and
(3) Q is consistent with P . The last step uses the fact that both
Q and P are low-degree polynomials and so it suffices to verify
consistency of a random point in Q by reading the entire corre-
sponding sub-tensor (i.e., |H|m−� points) from P . Actually, since
P can only be verified to be close to a low-degree polynomial, the
|H|m−� points are read via self-correction. The detailed protocol is
presented in Figure 3.2 (where all arithmetic is over F).

Note that the proof of proximity consists of |Q| = O((d +
1)� log |F|) bits and that the total number of queries to the ora-
cle is dominated by the |H|m−� invocations of the self-correction
algorithm (which requires (m log(|H|) · dm · poly(1/ε) queries for
each invocation to obtain the desired soundness level). We proceed
to show that completeness and soundness hold.

Completeness. If P ∈ TensorSum, then
∑

x1,...,x�∈H Q(x1, . . . , x�)
= 0 and P has individual degree d (and so the individual degree
test passes). Moreover, in this case Q̃ = Q and

Q(r1, . . . , r�) =
∑

x�+1,...,xm∈H

P (r1, . . . , r�, x�+1, . . . , xm).

By the zero-error feature of the self-correction procedure, with
probability 1,

zr1,...,r�,x�+1,...,xm = P (r1, . . . , r�, x�+1, . . . , xm),

and therefore
∑

x�+1,...,xm∈H zr1,...,r�,x�+1,...,xm = Q̃(r1, . . . , r�). Hence,
in this case, the verifier accepts with probability 1.

Soundness. Let ε > 0 and let P : Fm → F be a polynomial that
is ε-far from TensorSum. Let Q̃ be an alleged proof (to the false
statement P ∈ TensorSum).

Consider first the case that P is ε-far from having individual
degree d. In this case, by the individual degree test (Theorem A.8),
the verifier rejects with probability at least 1/2. Thus, we focus on
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MAP for TensorSum with parameter ≤ m

Parameters: F (field), m (dimension), d (individual degree) and H ⊂
F.

Input: a proximity parameter ε ∈ (0, 1/3), and oracle access to a
function P : Fm → F.

The Proof:

◦ The proof consists of a multivariate polynomial Q̃ : F → F of
individual degree d (specified by its (d + 1) coefficients), which
allegedly equals

Q(x1, . . . , x ) def=
x +1,...,xm∈H

P (x1, . . . , xm).

The Verifier:

1. If x1,...,x ∈H Q̃(x1, . . . , x ) = 0, then reject.

2. Run the low individual d-degree test (see Theorem A.8) on P
with respect to the proximity parameter ε. If the test fails, then
reject.

3. Select uniformly at random r1, . . . , r ∈R F.

4. For every x +1, . . . , xm ∈ H, read the value of
P (r1, . . . , r , x +1, . . . , xm) using self correction (see Theo-
rem A.6) repeated O(m log(|H|)) times (to reduce the error
probability to 1

10|H|m for each point). Denote the value read by
zr1,...,r ,x +1,...,xm .

5. Accept if Q̃(r1, . . . , r ) = x +1,...,xm∈H zr1,...,r ,x +1,...,xm and
otherwise reject.

Figure 3.2: MAP for TensorSum

the case that P is ε-close to a polynomial P ′ of individual degree
d. We may also assume that

∑
x1,...,x�∈H Q̃(x1, . . . , x�) = 0 (since

otherwise the verifier rejects with probability 1). Define

Q′(x1, . . . , x�)
def
=

∑
x�+1,...,xm∈H

P ′(x1, . . . , xm).
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Clearly
∑

x1,...,x�
Q′(x1, . . . , x�) �= 0 (since otherwise P is ε-close

to P ′ ∈ TensorSum). Thus, the individual degree d polynomials
Q′ and Q̃ differ, and so, by the Schwartz–Zippel Lemma they can
agree on at most a d�

F
fraction of their domain F

�.

To complete the argument note that the self-correction algo-
rithm guarantees that the value of every zr1,...,r�,x�+1,...,xm is equal to
P ′(r1, . . . , r�, x�+1, . . . , xm), with probability 1− 1

10|H|m (here we use

our assumption that, without loss of generality, ε < 1/3). There-
fore, by the union bound, all points are read correctly with proba-
bility at least 0.9, and in this case

∑
x�+1,...,xm∈H zr1,...,r�,x�+1,...,xm =

Q′(r1, . . . , r�). Thus, with probability 0.9 · (1 − dm
F

) ≥ 2/3, the

verifier rejects when testing that the value of Q̃(r1, . . . , r�) equals∑
x�+1,...,xm∈H zr1,...,r�,x�+1,...,xm . �

3.2.2. MAP Lower bound for TensorSum. Next, we give an
(almost) matching lower bound on the MAP complexity of Sub-
Tensor Sum. Formally, we show

Lemma 3.17 For every ε ∈ (0, 1 − dm
|F| ), if d ≥ 2(|H| − 1), then

every MAP for TensorSum (with respect to proximity parameter
ε) that has proof complexity p ≥ 1 must have query complexity

q = Ω
(

|H|m
p·log |F|

)
.

As an immediate corollary of Lemma 3.17 we obtain the follow-
ing:14

Corollary 3.18 For every ε ∈ (0, 1 − dm
|F| ), if d ≥ 2(|H| − 1),

PT ε(TensorSum) = Ω

(
|H|m

log(|F|)

)
.

In order to prove Lemma 3.17, we first extend the framework
of (Blais et al. 2011) from the property testing model to the MAP
model. More specifically, we show a methodology for proving
lower bounds on MAPs via MA communication complexity lower

14The corollary can be derived by setting p = 1, and the fact that any
property tester is an MAP.
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bounds. We refer the reader to Appendix A.2 for background on
MA communication complexity.

Let Π be a property and let ψ be a simple combining operator
(see Definition 3.7). For every proximity parameter ε > 0, denote
by CΠ

ψ,ε the communication complexity problem in which Alice gets
as input a function f and Bob gets as input a function g and they
need to decide between a YES-instance, wherein ψ(f, g) ∈ Π, and
a NO-instance, wherein ψ(f, g) is ε-far from Π.15 We prove the
following lemma.

Lemma 3.19 (MAP lower bounds via MA communication com-
plexity). For any simple combining operator ψ, any property Π
and any proximity parameter ε > 0, if Π ∈ MAP(p, q), then CΠ

ψ,ε

has an MA communication complexity protocol with a proof of
length p and total communication 2q|ψ|.

Proof. Let V be an MAP verifier for Π with proof complexity
p and query complexity q. We construct an MA communication
complexity protocol for CΠ

ψ,ε. Recall that Alice and Bob get as
input function f and g (respectively) and have explicit access to a
proof string w ∈ {0, 1}p.

The (honest) proof string for the protocol is simply the proof

string w of the MAP with respect to h
def
= ψ(f, g). As their first

step, Alice and Bob emulate the execution of the MAP proto-
col with respect to the proof string w using their common ran-
dom string as the source of randomness (for the emulated verifier).
Whenever the MAP verifier V queries the input at a point x, Alice
and Bob compute f(x) and g(x) (respectively) and send their val-
ues to each other. Since ψ is a simple combining operator, each

15When proving property testing lower bounds via standard (i.e., non-MA)
communication complexity lower bounds (using the (Blais et al. 2011) frame-
work) one may also map YES-instances (respectively, NO-instances) of commu-
nication complexity problems to NO-instances (respectively, YES-instances) of
property testing problems. This is possible due to the symmetrical definition
of standard communication complexity (in fact, the above was used in the
proof of Lemma 3.6). In contrast, the definition of MA communication com-
plexity is asymmetrical ; therefore when using our extension of the framework
to MA one must map YES-instances to YES-instances and NO-instances to
NO-instances.
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player can compute h(x) from x, f(x) and g(x), and feed it as an
answer to the emulated MAP verifier. The players accept if V
accepts, and reject otherwise.

Observe that both players use the same common random string
as the source of randomness, and forward the same values to the
MAP verifier (i.e., both the proof string and the oracle answers).
Therefore, they emulate the verifier identically.

Note that by the definition of the communication complexity
problem, if (f, g) ∈ CΠ

ψ,ε, then h ∈ Π; hence the verifier will accept.
On the other hand, if the pair (f, g) /∈ CΠ

ψ,ε, then h is ε-far from Π,
so the verifier will reject.

During the entire reduction, the players communicated 2|ψ| bits
for every query of the verifier. Hence, the total number of bits that
were communicated is 2|ψ| · q. �

We proceed by stating Klauck’s lower bound on the MA com-
munication complexity of (unique) set-disjointness (Klauck 2003)
and use Lemma 3.19 to show a lower bound on the MAP com-
plexity of the Sub-Tensor Sum property.

Theorem 3.20 (Klauck 2003). Every MA communication com-
plexity protocol for DISJn with proof complexity p and communi-
cation complexity c satisfies p · c = Ω(n).

Proof (Proof of Lemma 3.17). Denote k = |H|m and by f ·g the

function h(x)
def
= f(x) · g(x). Let CTensorSum

·,ε be the communication
complexity problem wherein Alice gets a function f : Fm → F, Bob
gets a function g : Fm → F, and their goal is to decide whether
f · g ∈ TensorSum or f · g is ε-far from TensorSum.

Recall that by Theorem 3.20 we know that every MA commu-
nication complexity protocol for DISJk with proof complexity p and
communication complexity c satisfies p · c = Ω(k). On the other
hand, by Lemma 3.19 we know that if TensorSum ∈ MAP(p, q),
then CC(CTensorSum

·,ε ) has an MA communication complexity proto-
col with a proof of length p and a total of 2q log |F| communication.

Hence, to prove the lemma, it suffices to reduce DISJk to
CTensorSum

·,ε (this reduction takes place entirely within the setting of
MA communication complexity). Toward this end, suppose that
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π is an MA communication complexity protocol for CTensorSum
·,ε with

proof complexity p and communication complexity c. We use π to
construct an MA protocol for DISJk.

Let a ∈ {0, 1}k and b ∈ {0, 1}k be the respective inputs of Alice
and Bob for the set-disjointness problem. Recall that F (a finite
field), d (the individual degree), m (the dimension), and H ⊂
F are parameters of the TensorSum problem. The reduction to
TensorSum proceeds as follows. First, Alice and Bob compute the
low-degree extension â and b̂ of their respective inputs with respect
to F,m, d and H. Namely, they associate their inputs a and b with
indicator functions a, b : Hm → {0, 1} by mapping [k] to Hm in
some canonical way. Then, they compute the (unique) polynomials
â, b̂ : Fm → F of individual degree |H| − 1 that agree with a and b
(respectively) on Hm.

Denote by w the proof for the protocol π with respect to the
input pair (â, b̂). The proof for the set disjointness problem is
simply w. Alice and Bob proceed by running π on input (â, b̂),
with respect to the proof w and proximity parameter ε and return
its output.

Observe that if (a, b) ∈ DISJk, then
∑

i∈[k] aibi = 0 (where the

summation is over the integers). Hence,

∑
x1,...,xm∈H

â(x1, . . . , xm) · b̂(x1, . . . , xm)

=
∑

x1,...,xm∈H

a(x1, . . . , xm) · b(x1, . . . , xm) = 0

(where the first summation is over F, and the second summation
is over the integers). Thus, â · b̂ ∈ TensorSumF,m,d,H (here we use

the lemma’s hypothesis that d ≥ 2(|H| − 1) since â · b̂ is the prod-
uct of two polynomials of individual degree |H| − 1). We con-
clude that there exists a proof w of length p such that the MA
communication complexity protocol for DISJk accepts with high
probability.

On the other hand, if (a, b) �∈ DISJk, then (by the promise of
having an intersection of size at most 1) it holds that

∑
i∈[k] aibi = 1

(where the summation is over the integers). Hence,
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∑
x1,...,∈H

â(x1, . . . , xm) · b̂(x1, . . . , xm) =

∑
x1,...,xm∈H

a(x1, . . . , xm) · b(x1, . . . , xm) = 1

(where the first summation is over F, and the second summation
is over the integers). Thus, â · b̂ is an m-variate polynomials of
(individual) degree d (≥ 2(|H|−1)) whose sum over Hm is nonzero.
By the Schwartz–Zippel lemma (see Appendix A.4), and since ε <
1 − dm

|F| , the function â · b̂ is at least ε-far from TensorSum.
We conclude that every MAP verifier for TensorSum with q

queries and p proof length must satisfy q · p ≥ Ω
(

k
log(|F|)

)
. �

3.2.3. Proof of Theorem 3.14. In this section we complete
the proof of Theorem 3.14, which states that for every constant
α > 0, there exists a property Πα such that for every sublinear
function p : N → N, the query complexity of Π for MAP verifiers
that use proofs of length p is upper bounded by n1−α+o(1)

p
·poly(1/ε)

and lower bounded by Ω̃
(

n1−α

p

)
.

Toward this end, we need to set the parameters of the
TensorSum problem. Our parameters are governed by n = |F|m
(i.e., the size of the object equals n), dm < |F|/10 (so that we
can apply the Schwartz–Zippel lemma) and d = 2(|H| − 1) (see
Lemma 3.17). Since p · q = Ω̃(|H|m), and the object size is |F|m,
we need to maximize the ratio |H|/|F| to obtain a better lower
bound (while recalling that |H| ≤ d/2 − 1).

For every constant α > 0 and every integer n ∈ N, let F be a
finite field of size (log n)1/α, let m = α · log n

log log(n)
, let H be some

fixed (arbitrary) subset of F of size |F|1−α, and let d = 2(|H| − 1).
Note that |F|m = n and |H|m = n1−α.

Lemma 3.16 guarantees the existence of an MAP for the prop-
erty TensorSumF,m,d,H with proof complexity (d + 1)� · log(|F|) and
query complexity |H|m−� · dm2 log(|H|) for every 	 ∈ [m]. Thus,
for every parameter p ∈ {(d + 1)i · log(|F|) : i ∈ N} (which corre-
sponds to the proof length), we set:

	 =
log(p) − log log(|F|)

log(d + 1)
.
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and apply Lemma 3.16. We obtain an MAP protocol for comput-
ing TensorSumF,m,d,H with a proof of length

(d + 1)� · log(|F|) = p

and query complexity:

|H|m−� · dm2 log(|H|) · poly(1/ε) =
n1−α

|H|�
· polylog(n) · poly(1/ε).

(3.21)

By our setting of 	 we have:

|H|� = |H|
log p−log log |F|

log(d+1)(3.22)

≥ 2
log |H|

log(2|H|) ·(log p−log log |F|)

=

(
p

log |F|

)1− 1
1+log H

≥ p

no(1)

where the first inequality follows from d = 2(|H| − 1) ≤ 2|H| − 1
and the second inequality follows from our setting of |H| and |F|
(and since p ≤ n). Combining (3.21) and (3.22) we have that the

query complexity of the MAP is n1−α+o(1)

p
· poly(1/ε).

On the other hand, by Lemma 3.17, for every MAP for
TensorSum with proof complexity p and query complexity q, it

holds that p · q ≥ Ω
(

|H|m
log |F|

)
= Ω̃(n1−α). The theorem follows.

3.3. MAP versus O(1)-round IPP. In this section and the
following one, we consider the power of MAP in comparison with
the more general notion of IPP (for a formal definition of IPP, see
Section 2.2). Roughly speaking, in this section we show a property
that requires

√
n queries by an MAP verifier that uses a proof

of length
√

n but requires only polylog(n) queries by an IPP[3]
verifier (i.e., an IPP with only 3-messages) that also uses a proof
of length

√
n.

Theorem 3.23 For every α > 0, there exists a property Πα such
that:
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(i) The MAP complexity of Πα is Ω̃
(
n1/2−α

)
; and

(ii) There is an IPP[3] for Πα with polylog(n) · poly(1/ε) query
complexity and communication complexity Õ(n1/2−α+o(1)).

The property that we use is the TensorSum property (intro-
duced in Section 3.2). Note that the first part of Theorem 3.23 was
already shown in Theorem 3.14, and so, to prove Theorem 3.23,
what remains to be shown is that TensorSum can be tested by a
3-message IPP verifier that uses roughly

√
n communication and

polylog(n) queries.

Lemma 3.24 If dm < |F|/10, then there is a 3-message IPP
for TensorSumF,d,m,H (where F is a finite field, m is the dimen-
sion, d is the degree, and H ⊂ F) with communication complexity
O
(
(d + 1)m/2 log(|F|)

)
and query complexity O (dm · poly(1/ε)).

We note that Theorem 3.23 follows from Lemma 3.24 (and
Lemma 3.17) by setting the parameters F,m, d,H as in Sec-
tion 3.2.3. Namely, fix a finite field F of size (log n)1/α, a dimension
m = α · log n

log log(n)
, an arbitrary subset H ⊂ F of size |F|1−α and set

d = 2(|H| − 1). We proceed to prove Lemma 3.24

Proof (Proof of Lemma 3.24). The first part of the protocol
closely resembles the MAP that was presented in Lemma 3.16.
Indeed, the first message from the prover to the verifier is the
polynomial Q that is (allegedly) the sum of P on H� sub-tensors
of Hm, each of dimension m− 	. The verifier checks that P is close
to a low-degree polynomial and that Q sums to 0, but the consis-
tency check of P and Q is different. Recall that in Lemma 3.16,
the verifier chose a random sub-tensor and checked the consistency
of Q and P by reading all points in the sub-tensor. Using two
additional messages we replace these queries by having the prover
provide them. That is, after the prover “commits” to the sum of all
sub-tensors, the verifier chooses one of them at random and sends
its choice to the prover. Then, the prover provides the value of all
points in that sub-tensor via a polynomial W : Fm−� → F of indi-
vidual degree |H| − 1. The verifier can readily check that the two
polynomials Q and W sent by the prover are consistent with each
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other (using no queries to P ), and that the second polynomial (i.e.,
W ) is consistent with P using only a constant number of queries.

Similarly to the protocol of Section 3.2, the protocol uses a
parameter 	 except that in this case, an optimal result is obtained
by fixing 	 = m/2 (but for simplicity of notations we keep 	 as a
parameter). The IPP[3] protocol, in which the prover is denoted
by P and the verifier is denoted by V , is described in Figure 3.3.
It can be readily verified that by setting 	 = m/2, the query and
communication complexities are as stated. We proceed to prove
that completeness and soundness hold.

Completeness. If P ∈ TensorSum, then P has individual degree
d and the low-degree tests passes. In this case Q̃ = Q
and W̃ = W and therefore all the verifier’s tests pass (since∑

x1,...,x�∈H Q(x1, . . . , x�) = 0 holds as well).

Soundness. Let ε > 0 and let P : F
m → F be ε-far from

TensorSum. If P is ε-far from having individual degree d, then
the low-degree test rejects with probability at least 1/2 and so we
assume that P is ε-close to an individual degree d polynomial P ′.
The (cheating) prover sends two polynomials Q̃ and an W̃ . We
proceed to prove two claims regarding these polynomials.

Claim 3.25 If Q̃(x1, . . . , x�) ≡
∑

x�+1,...,xm∈H P ′(x1, . . . , xm) (as

formal polynomials over x1, . . . , x�), then the verifier rejects with
probability 1.

Proof. Observe that
∑

x1,...,xm∈H P ′(x1, . . . , xm) �= 0, as oth-
erwise P is ε-close to TensorSum. Therefore, if the polynomials
Q̃(x1, . . . , x�) and

∑
x�+1,...,xm∈H P ′(x1, . . . , xm) are equal, then the

verifier rejects when testing whether
∑

x1,...,x�∈H Q̃(x1, . . . , x�) = 0.
�

Claim 3.26 For every value of r1, . . . , r� ∈ F, if the prover sends
an individual degree d polynomial W̃ (x�+1, . . . , xm) (which depends
on r1, . . . , r�) that differs from the polynomial P ′(r1, . . . , r�, x�+1,
. . . , xm) (as formal polynomials in x�+1, . . . , xm), then the verifier
rejects with probability at least 2/3.
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IPP[3] for TensorSum

Parameters: F (field), m (dimension), d (individual degree), H ⊂ F

and = m/2.

Input: a proximity parameter ε ∈ (0, 1/3), and oracle access to a
function P : Fm → F.

1. V runs the low individual d-degree test (see Theorem A.8) on P
with respect to the proximity parameter ε. If the test fails then
V rejects.

2. P sends to V an individual degree d multivariate polynomial
Q̃ : F → F of individual degree d (by specifying its (d + 1)
coefficients), which allegedly equals

Q(x1, . . . , x ) def=
x +1,...,xm∈H

P (x1, . . . , xm).

3. If x1,...,x ∈H Q̃(x1, . . . , x ) = 0, then V rejects.

4. V selects uniformly at random r1, . . . , r ∈R F and sends
r1, . . . , r to P.

5. P sends to V an individual degree d multivariate polynomial W̃ :
F

m− → F of individual degree d (by specifying its (d + 1)m−

coefficients), which allegedly equals

W (x +1, . . . , xm) def= P (r1, . . . , r , x +1, . . . , xm).

6. V selects at random s +1, . . . , sm ∈R F, reads the value
zr1,...,r ,s +1,...,sm of the polynomial P (r1, . . . , r , s +1, . . . , sm) us-
ing the self-correction algorithm (see Theorem A.6) with sound-
ness error 1/10 and rejects if zr1,...,r ,s +1,...,m = W (s +1, . . . , sm).

7. V accepts if Q̃(r1, . . . , r ) = x +1,...,xm∈H W̃ (x +1, . . . , xm) and
rejects otherwise.

Figure 3.3: IPP[3] for TensorSum

Proof. Assume that W̃ (x�+1, . . . , xm) �≡ P ′(r1, . . . , r�, x�+1, . . . ,
xm). Thus, the polynomials W̃ (x�+1, . . . , xm) and P ′(r1, . . . , r�,
x�+1, . . . , xm) are two different (m− 	)-variate polynomials of indi-
vidual degree d and, by the Schwartz–Zippel Lemma, they can
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agree on at most a d(m−�)
|F| < 0.1 fraction of their domain. Therefore,

with probability 0.9 over the verifier’s choice of s�+1, . . . , sm ∈ F,
it holds that

W̃ (s�+1, . . . , sm) �= P ′(r1, . . . , r�, s�+1, . . . , sm).

Using the self-correction procedure, with probability at least
0.9, the verifier correctly obtains the value

zr1,...,r�,s�+1,...,sm = P ′(r1, . . . , r�, s�+1, . . . , sm).

Hence, with probability at least 0.92 > 2/3, the verifier rejects
when testing whether zr1,...,r�,s�+1,...,sm = W̃ (s�+1, . . . , sm). �

By Claim 3.26, we can assume that

W̃ (x�+1, . . . , xm) ≡ P ′(r1, . . . , r�, x�+1, . . . , xm)(3.27)

(since otherwise the verifier rejects). On the other hand, by
Claim 3.25 and using the Schwartz–Zippel Lemma, with probabil-
ity at least 1 − d�

|F| over the choice of r1, . . . , r� ∈R F, it holds that

Q̃(r1, . . . , r�) �=
∑

x�+1,...,xm∈H

P ′(r1, . . . , r�, x�+1, . . . , xm)

=
∑

x�+1,...,xm∈H

W̃ (x�+1, . . . , xm)

where the last equality is due to (3.27). Hence, the verifier
rejects with probability 1 − d�

|F| > 0.9 when testing whether

Q̃(r1, . . . , r�) =
∑

x�+1,...,xm∈H W (x�+1, . . . , xm). This completes the
proof of Lemma 3.24. �

3.4. Exponential separation between MAP and IPP. In
this section we show an exponential separation between MAP
and general IPP. Namely, we show a property that has MAP
complexity roughly

√
n but has IPP complexity polylog(n). In

contrast to the IPP of Section 3.3 (which used O(1) messages)
here we use an IPP with poly-logarithmically many messages.
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Theorem 3.28 For every α > 0, there exists a property Πα such
that:

(i) The MAP complexity of Πα is Ω̃
(
n1/2−α · poly(1/ε)

)
; and

(ii) Πα has an IPP with query complexity polylog(n) · poly(1/ε)
and communication complexity polylog(n).

Moreover, the PT complexity of Πα is Θ̃(n1−α).

To prove Theorem 3.28, we yet again use the TensorSum prob-
lem. The first part of the theorem follows directly from Theo-
rem 3.14 and the query complexity of property testers (which do
not use a proof) is implied by Corollary 3.18.16 Thus, to prove
the theorem, all that remains is to show an IPP protocol for
TensorSum.

Lemma 3.29 If d · m < F/10, then there exists an m-round
IPP for TensorSumF,m,d,H with communication complexity
O(dm log |F|), and query complexity O(dm · poly(1/ε)).

Proof. The proof of Lemma 3.29 follows by adapting the well-
known sum-check protocol of Lund et al. (1992) to the settings of
interactive proofs of proximity. Recall that the sum-check protocol
is an interactive protocol that enables verification of the a claim of
the form:

∑
x1,...,xm∈H

P (x1, . . . , xm) = 0.

where P is a low-degree polynomial. The difference between our
setting and the classical setting of the sum-check protocol of (Lund
et al. 1992) is that in the latter the verifier has explicit and direct
access to P .17 In our setting the verifier only has oracle access to

16We note that the property testing upper bound of Õ(n1−α) can be obtained
by a verifier that tests for low degree and reads all points in Hm using self-
correction.

17An additional minor difference is that in the (Lund et al. 1992) protocol
the set H is fixed to {0, 1}, but this is common in the PCP literature (most
notably in (Babai et al. 1991)).
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IPP for TensorSum

Parameters: F (field), m (dimension), d (individual degree) and H ⊂
F.

Input: a proximity parameter ε ∈ (0, 1/3), and oracle access to a
function P : Fm → F.

1. V runs the individual degree d test (see Theorem A.8) on P with
respect to proximity parameter ε, and rejects if the test fails.

2. Let ν0
def= 0.

3. For i ← 1, . . . , m:

(a) P sends to V a degree d univariate polynomial P̃i : F → F

(by specifying its d+1 coefficients), which allegedly equals:

Pi(z) def=
xi+1,...,xm∈H

P (r1, . . . , ri−1, z, xi+1, . . . , xm).

(b) V verifies that z∈H P̃i(z) = νi−1.

(c) V selects uniformly at random ri ∈R F and sets νi
def=

P̃i(ri).

(d) If i = m, then V sends ri to P.

4. V obtains the value of z∗ of P (r1, . . . , rm) via self-correction (see
Theorem A.6) with soundness error 0.1.

5. V verifies that z∗ = νm.

Figure 3.4: IPP for TensorSumm,d,F,S,c

a function that is allegedly a low-degree polynomial. However, we
observe that the sum-check protocol can be extended to this setting
by having the verifier (1) test that the function is close to a low-
degree polynomial P , (2) obtain values from P via self-correction,
and (3) run the sum-check protocol as-is with respect to the self-
corrected P . The IPP protocol is described in Figure 3.4, where
the prover is denoted by P, the verifier is denoted by V , and all
arithmetic is over the field F. (For a high level description of the
sum-check protocol, see Appendix A.5.)
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We note that during the run of the IPP the prover sends m
degree d univariate polynomials, and the verifier sends m elements
in F. Thus, the total communication complexity of the IPP is
O(dm log |F|). The only queries that the verifier performs are for
the low-degree test and the self-correction, which total in O(dm ·
poly(1/ε)) queries.

Completeness. If P ∈ TensorSum, then the low-degree test always
passes, and since we have

∑
x∈Hm P (x) = 0, and the prover supplies

the correct polynomials (i.e., P̃i = Pi for every i ∈ [m]), the verifier
always accepts.

Soundness. Suppose that P : Fm → F is ε-far from TensorSum.
Let P∗ be a cheating prover that attempts to convince the verifier
of the false statement P ∈ TensorSum. If P is ε-far from having
individual degree d, then the verifier rejects with probability 1/2.
Thus, we focus on the case that P is ε-close to a polynomial P ′ of
individual degree d.

For every i ∈ [m], let:

P ′
i (z)

def
=

∑
xi+1,...,xm∈H

P ′(r1, . . . , ri−1, z, xi+1, . . . , xm)

(where the values ri are those sent from the verifier to the prover).
The next two claims relate the polynomials P ′

i to the polynomials
P̃i sent by the prover P∗. Recall that both polynomials depend
only on r1, . . . , ri−1.

Claim 3.30 If P̃1 ≡ P ′
1, then the verifier rejects with probability 1.

Proof. Observe that
∑

x∈Hm P ′(x) �= 0 must hold, since other-

wise P ∈ TensorSum. Therefore,
∑

z∈H P ′
1(z) �= 0, and so, if P̃1 ≡

P ′
1, then the verifier rejects when testing that

∑
z∈H P̃1(z) = 0. �

Claim 3.31 For every i ∈ [m − 1] and every r1, . . . , ri−1 ∈ F, if
P̃i �≡ P ′

i then, with probability at least 1 − d/|F| over the choice of
ri, if P̃i+1 ≡ P ′

i+1 then the verifier rejects.
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Proof. If P̃i+1 ≡ P ′
i+1 then

∑
z∈H P̃i+1(z) =

∑
z∈H P ′

i+1(z) =

P ′
i (ri). Thus, since the polynomials P̃i and P ′

i differ, with prob-
ability at least 1 − d/|F| over the choice of ri ∈R F it holds that
P̃i(ri) �= P ′

i (ri), and in this case the verifier will reject when testing
whether

∑
z∈H P̃i+1(z) = νi, since νi = P̃i(ri). �

By Claim 3.31 and an application of the union bound, with
probability 1 − dm/|F|, if there exists an i ∈ [m − 1] such that
P̃i �≡ P ′

i but P̃i+1 ≡ P ′
i+1 then the verifier rejects. By Claim 3.30,

we can assume that P̃1 �≡ P ′
1 and so we need only consider the case

that for every i ∈ [m] it holds that P̃i �≡ P ′
i . The following claim

shows that also in this case the verifier rejects with probability at
least 2/3. The theorem follows.

Claim 3.32 For every r1, . . . , rm−1 ∈ F, if P̃m �≡ P ′
m, then the

verifier rejects with probability at least 2/3 (over the choice of rm

and the self-correction procedure).

Proof. If P̃m �≡ P ′
m then these are two distinct degree d poly-

nomials, which can agree on at most d points. Thus, with proba-
bility 1 − d/|F|, it holds that P̃m(rm) �= P ′

m(rm) (over the choice
of rm ∈R F). Now, the self-correction algorithm guarantees that
the verifier computes z∗ = P ′(r1, . . . , rm) = P ′

m(rm) correctly with
probability 0.9. In such case, the verifier rejects with probability
1−d/|F| when testing that z∗ = P̃m(rm). It follows that the verifier
rejects with probability 0.9 · (1 − d/|F|) > 2/3. �

This completes the proof of Lemma 3.29. �

4. General transformations

In this section we show general transformations on MAP proof
systems. In Section 4.1 we show general transformations from
MAPs with restricted proofs into PT . In Section 4.2 we show
a general transformation from MAPs that have two-sided error
into MAPs that have one-sided error.

4.1. From MAP to PT . In this section we show that MAPs
with restricted proofs can be emulated by property testers. We
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show two such results. Theorem 4.1 shows that every MAP that
uses a very short proof can be emulated by a property tester, and
Theorem 4.2 shows that even MAPs with long proofs in which
the verifier’s queries are proof oblivious (see Definition 2.2) can
also be emulated. We note that in both constructions the tester
may be inefficient in terms of computational complexity (even if
the original MAP verifier can be implemented efficiently).

Theorem 4.1 If the property Π has an MAP verifier that makes
q queries and uses a proof of length p, then Π has a property tester
that makes Õ(2p ·q) queries. Moreover, if the MAP tester has one-
sided error, then the resulting property tester has one-sided error.

Proof. Let V be an MAP verifier for Π with query complexity
q and proof complexity p. We start by running the verifier O(p)
times using fresh (independent) randomness, but the same proof
string, and ruling by majority vote. We obtain an MAP verifier
V ′ for Π that has soundness (and completeness) error 2−(p+2), uses

q′ def
= O(p · q) queries and a proof of length p.
We use V ′ to construct a property tester T for Π. The tester

T , given oracle access to a function f , simply enumerates over all
possible 2p proof strings for V ′. For each proof string w ∈ {0, 1}p,
the tester T emulates V ′ (using fresh randomness) while feeding it
the proof string w, and forwarding its oracle queries to f . If for
some string w the verifier accepts, then T accepts. Otherwise, it
rejects. Clearly, T has query complexity 2p · q′.

If f ∈ Π, then there exists a proof string w that will make V ′

accept, with probability at least 1 − 2−(p+2). Therefore, T accepts
in this case with probability at least 2/3. On the other hand, if f is
ε-far from Π, then no string w will make V ′ accept with probability
greater than 2−(p+2). Thus, by the union bound, T will accept with
probability at most 2p · 2−(p+2) < 1/3.

The furthermore clause of Theorem 4.1 follows by noting that
both the error reduction and proof enumeration steps preserve one-
sided error. �

The tester of Theorem 4.1 makes O(p·q) queries for every one of
the possible 2p proof strings. However, the fact that these queries
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were chosen independently (i.e., based on fresh randomness) is not
used in the soundness argument. Indeed, for soundness we simply
applied a union bound, which would have worked just as well if
the queries were not independent (i.e., were determined based on
the same randomness). This leads us to consider using the same
sequence of queries for all of the proofs in the emulation step. The
problem that we run into is in the completeness condition. Namely,
a sequence of queries that was generated with respect to a particu-
lar proof may not be “good” for a different proof. More precisely, if
the distribution of queries that the MAP verifier generates (heav-
ily) depends on the proof, then the only guarantee that we have is
that the MAP verifier will be correct when emulated with a dis-
tribution of queries that matches the specific good proof.18 Hence,
we may indeed have to generate a different sequence of queries for
every possible proof string.

However, as proved in the following theorem, if the tester makes
proof-oblivious queries (see Definition 2.2), then the foregoing prob-
lem can be avoided and indeed it suffices to make only one sequence
of queries, and reuse this sequence for all the 2p emulations.

Theorem 4.2 If the property Π has an MAP verifier that makes
q proof-oblivious queries and uses a proof of length p, then Π has a
property tester that makes O(p ·q) queries. Moreover, if the MAP
verifier has one-sided error, then the resulting property tester has
one-sided error.

Proof. Let V be an MAP verifier for Π with query complexity
q and proof complexity p, and let V ′ be exactly as in the proof of
Theorem 4.1 (i.e., an MAP verifier for Π with soundness error
2−(p+2), using q′ = O(p · q) queries and a proof of length p).

As hinted above, the construction of the property tester T dif-
fers from that in Theorem 4.1. The tester T is given oracle access
to f . It first emulates V ′ using an arbitrary (dummy) proof string,
denoted w0, a random string r, and by forwarding V ′’s queries to f .
The key observation here is that the distribution of the queries does
not depend on the proof at all, and so an arbitrary proof would
suffice for our needs. Thus, T obtains a sequence āf

r = (a1, . . . , aq′)

18For an example of such MAPs, see Theorem 3.1 and Theorem 4.3.
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of answers (corresponding to queries specified by r and the previ-
ous answers). Now, T enumerates over all possible 2p proof strings
for V ′, and for each proof string w ∈ {0, 1}p it emulates V ′ while
feeding it the proof string w, the random string r, and the answer
sequence āf

r . If for some string w the verifier accepts, then T
accepts. Otherwise, it rejects.

If f ∈ Π, then there exists a proof string w that will make V ′

accept with probability at least 2/3. The key point is that since
the distribution of the queries does not depend on w. Hence, the
queries actually made by T (using the dummy proof w0) are iden-
tical to those V ′ would have made using the proof w (and the same
randomness as T ). Hence, T accepts in this case with probability
at least 2/3 (and in case V ′ has one-sided error, then T accepts with
probability 1). On the other hand, similarly to the proof of Theo-
rem 4.1, if f is ε-far from Π then no string w will make V ′ accept
with probability greater than 2−(p+2). Thus, by the union bound, T
will accept in this case with probability at most 2p · 2−(p+2) < 1/3.

�

4.2. From two-sided error MAP to one-sided error MAP.
In this section we show a general result transforming any MAP
(which may have two-sided error) into an MAP with one-sided
error, while incurring only a poly-logarithmic overhead to the query
and proof complexities. The construction is based on the ideas
introduced in Lautemann (1983) proof that BPP is contained the
polynomial hierarchy coupled with the observation that MAPs
may have very low randomness complexity (adapted from (Gol-
dreich & Sheffet 2010), which in turns follows an idea of Newman
Newman (1991)). We note that both the verifier and the proof
generation algorithm in this construction may be inefficient in the
computational complexity sense. (This is a consequence of each
one of the two parts of the transformation.)

Theorem 4.3 Let Π be a property of functions fn : Dn → Rn,
where |Rn| ≤ exp

(
poly(n)

)
. If Π has a two-sided error MAP

with q queries and a proof of length p, then Π has a one-sided
error MAP with O(q · polylog(n)) queries and a proof of length
O(p + polylog(n)).
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We note that typically |Rn| ≤ n and that properties for which
|Rn| > exp(poly(n)) seem quite pathological. Before proceeding to
the proof of Theorem 4.3, we note that as a direct application of the
theorem we obtain the following relation between two-sided error
property testers and one-sided error MAP (denoted MAP1).

Corollary 4.4 For every function q : N×R
+ → N it holds that:

PT (q) ⊆ MAP1(polylog(n), q · polylog(n)).

The proof of Theorem 4.3 is based on two lemmas. The first,
Lemma 4.5, shows that a two-sided error MAP verifier that has
low randomness complexity, can be transformed into a one-sided
error MAP . The proof of this lemma is based on the technique of
Lautemann (1983). The second lemma (Lemma 4.8) shows that the
Goldreich & Sheffet (2010) technique for reducing the randomness
of property testers can also be used to reduce the randomness of
MAP verifiers.

Lemma 4.5 If the property Π has a two-sided MAP verifier that
makes q queries, uses a proof of length p, and has randomness
complexity r, then Π has a one-sided MAP verifier that makes
O(q · r log r) queries and uses a proof of length O(p + r2 log r).

Proof. Following (Lautemann 1983), the construction involves
two main steps. The first step is an amplification step that sig-
nificantly reduces both the completeness and soundness errors of
the MAP . At this point, almost the entire set of possible random
strings lead to accepting inputs that have the property and reject-
ing inputs that are far from the property. The main observation
is that there must exist relatively few “shifts” s1, . . . , st such that
for an input that has the property, for every random string r there
exists a shift si such that r ⊕ si leads to accepting, whereas if the
input is far from the property, then with high probability over the
choice of r, no shift will result in accepting. Details follow.

Let V(2) be a two-sided error MAP verifier for a property Π

with query complexity q
def
= q(n, ε), proof complexity p

def
= p(n),
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and randomness complexity r
def
= r(n, ε). To prove the theorem we

construct a one-sided error MAP verifier V(1) for Π.
Let V(2)′ be the two-sided error MAP obtained by taking the

majority of m = Θ(log r) repetitions of V(2) using fresh random
coins but using the same proof string for all repetitions. By the
Chernoff bound, this amplification yields both completeness and

soundness errors that are at most δ
def
= 2−Ω(m), which may be made

smaller than 1
c·rm

for any desired constant c > 0. Note that V(2)′

has query complexity q′ def
= qm, proof complexity p′ def

= p, and

randomness complexity r′ def
= rm.

Denote by V f
(2)′(w; s) the (deterministic) output of V f

(2)′(w) when
invoked with the random string s. We construct the one-sided error
MAP verifier V(1) as follows. The proof string for V(1) consists of
the original proof string w for V(2) as well as a sequence of strings
(s1, . . . , st) each of length r′, where t = Θ(r) such that δt < 2−r′

and δt < 1
3
. Given the proof string (w, s1, . . . , st), the verifier V(1)

chooses a random string s ∈R {0, 1}r′
and runs V f

(2)′(w; s ⊕ si)

for each i ∈ [t]. If for some i ∈ [t] the test accepts, then V(1)

accepts; otherwise it rejects. The proof and query complexities can
be readily verified, and so we proceed to prove the completeness
and soundness of V(1).

Completeness. Let f ∈ Π of size n and let ε > 0. Then, by
the completeness of V(2)′ , there exists a proof string w such that

Prs∈{0,1}r′ [V f
(2)′(w; s) = 1] ≥ 1 − δ. We show that there exists

a sequence (s1, . . . , st) such that Prs∈{0,1}r′ [V f
(1)(w, s1, . . . , st; s) =

1] = 1.
To show that such a sequence (s1, . . . , st) exists we use the

probabilistic method. Specifically, we consider a sequence that is
chosen uniformly at random, that is, each si ∈R {0, 1}r′

. By the
union bound,

Pr
s1,...,st

[
∃s s.t. ∀i ∈ [t], V f

(2)′(w; s ⊕ si) = 0
]

(4.6)

≤
∑

s

Pr
s1,...,st

[
∀i ∈ [t], V f

(2)′(w; s ⊕ si) = 0
]
,
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but since the si’s are independent, for every s ∈ {0, 1}r′
,

Pr
s1,...,st

[
∀i ∈ [t], V f

(2)′(w; s ⊕ si) = 0
]

=
t∏

i=1

Pr
si

[
V f

(2)′(w; s ⊕ si) = 0
]

≤ δt.(4.7)

Combining Equations ((4.6)) and ((4.7)) we obtain that:

Pr
s1,...,st

[
∃s s.t. ∀i ∈ [t], V f

(2)′(w; s ⊕ si) = 0
]

≤ 2r′ · δt < 1.

and (zero error) completeness follows.

Soundness. Let f of size n be ε-far from having the property Π
for ε > 0. Then, by the soundness of V(2)′ , for every proof string
w, the verifier V(2)′ accepts f with probability at most δ. Hence,
by the union bound,

Pr
s

[
∃i ∈ [t] s.t. V f

(2)′(w; s ⊕ si) = 1
]

≤
∑
i∈[t]

Pr
s

[
V f

(2)′(w; s ⊕ si) = 1
]

≤ t · δ

< 1/3

and the lemma follows. �

Lemma 4.8 Let Π be a property of functions fn : Dn → Rn,
where |Rn| ≤ exp

(
poly(n)

)
. If Π has an MAP verifier that makes

q queries, uses a proof of length p, and has randomness complexity
r, then Π has an MAP verifier that makes q queries, uses a proof
of length p, and has randomness complexity O(log n).

Proof. The proof follows the proof of Goldreich & Sheffet
(2010) with a minor modification to handle the dependence of the
verifier on the proof. Namely, using the probabilistic method, we
show the existence of a small subset of the random strings that
behaves similarly to the entire set.

Let Π be a property of functions fn : Dn → Rn, where |Rn| =
exp

(
poly(n)

)
(and where Dn = [n], cf. Section 2), and let V be

the MAP verifier of the lemma statement. Fix an input length n
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and let D
def
= Dn, R

def
= Rn and p

def
= p(n). Consider a 2r ×|R||D| ·2p

matrix where the rows correspond to all possible random strings γ
used by the verifier and the columns correspond to pairs (f, w) of
functions f : Dn → Rn and possible proofs w ∈ {0, 1}p. The entry
(γ, (f, w)) of the matrix corresponds to the output of V f (w; γ),
that is, the output of the verifier when given oracle access to f ,
the proof string w, and random coins γ.

Note that for every function f ∈ Π, by the completeness of V ,
there exists a proof string w such that the average of the (f, w)
column is at least 2/3. Similarly, by the soundness of V , for func-
tions that are ε-far from Π and every proof string w the average
of the (f, w) column is at most 1/3.

We show that there exists a multi-set, S, of size poly(n) of
the rows such that the average of every column when taken over
the rows of S is at most 1/7-far from the average taken over all
rows. Thus, we obtain an MAP verifier that uses only log2 |S| =
O(log n) random coins, by simply running the original tester V but
with respect to random coins selected uniformly from S (rather
than from {0, 1}r). To obtain soundness and completeness error
1/3, we use O(1) parallel repetitions.

We use the probabilistic method to show the existence of a
small multi-set S as above. Consider a multi-set S of the rows, of
size t, chosen uniformly at random and fix some function f and
proof string w. By the Chernoff bound, with probability 2−Ω(t)

over the choice of S, the average over the rows in S of the (f, w)-
column is 1/7-close to the average over all rows. Thus, by setting
t = log(|R||D| · 2p) and applying the union bound, we obtain that
there exists a multi-set S as desired.

Since the new verifier selects at random from S, it can be imple-
mented using log2 t random coins. We complete the proof by noting
that the proof length p can always be made to satisfy p ≤ n (since
a proof of length n suffices to test any property using only O(1/ε)
queries, see discussion in Section 1.2), that the domain size is n
and that |R| ≤ exp(poly(n)) (by the hypothesis). �

Theorem 4.3 follows by applying the randomness reducing
transformation of Lemma 4.8, and then applying Lemma 4.5 to
the resulting MAP verifier.
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5. An extremely hard property for MAPs

As noted in the introduction, every property has an MAP that
uses a proof of length n and makes only O(1/ε) queries (where the
proof is simply the object itself). In contrast, in this section we
show that for “almost all” properties Π, every MAP for Π that
uses a proof that is even n/100 bits long, requires Ω(n) queries.

Our result is actually slightly stronger. Roughly speaking, we
show that for every t, a random property of size 2t can be tested
(without a proof) using O(t) queries, but any MAP that uses a
proof of length even t/100 must make Ω(t) queries in order to test
this property.

In the following we consider properties that are sets of strings
rather than functions. We note that a function formulation (as
in Definition 2.1) can be easily obtained by mapping every string
x ∈ {0, 1}n to the function fx : [n] → {0, 1}, defined as fx(i) = xi.

Theorem 5.1 Let t = t(n) < n/10. Every property Π = ∪n∈NΠn

(where Πn ⊆ {0, 1}n) of size 2t can be tested with O
(
t/ε

)
queries

(without using a proof), but for every n ∈ N, for 99% of sets Πn ⊆
{0, 1}n of size 2t, it holds that every MAP for testing ε < 1/4
proximity to Πn that uses a proof of length p must make at least
t − p − O(log n) queries.

The rest of this section is devoted to the proof of Theorem 5.1,
which is inspired by (Goldreich et al. 1998, Section 4.1) and uses
also ideas from (Rothblum et al. 2013, Section 4). We remark
that while Theorem 5.1 holds for almost all properties, finding an
explicit property for which a similar statement holds is an inter-
esting open question.

The key idea in the proof of Theorem 5.1 is to show that MAPs
that use a relatively short proof and make relatively few queries
can be represented by a small class of functions. Since this class of
functions is small, we argue that a (small) random set S ⊆ {0, 1}n,
viewed as a property, will fool every MAP , in the sense that no
MAP verifier can distinguish between a random element in S and
a random element in {0, 1}n.

The foregoing intuition is formalized by the following lemma,
which shows that there exists a set of randomized decision trees
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(see definition below) such that for every MAP , there exists a
subset of the decision trees such that the MAP accepts an input
x (with probability at least 2/3) if and only if at least one of the
randomized decision trees accepts x (with probability at least 2/3).

Lemma 5.2 Let ε ∈ (0, 1/4). For every n ∈ N and for every

p, q ≤ n, there exists a class of functions F (n)
p,q of size 2(poly(n)·2p+q)

of functions from {0, 1}n to {0, 1}, such that the following holds.
For every MAP verifier V for testing ε-proximity to Πn ⊆ {0, 1}n

that uses a proof of length p and q queries, it holds that IV ∈ F (n)
p,q ,

where IV (x) is defined as the indicator function for the event that
there exists some π ∈ {0, 1}p such that Pr[V x(n, ε, π) = 1] ≥ 2/3.

Note that the order of quantifiers in Lemma 5.2 is such that the
class of functions is the same for every MAP verifier (and depends
only on p and q). This will be crucial in showing that a random set
fools every MAP verifier. Also note that if p + q � n, then the
size of F is quite small relative to the class of all functions from
{0, 1}n to {0, 1} (which has size 22n

).

Proof (Proof of Lemma 5.2). To facilitate the proof of
Lemma 5.2, it will be useful to describe standard testers (which
do not use a proof) as randomized decision trees. Our main obser-
vation is that, roughly speaking, an MAP can be expressed as an
OR of randomized decision trees.

Recall that a randomized decision tree is a model of computation
for computing a randomized function f : {0, 1}n → {0, 1}. The
randomized decision tree is a rooted ordered binary tree. Each
internal vertex of the tree is labeled with a value i ∈ {1, . . . , n, ∗},
and the leaves of the tree are labeled with 0 or 1. (We think of
a node that is labeled with i ∈ [n] as representing the reading of
the ith bit, and of a node that is labeled with ∗ as representing a
random coin toss.) Given an input x ∈ {0, 1}n, the decision tree is
recursively evaluated as follows. If the root’s label is ∗, then one
of its two children is selected uniformly at random, and we recurse
on that child. Otherwise (i.e., i ∈ [n]), if xi = 0, then we recurse
on the left sub-tree, and if xi = 1, then we recurse on the right
sub-tree. Once a leaf is reached, we output the label of that leaf
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and halt. If T is a randomized decision tree, we denote by T (x) the
(random variable that corresponds to) the output of T on input x.

The size of the decision tree is defined as the number of vertices
in the tree, and the depth of the tree is defined as the longest path
between the root of the tree and one of its leaves. (See (Buhrman &
de Wolf 2002) for an extensive survey of decision tree complexity.)
Let RDTs be the set of all randomized decision trees of size s.
For every T1, . . . , Tt ∈ RDTs let fT1,...,Tt : {0, 1}n → {0, 1} be the
function defined as fT1,...,Tt(x) = 1 if and only if there exists i ∈ [t]
such that Pr[Ti(x) = 1] ≥ 2/3. Consider the class of functions

Fs,t =
{
fT1,...,Tt : T1, . . . , Tt ∈ RDTs

}
.

We show that Fpoly(n)·2q ,2p satisfies the conditions of the lemma.
Let V be an MAP verifier of ε-proximity for Πn that uses a

proof of length p bits, q queries, and r random bits. The main
observation is that for every fixed proof string π ∈ {0, 1}p, the
(randomized) decision V x(n, ε, π) can be expressed as a randomized
decision tree TV,π of depth r+q (and size 2r+q), which is defined as
follows. The first r vertices in every path from the root to a leaf in
the tree are labeled by ∗ (these vertices correspond to the random
coin tosses of V ). Every other internal vertex is labeled by some
i ∈ [n], corresponding to a query to xi made by V . The two edges
leaving every vertex, labeled by 0 and 1, correspond to the actual
value of xi, and these edges lead to a vertex that is labeled by the
next query made by V , given the answer xi to the query i. Given
an input x and a random string ρ ∈ {0, 1}r, the leaf that is reached
by evaluating the decision tree on input x and the random string ρ
is labeled with the value V x(n, ε, π; ρ). (Recall that V x(n, ε, π; ρ)
denotes the output of the verifier V given oracle access to x, direct
access to n, ε, π and the random string ρ.) We are interested in
Pr [V x(n, ε, π) = 1].

Let IV : {0, 1}n → {0, 1} be defined as IV (x) = 1 if and only if
there exists π ∈ {0, 1}p such that Pr[V x(n, ε, π) = 1] ≥ 2/3. Since
the randomized functions V x(n, ε, π) and TV,π(x) are identically
distributed, it holds that IV ∈ F2r+q ,2p .

By Lemma 4.8, we may assume without loss of generality that
V has randomness complexity r = O(log n). The lemma follows



cc 27 (2018) Non-interactive proofs of proximity 163

by noting that |RDTs| ≤ (n + 1)s and therefore |Fs,t| ≤ |RDTs|t ≤
(n + 1)s·t. �

Before proceeding to the proof of Theorem 5.1, we state
a few standard propositions (Propositions Proposition 5.3,
Proposition 5.4, and Proposition 5.6) whose proofs are deferred
to Appendix B.1. We start by noting that sparse properties can
be efficiently tested.

Proposition 5.3 (folklore). Every property Π = ∪n∈NΠn (where
Πn ⊆ {0, 1}n) can be tested by making O(log |Πn|/ε) queries (with-
out a proof).

We note that Proposition 5.3 has standard proofs via learning
theory techniques.19 In Appendix B.1 we provide an alternative
proof that uses the notion of MAPs in a somewhat surprising,
but very natural way.

The following (standard) proposition shows that, with high
probability, a random n-bit string will be far from any small subset
of {0, 1}n.

Proposition 5.4 (folklore). For every constant ε ∈ (0, 1/4] and
set S ⊆ {0, 1}n, it holds that Prx∈R{0,1}n [x is ε-close to S] ≤ |S| ·
2−n/8.

For the last claim that we need, recall the definition of a PRG.

Definition 5.5 A set S ⊆ {0, 1}n is called a pseudorandom gener-
ator (PRG) for fooling a class F of functions from {0, 1}n to {0, 1}
if for every f ∈ F it holds that

∣∣∣∣ Pr
x∈RS

[f(x) = 1] − Pr
x∈R{0,1}n

[f(x) = 1]

∣∣∣∣ < 1/10.

(note that the choice of the constant 1/10 is arbitrary.)
The following (well-known) lemma shows that for every class

of functions F , a random set of size O(log |F|) is a PRG that fools
F .

19Either by an explicit reduction of property testing to learning (see (Gol-
dreich et al. 1998, Section 3)) or by applying Occam’s razor directly to the
testing problem.
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Proposition 5.6 (implicit in Goldreich & Krawczyk 1992, see
also Goldreich 2008, Exercise 8.1). Let F be a class of functions

from {0, 1}n to {0, 1}, of size at most 22n/4
. Then, 99% of subsets

of {0, 1}n of size s = O(log |F|) are PRGs that fool F .

We are now ready to prove Theorem 5.1.

Proof (Proof of Theorem 5.1). Fix ε ∈ (0, 1/4). Let t, p, q :
N → N be functions such that t = t(n) < n/10, p = p(n) ≤ n,
q = q(n) ≤ n, and t = p + q + O(log n).

Fix n ∈ N, and let Sn ⊆ {0, 1}n be a random subset of {0, 1}n

of size 2t(n). By Proposition 5.3 (for any choice of S), the property
S can be tested using O(log(|Sn|)/ε) = O(t/ε) queries (without a
proof).

Let F (n)
p,q be the class of functions of size 2(poly(n)·2p+q) guaranteed

by Lemma 5.2, with respect to p and q. Since O(log |F (n)
p,q |) =

O(2p+q · poly(n)) = 2t, by Proposition 5.6 (applied to the class

F (n)
p,q ), with probability 0.99 over the choice of Sn, it holds that for

every f ∈ F (n)
p,q :

∣∣∣∣ Pr
x∈RSn

[f(x) = 1] − Pr
x∈R{0,1}n

[f(x) = 1]

∣∣∣∣ < 1/10.(5.7)

Let Sn be a set for which (5.7) holds and assume toward a
contradiction that there exists an MAP verifier V that uses a
proof of length p and q queries, and tests ε-proximity to Sn.

By Lemma 5.2, it holds that IV ∈ F (n)
p,q , where the function

IV is defined as IV (x) = 1 if and only if there exists π ∈ {0, 1}p

such that Pr[V x(n, ε, π)] ≥ 2/3. We proceed to show that IV is a
distinguisher for the PRG Sn, in contradiction to (5.7).

By the completeness of the MAP , for every x ∈ Sn it holds
that IV (x) = 1 and therefore

E
x∈RSn

[IV (x)] = 1.

On the other hand, by the soundness of the MAP , for every x
that is ε-far from Sn it holds that IV (x) = 0 and so
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E
x∈R{0,1}n

[IV (x)] ≤ E
x that is

ε-far from Sn

[IV (x)] + Pr
x∈R{0,1}n

[
x is ε-close to Sn

]

≤ |Sn| · 2−n/8

≤ 2−Ω(n),

where the second inequality follows from Proposition 5.4 (and the
fact that IV (x) = 0 for every x that is ε-far from Sn), and the last
inequality follows from our setting of t ≤ n/10. Therefore,

E
x∈RSn

[IV (x)] − E
x∈R{0,1}n

[IV (x)] ≥ 1 − 2−Ω(n),

in contradiction to (5.7). �

6. MAPs for parametrized concatenation
problems

In this section we give a scheme for constructing efficient MAPs
for parameterized concatenation problems. For starters, we review
the notion of (nonparameterized) concatenation problems: The k-
concatenation problem of a property Π is defined as the property

Π×k def
=

{
(x1, . . . , xk) : ∀i ∈ [k], xi ∈ Π and |xi| = |x1|

}
. For

every i ∈ [k], we will refer to xi as the ith block or sub-input.
Concatenation problems (in the context of property testing)

were recently studied by Goldreich (2013), who showed that the
query complexity of the concatenation problem Π×k (of a property
Π) is roughly the same as the query complexity of the problem of
testing a single instance of Π, regardless of the number of concate-
nations. More precisely, the query complexity of testing proximity
of an input of length n · k (for Π×k) is the same, up to a poly-
logarithmic factor, as the query complexity of testing proximity of
an input of length n (for Π), provided that the query complexity of
Π increases at least linearly with 1/ε (which is typically the case).

We consider a generalization of the notion of a concatenation
problem by allowing the underlying property to depend on some
parameter, which may differ between the different blocks. Consider
a family of properties { Πα }α∈A, where α is the parameter and A
is some domain. As we shall show, some natural properties can
be expressed as a concatenation Πα1 × . . . , Παk of a property Πα,
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with respect to different values of the parameter. For example,
testing whether a given string x has Hamming weight w can be
expressed as the question of testing whether x can be partitioned
into k blocks such that the ith block has Hamming weight wi and∑

i∈[k] wi = w. (Other natural examples are reviewed below.)
In this section it will be convenient for us to view the input

length n ∈ N , the proximity parameter ε ∈ (0, 1), and the number
of concatenations k as fixed. We note that although we fix n, ε, and
k, these parameters should be viewed as generic, and so we allow
ourselves to write asymptotic expressions such as poly(n), poly(ε).
If Π ⊆ {0, 1}n, then we say that a verifier V is an MAP(p, q) for Π
with respect to proximity ε if V can distinguish between inputs that
are in Π and inputs that are ε-far from Π using a proof of length
p and q queries. (See the end of Section 6.1 for a discussion of the
issues involved in providing a uniform treatment of parameterized
concatenation problems.)

Additionally, throughout this section we study properties that
are more naturally expressed as sets of strings (rather than func-
tions), therefore we present them as such. Note that a function
formulation (as in Definition 2.1) can be easily obtained by the
(trivial) mapping that maps the string x ∈ Σn to the function
fx : [n] → Σ defined as fx(i) = xi. We proceed to define parame-
terized concatenation problems.

Definition 6.1 Let A be a finite set, and n, k, n/k ∈ N. For
every α ∈ A, let Πα

n/k ⊆ {0, 1}n/k be a property of n/k-bit strings

that is parameterized by α. For every subset Ā ⊆ Ak, we say that
the property ΠĀ

n is a parameterized k-concatenation property (of
n-bit strings), where ΠĀ

n is defined as

ΠĀ
n

def
=

⋃
(α1,...,αk)∈Ā

Πα1

n/k × . . . × Παk

n/k.

If we consider the task of testing ΠĀ
n , it is not a priori clear (for

the tester) what value of the parameter αi to use for each block.
This is where MAPs can help us. That is, the proof of prox-
imity will simply tell the MAP verifier the correct value of the
parameter for each block. Using this idea, in Section 6.1 we con-
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struct an MAP for any parameterized concatenation problem. In
Section 6.2sec:orientation, we demonstrate the applicability of this
technique by using it to construct efficient MAPs (which manage
to bypass some lower bounds for testers that do not use a proof)
for a couple of natural properties:

1. Approximate Hamming weight: The first application of
our scheme is an efficient MAP for the problem of approx-
imating the Hamming weight of a given string. In this
problem, which is parameterized by w ∈ [n], the tester
needs to distinguish between inputs that have Hamming
weight exactly w and those that have Hamming weight
/∈ [w − εn, w + εn].

We complement this MAP with a (non-tight) lower bound
on the MAP complexity of the approximate Hamming
weight property. We leave the question of resolving the gap
between the upper and lower bounds to future work. See
Section 6.2.

2. Graph orientation problems: In addition, we show an
MAP in the graph orientation model (see Section 6.3 for
details on this model). Specifically, our MAP distinguishes
between orientations (of a specific undirected graph) that are
Eulerian and those that are far from Eulerian. Our MAP
has lower query complexity than the best possible property
tester for this problem, and the gap in query complexity
increases with the size of the proof. See Section 6.3.

Properties with/without distance. Note that all of the
explicit properties studied in Section 3 are properties of low-degree
polynomials and error-correcting codes. The MAPs that we have
shown for these properties crucially relied on the fact that these
properties have distance (i.e., properties wherein every two objects
that have the property are far from each other), and moreover, they
allow for a local form of self-correction.20 We note that in contrast,

20An important natural subset of this type of properties with distance is
the set of properties of algebraic objects; see (Kaufman & Sudan 2008) for an
extensive study of algebraic properties.
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all of the properties that we study in this section are without dis-
tance (as is the property of bipartiteness studied in Section 7). For
example, the Hamming weight property is without distance since
there are pairs of strings at distance 2 that have the same Hamming
weight.

6.1. The generic scheme. In this section we show a generic
scheme for parameterized concatenation problems.

Theorem 6.2 Ler c1, c2 ≥ 0 be constants. Let ΠĀ
n be a param-

eterized k-concatenation property (of n-bit strings) with respect
to A, Ā, and {Πα

n/k}α∈A, as in Definition Definition 6.1. Suppose
that for every α ∈ A, the property Πα

n/k can be tested with respect

to any proximity parameter ε′ > 0 (without using a proof) with
query complexity O ((n/k)c1 · (ε′)−c2). Then, the property Π has
an MAP , with respect to proximity parameter ε, that uses a proof
of length k · log |A| and has query complexity:

⎧
⎨
⎩

Õ
(
(n/k)c1 · ε− max(1,c2)

)
if c1 > 0 and c2 ≥ 0

Õ
(
(n/k)1−1/c2 · ε−1

)
if c1 = 0 and c2 ≥ 1.

Furthermore, if the testers for {Πα
n/k}α∈A have a one-sided error,

then the resulting MAP has a one-sided error.

Proof. The key idea is to use the proof in order to “break”
the problem of testing property Π into the concatenation prob-
lem of testing several sub-properties with smaller inputs. Then,
instead of solving each sub-problem independently, we efficiently
verify that the (smaller) sub-inputs together are not too far from
their corresponding sub-properties.

More specifically, we partition the input x (of length n) into k
blocks x1, . . . , xk of length n/k each. If x ∈ ΠĀ

n , then there must
exist (α1, . . . , αk) ∈ Ā such that xi ∈ Παi

n/k for each i ∈ [k]. The

proof is simply (α1, . . . , αk); that is, the “hidden” parameter for
each sub-property. The verifier, given this alleged proof, checks
that indeed (α1, . . . , αk) ∈ Ā (i.e., the parameterization of the sub-
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properties is valid), and is then left with the task of ascertaining
that the k blocks are not “far” from Πα1

n/k × · · · × Παk

n/k.

Toward this end, similarly to the approach in (Goldreich
2013, Section 5), we note that given an input that is far from
Πα1

n/k × · · · × Παk

n/k, the distance from the property can be either
“spread” between all of the sub-inputs, or “concentrated” on a
few sub-inputs—or anything in between. The main idea is that
if the distance is “concentrated,” then the deviation in these sub-
inputs must be large, and so, we can detect that such particular
sub-inputs do not have their corresponding sub-property by using
a test with low query complexity. Since we only read a few bits
for this test, we can afford to run it on many sub-inputs (thereby
increasing our chance of catching a sub-input that is far from its
corresponding sub-property). On the other hand, if the distance is
“spread” among the sub-inputs, then it suffices to examine only a
few sub-inputs, but for each such sub-input, we need to run a test
with high query complexity. Interestingly, in the latter case it is
sometimes beneficial for the verifier to simply read the entire block
rather than to run the “expensive” tester.

Since the verifier does not know whether it is in one of the
extreme situations or anywhere in between, naively we might want
to consider the “worst of all worlds” (i.e., small spread and high
query complexity per block). We improve upon the performance
of the forgoing approach by using the precision sampling technique
(originating in (Levin 1987, last paragraph of Section 9), see also
(Goldreich 2013, Appendix A.2)), which allows us to deal with all
of the possible distributions of the distance economically (specifi-
cally, by considering only a logarithmic number of representative
distributions). The resulting MAP protocol for parameterized
concatenation problems is presented in Figure 6.1.

Note that the length of the proof, which is (α1, . . . , αk), is
bounded by k · log |A|. As for the query complexity, first recall
that for any α and ε′ > 0, the property Πα

n/k has a tester with

query complexity T (n/k, ε′) = (n/k)c1 · (ε′)−c2 . Thus, the total
number of queries is at most:
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MAP for the parameterized k-concatenation problem ΠĀ
n

Input: a proximity parameter ε > 0 and oracle access to a string
x ∈ {0, 1}n.

The Proof:

◦ The string x is interpreted as a k sub-inputs x = (x1, . . . , xk) ∈
({0, 1}n/k)k.

◦ The proof consists of the parameters for the concatenated prob-
lems; namely, the values (α1, . . . , αk) such that xi ∈ Παi

n/k, for

every i ∈ [k] (such values must exist for x ∈ ΠĀ
n ).

The Verifier:

1. If (α1, . . . , αk) /∈ Ā, then reject.

2. For every j ∈ [ log2(2/ε) ], perform the following test:

(a) Select uniformly at random O log(1/ε)
2jε indices in [k]. De-

note the chosen indices by I.

(b) For every i ∈ I: Run the Παi

n/k tester O(log(1/ε)) times on
input xi, with respect to proximity parameter 2−j . Reject
if the majority of the tests failed.

3. If all of the previous tests passed, then accept.

Figure 6.1: MAP for Π

O

⎛
⎝ ∑

j∈[�log2 2/ε�]

log(1/ε)

2jε
· log(1/ε) · T

(
n/k, 2−j

)
⎞
⎠

= Õ

⎛
⎝(n/k)c1

ε

∑
j∈[�log2(2/ε)�]

2j(c2−1)

⎞
⎠

= Õ
(
(n/k)c1 ε− max(1,c2)

)
.

For the special case in which c1 = 0, we tighten the analysis.
Observe that, without loss of generality, for any proximity param-
eter ε, it holds that T (n, ε) ≤ n (simply since the tester can always
just read the entire input). Therefore, the query complexity is
bounded in this case by:
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O

⎛
⎝ ∑

j∈[�log2 2/ε�]

log(1/ε)

2jε
· log(1/ε) · T

(
n/k, 2−j

)
⎞
⎠

= Õ

⎛
⎝1

ε

∑
j∈[�log2 2/ε�]

min

(
n/k

2j
, 2j(c2−1)

)⎞
⎠

≤ Õ

⎛
⎝1

ε

∑
j∈[�log2 2/ε�]

(n/k)1−1/c2

⎞
⎠ ,

where the last inequality follows from the fact that c2 ≥ 1 (by our
assumption) and thus min

(
n/k · 2−j, 2(c2−1)j

)
≤ (n/k)1−1/c2 .

Therefore, the total query complexity in this case is
Õ
(
(n/k)1−1/c2 · ε−1

)
.

We proceed to prove the completeness and soundness of the
protocol.

Completeness. Suppose that x ∈ ΠĀ
n and that (x1, . . . , xk) ∈

Πα1

n/k × · · · × Παk

n/k. The tester for each sub-property is invoked

O(log(1/ε)) times in Step (2b) on some xi ∈ Παi

n/k. Therefore,

with probability 1 − poly(ε) the majority of these invocations will
accept. The total number of times that this step is run is at most
O(1/ε · log2(1/ε)) and therefore, by the union bound, the MAP
verifier accepts with probability at least 2/3.

Soundness. Suppose that x ∈ {0, 1}n is ε-far from ΠĀ
n . Let

(α1, . . . , αk) ∈ Ā be an alleged proof for the false statement
x ∈ ΠĀ

n (notice that if (α1, . . . , αk) /∈ Ā, then the tester imme-
diately rejects). Thus, x = (x1, . . . , xk) ∈ ({0, 1}n/k)k is ε-far from
Πα1

n/k × · · · × Παk

n/k (since otherwise x is ε-close to ΠĀ
n ).

The following claim shows that it suffices to consider
O (log(1/ε)) different distributions of the distance between the sub-
inputs. Since the proof of the claim is similar to results of (Gol-
dreich 2013, Section 5), we defer it to Appendix B.2).

Claim 6.3 (Precision Sampling (cf. Levin 1987, last paragraph
of Section 9 or Goldreich 2013, Appendix A.2)). There exists j ∈
[�log2 2/ε�] such that a 2jε

4·�log2(2/ε)� fraction of x1, . . . , xk are 2−j-far

from their corresponding sub-properties Πα1

n/k, . . . , Π
αk

n/k.
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Consider the execution of iteration j, where j is the index guar-
anteed by Claim 6.3. In this iteration, since the verifier selects

uniformly at random O
(

log(1/ε)
2jε

)
indices in [k], with probability at

least 0.9, it selects at least one i ∈ [k] such that xi is 2−j-far from
Παi .

Suppose that such an i is indeed selected. Since the base tester
for Παi

i is run with respect to proximity 2−j, it will reject xi with
probability 2/3. Since the test is repeated O(log(1/ε)) times, the
majority of these tests will reject with probability at least 0.9.
Thus, the MAP verifier rejects x with probability at least 0.9 ·
0.9 ≥ 2/3. �

On providing a uniform treatment. Recall that throughout
this section we have fixed n, ε, and k. Before proceeding to describe
the applications of Theorem 6.2, we shortly discuss issues that
arise when considering a uniform (asymptotic) treatment. In some
cases, in order to optimize the total complexity (i.e., the sum of the
proof complexity and the query complexity) of the MAP in The-
orem 6.2, it is beneficial to allow the number k of concatenations
to depend on the proximity parameter ε. However, if k depends
on ε, then the following two issues arise.

First, notice that if k depends on ε, then the proof string in
Theorem 6.2 becomes dependent on ε too, and therefore this pro-
tocol does not fall in our definition of MAP (Definition 2.1), which
requires a single proof of proximity that works for every value of
ε > 0. Hence, one can consider a slight relaxation of Definition 2.1
in which we allow the proof of proximity to depend on ε. Since
formally such a protocol is not an MAP , we call it an MAPPDP

(where PDP stands for proximity-dependent proofs). Note that in
an MAPPDP both the contents of the proof of proximity and its
length may depend on the proximity parameter. See Section 2.1
for further discussion of MAPPDP.

An additional issue that arises when the number of concate-
nations k depends on ε is that it is unclear how to define a k-
concatenation property, as the naive definition that follows Defini-
tion 6.1 would make the property itself depend on k, and therefore
also on the proximity parameter. While this issue can be overcome
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for the specific properties that are studied below, doing so in gen-
eral would be extremely cumbersome, which is the main reason for
our non-uniform treatment.

6.2. Approximate Hamming weight. In this section we con-
sider the problem of deciding whether a given string x ∈ {0, 1}n

has Hamming weight approximately w. More specifically, we would
like a tester that accepts every string x ∈ {0, 1}n that has Ham-
ming weight w ∈ [n] and rejects strings that have Hamming weight
that is ε-far from having weight w. Namely, the tester should reject
every string x ∈ {0, 1}n for which wt(x) /∈ [w − εn, w + εn], where
wt(x) denotes the Hamming weight of x.

More formally, we consider a family of properties
{Hammingw

n}w, indexed by a weight w ∈ {0, . . . , n}. The prop-
erty Hammingw

n is defined as the set that consists of all strings
x ∈ {0, 1}n that have Hamming weight exactly w.

By well-known sampling lower bounds (see, e.g., (Bar-Yossef
et al. 2001, Theorem 15), improving upon (Canetti et al. 1995)),
the query complexity of any property tester (which does not use a
proof) is Ω

(
min (n, ε−2)

)
. Our goal is to use MAPs in order to

bypass this lower bound. We remark that Hammingw was already
studied by (Rothblum et al. 2013) who showed a multiple-message
IPP for Hammingw with complexity Õ (ε−1) and a 2-message IPP
with complexity Õ

(
n

1
3 · ε− 2

3

)
. (Note that for ε = 1/

√
n, the 2-

message protocol of (Rothblum et al. 2013) has sublinear com-
plexity of Õ

(
n2/3

)
, whereas testing without a proof requires Ω(n)

queries.)
Using Theorem 6.2, we show that the performance of the (Roth-

blum et al. 2013) 2-message IPP can be matched by an MAP
(i.e., a 1-message IPP), while essentially preserving its complex-
ity.21 Thus, we show that even a non-interactive proof suffices to
bypass the property testing lower bound.

More generally, for every constant parameter α ∈ (0, 1), we
show that there exists an explicit MAP for Hamming that uses a

21We note that an MAP for approximating the Hamming distance with sim-
ilar performance was also discovered independently by (Guy) Rothblum et al.
following the initial publication of (Rothblum et al. 2013).
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MAP
Parameters Property testing Proof complexity Query complexity

General

α ∈ (0, 1)
Θ

(
min

(
n, ε−2

))
Õ (nα)

Õ
(√

n1−α · ε−1
)

Improves for n− 1
2 − α

2 < ε < n− 1
2+ α

2

α = 0.02 Θ
(
min

(
n, ε−2

))
Õ

(
n0.02

) Õ
(
n0.49 · ε−1

)

Improves for n−0.51 < ε < n−0.49

α = 2/3 Θ
(
min

(
n, ε−2

))
Õ

(
n2/3

) Õ
(
n1/6 · ε−1

)

Improves for n−5/6 < ε < n−1/6

α = 0.98 Θ
(
min

(
n, ε−2

))
Õ

(
n0.98

) Õ
(
n0.01 · ε−1

)

Improves for n−0.99 < ε < n−0.01

Table 6.1: The complexity of testing Hamming for different values
of α.

proof of length Õ(nα), and makes at most Õ
(√

n1−α · ε−1
)

queries

to the input string. For every value of α ∈ (0, 1), there is a range
of ε for which the MAP is more efficient than the best possible
property tester (which does not use a proof) for Hamming. A com-
parison of the efficiency of our MAP versus standard property
testers, for different values of α, is provided in Table 6.1.

Before we proceed, we note that we actually prove a slightly
stronger result. Namely, that for every k ∈ [n] there is an MAP
for Hamming that uses a proof of length k · log n, and makes at

most Õ
(√

n/k · ε−1
)

queries (where the more restricted statement

above is obtained by setting k = nα). In order to minimize the
total complexity (i.e., the sum of the proof complexity and the
query complexity) of the MAP , we also consider MAPPDP veri-
fiers (recall that MAPPDP is a slight relaxation of our definition of
MAP that allows the proof of proximity to depend on the proxim-
ity parameter, see the discussion at the end of Section 6.1). With

this relaxation, we can set k = n
1
3 · ε− 2

3 to obtain an MAPPDP

with (total) complexity Õ
(
n

1
3 · ε− 2

3

)
. See further discussion in

Section 2.1.

We complement the foregoing upper bound by showing a lower
bound on the MAP complexity of Hamming. Specifically, we show
that every MAP for Hamming that uses a proof of length p ≥ 1

must use Ω
(

min(n,ε−2)
p

)
queries. Note that the two bounds do not
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match (e.g., for ε = 1/
√

n and p = n2/3, the upper bound is
Õ
(
n2/3

)
and the lower bound is Ω(n1/3)). We leave the question

of resolving this gap for future work.

Theorem 6.4 For every w ∈ {0, . . . , n}, the property Hammingw
n

has a (two-sided error) MAP , with respect to proximity parameter

ε, that uses a proof of length k · log n and Õ
(√

n/k · ε−1
)

queries.

We remark that by applying Theorem 4.3 to the MAP of The-
orem 6.4, we can (somewhat surprisingly) construct a one-sided
error MAP with proof complexity O(k log n+polylogn) and query

complexity Õ
(√

n/k · ε−1
)
. In contrast, the query complexity

of every one-sided error property tester for Hammingw
n (without a

proof) is linear in the input size.

Proof (Proof of Theorem 6.4). Fix w ∈ [n]. It is well known
(and easy to show, e.g., via the Chernoff bound) that ε-proximity
to Hammingw

n can be tested, without a proof, using O(ε−2) queries
(with a two-sided error). Let

Ā
def
=

{
(w1, . . . , wk) ∈ {0, . . . , n/k}k :

k∑
i=1

wi = w
}

.

Observe that a string x = (x1, . . . , xk) ∈ ({0, 1}n/k)k has Hamming
weight w if and only if, for every i ∈ [k] the string xi has Hamming
weight wi and

∑k
i=1 wi = w. Hence,

Hammingw
n =

⋃
(w1,...,wk)∈Ā

Hammingw1

n/k × · · · × Hammingwk

n/k.

The theorem follows from Theorem 6.2 (where c1 = 0 and c2 = 2).
�

Relation to TensorSum. The Hamming problem is loosely related
to the Sub-Tensor Sum problem (see Section 3.2), since in both
problems we want to compute the sum of the entries of a given
input string. In the Sub-Tensor Problem we want an exact answer
but are given the string in an error-corrected format (where we
think of the input as f : Hm → F which is encoded by a low-
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degree polynomial f̂ : Fm → F that agrees with f on Hm). In the
Hamming problem we do not have the benefit of an error-correcting
code but allow an approximate answer.

Next, we show a lower bound on the MAP complexity of the
property Hammingn/2

n (the set of all strings of Hamming weight
exactly n/2, where n is the length of the string). We note that
the lower bound can be extended to Hammingw

n for more general
values of w by reducing to Hammingn/2

n using adequate padding
(while taking care of the integrality issues that arise). We also
note that the lower bound only holds for reasonable complexity
measures (which are specified formally below).

The lower bound is proved using our extension of the (Blais
et al. 2011) framework to the MAP model that was established in
Section 3.2.2. Recall that this extension allows us to prove lower
bounds on the complexity of MAPs via MA communication com-
plexity lower bounds. We note that since an MAP lower bound
refers to a particular value of ε, it immediately implies a lower
bound also on MAPPDP.

One natural candidate for a communication complexity prob-
lem on which we can base our Hamming lower bound is the Ham-
ming Distance communication problem, wherein Alice and Bob
need to decide whether the Hamming distance of their input strings
is equal to a predetermined number. However, as opposed to
the MAP lower bounds that we have shown before (e.g., for
TensorSum, and EIM), Hamming is a property of non-robust objects;
i.e., there is no significant distance between every pair of valid
objects. In order to overcome the lack of distance between valid
objects in Hamming, we wish to reduce Hamming to an MA
communication complexity gap-problem wherein the YES-instances
and NO-instances are far apart. Indeed, the Gap Hamming Dis-
tance problem, described next, serves this purpose.

Let n ∈ N, and let t, g > 0. The Gap Hamming Distance prob-
lem, denoted by GHDn,t,g, is the promise problem wherein Alice
gets as input an n-bit string x, Bob gets as input an n-bit string
y, and the players need to decide whether the Hamming distance
of their strings is greater than t + g (considered a YES-instance),
or smaller than t − g (considered a NO-instance). Formally,
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Definition 6.5 The Gap Hamming Distance problem is the com-
munication complexity problem of computing the (partial) Boolean
function GHDn,t,g : {0, 1}n × {0, 1}n → {0, 1} given by

GHDn,t,g(x, y) =

{
1 if Δ (x, y) ≥ t + g

0 if Δ (x, y) ≤ t − g
.

We denote GHD
def
= GHDn, n

2
,
√

n.

We use the following lemma, which can be derived from a recent
result of Gur & Raz (2013) by observing that the reductions of
Chakrabarti & Regev (2011) are robust to MA.

Lemma 6.6 Let g, n ∈ N such that g ≤ n and t = α · n for some
constant α ∈ (0, 1). Then, every MA communication complexity
protocol for GHDn,t,g, with proof complexity p ≥ 1, has communi-

cation complexity at least Ω

(
min(n,(n/g)2)

p

)
.

Equipped with Lemma 6.6, we proceed to prove the lower
bound for Hammingw

n .

Theorem 6.7 For every n ∈ N and ε
def
= ε(n) ∈ (0, 1/2), if

Hammingn/2
n has an MAP with respect to proximity parame-

ter ε, with proof complexity p = Ω(log n) and query complex-
ity q such that p(O(n)) = O(p(n)) and q(O(n)) = O(q(n)), then
p · q = Ω (min (n, ε−2)).

We note that our restriction on the form of p and q is satisfied
by reasonable functions such as f(n) = a · nb for any a, b ≥ 0 as
well as for f(n) = a · polylog(n).

Proof (Proof of Theorem 6.7). Throughout the proof we fix the

function w as w(m)
def
= m/2. By Lemma 3.19, if Hammingw

n ∈
MAP(p, q), then the communication complexity (promise) prob-

lem CHammingw⊕,ε has an MA communication complexity protocol
with a proof of length p and total communication 2q, where (fol-

lowing (Blais et al. 2011)) CHammingw⊕,ε refers to the communication
complexity (promise) problem, in which Alice and Bob need to
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decide whether their inputs have Hamming distance exactly n/2
or are ε-far from having such distance. Thus, by Lemma 6.6, the
theorem follows by reducing GHDn,n/2−εn,εn to CHammingw⊕,ε , which is
done next. (We stress that this reduction takes place entirely in
the context of MA communication complexity.)

We note that both GHDn,n/2−εn,εn and CHammingw⊕,ε are commu-
nication complexity (promise) problems that refer to the Ham-
ming distance Δ (x, y) between the inputs x and y (of Alice and
Bob, respectively). In GHDn,n/2−εn,εn the YES-instances corre-
spond to Δ (x, y) ≥ n/2 and the NO-instances correspond to

Δ (x, y) ≤ n/2 − 2εn, whereas in CHammingw⊕,ε the YES-instances cor-
respond to Δ (x, y) = n/2 and the NO-instances correspond to
Δ (x, y) /∈ [n/2 − εn, n/2 + εn].

We proceed to show a reduction from GHDn,n/2−εn,εn to

CHammingw⊕,ε . Since the reduction is between two MA communica-
tion complexity problems, we may allow the reduction to make use
of a proof string. Specifically, the reduction is given as a proof
string an integer d̃ ∈ {0, . . . , n} that allegedly equals Δ (x, y), and
maps a pair (x, y) ∈ {0, 1}n+n to a pair (x′, y′) ∈ {0, 1}2n+2n such
that a YES (resp., NO) instance of GHDn,n/2−εn,εn is mapped to a

YES (resp., NO) instance of CHammingw⊕,ε .

The reduction, given input d̃ and (x, y), first checks that d̃ ≥
n/2 and rejects otherwise (since Δ (x, y) < n/2 does not correspond
to a YES instance of GHDn,n/2−ε,εn). Then, the reduction maps the
pair (x, y) ∈ {0, 1}n+n to the pair (x′, y′) ∈ {0, 1}2n+2n by setting

x′ = x ◦ 0n and y′ = y ◦ 0d̃1n−d̃. That is, Alice (resp., Bob),
given input x (resp., y) and the alleged proof d̃, first checks that
d̃ ≥ n/2 and then computes x′ (resp., y′). The parties then run

the CHammingw⊕,ε MA communication complexity protocol on input
(x′, y′).

If (x, y) is a YES-instance of GHDn,n/2−εn,εn (i.e., Δ (x, y) ≥
n/2) and d̃ = Δ (x, y) (i.e., the provided proof is correct), then

Δ (x′, y′) = Δ (x, y) + n − d̃ = n,

and so (x′, y′) is a YES-instance of CHammingw⊕,ε . On the other hand, if
(x, y) is a NO-instance of GHDn,n/2−εn,εn (i.e., Δ (x, y) ≤ n/2−2εn),

then for every d̃ ≥ n/2
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Δ (x′, y′) = Δ (x, y) + n − d̃ ≤ n − 2εn

and so (x′, y′) is a NO-instance of CHammingw⊕,ε .

Let us spell out how the reduction is used to prove the theorem.
Suppose that Hammingw is in the class MAP(p, q), where p and q

are as in the hypothesis. Then, by Lemma 3.19, the CHammingw⊕,ε prob-
lem has an MA communication complexity protocol with proof
complexity p and communication complexity 2q. Our reduction
maps inputs of length n (of GHDn,n/2−εn,εn) to inputs of length

2n (of CHammingw⊕,ε ), while using an additional proof of length log2 n.
Thus, the reduction implies an MA communication complexity
protocol for GHDn,n/2−εn,εn with proof complexity p(2n)+ log2 n =
O(p(n)) and communication complexity 2q(2n) = O(q(n)). Hence,
by Lemma 6.6, it holds that p · q = Ω (min(n, ε−2)). �

6.3. Graph orientation problems. In this section we apply
Theorem 6.2 to the problem of testing graph orientations for
being Eulerian in the graph orientation model. In the graph ori-
entation model, introduced by Halevy et al. (2005), an underly-
ing directed graph G = (V,E) with a canonical orientation (i.e.,
wherein each edge is directed from the vertex with the smaller
lexicographical order to the vertex with the larger lexicographical
order) is given as an explicit input to the tester, and the actual
input, to which the tester only has oracle access, is an orientation−→
G = { d(e) ∈ {0, 1} : e ∈ E } of G, wherein d(e) represents the
direction of the edge e.

Given a property ΠG (parameterized by the fixed directed graph
G) of graph orientations, a tester for ΠG is given query access to
an orientation of G; that is, every query is an edge e ∈ E, and the
answer to the query is the direction of e in G (i.e., d(e) ∈ {0, 1}).

An orientation
−→
G of G is ε-close to ΠG if it can be modified to be in

ΠG by inverting the direction of at most an ε-fraction of the edges
of G. Note that the distance function in the orientation model
naturally depends on the size of the underlying graph. Moreover,
the testing algorithm may strongly depend on the structure of the
underlying graph. We note that the graph orientation model falls
within the standard property testing framework, as a special case
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of property testing of massively parameterized problems (see (New-
man 2010) for a survey on massively parameterized properties).

We consider the graph orientation property of being Eulerian,
which was first pointed out by Halevy et al. (2007) as a natural
property for the graph orientation model. Recall that a directed
graph is Eulerian if for every vertex v in the graph, the in-degree
of v is equal to its out-degree. If G is a directed graph (with
canonical orientation), we denote by EulerG the property that con-
tains all orientations of G to (directed) Eulerian graphs. While no
(non-trivial) upper bound is known for this property, Fischer et al.
(2012) showed that for general graphs, testing proximity to being
Eulerian with 1-sided error is hard. Specifically, they showed that
for G = K2,n−2 (i.e., the full bipartite graph with 2 vertices on one
side, and n − 2 vertices on the other side), a one-sided error tester
for EulerG must use Ω(n) queries.

Using Theorem 6.2 we show, for every α ∈ (0, 1], an MAP with
1-sided error for EulerK2,n−2 , which uses a proof of length Õ(nα)

and Õ(n1−αε−1) queries. Hence, we have a smooth (up to poly-
logarithmic factors) multiplicative trade-off between the query and
proof complexities of the MAP . We note that it seems that using
similar techniques, it is possible to obtain, using Theorem 6.2, effi-
cient MAPs for several problems in the graph orientation model.

Formally, let K2,n−2 be the graph with a set of vertices V =
{ v1, ..., vn } and a set of edges E = {(vi, vj) : i ∈ {1, 2}, j ∈
{ 3, ..., n }}.

Theorem 6.8 The property EulerK2,n−2 has a one-sided error
MAP , with respect to proximity parameter ε, that uses a proof
of length O(k · log n) and has query complexity Õ

(
n
k

· ε−1
)
.

Proof. The main idea is to divide K2,n−2 into subgraphs of
equal size, wherein v1 and v2 are the only vertices that appear in
all subgraphs. We require that for all j ∈ { 3, . . . , n }, the in-degree
of vj is equal to its out-degree. However, since v1 and v2 appear in
all of the subgraphs, we can allow their in-degree in each subgraph
to be different than their out-degree in this subgraph, as long as
the sum of their in-degrees is equal to the sum of their out-degrees.
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We denote the in-degree of a vertex v ∈ K2,n−2 by din(v) and
the out-degree of v ∈ K2,n−2 by dout(v). We start by considering
the following generalization of the EulerK2,n−2 property. For every

a, b ∈ Z, let Euler
(a,b)
K2,n−2

be the set of all orientations of K2,n−2 such
that:

1. din(v1) − dout(v1) = a.

2. din(v2) − dout(v2) = b

3. din(vj) = dout(vj), for all j ∈ { 3, . . . , n }.

(note that a and b may be negative). Let Ā be the set of all
sequences

(
(a1, b1), . . . , (ak, bk)

)
, where ai, bi ∈ {−(n−2), . . . , n−2}

for every i ∈ [k] and for which it holds that
∑k

i=1 ai = 0 and∑k
i=1 bi = 0. Consider the property:

Π
def
=

⋃
(a1,b1),...,(ak,bk)∈Ā

Euler
(a1,b1)
K2,n/k−2

× · · · × Euler
(ak,bk)
K2,n/k−2

.

This property contains all sequences of k orientations of the graphs
K2,n/k−2 such that (1) the vertices on the “large” side have in
degree that is equal to their out-degree and (2) for the vertices
on the “small” sides, the sum, over all graphs, of their in-degree
equals the sum of their out-degrees. We note that there is a trivial
mapping between Π and EulerK2,n−2 which simply identifies the
pair of vertices on the smaller side of graphs in Π as a single pair
of vertices.

By applying Theorem 6.2 with c1 = 1, c2 = 0, and using
the trivial tester (that queries the entire orientation) for every
subgraph, the property Π has an MAP with proof of length
O(k · log n), and query complexity Õ

(
n
k

· ε−1
)
. By the foregoing

discussion, this MAP can be easily modified to work also for the
property EulerK2,n−2 . �

7. Bipartiteness in bounded-degree graphs

In this section we consider the problem of testing bipartiteness for
“rapidly mixing” graphs in the bounded-degree graph model. In
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a classical result, Goldreich & Ron (1999) showed that any graph
can be tested for bipartiteness in the bounded-degree model, using
a tester with query complexity Õ(

√
N/ε), where N is the number

of vertices in the tested graph. Goldreich and Ron first consider
the (far simpler) case in which there is a promise that the graph is
“rapidly mixing” (see definition below). More recently, Rothblum
et al. (2013) showed a 2-message IPP for bipartiteness, in the
rapidly mixing case, with communication and query complexities
that are poly(log N, ε−1).

Roughly speaking, using similar techniques to (the rapidly mix-
ing case in) Goldreich & Ron (1999), we construct an MAP pro-
tocol for testing bipartiteness of rapidly mixing graphs, with proof
complexity p and query complexity q for every p and q such that
p ·q ≥ N . Thus, the query complexity of our MAP improves upon
that of the Goldreich & Ron (1999) bipartiteness tester (which does
not use a proof) only if the proof is of length ω(

√
N). In particular,

we obtain an MAP verifier that uses a proof of length N2/3 and
makes only N1/3 queries. In contrast, a lower bound of Ω(

√
N)

for testers (which do not use a proof) was shown by Goldreich &
Ron (2002) (and this lower bound holds also in the rapidly mixing
case).

We leave the questions of (1) extending our result to graphs
that are not rapidly mixing, and (2) obtaining an MAP for bipar-
titeness with query and proof complexities that are both o(

√
N),

for future research.

The bounded-degree graph model. In the bounded-degree
graph model, introduced by Goldreich & Ron (2002) (see also Gol-
dreich (2011)), the object that is being tested is a graph G = (V,E)
with degree bounded by some constant d. The graph is represented
by a function g : V × [d] → V ∪{⊥} such that g(u, i) = v if v is the
ith vertex incident at u, and g(u, i) = ⊥ if u has less than i neigh-
bors. The distance between two graphs, represented by functions
g, g′ : V × [d] → V ∪ {⊥} is measured (as usual) as the fraction
of pairs (u, i) such that g(u, i) �= g′(u, i). For further details, see
Goldreich (2011).
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Rapidly mixing graphs. Let G = (V,E) be graph with degree

bounded by d and let N
def
= |V |. A (lazy) random walk of length 	

starting at a vertex s ∈ V is a random walk that involves 	 steps.
At each step, if the walk is currently at vertex v with degree dv ≤ d,
then the walk continues to each neighbor of v with probability 1/2d
and stays at v with probability 1− dv

2d
≥ 1/2 (a so-called lazy step).

We say that G is rapidly mixing if for every s, t ∈ V , the probability
that a (lazy) random walk of length Ω(log N) that starts in s ends
in t, is at least 1/(2N) and at most 2/N . We will use the fact
that in a rapidly mixing graph G = (V,E), for every vertex s ∈ V
and subset T ⊆ V , the probability that a random walk of length
Ω(log N) that starts at s ends in T , is at least |T |/(2N) and at most
2|T |/N . We mention the well-known fact that expander graphs are
rapidly mixing.

We proceed to describe our MAP . Actually since we require a
promise that the graph is rapidly mixing, we will need a “promise-
problem” variant of the notion of MAP . For the sake of brevity,
we only define this notion implicitly (in the next theorem).

Theorem 7.1 There exists a probabilistic verifier V that given
oracle access to a graph G of size N (in the bounded-degree model),
and explicit access to N , the degree bound d, a proximity param-
eter ε ∈ (0, 1), and a proof string w of length k · log N , makes
at most Õ(N

k
· ε−2) oracle queries, and satisfies the following two

conditions:

(i) (Completeness:) If G is bipartite, then there exists a proof
string w ∈ {0, 1}k log N such that V G(N, d, ε, w) = 1, with
probability 1.

(ii) (Soundness:) If G is rapidly mixing and ε-far from every
bipartite graph, then for every proof string w, with probabil-
ity at least 1/2, it holds that V G(N, d, ε, w) = 0.

Note that our tester has a one-sided error.

Proof. We define the parity of a (lazy) random walk as the
parity of the number of actual (i.e., non-lazy) steps that take place
in it. Loosely speaking, the proof that the graph G is bipartite is
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MAP for Bipartiteness of rapidly-mixing graphs

Input: oracle access to a graph G = (V,E), the size N
def= |V | of the

graph, a bound d on the maximal degree in G, a proximity parameter
ε ∈ (0, 1), and a parameter k ∈ [N ].

The Proof:
Let V = (L, R) such that L, R are disjoint independent sets and |L| ≥
|R| (such a partition is guaranteed if the graph is bipartite). The proof
is an (arbitrary) subset S ⊆ L of size k.

The Verifier:

1. Repeat O logN
ε times:

(a) Select uniformly at random s ∈ V .

(b) Take O N
k · logN

ε (lazy) random walks starting at s, each

of length def= O(log N).

(c) Reject if there are two walks that end in S, having different
parities.

2. If all of the previous tests passed, then accept.

Figure 7.1: MAP for bipartiteness of rapidly mixing graphs

a subset S ⊆ V of k vertices that are allegedly on the same side
of G. To verify the proof, the verifier selects roughly O(log N)
starting vertices, and takes approximately N/k random walks of
length O(log N) from each starting vertex s. If there exist two
random walks that start in s and end in S with different parities,
then two corresponding vertices in S must be on different sides and
the verifier rejects. Otherwise, the verifier accepts.

Since the graph is rapidly mixing, the probability that a ran-
dom walk that starts in s ends in S is roughly |S|/N . The key point
(which is proved formally below) is that if the graph is far from
bipartite, then for many starting vertices, the probability that the
random walk ends in S with parity 0 (or equivalently, with parity 1)
is Ω (|S|/N). That is, the probability of reaching S with either par-
ity is significant enough. The protocol is presented in Figure 7.1.

Note that the proof and query complexities are as stated. We
proceed to show that completeness and soundness hold.
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Completeness. If G = ((L,R), E) is a bipartite graph such that
|L| ≥ |R|, and S ⊆ L is the proof string, then there is no path
between two vertices in S that has an odd length. Therefore, for
every vertex s ∈ V , there are no two paths with different parities
that end in S.

Soundness. Suppose that G = (V,E) is a rapidly mixing graph
of size N = |V | that is ε-far from every bipartite graph and let
S ⊆ V . For every v ∈ V and σ ∈ {0, 1}, let pσ

v be the probability
that a (lazy) random walk of length 	 = O(log N) that starts at
v, ends in S with parity σ. Since the graph is rapidly mixing,
p0

v + p1
v ≥ |S|

2N
for every v ∈ V .

The following claim shows that, for an average vertex v, the
probability that one random walk that starts at v ends in S with
parity 0 and a second random walk that starts at v ends in S
with parity 1, is roughly Ω((|S|/N)2) (i.e., roughly the same as
the probability for two random walks that start at v to end in S
without any restriction on the parities of the walks).

Claim 7.2

∑
v∈V p0

vp
1
v > ε|S|2

64�N
.

Proof. Suppose otherwise. Consider the following partition of
the graph into (V0, V1) where V0 = {v ∈ V : p0

v ≥ p1
v} and V1 =

{v ∈ V : p1
v > p0

v}. Let E ′ = E(V0, V0) ∪ E(V1, V1) be the set
of all internal edges within V0 and within V1. We will obtain a
contradiction by showing that G is ε-close to the bipartite graph
((V0, V1), E\E ′) that is obtained from G by removing all edges
in E ′.

For every v ∈ V and σ ∈ {0, 1}, let Aσ
v,m denote the event that

a (lazy) random walk of length m (where m is a parameter) that
starts at v, ends in S with parity σ. In particular, Pr[Aσ

v,�] = pσ
v .

Then, for every σ ∈ {0, 1} and v ∈ Vσ, it holds that

p1−σ
v ≥

∑
u∈Vσ s.t. (v,u)∈E′

1

2d
· Pr[Aσ

u,�−1],(7.3)

since a walk from v to S with parity 1 − σ can be obtained by
a step to one of the neighbors of v in Vσ (which happens with
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probability 1/2d for each neighbor), and a walk of length 	 − 1
from this neighbor u to S with parity σ (i.e., the event Aσ

u,�−1).
Intuitively, since we expect the number of lazy steps in a lazy

random walk to be rather large (at least 	/2 in expectation), the
probability that the event Aσ

u,�−1 occurs is closely related to the
probability that the event Aσ

u,� occurs (indeed, we expect the dis-
crepancy in the number of steps to be “hidden” by the (devia-
tion of the number of) lazy steps). The foregoing intuition is
formalized as follows. Note that with very high probability at
least one lazy step occurs. Furthermore, observe that the proba-
bility that Aσ

u,� occurs, conditioned on a specific step being lazy, is
equal to the probability that Aσ

u,�−1 occurs. Indeed, by the union
bound,

pσ
u = Pr[Aσ

u,�]

≤ Pr[Aσ
u,� ∧ no lazy steps in the walk]

+
∑
i∈[�]

Pr[Aσ
u,� ∧ the ith step in the walk is lazy]

≤ Pr[no lazy steps in the walk]

+
∑
i∈[�]

Pr[Aσ
u,� | the ith step in the walk is lazy]

We can bound the first term by 2−�, which by setting 	 = log(4N),
is at most 1/(4N). As for the second term, the probability that a
random walk of length 	 from u ends in S with parity σ conditioned
on the ith step being lazy is equal to the probability that a random
walk of length 	 − 1 from u ends in S with parity σ. Hence,

pσ
u ≤ 1

4N
+ 	 · Pr[Aσ

u,�−1](7.4)

Using (7.3) and (7.4), we obtain that:

∑
v∈V

p0
vp

1
v =

∑
σ∈{0,1}

∑
v∈Vσ

pσ
vp

1−σ
v

≥
∑

σ∈{0,1}

∑
(v,u)∈E′

s.t. v,u∈Vσ

pσ
v ·

Pr[Aσ
u,�−1]

2d
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≥
∑

σ∈{0,1}

∑
(v,u)∈E′

s.t. v,u∈Vσ

pσ
v · 1

2	d
·
(

pσ
u − 1

4N

)

≥ |E ′| · 1

2	d
· |S|
4N

· |S|
8N

where the last inequality follows from the fact that for every w ∈ Vσ

it holds that pσ
w ≥ (pσ

w + p1−σ
w )/2 ≥ |S|/4N .

Hence, by our hypothesis, |E ′| ≤ ε|S|2
64�N

·
(

1
2�d

· |S|
4N

· |S|
8N

)−1

= εdN .

Therefore, by removing an ε fraction of the edges of G we obtain a
bipartite graph, in contradiction to our assumption that G is ε-far
from bipartite. This concludes the proof of Claim 7.2. �

We say that a vertex v is good if p0
vp

1
v ≥ ε|S|2

128�N2 . (Intuitively, a
vertex v is good if two random walks that start at v are likely to
end in S with different parities.) Let α ∈ [0, 1] be the fraction of
good vertices in V . By Claim 7.2,

ε|S|2
64	N

<
∑
v∈V

p0
vp

1
v

=
∑

v is good

p0
vp

1
v +

∑
v is not good

p0
vp

1
v

≤ αN ·
(

2|S|
N

)2

+ N · ε|S|2
128	N2

,

where the last inequality uses the fact that for every vertex v ∈ V
it holds that p0

v · p1
v ≤ (p0

v + p1
v)

2 ≤ (2|S|/N)2. Hence, the fraction
of good vertices is at least α = Ω(ε/ log N).

Hence, with probability at least 0.9, at least one of the starting
vertices s (which were selected in one of the O(log N/ε) iterations)
is good. Assume that indeed, in one of the iterations a good vertex

s is selected. Hence, p0
sp

1
s ≥ ε|S|2

128�N2 and p0
s +p1

s ≤ 2|S|
N

, which implies

that p0
s, p

1
s = Ω

(
|S|ε

N log N

)
. Therefore, since we take O

(
N
|S| · log N

ε

)

random walks starting in s, with probability 0.9, there will be at
least one walk that ends in S with parity 0 and one walk that ends
in S with parity 1. Hence, by the union bound, the tester rejects
with probability at least 1/2. �
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A. Background

A.1. Communication complexity. Let X and Y be finite sets,
and let f : X × Y → {0, 1} be a function. In the two-party prob-
abilistic communication complexity model we have two computa-
tionally unbounded players, traditionally referred to as Alice and
Bob. Both players share a random string. Alice gets as an input
x ∈ X. Bob gets as an input y ∈ Y . At the beginning, neither one
of the players has any information regarding the input of the other
player. Their common goal is to compute the value of f(x, y), while
minimizing the communication between them. In each step of the
protocol, one of the players sends one bit to the other player. This
bit may depend on the player’s input, the common random string,
as well as on all previous bits communicated between the two play-
ers. At the end of the protocol, both players output f(x, y) with
high probability.

We say that a given protocol π computes a (possibly partial)
function f : X × Y → {0, 1} if for every x ∈ X and y ∈ Y with
probability at least 2/3 Alice outputs f(x, y) after interacting with
Bob.22 We define the communication complexity of the protocol
CC(π) to be the maximum number of communicated bits in the
protocol π when Alice and Bob are given inputs from X and Y ,
respectively (where the maximum is taken over all possible coin
tosses). The communication complexity of a function f is defined
as:

22In the case of a partial function, we consider only relevant x and y’s.
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CC(f) = min
π that compute f

CC(π).

For a family of functions F = {fn : Xn → Yn}n∈N, we define
the communication complexity of F as CCn(F) = CC(fn).

Set-disjointness. The (unique) set-disjointness problem is the
classical communication complexity problem wherein Alice gets an
n-bit string x, Bob gets an n-bit string y, and their goal is to
decide whether there exists a unique i ∈ [n] such that xi = yi = 1.
Formally,

Definition A.1 For every n ∈ N, DISJn : {0, 1}n × {0, 1}n →
{0, 1} is the communication complexity problem given by the par-
tial function

DISJn(x, y) =

{
1 if

∑
i∈[n] xiyi = 0

0 if
∑

i∈[n] xiyi = 1

(where the arithmetic is over the integers).

It is well known (see (Kalyanasundaram & Schintger 1992))
that the communication complexity of the set-disjointness problem
is linear in the size of the inputs.

A.2. MA Communication complexity. In MA communica-
tion complexity protocols, we have a function f : X × Y → {0, 1}
(for some finite sets X,Y ), and three computationally unbounded
parties: Merlin, Alice, and Bob. The function f is known to all
parties. Alice gets as an input x ∈ X. Bob gets as an input y ∈ Y .
Merlin sees both x, y, but Alice and Bob share a private random
string that Merlin cannot see.

At the beginning of an MA communication complexity protocol,
Merlin, who sees both inputs x and y, sends a proof string w =
w(x, y) that asserts that f(x, y) = 1 to Alice and Bob. The two
players exchange messages and at the end of the protocol, (say)
Alice outputs an answer z ∈ {0, 1}. Note that the answer may
depend on the proof w as well as the input (x, y). For a protocol
π, denote by π

(
(x, y), w

)
the probabilistically generated answer

z ∈ {0, 1} given by Alice on input (x, y) and proof w.
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We define MA communication complexity protocol as follows.

Definition A.2 An MA(c, p)-communication complexity proto-
col for f is probabilistic communication complexity protocol π
between Alice and Bob in which they both get as input a p-bit
proof, they can communicate at most c bits, and the protocol sat-
isfies the following two conditions:

(i) Completeness: For all (x, y) ∈ f−1(1), there exists a string
w ∈ {0, 1}p such that

Pr
[
π
(
(x, y), w

)
= 1

]
≥ 2/3

(where the probability is over the common random string).

(ii) Soundness: For all (x, y) ∈ f−1(0) and for any string w ∈
{0, 1}p, we have

Pr
[
π
(
(x, y), w

)
= 1

]
≤ 1/3

(where the probability is over the common random string).

The MA communication complexity of set-disjointness.
Recall that there is a well-known linear lower bound on the com-
munication complexity of the set-disjointness problem (DISJ) (see
Section 3.1.3 for formal definitions and statement of the lower
bound). A decade after the communication complexity of DISJ
was settled, Klauck (Klauck 2003, 2011) showed the following lower
bound on the MA communication complexity of set-disjointness
(later proved to be tight, by Aaronson & Wigderson (2009)).

Theorem A.3 Every MA communication complexity protocol
for DISJn with proof complexity p and communication complex-
ity c satisfies p · c = Ω(n).

A.3. Error-correcting codes. We first introduce codes as
objects of fixed length and then give asymptotic variants of the
definitions. Let Σ be a finite alphabet. An error-correcting code
(over Σ) is an injective function C : Σk → Σn where k, n ∈ N and
k < n. Every element in the range of C is called a codeword. The
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length of the code is n (viewed as a function of k) and the relative
distance is defined as d/n, where d is the minimal distance between
two (distinct) codewords.

We say that the code C is a t-locally testable code (LTC), where
t : [0, 1] → N, if there exists a probabilistic algorithm T that given
oracle access to w ∈ Σn and a proximity parameter ε > 0 makes
at most t(ε) queries. The algorithm accepts every codeword with
probability 1, and rejects every string that is ε-far from the code
with probability at least 1/2. For further details on LTCs, see
(Goldreich 2010b; Goldreich & Sudan 2006).

We say that the code C, with relative distance δ0, is a t-locally
decodable code (t-LDC), where t ∈ N, if there exists a constant δ ∈
(0, δ0/2) called the decoding radius, and a probabilistic algorithm
D that given i ∈ [k] and oracle access to a string w ∈ Σn that
is δ-close to a codeword w′ = C(m) for some m ∈ Σk, makes at
most t queries to the oracle and outputs mi (i.e., the ith bit of m)
with probability at least 2/3. Moreover, if w is a codeword, then
the algorithm outputs mi with probability 1. For further details
on LDCs, see (Katz & Trevisan 2000).

An important parameter of both LTCs and LDCs are their query
complexities; that is, the number of queries t made to the string
w. In both cases we are interested in codes for which the number
of queries t is significantly smaller than n. While there are known
LTCs with (almost) linear length and constant query complexity
(i.e., t does not depend on n), obtaining an LDC with constant
query complexity and polynomial length is a major open problem
in coding theory.

We will also consider a relaxation of LDCs, introduced by Ben-
Sasson et al. (2006), known as relaxed-LDC. In this variant, the
decoder is allowed to abort on corrupted codewords. Indeed,
the main advantage of relaxed-LDCs over standard LDCs is that
there are known constructions (see (Ben-Sasson et al. 2006)) of
relaxed-LDCs with constant query complexity and almost linear
length.

Definition A.4 (relaxed-LDC, adapted from Ben-Sasson et al.
2006, Definition 4.5). We say that the code C : Σk → Σn with
relative distance δ0 is a t-relaxed-LDC if there exists a constant
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δ ∈ (0, δ0/2) and a probabilistic algorithm D that, given an inte-
ger i ∈ [k] and oracle access to a string w ∈ Σn, makes at most t
queries and satisfies the following two conditions:

(i) If w = C(m) is a codeword that encodes the message m ∈ Σk,
then D outputs mi with probability 1.

(ii) If w is δ-close to a codeword w′ = C(m), then, with probabil-
ity at least 2/3, the decoder D outputs a value σ ∈ {mi,⊥};
that is, Pr[Dw(i) ∈ {mi,⊥}] ≥ 2/3.

We note that our definition differs from the original definition in
(Ben-Sasson et al. 2006) in two ways. The first difference is that
(Ben-Sasson et al. 2006) require an additional, third, condition that
we do not need. (However, (Ben-Sasson et al. 2006) show that
a code that satisfies conditions 1 and 2 above can be converted
into an “equally good” code that satisfies also the additional third
condition.) The second difference is that (Ben-Sasson et al. 2006)
only require that the decoder succeed in decoding valid codewords
with probability 2/3 whereas we require successful decoding with
probability 1. Fortunately, the constructions of (Ben-Sasson et al.
2006) actually satisfy the stronger requirement.

The asymptotic variants of the foregoing definitions are
obtained in the natural way by considering families of codes, one
for each input length. Let k : N → N be some (sublinear) function
an let {Σn}n∈N be an ensemble of alphabets. A family of codes is
an ensemble {Cn}n∈N such that Cn : (Σn)k(n) → (Σn)n is a code
for every n ∈ N.

We say that the family of codes is a t-LTC for a function t : N×
[0, 1] → N if for every n ∈ N, the code Cn is a t(n, ·)-LTC. Similarly
we say that a family of codes is a t-LDC (resp., relaxed-LDC) for a
function t : N → N if for every n ∈ N, the code Cn is a t(n)-LDC
(resp., t(n)-relaxed-LDC). We sometimes abuse notation and refer
to a family of codes as a single code.

A.4. Multivariate polynomials and low-degree testing. In
this section we recall some important facts on multivariate polyno-
mials (see (Sudan 1995) for a far more detailed introduction). In
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the following we fix a finite field F and a dimension m and consider
m-variate polynomials over F.

Lemma A.5 (Schwartz–Zippel Lemma). Let P : F
m → F be a

nonzero polynomial of total degree d. Let S ⊂ F and let r be
selected uniformly at random in Sm. Then,

Pr
r∈RS

[P (r) = 0] ≤ d

|S| .

An immediate corollary of the Schwartz–Zippel Lemma is that
two distinct polynomials P,Q : F

m → F of total degree d may
agree on at most a d

|F| -fraction of their domain (i.e., Fm).

Theorem A.6 (Self-Correction Procedure (cf. Gemmell & Sudan
1992; Sudan 1995). Let δ < 1/3 and d,m ∈ N such that d ≤ |F|.
There exists an algorithm that, given x ∈ F

m and oracle access to
an m-variate function P : Fm → F that is δ-close to a polynomial
P ′ of individual degree d, makes O(d·m) oracle queries and outputs
P ′(x) with probability 2/3. Furthermore, if P has total degree d,
then given x ∈ F

m, the algorithm outputs P (x) with probability 1.

In Theorem A.6, as well as in the two following theorems, the
error probability can be decreased to be an arbitrarily small con-
stant using standard error reduction (while increasing the number
of queries by a constant factor).

Theorem A.7 (Total Degree Test (a.k.a. Low-Degree Test) (see
Arora & Sudan 2003; Rubinfeld & Sudan 1996; Sudan 1995). Let
ε ∈ (0, 1/2) and d,m ∈ N such that d ≤ |F|/2. There exists
an algorithm that, given oracle access to an m-variate function
P : Fm → F, makes O(d · poly(1/ε)) queries and:

(i) Accepts every function that is a polynomial of total degree d
with probability 1; and

(ii) Rejects functions that are ε-far from every polynomial of
total degree d with probability at least 1/2.
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We will also need a more refined version of the test that tests
the individual degree of the polynomial. Such a test is implicit in
(Goldreich & Sudan 2006, Section 5.4.2) but for the sake of self-
containment we provide a full proof via a reduction to the total
degree test.

Theorem A.8 (Individual Degree Test). Let d,m ∈ N such that
dm < |F|/10 and ε ∈ (0, 1/10). There exists an algorithm that,
given oracle access to an m-variate polynomial P : Fm → F, makes
O(dm · poly(1/ε)) queries, and:

(i) Accepts every function that is a polynomial of individual
degree d with probability 1; and

(ii) Rejects functions that are ε-far from every polynomial of indi-
vidual degree d with probability at least 1/2.

Proof. Given oracle access to the function P : Fm → F, the
tester T first runs the total degree test of Theorem A.7 on P with
respect to proximity ε and total degree dm. If the total degree
verifier rejects, then T rejects. Otherwise, for every axis i ∈ [m],
the tester T chooses at random r1, . . . , ri−1, ri+1, . . . , rm ∈R F

and run a univariate degree d test on the polynomial Qi(z)
def
=

P (r1, . . . , ri−1, z, ri+1, . . . , rm) with respect to proximity 0.5 and
with soundness error 0.1 (e.g., by selecting at random O(d) points
and checking, via interpolation, that they lie on the same degree d
polynomial). The tester T accepts if all tests pass, and otherwise
it rejects.

Completeness. Completeness follows from the completeness of the
total degree test together with the fact that the restriction of an
individual degree d polynomial to any of its axes is a degree d
univariate polynomial.

Soundness. Suppose that P is ε-far from every polynomial of indi-
vidual degree d. If P is ε-far from every total degree dm polyno-
mial, then the total degree test rejects with probability 1/2 and we
are done. Thus, we focus on the case that P is ε-close to a total
degree dm polynomial P ′.
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By the hypothesis, P ′ cannot have individual degree d and
therefore, there exists i ∈ [m] such that P ′(x1, . . . , xm), as a for-
mal polynomial, has degree d′ ∈ [d+1, dm] in xi. Thus, there exist
polynomials P ′

0, . . . , P
′
d′ , each of total degree at most dm such that

P ′(x1, . . . , xm) =
∑

j∈{0,...,d′}
P ′

j(x1, . . . , xi−1, xi+1, . . . , xm) · xj
i

and P ′
d′ �≡ 0.

Since P ′
d′ is a nonzero polynomial of total degree dm, by the

Schwartz–Zippel lemma (Lemma A.5), it can vanish on only a dm
|F|

fraction of its domain. Thus,

Pr
r1,...,ri−1,ri+1,...,rm∈F

[
P ′

d′(r1, . . . , ri−1, ri+1, . . . , rm) = 0
]

≤ dm

|F| .
(A.9)

On the other hand, since P and P ′ are ε-close, by Markov’s inequal-
ity:

Pr
r1,...,ri−1,ri+1,...,rm∈RF

[
Qi is 4ε-far from Q′

i

]
≤ 1

4
(A.10)

where

Qi(z)
def
= P (r1, . . . , ri−1, z, ri+1, . . . , rm)

and

Q′
i(z)

def
= P ′(r1, . . . , ri−1, z, ri+1, . . . , rm),

By (A.9), (A.10), and a union bound, with probability at least
0.75 − dm

|F| > 0.6 over r1, . . . , ri−1, ri+1, . . . , rm ∈ F both

1. P ′
d′(r1, . . . , ri−1, ri+1, . . . , rm) �= 0, and

2. Qi is 4ε-close to Q′
i

In the following we fix r1, . . . , ri−1, ri+1, . . . , rm that satisfy the two
foregoing conditions.
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Since P ′
d′(r1, . . . , ri−1, ri+1, . . . , rm) �= 0, the polynomial Q′

i has
degree d′ > d. Suppose that Qi is ε′-close to some degree d poly-
nomial, for some ε′ ∈ [0, 1]. Then, by the triangle inequality Q′

i

is 4ε + ε′ close to the same polynomial (which is different from Q′
i

since Q′
i has degree d′ > d). Two distinct degree ≤ d′ univari-

ate polynomials have relative distance at least 1 − d′/|F| and so
ε′ ≥ 1 − d′

|F| − 4ε ≥ 1 − dm
|F| − 4ε ≥ 0.5, or in other words, Qi is 0.5-

far from every degree d polynomial. The univariate degree d test
w.r.t. proximity 0.5 (and soundness error 0.1) detects this with
probability 0.9. Hence, overall the tester rejects with probability
at least 0.6 · 0.9 > 0.5. �

A.5. The sum-check protocol. In this appendix we provide
some background on the sum-check protocol that was first intro-
duced by Lund et al. (1992). Recall that the sum-check protocol
is an interactive proof for a statement of the form

∑
x1,...,xm∈H

P (x1, . . . , xm) = 0.

where P is a (relatively) low-degree polynomial over a field F. In
order to verify that the polynomial P sums to 0 over Hm it suf-
fices to verify that for every h ∈ H, the sum of the sub-tensor
(h, ∗, . . . , ∗) equals some value ah ∈ F and that

∑
h∈H ah = 0.

However, the straightforward recursion (which computes the sum
of every sub-tensor) will yield a total query complexity of Ω(Hm).
The sum-check protocol takes a different approach by having the
prover convince the verifier of the sum of just a single randomly
selected sub-tensor (thus, yielding the desired efficiency). More
specifically, the verifier asks the prover to specify the sum of all
sum-tensors of the form (z, ∗ . . . , ∗) for every z ∈ F (rather than
z ∈ H). A key point is that these sums can be specified by the
low-degree polynomial:

P1(z)
def
=

∑
x2,...,xm∈H

P (z, x2, . . . , xm).

Since P1 has low-degree, if the prover provides a different (low-
degree) polynomial P̃1, then these two polynomials must differ on
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almost all points in F. Thus, it suffices for the verifier to select at
random a point r ∈R F and to have the prover recursively prove
that

∑
x2,...,xm∈H P (r1, x2, . . . , xm) = P̃1(r1). Hence, we reduced

the m-dimensional TensorSum problem to an (m − 1)-dimensional
TensorSum problem.23 using 2 messages and no queries. The recur-
sion terminates when m = 1 in which case the verifier can verify
the claim directly.

We note that when extending the sum-check protocol to be
an IPP, we need to take into account the possibility that P is
not low degree but this is handled by using the low-degree test
(Theorem A.7) and self-correction (Theorem A.6).

B. Proofs and adaptations of known results

In this section we provide proofs and adaptations of known results,
which are included here for completeness.

B.1. Proofs of standard claims from Section Section 5. In
this section we provide the missing proofs of the standard claims
used in Section 5.

Proposition 5.3 (folklore). Every property Π = ∪n∈NΠn (where
Πn ⊆ {0, 1}n) can be tested by making O(log |Πn|/ε) queries (with-
out a proof).

Proof. We show that every property Π = ∪n∈NΠn (where Πn ⊆
{0, 1}n) can be tested by making O(log |Πn|/ε) queries. Recall
that the lemma can be proved via learning theory techniques, but
we provide an alternative proof that makes use of the notion of
MAPs.

Consider an MAP for Π in which the proof, of length log2 |Πn|,
is an explicit and concise description of the object x ∈ Πn (e.g., its
index with respect to the lexicographical ordering of the strings in
Πn). The verifier can verify the proof by querying the object x at
O(1/ε) locations uniformly at random (and compare the answers to
the string reconstructed based on the proof). The lemma follows by

23More precisely, a variant of the (m − 1)-dimensional TensorSum problem
in which 0 is replaced with an arbitrary field element.
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noting that this MAP makes proof-oblivious queries and applying
Theorem 4.2, which guarantees that if Π has an MAP verifier that
makes q proof-oblivious queries and uses a proof of length p, then
Π has a tester that makes O(p · q) queries without using a proof.

�

Proposition 5.4 (folklore). For every constant ε ∈ (0, 1/4] and
set S ⊆ {0, 1}n, it holds that Prx∈R{0,1}n [x is ε-close to S] ≤ |S| ·
2−n/8.

Proof. We show that for every constant ε ∈ (0, 1/4] and set
S ⊆ {0, 1}n it holds that Prx∈R{0,1}n [x is ε-close to S] ≤ |S| ·2−n/8.
Observe that

Pr
x∈R{0,1}n

[∃s ∈ S x is ε-close to s]

≤
∑
s∈S

Pr
x∈R{0,1}n

[x is ε-close to s]

= |S| · Pr
x∈R{0,1}n

[x has at most εn 1’s]

≤ |S| · exp(−2 · (1/4)2 · n).

where the first inequality follows from the union bound, and the
last inequality follows from the Chernoff bound and the fact that
ε < 1/4. �

Proposition 5.6 (implicit in Goldreich & Krawczyk 1992, see
also Goldreich 2008, Exercise 8.1). Let F be a class of functions

from {0, 1}n to {0, 1}, of size at most 22n/4
. Then, 99% of subsets

of {0, 1}n of size s = O(log |F|) are PRGs that fool F .

Proof. Let F be a class of functions of size at most 22n/4
. We

show that 99% of sets of size O(log |F|) are PRGs that fool F .
For every set S ⊆ {0, 1}n and function f ∈ F , let δf (S) =

|Prx∈RS[f(x) = 1] − μf | where μf
def
= Prx∈R{0,1}n [f(x) = 1]. Let

s ∈ [2n/4] be an integer and let S be a random set of size s. Then,
for every f ∈ F it holds that

Pr
S

[δf (S) ≥ 1/10] = Pr
S

[∣∣∣∣ Pr
x∈RS

[f(x) = 1] − μf

∣∣∣∣ ≥ 1/10

]
≤ 2−Ω(t),
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where the last inequality follows from the Chernoff bound.24 Thus,
by the union bound, the probability that for every f ∈ F it holds
that δf (S) < 1/10, is at least |F| · 2−Ω(s) (where the probability is
over the choice of S). The lemma follows by setting s = Θ(log |F|).

�

B.2. Precision sampling

Proof (Proof of Claim 6.3). We show that there exists j ∈
[�log2 2/ε�] such that a 2jε

4·�log2(2/ε)� fraction of x1, . . . , xk are 2−j-

far from their corresponding sub-properties Πα1

n/k, . . . , Π
αk

n/k.

Let d
def
= �log2(2/ε)�. Let ΔREL (z,W ) be defined as the minimal

relative Hamming distance of z from the set W . For every j ∈ [d],
let

Sj
def
=

{
i ∈ [k] : ΔREL

(
xi, Π

αi

n/k

)
∈
(
2−j, 2−(j−1)

]}
,

and let T = [k]\(∪i∈[d]Sj). Notice that the sets T, S1, S2, . . . , Sd

form a partition of the k inputs. Also note that, by our setting of
d, for every i ∈ T , it holds that xi is ε/2-close to Παi

n/k.

Suppose toward a contradiction that for every j ∈ [d] it holds

that |Sj| < 2jε
4d

·k. Using the fact that for every i ∈ Sj it holds that
xi is 2−(j−1)-close to Παi , we get

ΔREL

(
x, Πα1

n/k × · · · × Παk

n/k

)
≤ 1

k

k∑
i=1

ΔREL (xi, Π
αi)

=
1

k

∑
i∈T

ΔREL (xi, Π
αi)

+
1

k

∑
j∈[d]

∑
i∈Sj

ΔREL

(
xi, Π

αi

n/k

)

≤ |T |
k

· ε

2
+

1

k

∑
j∈[d]

2−(j−1) · |Sj|

24We note that since the set S is chosen without repetitions one cannot
directly apply the Chernoff bound. Still, since s ≤ 2n/4 the probability for
a repetition is at most s2/2n ≤ 2−Ω(n). Conditioning on an event (i.e., that
there are no repetitions) that occurs with probability 1 − δ can increase the
probability by at most a 1/(1 − δ) factor.



200 Gur & Rothblum cc 27 (2018)

<
ε

2
+
∑
j∈[d]

ε

2d

= ε,

contradicting our assumption that x is ε-far from ΠĀ. �
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