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Abstract. Shpilka & Wigderson (IEEE conference on computational complexity,
vol 87, 1999) had posed the problem of proving exponential lower bounds for (nonho-
mogeneous) depth-three arithmetic circuits with bounded bottom fanin over a field

F of characteristic zero. We resolve this problem by proving a NΩ( d
τ

) lower bound
for (nonhomogeneous) depth-three arithmetic circuits with bottom fanin at most τ
computing an explicit N -variate polynomial of degree d over F. Meanwhile, Nisan
& Wigderson (Comp Complex 6(3):217–234, 1997) had posed the problem of prov-
ing super-polynomial lower bounds for homogeneous depth-five arithmetic circuits.

Over fields of characteristic zero, we show a lower bound of NΩ(
√

d) for homogeneous
depth-five circuits (resp. also for depth-three circuits) with bottom fanin at most
Nμ, for any fixed μ < 1. This resolves the problem posed by Nisan and Wigder-
son only partially because of the added restriction on the bottom fanin (a general
homogeneous depth-five circuit has bottom fanin at most N).
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1. Introduction

The problem of proving super-polynomial lower bounds for arithmetic circuits
occupies a central position in algebraic complexity theory, much like the prob-
lem of proving super-polynomial lower bounds for boolean circuits does in
boolean complexity. The model of arithmetic circuits is an algebraic analog of
the model of boolean circuits: An arithmetic circuit contains addition (+) and
multiplication (×) gates and it naturally computes a polynomial in the input
variables over some underlying field. We typically allow the input edges to a +
gate to be labeled with arbitrary constants from the underlying field F so that
a + gate can in fact compute an arbitrary F-linear combination of its inputs.
As a possible stepping stone, researchers have focused on restricted (but still
nontrivial and interesting) subclasses of arithmetic circuits. In particular, cir-
cuits of low depth are interesting for they correspond to computation which is
highly parallel. Recall that the depth of a circuit is the maximum length of any
path in the circuit. But despite a lot of attention, proving super-polynomial
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lower bounds for even bounded depth arithmetic circuits remains an outstand-
ing open problem.

Notation for low depth circuits. Bounded depth arithmetic circuits consist
of alternating layers of addition and multiplication gates. Throughout the rest
of this paper, we shall deal with bounded depth circuits—indeed of depth at
most five. In this context, we will often use the words formulas and circuits
interchangeably, as depth-Δ circuits can be converted to depth-Δ formulas
with only a polynomial blowup in size. We will denote an arithmetic circuit
of depth Δ by a sequence of Δ symbols wherein each symbol (either Σ or Π)
denotes the nature of the gates at the corresponding layer and the leftmost
symbol indicates the nature of the gates at the output layer. For example,
a ΣΠΣ circuit with input x = (x1, x2, . . . , xn) computes a polynomial in the
following manner:

C(x) =
∑

i

∏

j

(
aij0 +

n∑

k=1

aijkxk

)
, where each aijk ∈ F.(1.1)

In dealing with circuits, it is useful to keep track of the fanin to various gates.
Toward this end, we extend the above notation and allow integer superscripts
on the gate symbols (i.e., Σ or Π symbols) which denotes an upper bound on
the fanin of any gate in the corresponding layer. If there is no superscript on
the symbol for a layer, then the fanin at that layer is allowed to be arbitrary.
So, for example, a Σ[s]Π[e]Σ[τ ] circuit computes a polynomial of the form:

C(x) =
∑

i≤s

∏

j≤e

⎛

⎝
∑

k≤τ

aijk · yijk

⎞

⎠ ,

where each aijk ∈ F and yijk ∈ x∪ {1}, while a ΣΠ[a]ΣΠ[b] circuit computes a
polynomial in the following manner:

C(x) =
∑

i

∏

j≤a

Qij(x) where deg Qij ≤ b for all i and j.

Depth-Three Circuits. Being the shallowest nontrivial subclass of arith-
metic circuits, depth-three arithmetic circuits, also denoted as ΣΠΣ circuits,
have been intensely investigated. Depth-three circuits with a product gate
at the output, i.e., ΠΣΠ-circuits, are uninteresting from the perspective of
proving lower bounds for they cannot even compute irreducible polynomials
of degree more than 1 (regardless of size). ΣΠΣ circuits (more specifically
tensors) arise naturally in the investigation of the complexity of polynomial
multiplication and matrix multiplication. For example, it can be shown that
the product of two n × n matrices can be computed with Õ(nω) arithmetic
operations if and only if the polynomial

Mn =
∑

i∈[n]

∑

j∈[n]

∑

k∈[n]

xij · yjk · zki
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can be computed by a ΣΠΣ circuit where the top fanin s is at most Õ(nω).
Moreover, the optimal formula/circuit for some well-known families of poly-
nomials are in fact depth-three circuits. In particular, the best known circuit
for computing the permanent polynomial, Permd the permanent of a d × d
symbolic matrix, is known as Ryser’s formula (due to Ryser 1963) which is a
(homogeneous) depth-three circuit of size O(d2 · 2d). Recall that a multivari-
ate polynomial is said to be homogeneous if all its monomials have the same
total degree. An arithmetic circuit is said to be homogeneous if the polynomial
computed at every internal node of the circuit is a homogeneous polynomial.
It is a folklore result (cf. the survey by Shpilka & Yehudayoff 2010) that as far
as computation by polynomial-sized arithmetic circuits of unbounded depth
is concerned one can assume without loss of generality that the circuit is ho-
mogeneous. Specifically, if a homogeneous polynomial f of degree d can be
computed by an (unbounded depth) arithmetic circuit of size s, then it can also
be computed by a homogeneous circuit of size O(d2 ·s). Recently, it was shown
in Gupta et al. (2013a) that (nonhomogeneous) ΣΠΣ circuits are surprisingly
powerful—any polynomial f of small circuit complexity can also be computed
by a (nonhomogeneous) ΣΠΣ circuit which is not too large. Specifically, if an
n-variate polynomial f of degree d can be computed by poly(n)-sized circuits,
then it can also be computed by nO(

√
d)-sized ΣΠΣ circuit. The quantitative

version mentioned here is due to an improvement by Tavenas (2013). This
depth reduction is only valid over fields of characteristic zero.

Lower Bounds for ΣΠΣ circuits. In a very influential piece of work, Nisan
& Wigderson (1997) showed that over any field F, any homogeneous ΣΠΣ
circuit computing the determinant Detd must be of size 2Ω(d). Grigoriev &
Karpinski (1998) and Grigoriev & Razborov (2000) showed that any ΣΠΣ
arithmetic circuit over any fixed finite field computing Detd must be of size at
least 2Ω(d). This also implies that any ΣΠΣ arithmetic circuit over integers
computing Detd must be of size at least 2Ω(d). Raz & Yehudayoff (2009) gave
2Ω(d) lower bounds for multilinear ΣΠΣ circuits. Their results are more gen-
eral and extend to lower bounds for any constant depth multilinear circuit.
But despite all these progress, even a super-polynomial lower bound for unre-
stricted ΣΠΣ circuits (over an infinite field) has remained elusive. The best
known lower bound in the general ΣΠΣ case is the quadratic lower bound due
to Shpilka & Wigderson (1999). For more on ΣΠΣ circuits, we refer the reader
to the thesis of Shpilka (2001) and the references therein.

ΣΠΣ circuits with small bottom fanin. Nisan and Wigderson noted that
(nonhomogeneous) ΣΠΣ circuits with bottom fanin just two can be expo-
nentially more powerful than homogeneous ΣΠΣ circuits—any homogeneous
ΣΠΣ circuit computing the elementary symmetric polynomial of degree n on
2n variables must be of size 2Ω(n), but it can be computed by just O(n2)-sized
ΣΠΣ[2] circuits. The elementary polynomial of degree n on 2n formal variables
is the arithmetic analog of the Majority function. Formally, it is defined as
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ESymn(x1, . . . , x2n) def=
∑

S⊆[2n]
|S|=n

∏

i∈S

xi.

More accurately, Nisan & Wigderson (1997) attribute Michael Ben-Or for an
O(n2)-sized ΣΠΣ circuit for ESymn(x1, x2, . . . , x2n) which has the following
specific form:

ESymn(x) =
2n+1∑

i=1

ai

2n∏

j=1

(xj + i),

where the ai’s are appropriate field constants. They also noted that this con-
trasts sharply with the exponential lower bounds for Majority in the Boolean
model and over fixed finite fields. Recently, Saptharishi (2014) pointed out to
us that the depth reduction in Gupta et al. (2013a) actually yields ΣΠΣ[O(

√
d)]-

circuits. This indicates that (nonhomogeneous) ΣΠΣ[τ ]-circuits are interesting
and motivates the effort to prove lower bounds for them. Indeed, Shpilka &
Wigderson (1999) had already noted this frontier in arithmetic complexity and
explicitly posed the problem of proving lower bounds for (nonhomogeneous)
depth-three circuits with bounded bottom fanin (over fields of characteristic
zero). We resolve this challenge here by proving exponential lower bounds
for such circuits. Our proof techniques are based on recent developments in
arithmetic circuit lower bounds.

Recent lower bound results. A series of recent works have built upon the
work of Nisan & Wigderson (1997) to prove lower bounds for homogeneous
depth-four circuits. Motivated by the depth reduction results of Agrawal &
Vinay (2008), Koiran (2012), and Tavenas (2013) and using a complexity mea-
sure introduced in Kayal (2012), the works of Gupta et al. (2013b) and Kayal
et al. (2014c) have led to lower bounds of nΩ(

√
d) for homogeneous depth-

four circuits of bottom fanin O(
√

d). Follow-up work by Fournier et al. (2014)
showed the same lower bound for a family of polynomials in VP. Subsequently,
work by Kayal et al. (2014a,b) removed the restriction on the bottom fanin and
obtained a nΩ(

√
d) lower bound for homogeneous depth-four circuits computing

a family of polynomials in VNP over fields of characteristic zero. Meanwhile,
an independent work by Kumar & Saraf (2014b) also showed a nΩ(log log n)

lower bound for general homogeneous depth-four circuits without the bottom
fanin restriction. Follow-up work by Kumar & Saraf (2014a) showed the same
lower bounds for a family of polynomials in VP. Their result holds over any
field F.

Our results. Our first result is a lower bound of NΩ( d
τ ) for (nonhomogeneous)

ΣΠΣ[τ ] circuits which resolves an open problem (specifically, Problem 7.5 in
Shpilka & Wigderson 2001) posed by Shpilka & Wigderson (1999). It also
implies that the depth reduction result of Gupta et al. (2013a) is optimal,
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assuming that the resulting depth-three circuit has bottom fanin at most O(
√

d).
The formal statement is as follows.

Theorem 1.2. Lower Bound for ΣΠΣ[τ ] circuits. Let F be a field of
characteristic zero. There is a family of N -variate, degree d polynomials {fN}
in VP with N = dO(1) such that any ΣΠΣ[τ ] circuit over F computing fN must

have top fanin at least NΩ( d
τ ).

We would like to stress here that there is no restriction of homogeneity on
the ΣΠΣ[τ ] formula in the above statement. Indeed, the formal degree of the
ΣΠΣ[τ ] circuit can be arbitrarily large (say doubly exponential) and yet we
obtain the stated lower bound on the top fanin. We prove Theorem 1.2 by
first showing a reduction from ΣΠΣ[τ ] circuits to a subclass of homogeneous
ΣΠΣΠΣ[τ ] circuits (using a result implicit in Shpilka & Wigderson (1999)
and Gupta et al. (2013a); see Lemma 4.1 in Section 4). The reduction from
ΣΠΣ formulas to homogeneous ΣΠΣΠΣ formulas yields a restricted class of
homogeneous ΣΠΣΠΣ formulas wherein every product gate in the layer closest
to the input layer is actually an exponentiation gate, i.e., a product gate all
of whose inputs originate from the source node g, so that its output is of the
form ge for some e ∈ Z≥1. We denote such formulas as ΣΠΣ∧Σ formulas.
It turns out fortunately that the proof techniques/complexity measure used
in Kayal et al. (2014a); Kumar & Saraf (2014a) are readily applicable to this
subclass of homogeneous ΣΠΣΠΣ[τ ] circuits and this yields the above lower
bound. Having obtained a lower bound for a subclass of homogeneous ΣΠΣΠΣ
circuits, can our techniques be pushed further to yield lower bounds for general
homogeneous ΣΠΣΠΣ formulas? It turns out that proving super-polynomial
lower bounds for general homogeneous ΣΠΣΠΣ formulas was explicitly posed
as an open problem by Nisan & Wigderson (1997). We next give a lower bound
for homogeneous ΣΠΣΠΣ formulas with small bottom fanin. It resolves the
above problem only partially because of the added restriction on the bottom
fanin.

Theorem 1.3. Lower Bound for homogeneous ΣΠΣΠΣ[τ ] circuits. Let
F be a field of characteristic zero and μ ∈ [0, 1) be any fixed positive real
number less than 1. Let α = 2μ+1

1−μ and τ = O(Nμ). There is a family of N -

variate, degree d polynomials {fN} in VNP with N ∈ [d2+α, 2d2+α] such that

any homogeneous ΣΠΣΠΣ[τ ] formula over F computing fN has size NΩ(
√

d).

The family of polynomials in the above theorem is the Nisan–Wigderson
design-based polynomials introduced in Kayal et al. (2014c), and later used
in Kayal et al. (2014a); Kumar & Saraf (2014a), but with an altered set of
parameters. The complexity measure that we use for this result is (almost)
the same as the one introduced in Kayal et al. (2014a) called the dimension of
projected shifted partials under random restrictions. An appropriate adaption
of the techniques yields a lower bound for N -input homogeneous ΣΠΣΠΣ[Nμ]-
circuits for some fixed value of μ < 0.1. We felt that it would be worthwhile
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to push the analysis further and obtain as good a lower bound as possible
while allowing the bottom fanin to be as large as possible—specifically, to
allow the bottom fanin to be Nμ for any constant μ that is arbitrarily close
to 1. For this, we delve deeper into the analysis of Kayal et al. (2014a) and
carefully tune it at certain places, including the complexity analysis of the
explicit polynomial family for which the lower bound is shown. As a corollary,
we also obtain a similar lower bound for (nonhomogeneous) ΣΠΣ[Nμ] circuits
for any constant μ < 1.

Corollary 1.4. Let F be a field of characteristic zero and μ ∈ [0, 1) be any
fixed positive real number less than 1. Let α = 2μ+1

1−μ . There is a family of

N -variate, degree d polynomials {fN} in VNP with N ∈ [d2+α, 2d2+α] such

that any ΣΠΣ[Nμ] formula over F computing fN has size at least NΩ(
√

d).

Subsequent work. In a follow-up work, Bera & Chakrabarti (2015) showed
a lower bound for homogeneous depth-five circuits with bottom fanin bounded
by Nμ, for any μ < 1

2 , computing the iterated matrix multiplication polyno-
mial (IMM). Their argument makes use of the lower bound on the dimen-
sion of the projected shifted partials of the IMM (present in Kumar & Saraf
(2014a)) in conjunction with the upper bound on the measure for a homoge-
neous ΣΠΣΠΣ[τ ] circuit (present in this work) to arrive at the desired result.
Although Theorem 1.3 works for any μ < 1 (as opposed to μ < 1

2 in Bera
& Chakrabarti (2015)), the lower bound in Bera & Chakrabarti (2015) holds
over any field (unlike in Theorem 1.3) as the lower bound in Kumar & Saraf
(2014a) also holds over any field.

Recently, we were able to build on the arguments of this paper to extend
Theorem 1.2 to a lower bound for sums of products of low arity polynomi-
als Kayal & Saha (2015). This model captures a special kind of depth-four
(i.e., ΣΠΣΠ) circuits that is also a generalization of ΣΠΣ[τ ] circuits. In an
almost simultaneous but independent work, Kumar & Saraf (2015) show a
lower bound for the same model using similar techniques, but interestingly
their work does more than this by applying the lower bound to obtain identity
testing for similar circuits using hardness-randomness trade-off results.

2. Proof overview

From depth three to homogeneous depth five. Let f(x) ∈ F[x] be a
homogeneous N -variate polynomial of degree d. It was already observed by
Shpilka & Wigderson (1999) that if f is computed by a small (of size No(

√
d))

ΣΠΣ circuit C(x) then it is also computed by a small (of size No(
√

d)) formula
D(x) which is structurally in a subclass of homogeneous ΣΠΣΠΣ formulas.
We observe that this reduction from depth three to homogeneous depth five
preserves the bound on the bottom fanin of the formulas, i.e., if the bottom
fanin of C(x) is bounded by τ then same is true for D(x) (see Lemma 4.1 in
Section 4). It turns out that the proof techniques/complexity measure em-
ployed in Kayal et al. (2014a); Kumar & Saraf (2014a) are readily applicable



cc 25 (2016) Lower bounds for depth-three circuits 425

to this subclass of homogeneous ΣΠΣΠΣ[τ ] circuits, and this yields the lower
bound of Theorem 1.2. We then consider general homogeneous ΣΠΣΠΣ[τ ]

circuits.

Homogeneous depth-five formulas. A homogeneous depth-five formula is
a representation of the form

D(x) =
∑

i

∏

j

∑

r

Qijr,(2.1)

where Qijr is a product of linear forms. Also, suppose the number of variables
in every linear form in Qijr (for every i, j and r) is bounded by τ = Nμ for
some fixed constant μ < 1. To prove a lower bound on the size of D(x),
our overall strategy is based on the complexity measure introduced in Kayal
et al. (2014a) called the dimension of projected shifted partials under random
restrictions. As is common to many lower bounds, the proof is in two steps:

1. Upper bound the measure for any ΣΠΣΠΣ[τ ]-formula D(x) as in equa-
tion (2.1) and

2. Lower bound the measure for an explicit (family of) polynomial(s) f .

Overall, the lower bound follows by comparing these two bounds. We will now
describe the complexity measure used and then indicate why it is small for
ΣΠΣΠΣ[τ ]-formulas.

Random restriction. The random restriction we use in this paper is quite
natural and (almost) the same as in Kayal et al. (2014a). We consider the
identity (2.1) and in that set each variable to zero independently at random
with probability (1 − p), where p = d−β for a suitable constant β > 0 (a
variable is left untouched with probability p.) For ease of exposition, it is
convenient to denote a restriction in which a subset of variables R ⊆ [N ] is
set to zero (and the variables outside R are left untouched) as a homomor-
phism, σR : F[x] �→ F[x]. Here [N ] denotes the set of the first N positive
integers, i.e., {1, 2, . . . , N}. Formally, σR : F[x] �→ F[x] is a homomorphism
such that σR(f) def= f |xi=0 ∀i∈R. In this notation, a random restriction can
also be viewed as constructing an R by picking every variable independently
at random with probability 1 − p and then applying the map σR to the ex-
pression given by equation (2.1). We will use the random restriction in two
phases in Section 6 to obtain an appropriate upper bound on the measure for
homogeneous ΣΠΣΠΣ[τ ] formulas.

The complexity measure. Let m = xi1 · · · xik
be a monomial in x. Denote

∂k

∂xi1 ···∂xik
f by ∂mf and define

∂=k
ml

f := {∂mf | m is a multilinear monomial of degree k}.
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We will refer to ∂=k
ml

f as the set of all multilinear kth-order partial deriv-
atives of f ∈ F[x]. Let x=� be the set of all multilinear monomials in x of
degree equal to �. We denote by x=� · ∂=k

ml
f the set of all polynomials of the

form m · g where m ∈ x=� and g ∈ ∂=k
ml

f . Define a map π : F[x] �→ F[x] such
that when π acts on a polynomial f , it retains only and exactly the multilin-
ear monomials of f . More precisely, let Mf be the set of all monomials with
nonzero coefficients in f . Then, π(f) :=

∑
u cumu where mu is a multilinear

monomial in Mf and coefficient of mu in f is cu. Naturally, π is a linear map,
i.e., π(af + bg) = a · π(f) + b · π(g) for every a, b ∈ F and f, g ∈ F[x]. The
definition of π extends naturally to sets of polynomials: For A ⊆ F[x], let
π(A) := {π(f) | f ∈ A}. For integers k and �, the space of projected shifted
partials of f is the linear span (i.e., F-span) of the polynomials in π(x=�·∂=k

ml
f).

The measure we use is the dimension of this space of projected shifted partials,
denoted by DPSPk,� (or simply DPSP assuming parameters k and � are fixed
suitably):

DPSPk,�(f) := dim(π(x=� · ∂=k
ml

f)).

Observe that the measure DPSPk,� obeys subadditivity, that is, DPSPk,�(f +
g) ≤ DPSPk,�(f) + DPSPk,�(g).

From depth-five to depth-four circuits. Let D(x) be a homogeneous-
ΣΠΣΠΣ[Nμ] formula as in equation (2.1) of size at most No(

√
d) so that in

particular the total number of Qijr’s appearing in it is at most s = No(
√

d).
We show that when a random restriction σR is applied on D(x), then with
high probability σR(D(x)) can be expressed as D1(x)+D2(x), where D1(x) is
computed by a homogeneous ΣΠΣΠ[

√
d] formula of top fanin at most No(

√
d)

and D2(x) is a polynomial such that DPSP(D2(x)) = 0. We will argue this
shortly but assuming that this happens, we can infer (via subadditivity) that

DPSP(σR(D(x))) ≤ DPSP(D1(x)) + DPSP(D2(x))
= DPSP(D1(x)).

DPSP(D1(x)) can then be upper bounded using known arguments from Kayal
et al. (2014a), which in turn yields an upper bound for DPSP(σR(D(x))).

Using random restrictions to obtain a decomposition. The reason
σR(D(x)) decomposes into D1(x) and D2(x) with high probability is as follows.
Let t =

√
d. In equation (2.1), suppose a Qijr has degree greater than 2t.

Such a Qijr can be expressed as Q̃ijr · Pijr with deg(Q̃ijr) = 2t, by simply
multiplying out 2t linear forms in Qijr. Since bottom fanin of D(x) is bounded
by Nμ, the number of monomials in Q̃ijr is bounded by N2μt. Monomials of
Q̃ijr are of two kinds—those with individual degree of variables bounded by 2
(and hence have support at least t) and those with at least one variable having
degree 3 or more. The probability any of the monomials of support at least
t in Q̃ijr survives under the action of the random restriction σR is less than
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pt · N2μt. Running over all Qijr, with probability at least 1 − s · pt · N2μt, we
have

σR(D(x)) =
∑

i

∏

j

∑

r

deg(Qijr)≤2t

σR(Qijr) + P (x),

where every monomial in P (x) has a variable with degree 3 or more. Now
observe that for any multilinear monomial m, every monomial in ∂mP has a
variable of degree 2 or more and hence π(∂mP ) = 0, implying DPSP(P ) = 0.
By taking D1(x) =

∑
i

∏
j

∑
r,deg(Qijr)≤2t σR(Qijr) and D2(x) = P (x), we

come to the desired conclusion, if the “bad” probability, namely s · pt · N2μt,
is small. Now suppose N = d3 [as is the case in Kayal et al. (2014a)]. Then
the bad probability is s · N−( β

3 −2μ)t which is negligible for any constant μ less
than β/6. This gives the required decomposition.

Extension for arbitrary μ < 1. Combining the above decomposition ar-
gument with the lower bound available for homogeneous-ΣΠΣΠ[

√
d]-circuits

(which imposes some additional constraints on how large β can be), we get
that if μ is sufficiently small (say, 0.01), any homogeneous ΣΠΣΠΣ[Nμ] formula
computing the same family of Nisan–Wigderson design-based polynomials as
used in Kayal et al. (2014a) has size NΩ(

√
d). However, in order to prove the

same size lower bound for any constant μ < 1, we delve deeper into the analy-
sis of Kayal et al. (2014a) and carefully tune it at certain places, including
the complexity analysis of the explicit polynomial family for which the lower
bound is shown.

3. Preliminaries

Affine forms and linear forms. An affine form is simply another name for
a degree one polynomial, with a (possibly) nonzero constant term. Thus an
affine form �(x) looks like

�(x) = a0 + a1x1 + a2x2 + · · · + anxn,

where each ai ∈ F. The weight of such an affine form �(x) will be the number
of nonzero coefficients in it, i.e.,

weight of �
def= |{i ∈ [0..n] : ai 
= 0}|

A homogeneous degree one polynomial (i.e., one whose constant term a0 is
zero) we will refer to as a linear form.

Notation for circuits with exponentiation gates. Sometimes, a multi-
plication gate in our circuit will have the feature that all its incoming edges
originate from a single gate g (thus computing ge, if there are e wires entering
the multiplication gate). We will refer to such gates as exponentiation gates
and denote them by the symbol ∧. So, for example, a Σ∧Σ circuit computes
a polynomial in the following manner:
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C(x) =
∑

i∈[s]

�i(x)ei where each �i ∈ F[x] is an affine form.

A numerical estimate. The following numerical estimate from Gupta et al.
(2013b) will be useful.

Lemma 3.1. Let a(n), f(n), g(n): Z>0 �→ Z be integer valued functions such
that (|f | + |g|) = o(a). Then

ln
(a + f)!
(a − g!)

= (f + g) ln a ± O

(
f2 + g2

a

)
.

4. Depth-three circuits with small bottom fanin

In this section, we will first see a reduction from (nonhomogeneous) ΣΠΣ[τ ] to
a subclass of homogeneous ΣΠΣΠΣ[τ ] circuits. It can be easily inferred from
the proofs of theorem 5.2 in Shpilka & Wigderson (2001) and lemma V.3 in
Gupta et al. (2013a), but we nevertheless give a proof here for completeness.
Saptharishi (2014) has recently communicated to us that the consequence in
the original lemma in Gupta et al. (2013a) can be slightly improved quantita-
tively.

Lemma 4.1. (implicit in Shpilka & Wigderson (1999) and Gupta et al.
(2013a).) Let d ≥ 1 be an integer and F be an infinite field of characteris-
tic larger than d (or of zero characteristic). Let f(x) ∈ F[x] be a homogeneous
N -variate polynomial of degree d computed by a Σ[s]Π[e]Σ[τ ] circuit. Then f

can also be computed by a homogeneous Σ[s·exp(
√

d)]ΠΣ[e]∧Σ[τ ] circuit.

Proof. The premise that f can be computed by a Σ[s]Π[e]Σ[τ ] circuit means
that there exist s · e affine forms �ij ’s each of weight at most τ such that

f(x) =
s∑

i=1

e∏

j=1

�ij(x).(4.2)

Expressing f as a sum of projections of elementary symmetric poly-
nomials. We will first ensure that each of the affine forms �ij has a nonzero
constant term. We can do this by applying a random shift of the form x �→ x+a
to the above identity. That is, pick a random point a ∈ F

n and replacing x by
x + a in the identity (4.2) we get

f(x + a) =
s∑

i=1

e∏

j=1

�ij(x + a)

=
s∑

i=1

αi

e∏

j=1

(1 + mij(x)),
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where mij(x) def= �ij(x) − �ij(0) is a linear form of weight at most τ and

αi
def=

∏e
j=1 �ij(a). Comparing the homogeneous components of degree d on

the two sides of the above identity, we get

(4.3) f(x) =
s∑

i=1

αi · ESymd(mi1, . . . ,mie),

where

ESymd(y1, . . . , ye)
def=

∑

S⊆[e]
|S|=d

∏

i∈S

yi

is the elementary symmetric polynomial of degree d on the e formal variables
y1, y2, . . . , ye.

Expressing ESymd in terms of the power symmetric polynomials. We
now use Newton’s identities to express each elementary symmetric polynomial
that occurs above in terms of the power symmetric polynomials defined as:

PSymr(y1, . . . , ye)
def=

∑

j∈[e]

yr
j .

We use the following implication of Newton’s identities (cf. Littlewood 1950):

ESymd =
1
d!

·

∣∣∣∣∣∣∣∣∣∣∣∣∣

PSym1 1 0 · · · 0 0
PSym2 PSym1 2 · · · 0 0
PSym3 PSym2 PSym1 · · · 0 0

...
...

...
. . .

...
...

PSymd−1 PSymd−2 PSymd−3 · · · PSym1 d − 1
PSymd PSymd−1 PSymd−2 · · · PSym2 PSym1

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

In particular, this means that ESymd can be expressed as a polynomial func-
tion of the PSymi’s. Let us now count how many terms are there in such
a polynomial expression. Expanding out the determinant above, we see that
there exist scalars βa’s such that

ESymd(y) =
∑

a=(a1,...,ad)∈Z
d
≥0∑

i i·ai=d

βa ·
∏

i∈[d]

PSym
ai
i (y).(4.4)

The number of solutions of
∑

i∈[d] i·ai = d is exactly the number of ways to par-

tition the natural number d and hence is 2Θ(
√

d) by the Hardy–Ramanujan esti-
mate for the partition function given by Hardy & Ramanujan (1918). Hence,
the number of terms in the above summation is 2Θ(

√
d). In particular, this

means that ESymd(y) is computed by a homogeneous Σ[exp(
√

d)]ΠΣ[e]∧-circuit.
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Combining (4.3) and (4.4) to get a homogeneous ΣΠΣ ∧ Σ circuit
for f . If we now replace each occurrence of ESymd in equation (4.3) by its
homogeneous ΣΠΣ∧ circuit given by the identity (4.4), we see that f(x) is
computed by a homogeneous Σ[s·exp(

√
d)]ΠΣ[e]∧Σ[τ ] circuit. This proves the

lemma. �

We next observe that the homogeneous ΣΠΣ∧Σ-circuit in the outcome of
the above lemma corresponds to a certain structured form for expressing f that
we make precise below. For ease of subsequent exposition, let us introduce the
following notation or terminology. Let m = xe1

1 ·xe2
2 ·. . .·xeN

N in F[x1, x2, . . . , xN ]
be a monomial. The support of m, denoted Supp(m), is the subset of variables
appearing in it, i.e.,

Supp(m) def= {i : ei ≥ 1} ⊆ [N ].

The support size of a polynomial Q, denoted |Supp(Q)|, is the maximum
support size of any monomial appearing in Q.

Proposition 4.5. Let d ≥ 1 be an integer and F be an infinite field of char-
acteristic larger than d (or of zero characteristic). Let f(x) ∈ F[x] be a homo-
geneous N -variate polynomial of degree d computed by a Σ[s]Π[e]Σ[τ ] circuit.
Then f admits an expression of the form

f(x) =
s·exp(

√
d)∑

i

∏

j

Qij , Supp(Qij) ≤ τ.(4.6)

Proof. The premise that f can be computed by a Σ[s]Π[e]Σ[τ ] circuit means
that there exist s·e affine forms �ij ’s each having at most τ nonzero coefficients
such that

f(x) =
s∑

i=1

e∏

j=1

�ij(x).(4.7)

First observe that if we have a linear form � in which at most τ coefficients are
nonzero, then for all j ≥ 1, we have

Supp(�j) ≤ τ.

In particular, this means that for all r ≥ 1 and all i ≤ s we have Supp(PSymr

(�i1, �i2, . . . , �ie)) ≤ τ. By the proof of Lemma 4.1, we get that f can be
expressed as a sum of product of the PSymr’s in a homogeneous fashion, with
the expression having s · exp(

√
d) many terms. Hence f has a representation

of the form given by equation (4.6). �
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This means that our problem reduces to proving lower bounds for repre-
sentations of the form given by the right-hand side of equation (4.6) which we
refer to as τ -supported homogeneous ΣΠΣΠ circuits. It turns out that such
representations occur also as an intermediate step in prior work and Kayal
et al. (2014a) explicitly gives an NΩ( d

τ ) lower bound for such representations.

Theorem 4.8 (Kayal et al. 2014a). There exists an explicit family {fN} of
homogeneous degree d polynomials on N = d3 variables in VNP such that any
τ -supported homogeneous ΣΠΣΠ circuit computing fN has top fanin at least
NΩ( d

τ ).

Remark. We would like to stress here that the above theorem holds for
any τ ≥ 1. In Kayal et al. (2014a), the analysis was done by setting the
parameter � of the measure DPSPk,� as � = N

2

(
1 − k ln d

d

)
(where k = δd

τ for
a suitable constant δ > 0). With this choice of �, the parameter τ has to be
Ω(ln d) or else � becomes negative (which does not quite make sense). We
note here that the choice of � can be altered (rather refined) slightly by setting

� = N
2

(
1 − d

δ
τ −1

d
δ
τ +1

)
so that � is now well defined for any τ ≥ 1. The analysis

of Kayal et al. (2014a) works fine with this choice of �. Also, note that for

larger values of τ , the quantities d
δ
τ −1

d
δ
τ +1

and k ln d
d are close to each other as,

lim
τ→∞

(d
δ
τ − 1) · τ

(d
δ
τ + 1) · δ ln d

=
1
2
.

In the follow-up work of Kumar & Saraf (2014a), the class of τ -supported
homogeneous ΣΠΣΠ circuits occurs implicitly. It follows from their work that
the above lower bound is in fact valid for the family of iterated matrix multi-
plication polynomial which is in VP (in fact is complete for a subclass of VP
called algebraic branching programs).

Theorem 4.9 (Kumar & Saraf 2014a). There exists an explicit family {fN}
of homogeneous degree d polynomials on N = dO(1) variables in VP such that
any τ -supported homogeneous ΣΠΣΠ circuit computing fN has top fanin at
least NΩ( d

τ ) for any τ ≤ √
d.

Combining Proposition 4.5 with the above theorem immediately yields
Theorem 1.2. In the next section, we move on investigating homogeneous
ΣΠΣΠΣ[τ ] circuits.

5. The lower bound for homogeneous ΣΠΣΠΣ[Nμ] formulas

Here we follow the outline given in Section 2 and derive a lower bound for
homogeneous ΣΠΣΠΣ[Nμ]-formulas.



432 Kayal & Saha cc 25 (2016)

Step 1: an upper bound for homogeneous ΣΠΣΠΣ[Nμ] formulas. Let
0 ≤ μ < 1 be a fixed constant. Consider a homogeneous ΣΠΣΠΣ[Nμ] formula
of size s as in equation (2.1) computing a homogeneous N -variate polynomial
of degree d. We pick a random set R ⊆ [N ] by picking each variable inde-
pendently at random with probability 1 − p, where p = d−β (for a suitable
constant β > 0), and upper bound the DPSP-complexity of σR(D(x)).

Lemma 5.1. Let t =
√

d, α = 2μ+1
1−μ and d2+α ≤ N ≤ 2d2+α be an integer. If

s ≤ N
0.03
2+α ·√d then there exists a constant 0 < β < α such that with probability

at least 1 − 1

NΩ(
√

d) , a random restriction σR satisfies:

DPSPk,�(σR(D(x))) ≤ s ·
(d

t + 1
k

)
·
(

N

� + 2kt

)
,(5.2)

for all k, � ≥ 0 satisfying � + 2kt ≤ N
2 .

We defer the proof of this lemma to Section 6.

Step 2.1: constructing a suitable family of polynomials. The explicit
family of polynomials for which we prove the lower bound is a variant of
the Nisan–Wigderson design-based polynomials used in Kayal et al. (2014a,c);
Kumar & Saraf (2014a). The choice of this family depends on the bottom
fanin of the depth-five formulas. When the bottom fanin is τ = Nμ, for
some fixed 0 ≤ μ < 1, the family is defined as follows. For an integer d and
α = 2μ+1

1−μ , let q be the smallest prime number between d1+α and 2d1+α (such
a prime is guaranteed to exist by the Bertrand-Chebyshev theorem, see Erdös
(1930-1932)). We are avoiding ceil/floor notations for simplicity of exposition.
We define a family of Nisan–Wigderson polynomials of degree d on N = d · q
variables, parametrized by a number r (to be fixed later in the analysis).

NWr(x1,1, x1,2, . . . , xd,q) :=
∑

h(z)∈Fq [z]

deg(h)≤r

∏

i∈[d]

xi,h(i),

where Fq is the finite field with q elements.

Step 2.2: lower bounding the DPSP-complexity of our polynomial
family. For appropriate choices of integers r, k, � and a random restriction
σR, we show that DPSPk,�(σR(NWr)) is large with high probability.

Lemma 5.3. The main technical lemma. Let NWr be the Nisan–Wigderson
design-based polynomial defined above. Suppose R is a set formed by picking
each variable independently at random with probability 1 − p, where p = d−β

and β > 0 is any constant less than α. Over any field F of characteristic
zero, for r = α+β

2(1+α) · d − 1, k = δ · √
d (for a small constant δ > 0) and
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� = N
2 (1 − k ln d

d ), we have

DPSPk,�(σR(NWr)) ≥ 1
dO(1)

min
(

pk

4k
·
(

N

k

)
·
(

N

�

)
,

(
N

� + d − k

))
,(5.4)

with probability at least 1 − 1
dΘ(1) .

We will prove this lemma in Section 7.

Final Step: comparing the two bounds. Comparing the probabilities
with which equations (5.2) and (5.4) are satisfied, we see that there exists a
set R such that both of them are simultaneously satisfied, implying:

s ≥ DPSPk,�(σR(NWr))( d
t +1
k

) · ( N
�+2kt

)

= NΩ(
√

d) (for small enough constant δ).

The above implication can be worked out using the numerical estimates given
in Lemma 3.1. This proves the lower bound of Theorem 1.3.

6. Upper bounding the measure for homogeneous
ΣΠΣΠΣ[τ ] formulas

Let D(x) be a homogeneous ΣΠΣΠΣ[τ ] formula with bottom fanin bounded
by τ = Nμ where μ ∈ [0, 1) is a fixed constant.

(6.1) D(x) =
∑

i

∏

j

∑

r

Qijr,

where Qijr is a product of linear forms. As before, let α = 2μ+1
1−μ . In this

section, we give a proof of Lemma 5.1. We first show that when we apply a
random restriction to a small homogeneous ΣΠΣΠΣ[Nμ] formula, then with
high probability it decomposes into two pieces which are individually much
easier to deal with.

Lemma 6.2. Decomposition under random restrictions. Suppose that

D(x) has size s ≤ N
0.03
2+α ·√d. Then, it is possible to fix a constant 0 < β < α

and form a set R by picking each variable independently at random with
probability 1−p, where p = d−β , such that with probability at least 1− 1

NΩ(
√

d)

the following is true:

σR(D(x)) = D1(x) + D2(x),

where D1(x) is a homogeneous ΣΠΣΠ[2
√

d] formula having top fanin same as
that of D(x), and DPSPk,�(D2(x)) = 0 for any choice of k and �.
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The requirement of β < α in the statement of Lemma 6.2 comes from
Lemma 5.3. Before proving this, let us see why it implies the required upper
bound of Lemma 5.1.

Proof of Lemma 5.1. Using the decomposition Lemma 6.2, with probability
at least 1 − 1

NΩ(
√

d) we have:

DPSPk,�(σR(D(x))) ≤ DPSPk,�(D1(x)).

Let t =
√

d and k, � be arbitrary integers satisfying � + 2kt ≤ N
2 . Then the

dimension of the projected shifted partials of D1(x) is upper bounded as in
Kayal et al. (2014a),

(6.3) DPSPk,�(σR(D(x))) ≤ s ·
(d

t + 1
k

)
·
(

N

� + 2kt

)
.

This proves Lemma 5.1. �

6.1. Proof of decomposition lemma. We prove Lemma 6.2 here by con-
sidering two cases separately: 0 ≤ μ ≤ 1

5 and 1
5 < μ < 1. Let t =

√
d.

Case 1. Suppose 0 ≤ μ ≤ 1
5 . In this case, the analysis is similar to the one

outlined in Section 2. Let Qijr be a product of linear forms as in equation
(6.1) and deg(Qijr) > 2t. Then Qijr can be expressed as Qijr = Q̃ijr · Pijr

such that deg(Q̃ijr) = 2t, by simply multiplying out 2t linear forms in Qijr.
Since the support of every linear form in Qijr is bounded by τ = Nμ, the
number of monomials in Q̃ijr is bounded by τ2t = (Nμ)2t. The monomials of
Q̃ijr are of two types—those with individual degree of every variable bounded
by 2 (and hence has support at least t) and those with at least one variable of
degree 3 or more.

Let R be a set formed by picking every variable independently at random
with probability 1 − p, where p = d−β for an appropriate choice of β (to be
fixed shortly). The probability that any monomial of support at least t in Q̃ijr

survives under the random restriction σR is bounded by pt · (Nμ)2t. Running
over all Qijr in equation (6.1), with probability at least 1 − s · pt · (Nμ)2t,

σR(D(x)) =
∑

i

∏

j

∑

r

deg(Qijr)≤2t

σR(Qijr) + P,

where every monomial in P has a variable of degree 3 or more. Naturally,
DPSPk,�(P ) = 0 for any choice of k and �. Since s ≤ N

0.03
2+α ·√d, p = d−β ,

α = 2μ+1
1−μ and t =

√
d, the “bad” probability is

s · pt · (Nμ)2t ≤ (N
0.03
2+α · d−β · N2μ)t

≤ (N
0.03
2+α · N− β

2+α · 2
β

2+α · N2μ)t,
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as
(

N
2

) 1
2+α ≤ d ≤ N

1
2+α from the hypothesis of Lemma 5.1. The above

quantity is at most 1

NΩ(
√

d) if

1. 2μ + 0.03
2+α < β

2+α , and

2. 0 < β < α.

It is easy to verify that these two conditions are satisfied if β = 6.5μ+0.03
1−μ and

considering μ ≤ 1
5 .

Case 2. Suppose 1
5 < μ < 1. In this case, we apply the random restriction in

two phases.

Phase 1: Pick each variable independently at random with probability 1 −
p1, where p1 = d−β1 , and form a set R1. (β1 will be fixed shortly.) Let g be
a linear form in a product Qijr. Assume without loss of generality that the
support of g is exactly τ = Nμ (if not, simply fill in g with variables having
zero coefficients). Then, the expected value of the support size of σR1(g) is

γ := E [support size of g] = d−β1 · Nμ.

By Chernoff bound,

Pr{bottom fanin of σR1(D(x)) ≥ (1 +
√

3) · γ} ≤ s · e−γ .

One can verify that the above probability is less than 1

NΩ(
√

d) if

(6.4) μ · (2 + α) > β1 +
1
2
,

as s ≤ N
0.03
2+α ·√d. We will set β1 shortly to satisfy the above condition.

Phase 2: Pick each variable independently at random (and independent of
Phase 1) with probability 1 − p2, where p2 = d−β2 , and form a set R2. (β2

will be set to an appropriate value shortly.) We wish to study the formula
σR2(σR1(D(x))) = σR1∪R2(D(x)).

If we set β1 satisfying equation (6.4) then with high probability the
bottom fanin of σR1(D(x)) is less than (1+

√
3) ·γ—assume that this happens

after Phase 1. The argument from here on is similar to that in Case 1. Let

σR1(D(x)) =
∑

i

∏

j

∑

r

Q′
ijr,

where each linear form in every Q′
ijr has support size bounded by (1+

√
3) ·γ.

If deg(Q′
ijr) ≥ 2t then Q′

ijr = Q̃′
ijr · P ′

ijr where deg(Q̃′
ijr) = 2t and number

of monomial in Q̃′
ijr is bounded by (1 +

√
3)2t · γ2t. Once again, focus on

those monomials in Q̃′
ijr that have support at least t. (Each of the remaining
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monomials in Q̃′
ijr has a variable of degree 3 or more.) The probability that

any of those monomials in Q̃′
ijr survives after the random restriction σR2 is

applied is bounded by pt
2 · (1 +

√
3)2t · γ2t. Hence with probability at least

1 − s · pt
2 · (1 +

√
3)2t · γ2t,

σR1∪R2(D(x)) = σR2(σR1(D(x))) =
∑

i

∏

j

∑

r

deg(Q′
ijr)≤2t

σR2(Q
′
ijr) + P ′,

where DPSPk,�(P ′) = 0 for any k, �. Let us calculate the bad probability a bit
more closely.

s · pt
2 · (1 +

√
3)2t · γ2t ≤ [N

0.03
2+α · p2 · (1 +

√
3)2 · γ2]t

= [N
0.03
2+α · d−β2 · (1 +

√
3)2 · d−2β1 · N2μ]t.

The above quantity is less than 1

NΩ(
√

d) if

(6.5) 2μ · (2 + α) + 0.03 < β2 + 2β1, and

(6.6) β1 + β2 < α & β1, β2 > 0

The requirement stated in equation (6.6) comes from Lemma 5.3, as Phase
1 and 2 together amounts to setting each variable zero independently with
probability 1 − p1p2 = 1 − d−(β1+β2). It is easy to verify that the conditions
stated by equations (6.4), (6.5) and (6.6) are satisfied by choosing

β1 = μ · (2 + α) − 0.51
β2 = 1.06,

and keeping in mind that μ > 1
5 . This completes the proof of the decomposition

lemma.

7. Proof of Lemma 5.3

In this section, we prove Lemma 5.3, i.e., we show that the dimension of pro-
jected shifted partial derivatives of a randomly restricted Nisan–Wigderson
design-based polynomial is within a ‘small’ factor of the maximum possible
with high probability. Our proof is very similar to the proof of Lemma 13 in
Kayal et al. (2014a)—in fact, we reuse quite a bit of the argument from there
but carefully tune it at places to achieve the required setting of parameters.
Proofs of some of the propositions in this section are collected in Section 8.
Let e

def= (d − k) throughout the rest of this section.

Preliminaries. Note that in the construction in Section 5 of NWr, there is a
1–1 correspondence between the variable indices in [N ] and points in [d] × [q].
Being homogeneous and multilinear of degree d, the monomials of NWr are in
1-1 correspondence with sets in

(
[N ]
d

) ≡ (
[d]×[q]

d

)
. Indeed, from the construction
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it is clear that the coefficient of any monomial in NWr is either 0 or 1 and that
there is a 1-1 correspondence between monomials in the support of NWr and
univariate polynomials of degree at most r in Fq[z]. Now since two distinct
polynomials of degree r over a field have at most r common roots we get:

Proposition 7.1. [A basic property of our construction.] For any two

distinct sets D1,D2 ∈ (
[d]×[q]

d

)
in the support of NWr, we have

|D1 ∩ D2| ≤ r.

Let R be a set formed by picking each variable independently at random
with probability 1−p, where p = d−β for 0 < β < α. Our goal for the remain-
der of this section is to lower bound DPSPk,�(σR(NWr)).

Reformulating our goal in terms of the rank of an explicit matrix.
Let f be any homogeneous multilinear polynomial of degree d on N variables.
Then we have

∂=k
ml

f =
{

∂Cf : C ∈
(

[N ]
k

)}
.

Note that every kth-order derivative of f is homogeneous and multilinear of
degree (d − k). Hence

π(x=� · ∂=k
ml

f) =
{
xA · σA

(
∂Cf

)
: A ∈

(
[N ]
�

)
, C ∈

(
[N ]
k

)}
.

Thus we have

Proposition 7.2. For any homogeneous multilinear polynomial f of degree
d on N variables and for all integers k and �:

DPSPk,�(f) = dim

({
xA · σA

(
∂Cf

)
: A ∈

(
[N ]

�

)
, C ∈

(
[N ]

k

)})
.

Now the F-linear dimension of any set of polynomials is the same as the rank of
the matrix corresponding to our set of polynomials in the natural way. In fact,
we will focus our attention on a subset of rows of this matrix and prove a lower
bound on the rank of the matrix defined by this subset of rows. Specifically,

Proposition 7.3. Let f be a homogeneous multilinear polynomial of degree
d on N variables. Let k, � be integers. Define a matrix M(f) as follows. The

rows of M(f) are labeled by pairs of subsets (A,C) ∈ (
[N ]
�

) × (
[N ]
k

)
such that

A∩C = Φ (null set) and columns are indexed by subsets S ∈ (
[N ]
�+e

)
. Each row

(A,C) corresponds to the polynomial

fA,C
def= xA · σA

(
∂Cf

)
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in the following way. The Sth entry of the row (A,C) is the coefficient of xS

in the polynomial fA,C . Then,

DPSPk,�(f) ≥ rank(M(f)).

So our problem is equivalent to lower bounding the rank of the matrix M(f)
for our constructed polynomial f . Now note that the entries of M(f) are
coefficients of appropriate monomials of f and it will be helpful to us in what
follows to keep track of this information. We will do it by assigning a label to
each cell of M(f) as follows. We will think of every location in the matrix M(f)
being labeled with either a set D ∈ (

[N ]
d

)
or the label InvalidSet depending

on whether that entry contains the coefficient of the monomial xD of f or it
would have been zero regardless of the actual coefficients of f . Specifically, let
us introduce the following notation. For sets A,B define:

1.

A�B =

{
A \ B ifB ⊆ A

InvalidSet otherwise

2.

A � B =

{
A ∪ B ifB ∩ A = ∅
InvalidSet otherwise

Then the label of the ((A,C), S)th cell of M(f) is defined to be the set
(S � A) � C. Equivalently, if the label of a cell of the (A,C)th row of M
is a set D then the column must be the one corresponding to S = (D �C)�A
(if C is not a subset of D or if D and A are not disjoint then D cannot occur
in the row indexed by (A,C)). For the rest of this section, we will refer to
M(σR(NWr)) simply as the matrix M . Our goal then is to show that the
rank of this matrix M is reasonably close to the trivial upper bound, viz. the
minimum of the number of rows and the number of columns of M with high
probability. It turns out that our matrix M is a relatively sparse matrix, and
we will exploit this fact by using a relevant lemma from real matrix analysis
to obtain a lower bound on its rank.

The Surrogate Rank. Consider the matrix B
def= MT · M . Then B is a real

symmetric, positive semidefinite matrix. From the definition of B, it is easy
to show that:

Proposition 7.4. Over any field F, we have

rank(B) ≤ rank(M).

Over the field R of real numbers, we have

rank(B) = rank(M).
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So it suffices to lower bound the rank of B. By an application of Cauchy–
Schwarz on the vector of nonzero eigenvalues of B, one obtains:

Lemma 7.5 (Alon 2009). Over the field of real numbers R, we have:

rank(B) ≥ Tr(B)2

Tr(B2)
.

Let us call the quantity Tr(B)2

Tr(B2) as the surrogate rank of B, denoted
SurRank(B). It then suffices to show that this quantity is within a ‘small’
factor of U = min(

(
N

�+e

)
,
(
N
�

) · (N
k

)
) with high probability. In the rest of this

section, we will first derive an exact expression for SurRank(B) and then show
that it is close to U (again, with high probability). In the following discussion,
we would need an estimate of a quantity Rd(w, r) that denotes the number of
univariate polynomials in Fq[z] of degree at most r having exactly w distinct
roots in [d].

An estimate for Rd(w, r). First note that any polynomial h(z) ∈ Fq[z] of
degree at most r that has w roots in [d] must be of the form

h(z) = (z − α1) · (z − α2) · · · · · (z − αw) · ĥ(z),

where each αi is in [d] and ĥ(z) ∈ Fq[z] is of degree at most (r − w). Thus we
have

(7.6) Rd(w, r) ≤ qr−w+1 ·
(

d

w

)
≤ qr+1 ·

(
d

q

)w

· 1
w!

7.1. Deriving an exact expression for SurRank(B). We will now calcu-
late an exact expression for SurRank(B), or equivalently an exact expression
for Tr(B) and Tr(B2).

Calculating Tr(B). Calculating Tr(B) is fairly straightforward. From the
definition of the matrix B, we have:

Proposition 7.7. For any 0,±1 matrix M (i.e., a matrix all of whose entries
are either 0, or +1 or −1), we have

Tr(B) = Tr(MT · M) = number of nonzero entries in M.

Now we can calculate the number of nonzero entries in M by going over all
sets D ∈ (

[N ]
d

)∩Supp(σR(NWr)), calculating the number of cells of M labeled
with D and adding these up. Clearly

σR(NWr) =
∑

D∈Supp(NWr)

eD · xD,
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where eD is an indicator variable such that eD = 1 if σR(xD) 
= 0, and eD = 0
otherwise. Hereafter, we will refer to σR(NWr) as g at some places, and the
number of monomials in σR(NWr) as μ(g).

μ(g) =
∑

D∈Supp(NWr)

eD

⇒ E [μ(g)] = pd · qr+1 = γ (say)(7.8)

⇒ E [Tr(B)] = γ ·
(

d

k

)
·
(

N − d

�

)
.

Proposition 7.9. Pr
[
Tr(B)≤ 1

2 · γ · (d
k

) · (N−d
�

)]≤ 10
pdα . (Proof in Section 8.)

Calculating Tr(B2). From the definition of B = MT · M and expanding out
the relevant summations, we get:

Proposition 7.10. Tr(B2) equals

∑

(A1, C1), (A2, C2)

∈
(([N]

�

)
×

([N]
k

))2

∑

S1, S2

∈
( [N]
�+e

)2

M(A1,C1),S1 · M(A1,C1),S2 · M(A2,C2),S1 · M(A2,C2),S2 .

We will use the following notation in doing this calculation. For a pair

of row indices ((A1, C1), (A2, C2)) ∈
((

[N ]
�

)× (
[N ]
k

))2

and a pair of col-

umn indices S1, S2 ∈
((

[N ]
�+e

))2

, the box b defined by them, denoted b =
2 − box((A1, C1), (A2, C2), S1, S2) is the four-tuple of cells

(((A1, C1), S1), ((A1, C1), S2), ((A2, C2), S1), ((A2, C2), S2)).

Since all the entries of our matrix M are either 0 or 1, we have:

Proposition 7.11.

Tr(B2) = Number of boxes b with all four entries nonzero.

For a box b = 2 − box((A1, C1), (A2, C2), S1, S2), its tuple of labels, de-
noted labels(b) is the tuple of labels of the cells ((A1, C1), S1), ((A1, C1), S2),
((A2, C2), S1), ((A2, C2), S2) in that order. In other words,

labels(b) = ((S1 � A1) � C1, (S2 � A1) � C1, (S1 � A2) � C2, (S2 � A2) � C2).

We then have
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Proposition 7.12. Tr(B2) equals the number of boxes

b = 2 − box((A1, C1), (A2, C2), S1, S2)

such that all the four labels in labels(b) are valid sets in the support of our
design polynomial σR(NWr).

So our problem boils down to counting the number of boxes in which all
the four labels are valid sets in the support of our polynomial σR(NWr). Let
us analyze the box

b = 2 − box((A1, C1), (A2, C2), S1, S2)

a bit closely. Suppose labels(b) = (D1,D2,D3,D4) as shown in the table
below where D1,D2,D3,D4 are valid sets in

(
[N ]
d

)
.

S1 S2

(A1,C1) D1 D2

(A2,C2) D3 D4

Define the following sets:

E1 := A1\(A1 ∩ A2) E2 := A2\(A1 ∩ A2)
E3 := C1 E4 := C2

E5 := D1\(E2 � E3) E6 := D2\(E2 � E3)
= D3\(E1 � E4) = D4\(E1 � E4)

Note that E2 � E3 must be a subset of both D1 and D2, similarly E1 � E4

must be a subset of both D3 and D4. Also, D1\(E2 � E3) = D3\(E1 � E4) as
(D1�C1)�A1 = (D3�C2)�A2 = S1. Similarly, D2\(E2�E3) = D4\(E1�E4).
Verify that D1,D2,D3 and D4 can be expressed as:

D1 = E2 � E5 � E3 D2 = E2 � E6 � E3(7.13)
D3 = E1 � E5 � E4 D4 = E1 � E6 � E4

From the above definitions, if |A1 ∩ A2| = v then

|E1| = |E2| = � − v(7.14)
|E3| = |E4| = k

|E5| = |E6| = d − (� − v + k)

Proposition 7.15. Unless D1,D2,D3 and D4 are all distinct sets, labels(b)
contains at most two distinct sets. Furthermore, if D1,D2 and D3 are distinct,
then � − v + k ≤ r and d − (� − v + k) ≤ r.
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Proof. We show that if D1 equals any of D2,D3 or D4 then labels(b) has
at most two distinct sets. The argument is similar for other cases. Suppose
D1 = D2 then by Equation (7.13) E5 = E6, implying D3 = D4. If D1 = D3

then again by Equation (7.13), E2 � E3 = E1 � E4 implying D2 = D4. Now
suppose D1 = D4, then by Equation (7.13), E6 ⊆ D1. But E6 ⊆ D2, which
means D2 ⊆ D1 as E2 � E3 ⊆ D1. Since |D2| = |D1| = d, D1 = D2 and hence
D1 = D2 = D3 = D4.

To prove the second statement of the lemma, observe that |D1 ∩ D2| ≥
|E2 � E3| = � − v + k. So, if � − v + k ≥ r + 1 then D1 = D2. Similarly,
|D1 ∩ D3| ≥ |E5| = d − (� − v + k). If d − (� − v + k) ≥ r + 1 then D1 = D3.

�

This means that any box b that contributes to Tr(B2) must have the
property that its label set labels(b) contains at most two distinct sets in the
support of σR(NWr), or four distinct sets in the support of σR(NWr). A set D
is in the support of σR(NWr) if D is in the support of NWr and σR(xD) 
= 0.
(Recall that eD is an indicator variable which is 1 if σR(xD) 
= 0, and zero
otherwise.)

Corollary 7.16. For any four distinct sets D1,D2,D3 and D4 ∈ (
[N ]
d

)
define

μ0(D1)
def= {box b : labels(b) = (D1,D1,D1,D1)} ,

μ1(D1,D2)
def= {box b : labels(b) = (D1,D2,D1,D2)} ,

μ2(D1,D2)
def= {box b : labels(b) = (D1,D1,D2,D2)} ,

μ3(D1,D2,D3,D4)
def= {box b : labels(b) = (D1,D2,D3,D4)} .

Let the support of NWr, denoted Supp(NWr) ⊂ (
[N ]
d

)
, be the set of all sets

D ∈ (
[N ]
d

)
such that the coefficient of the monomial xD in NWr is nonzero.

Define T0, T1, T2, T3 as follows:

T0 =
∑

D1∈Supp(NWr)

eD1 · |μ0(D1)|

T1 =
∑

D1 �=D2∈Supp(NWr)

eD1 · eD2 · |μ1(D1,D2)|

T2 =
∑

D1 �=D2∈Supp(NWr)

eD1 · eD2 · |μ2(D1,D2)|

T3 =
∑

D1 �= D2 �= D3 �= D4
∈ Supp(NWr)

∏

i∈[4]

eDi
· |μ3(D1,D2,D3,D4)| .(7.17)

Then

Tr(B2) = T0 + T1 + T2 + T3.
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We are using the notation D1 
= D2 
= D3 
= D4 to mean that the four sets
are distinct. The proof of Proposition 7.15 rules out the existence of any box
b having labels(b) = (D1,D2,D2,D1) with distinct D1,D2 ∈ Supp(NWr) and
that is why there is no term in Tr(B2) corresponding to such boxes.

Proposition 7.9 shows that Tr(B) is large with high probability. In order
to lower bound Tr(B)2

Tr(B2) , we will show that Tr(B2) is less than an upper bound
with high probability. This is achieved by upper bounding the expected values
of T0, T1, T2 and T3 and then applying Markov’s inequality.

7.2. Upper bound for E[T3]. Let ρ(D1,D2,D3) be the number of pairs of
rows ((A1, C1), (A2, C2)) in which D1,D2,D3 (all distinct) can possibly occur
as labels (as depicted in the table before). For a fixed D1,D2,D3 we upper
bound ρ(D1,D2,D3) with the help of Equation (7.13). Notice that for a fixed
D1,D2,D3, if we specify E2, E3, E4 and A1 ∩ A2 then the sets A1, C1, A2, C2

are determined. Let us count the number of ways we can pick E2, E3, E4 and
A1∩A2 for a given D1,D2,D3. Taking the size bounds on the sets into account
from Equation (7.14), this quantity is upper bounded by,

(
d

� − v

)
·
(

d − (� − v)
k

)
·
(

� − v + k

k

)
·
(

N − d

v

)
.

The quantity
(
N−d

v

)
is an upper bound on the number of ways we can pick

A1∩A2 as A1 must be disjoint from D1. By Proposition 7.15, �−v+k ≤ r < d,
(also, v ≤ � < N−d

2 ) implying

(7.18) ρ(D1,D2,D3) ≤ 2d ·
(

d

k

)2

·
(

N − d

�

)
= ρ (say).

Hence,

(7.19) T3 ≤ ρ ·
∑

D1 �=D2 �=D3∈Supp(NWr)

eD1 · eD2 · eD3

Now we upper bound the expected value of the quantity
∑

D1 �=D2 �=D3∈Supp(NWr)

eD1 · eD2 · eD3 = η (say)

in the following proposition.

Proposition 7.20. E [η] ≤ 4·γ2 ·q(r+1) ·
(

d
q

)d

, where γ is as in Proposition 7.9.

This implies

E [T3] ≤ 4 ·
(

2

d
α−β

2

)d

· γ2 ·
(

d

k

)2

·
(

N − d

�

)
.
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Proof of the above proposition can be found in Section 8. We show in the
later sections that E [T3] is negligible compared to E [T0 + T1 + T2] and hence
does not contribute much to the expected value of Tr(B2).

In what follows we derive expressions for |μ0(D1)| , |μ1(D1,D2)| and
|μ2(D1,D2)| and compute expected values of T0, T1 and T2 by summing these
up over D1,D2 ∈ Supp(σR(NWr)). We first observe:

Proposition 7.21. For any set D1 ∈ (
[N ]
d

)
and any row (A,C) of M , there

can be at most one cell in that row labeled with the set D1.

This means that any box b = 2 − box((A1, C1), (A2, C2), S1, S2) contributing
to either μ0(D1) or μ2(D1,D2), the columns S1 and S2 must be the same.

7.3. Calculating μ0(D1) and E[T0]. Every box b ∈ μ0(D1) is of the form
b = 2 − box((A1, C1), (A2, C2), S1, S1) where both the entries ((A1, C1), S1)
and ((A2, C2), S1) are both labeled by D1. This implies A1 = A2 and C1 = C2:
By Equation (7.13), E1 ⊆ D3 = D1, but A1 is disjoint from D1 and E1 ⊆ A1.
Hence, E1 is an empty set and similarly E2 is also an empty set. This also
implies E3 = E4 from Equation (7.13) as D3 = D1. Analyzing this situation
gives

Proposition 7.22.

|μ0(D1)| =
(

N − d

�

)
·
(

d

k

)
and E [T0] = γ ·

(
N − d

�

)
·
(

d

k

)

Proof. Recall γ from Equation (7.8). For a fixed D1, we can choose C1 in(
d
k

)
ways and A1 in

(
N−d

�

)
ways. (Recall A1 must be disjoint from D1.) The

expression for E [T0] follows immediately from Equation (7.17). �

7.4. Calculating μ1(D1,D2) and E[T1]. Let D1,D2 ∈ (
[N ]
d

)
be two dis-

tinct subsets in the support of NWr. We consider a box b = 2−box((A1, C1),
(A2, C2), S1, S2) in μ1(D1,D2). Observe that even in this case it must be that
A1 = A2 and C1 = C2: By the same reason as before since D3 equals D1 in
Equation (7.13). Analyzing this situation gives

Proposition 7.23. If |D1 ∩ D2| = w then

|μ1(D1,D2)| =
(

N − 2d + w

�

)
·
(

w

k

)
and hence

E [T1] ≤ d · γ2

d(α−β)k · k!
·
(

N − 2d + k

�

)
.

Proof of the above proposition is given in Section 8.
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7.5. Calculating μ2(D1,D2) and E[T2]. Let D1,D2 ∈ (
[N ]
d

)
be two dis-

tinct subsets in the support of NWr. We consider a box b = 2−box((A1, C1),
(A2, C2), S1, S2) in μ2(D1,D2). As we observed before this can happen only
if S1 = S2 = S (say). Let |C1 ∩ C2| = u. Analyzing this situation gives

Proposition 7.24. If |D1 ∩ D2| = w then

|μ2(D1, D2)| =
∑

0≤u≤k

( N − 2d + w

� − d + k + w − u

)
·
(d − w

k − u

)
·
(d − w

k − u

)
·
(w

u

)
, so

E[T2] ≤ dk · γ2 ·
( N − 2d

� − d + k

)
·
(d

k

)2

.

Proof. The expectation calculation is similar to the one in the proof of
Proposition 7.23—the maxima of the relevant expression is touched at w =
u = 0. �

7.6. Lower bound on SurRank(B). A comparison between the binomial
coefficients

(
N−2d
�−d+k

)
and

(
N−d

�

)
shows that

(
N − 2d

� − d + k

)
≥ 1

3d
·
(

N − d

�

)
.

Thus, from Proposition 7.22, Proposition 7.24 and Proposition 7.20, the upper
bound on E [T2] dominates the upper bounds on E [T0] and E [T3]. Applying
Markov’s inequality,

Tr(B2) ≤ d2 · γ2

d(α−β)k · k!
·
(

N − 2d + k

�

)
+ 3d2k · γ2 ·

(
N − 2d

� − d + k

)
·
(

d

k

)2

with probability at least 1 − 1
d . Coupled with Proposition 7.9, SurRank(B) is

greater or equal to

min

⎛

⎝
1
4 · γ2 · (d

k

)2 · (N−d
�

)2

2d2 · γ2

d(α−β)k·k!
· (N−2d+k

�

) ,
1
4 · γ2 · (d

k

)2 · (N−d
�

)2

6d2k · γ2 · (N−2d
�−d+k

) · (d
k

)2

⎞

⎠ ,

with probability at least 1− 1
dΩ(1) . The first ratio is at least pk

dO(1) · 1
4k ·(N

k

) ·(N
�

)

as
(
N−d

�

)2
(
N−2d+k

�

) ≥ 1
2kdO(1)

·
(

N

�

)
and dαk · k! ·

(
d

k

)2

≥ 1
2kdO(1)

·
(

N

k

)
.

The second ratio is at least 1
dO(1) · ( N

�+d−k

)
as,

(
N−d

�

)2
(

N−2d
�−d+k

) ≥ 1
dO(1)

·
(

N

� + d − k

)
.

Therefore,

SurRank(B) ≥ 1
dO(1)

min
(

pk

4k
·
(

N

k

)
·
(

N

�

)
,

(
N

� + d − k

))
.
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8. Proofs of certain propositions

Proposition 7.9. Pr
[
Tr(B) ≤ 1

2 · γ · (d
k

) · (N−d
�

)] ≤ 10
pdα .

Proof. As in Proposition 7.7, Tr(B) = Tr(MT ·M) which equals the number
of nonzero entries in M .

Tr(B) = μ(g) ·
(

d

k

)
·
(

N − d

�

)

⇒ E [Tr(B)] = γ ·
(

d

k

)
·
(

N − d

�

)
.

Hence,

Pr
[
Tr(B) ≤ 1

2
· γ ·

(
d

k

)
·
(

N − d

�

)]
= Pr

[
μ(g) ≤ 1

2
· γ

]
.

It turns out that the variance of μ(g), denoted by Var(μ(g)), can be upper
bounded as follows.

Var(μ(g)) ≤ γ · (1 − pd) + γ2 · 2
pdα

⇒ Pr
[
μ(g) ≤ 1

2
· γ

]
≤ 10

pdα
(by Chebyshev’s inequality).

The last inequality also uses the fact that γ > 2pdα which is true since r =
α+β

2(1+α) · d − 1 and hence γ = dΩ(d). Now, let us bound the variance of μ(g). In
the summations below, D,D1,D2 run over all elements in Supp(NWr).

Var(μ(g)) = E [μ(g)2] − E [μ(g)]2

= E
⎡

⎣
(
∑

D

eD

)2
⎤

⎦− E
[
∑

D

eD

]2

= E

⎡

⎢⎣
∑

D

e2
D +

∑

D1,D2
D1 �=D2

eD1 · eD2

⎤

⎥⎦−
[
∑

D

E [eD]

]2

(by linearity of expectation)

= E

⎡

⎢⎣
∑

D

eD +
∑

D1,D2
D1 �=D2

eD1 · eD2

⎤

⎥⎦

−

⎡

⎢⎣
∑

D

E [eD]2 +
∑

D1,D2
D1 �=D2

E [eD1 ] · E [eD2 ]

⎤

⎥⎦
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(as e2
D = eD)

= E
[
∑

D

eD

]
−
∑

D

E [eD]2 + E

⎡

⎢⎣
∑

D1,D2
D1 �=D2

eD1 · eD2

⎤

⎥⎦

−
∑

D1,D2
D1 �=D2

E [eD1 ] · E [eD2 ]

= pd · qr+1 − p2d · qr+1

+
r∑

w=0

E

⎡

⎢⎢⎣
∑

D1,D2
D1 �=D2,|D1∩D2|=w

eD1 · eD2

⎤

⎥⎥⎦

−
r∑

w=0

∑

D1,D2
D1 �=D2,|D1∩D2|=w

E [eD1 ] · E [eD2 ]

= γ · (1 − pd)

+
r∑

w=0

⎡

⎢⎢⎣
∑

D1,D2
D1 �=D2,|D1∩D2|=w

(E [eD1 · eD2 ] − E [eD1 ] · E [eD2 ])

⎤

⎥⎥⎦

(by linearity of expectation)

= γ · (1 − pd) +
r∑

w=0

⎡

⎢⎢⎣
∑

D1,D2
D1 �=D2,|D1∩D2|=w

(
pd · pd−w − pd · pd

)

⎤

⎥⎥⎦

(as E [eD2 |eD2 = 1] = pd−w if |D1 ∩ D2| = w)

= γ · (1 − pd) +
r∑

w=1

⎡

⎢⎢⎣
∑

D1

∑

D2
D1 �=D2,|D1∩D2|=w

(
p2d−w − p2d

)

⎤

⎥⎥⎦

= γ · (1 − pd) +
r∑

w=1

[
∑

D1

Rd(w, r) · p2d
(
p−w − 1

)
]

(recall Rd(w, r) from Equation (7.6))

≤ γ · (1 − pd) + p2d ·
r∑

w=1

[
qr+1 · Rd(w, r) · p−w

]

≤ γ · (1 − pd) + γ2 ·
r∑

w=1

1
(pdα)w

(since Rd(w, r) ≤ qr+1 ·
(

d

q

)w

· 1
w!

)
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≤ γ · (1 − pd) + γ2 · 2
pdα

.

The last inequality is true as without loss of generality pdα = dα−β > 2. �

Proposition 7.20. E [η] ≤ 4·γ2 ·q(r+1) ·
(

d
q

)d

, where γ is as in Proposition 7.9.
This implies

E [T3] ≤ 4 ·
(

2

d
α−β

2

)d

· γ2 ·
(

d

k

)2

·
(

N − d

�

)
.

Proof. Observe that

w := |D1 ∩ D2| ≥ |E2 � E3| = � − v + k

w′ := |(D3 ∩ D1) ∪ (D3 ∩ D2)|
≥ |D3 ∩ D1| ≥ |E5| = d − (� − v + k)

Hence,

η ≤
∑

D1∈Supp(NWr)

∑

w≥�−v+k

∑

D2∈Supp(NWr)
D2 �=D1,|D1∩D2|=w

∑

w′≥d−(�−v+k)

∑

D3∈Supp(NWr)
D3 �=D2 �=D1,|(D3∩D1)∪(D3∩D2)|=w′

eD1 · eD2 · eD3

E [η] ≤
∑

D1∈Supp(NWr)

∑

w≥�−v+k

∑

D2∈Supp(NWr)
D2 �=D1,|D1∩D2|=w

∑

w′≥d−(�−v+k)

∑

D3∈Supp(NWr)
D3 �=D2 �=D1,|(D3∩D1)∪(D3∩D2)|=w′

pd · pd−w · pd−w′

≤
∑

D1∈Supp(NWr)

∑

w≥�−v+k

∑

D2∈Supp(NWr)
D2 �=D1,|D1∩D2|=w

∑

w′≥d−(�−v+k)

p3d−w−w′ ·
(

d

w′

)
· q(r+1)−w′

,

as the number of D3 with |(D3 ∩ D1) ∪ (D3 ∩ D2)| = w′ for a fixed D1,D2 is
bounded by

(
d
w′
) · q(r+1)−w′

. This implies,

E [η] ≤
∑

D1∈Supp(NWr)

∑

w≥�−v+k

∑

D2∈Supp(NWr)
D2 �=D1,|D1∩D2|=w

∑

w′≥d−(�−v+k)

p3d−w−w′ · dw′ · q(r+1)−w′
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≤
∑

D1∈Supp(NWr)

∑

w≥�−v+k

∑

D2∈Supp(NWr)
D2 �=D1,|D1∩D2|=w

p3d−w · q(r+1) ·
(

d

pq

)d−(�−v+k)

· 2

(assuming pq > 2d as q ≥ d1+α)

≤ 2 ·
∑

D1∈Supp(NWr)

∑

w≥�−v+k

p3d−w · q(r+1) ·
(

d

pq

)d−(�−v+k)

· Rd(w, r)

(recall Rd(w, r) from Equation (7.6))

≤ 2 ·
∑

D1∈Supp(NWr)

∑

w≥�−v+k

p3d−w · q(r+1) ·
(

d

pq

)d−(�−v+k)

· q(r+1) ·
(

d

q

)w

≤ 4 ·
∑

D1∈Supp(NWr)

p3d · q2(r+1) ·
(

d

pq

)d

≤ 4 · p2d · q3(r+1) ·
(

d

q

)d

= 4 · γ2 · q(r+1) ·
(

d

q

)d

.

Therefore,

E [T3] ≤ ρ · E [η]

≤ 2d ·
(

d

k

)2

·
(

N − d

�

)
· 4 · γ2 · q(r+1) ·

(
d

q

)d

.

Since r + 1 = α+β
2(1+α) · d and q ≥ d1+α,

E [T3] ≤ 4 ·
(

2

d
α−β

2

)d

· γ2 ·
(

d

k

)2

·
(

N − d

�

)
.

�

Proposition 7.23. If |D1 ∩ D2| = w then

|μ1(D1,D2)| =
(

N − 2d + w

�

)
·
(

w

k

)
and hence

E [T1] ≤ d · γ2

d(α−β)k · k!
·
(

N − 2d + k

�

)
.
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Proof. For a given D1,D2, let us count the number of rows (A,C) in which
D1 and D2 can occur as labels. Since C ⊂ D1 ∩D2 and |D1 ∩D2| = w, we can
pick C in

(
w
k

)
ways. For every choice of C, we can pick A in

(
N−2d+w

�

)
ways

as A must be disjoint from D1 ∪ D2 and |D1 ∪ D2| = 2d − w. By Equation
(7.17),

T1 =
∑

D1∈Supp(NWr)

∑

w≥k

∑

D2∈Supp(NWr)
D2 �=D1,|D2∩D1|=w

eD1 · eD2 · |μ1(D1,D2)|

⇒ E [T1] =
∑

D1∈Supp(NWr)

∑

w≥k

∑

D2∈Supp(NWr)
D2 �=D1,|D2∩D1|=w

pd · pd−w ·
(

N − 2d + w

�

)
·
(

w

k

)

≤ p2d ·
∑

D1∈Supp(NWr)

∑

w≥k

Rd(w, r) · p−w ·
(

N − 2d + w

�

)
·
(

w

k

)

≤ p2d ·
∑

D1∈Supp(NWr)

∑

w≥k

qr+1 ·
(

d

pq

)w

· 1
w!

·
(

N − 2d + w

�

)
·
(

w

k

)

≤ p2d · qr+1 ·
∑

D1∈Supp(NWr)

∑

w≥k

(
1

dα−β

)w

· 1
w!

·
(

N − 2d + w

�

)
·
(

w

k

)

The term
(

1
dα−β

)w · 1
w! · (N−2d+w

�

) · (w
k

)
is maximized at w = k as β < α. So,

E [T1] ≤ d · γ2

d(α−β)k · k!
·
(

N − 2d + k

�

)
.

�

9. Summary and discussion

A recent line of research on arithmetic circuit lower bounds uses the dimension
of the space of shifted partials and its variant, the projected shifted partials
under random restriction, as a complexity measure to make progress on prov-
ing lower bounds for certain interesting classes of arithmetic circuits, namely
regular formulas and homogeneous depth-four formulas. (The dimension of
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the space of shifted partials measure is in turn based on the classical measure
of the dimension of the space of partial derivatives.) The formal degree of a ho-
mogeneous depth-four formula (or a regular formula) is bounded by the degree
(or the order of the degree) of the polynomial that it computes. At this point,
it was not clear whether the present techniques are applicable to models where
the formal degree is much higher than the degree of the computed polynomial.
One very interesting (and arguably the simplest nontrivial) example of such
an unrestricted formal degree model is (nonhomogeneous) depth-three circuits
over fields of characteristic zero—its power being exhibited by the recent work
of Gupta et al. (2013a).

Our work takes a step forward in this direction by showing an exponen-
tial lower bound for (nonhomogeneous) depth-three circuits with small bottom
fanin over fields of characteristic zero. Along the way we also show an expo-
nential lower bound for homogeneous depth-five formulas with small bottom
fanin. The second result is for an explicit polynomial in VNP. An immediate
question is whether the combinatorial argument from Kumar & Saraf (2014a)
can be suitably adapted so that the lower bound of Theorem 1.3 holds for iter-
ated matrix multiplication as well. Both these results are obtained by building
upon the current techniques on shifted partial-based measures. It would be
very interesting to prove analogous lower bounds for less restrictive subclasses
of arithmetic circuits.

◦ Can we drop the restriction of ‘small bottom fanin’ from both the models—
(nonhomogeneous) depth-three circuits and homogeneous depth-five cir-
cuits
—and still show an exponential lower bound?

A few other intriguing problems on arithmetic circuit lower bounds are worth
mentioning here:

◦ Show a super-polynomial lower bound for homogeneous bounded depth
arithmetic circuits.

◦ Show a super-polynomial lower bound for homogeneous arithmetic formu-
las.

◦ Show a super-polynomial separation between homogeneous product-depth-
Δ formulas and homogeneous product-depth-(Δ − 1) formulas.

◦ Solve the above problems without the assumption of homogeneity.

Solutions to these problems, using present or new techniques, would give a
significant boost to our understanding of arithmetic circuit lower bounds.
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