
comput. complex. 25 (2016), 177 – 214

c© Springer Basel 2015

1016-3328/16/010177-38

published online October 29, 2015

DOI 10.1007/s00037-016-0113-8 computational complexity

RELATIVIZING SMALL

COMPLEXITY CLASSES

AND THEIR THEORIES

Klaus Aehlig, Stephen Cook,

and Phuong Nguyen

Abstract. Existing definitions of the relativizations of NC1, L and
NL do not preserve the inclusions NC1 ⊆ L, NL ⊆ AC1. We start
by giving the first definitions that preserve them. Here for L and NL
we define their relativizations using Wilson’s stack oracle model, but
limit the height of the stack to a constant (instead of log(n)). We show
that the collapse of any two classes in {AC0(m),TC0,NC1,L,NL}
implies the collapse of their relativizations. Next we exhibit an oracle α
that makes ACk(α) a proper hierarchy. This strengthens and clarifies
the separations of the relativized theories in Takeuti (1995). The idea
is that a circuit whose nested depth of oracle gates is bounded by k
cannot compute correctly the (k +1) compositions of every oracle func-
tion. Finally, we develop theories that characterize the relativizations
of subclasses of P by modifying theories previously defined by the sec-
ond two authors. A function is provably total in a theory iff it is in the
corresponding relativized class, and hence, the oracle separations imply
separations for the relativized theories.

Keywords. Complexity classes, relativized classes, proof complexity,
logical theories.

Subject classification. 68Q15.

1. Introduction

Oracles that separate P from NP and oracles that collapse NP
to P have both been constructed. This rules out the possibility

178 Aehlig, Cook & Nguyen cc 25 (2016)

of proofs of the separation or collapse of P and NP by methods
that relativize. However, similar results have not been established
for subclasses of P such as L and NL. Indeed, prior to this work,
there has not been a satisfying definition of the relativized version
of NL that preserves simultaneously the inclusions.

(1.1) NC1 ⊆ L ⊆ NL ⊆ AC1.

(In this paper, NCk and ACk refer to their uniform versions.)
For example (Ladner & Lynch 1976), if the Turing machines are
allowed to be nondeterministic when writing oracle queries, then
there is an oracle α so that NL(α) �⊆ P(α). Later definitions of
NL(α) adopt the requirement specified in Ruzzo et al. (1984) that
the nondeterministic oracle machines be deterministic whenever
the oracle tape (or oracle stack) is nonempty. Then the inclusion
NL(α) ⊆ P(α) relativizes, but not all inclusions in (1.1).

Because the nesting depth of oracle gates in an oracle NC1

circuit can be bigger than one, the model of relativization that
preserves the inclusion NC1 ⊆ L must allow an oracle logspace
Turing machine to have access to more than one oracle query tape
(Buss 1986; Orponen 1983; Wilson 1988). For the model defined by
Wilson (1988), the partially constructed oracle queries are stored
in a stack. The machine can write queries only on the oracle tape
at the top of the stack. It can start a new query on an empty oracle
tape (thus pushing down the current oracle tape, if there is any),
or query the content of the top tape which then becomes empty,
and the stack is popped.

Following Cook (1985), the circuits accepting languages in rel-
ativized NC1 are those with logarithmic depth where the Boolean
gates have bounded fanin and an oracle gate of m inputs con-
tributes log(m) to the depths of its parents. Then in order to
relativize the inclusion NC1 ⊆ L, the oracle logspace machines
defined by Wilson (1988) are required to satisfy the condition that
at any time,

k∑

i=1

max {log(|qi|), 1} = O(log(n)),

cc 25 (2016) Relativizing small complexity classes 179

where q1, q2, . . . , qk are the contents of the stack and |qi| are their
lengths. For the simulation of an oracle NC1 circuit by such an
oracle logspace machine, the upper bound O(log(n)) cannot be
improved.

Although the above definition of L(α) (and NL(α)) ensures
that NC1(α) ⊆ L(α), unfortunately, we know only that NL(α) ⊆
AC2(α) (Wilson 1988); the inclusion NL(α) ⊆ AC1(α) is left
open.

We observe that if the height of the oracle stack is bounded
by a constant (while the lengths of the queries are still bounded
by a polynomial in the length of the inputs), then an oracle NL
machine can be simulated by an oracle AC1 circuit, i.e., NL(α) ⊆
AC1(α). In fact, it can then be shown that NL(α) is contained in
the AC0(α) closure of the reachability problem for directed graphs,
while L(α) equals the AC0(α) closure of the reachability problem
for directed graphs whose outdegree is at most one.

The AC0(α) closure of the Boolean sentence value problem
(which is AC0 complete for NC1) turns out to be the languages
computable by uniform oracle NC1 circuits (defined as before)
where the nesting depth of oracle gates is now bounded by a con-
stant. We redefine NC1(α) using this new restriction on the oracle
gates; the new definition is more suitable in the context of AC0(α)
reducibility (the previous definition of NC1(α) seems suitable when
one considers NC1(α) reducibility). Consequently, we obtain the
first definition of NC1(α), L(α) and NL(α) that preserves the
inclusions in (1.1).

Furthermore, the AC0-complete problems for NC1, L and NL
(as well as AC0(m), TC0) become AC0(α)-complete for the corre-
sponding relativized classes. Therefore, the existence of any oracle
that separates two of the mentioned classes implies the separa-
tion of the respective nonrelativized classes. (If the nonrelativized
classes were equal, their complete problems would be equivalent
under AC0reductions, hence even more under AC0(α) reductions
and therefore the relativized classes would coincide as well.) Sepa-
rating the relativized classes is as hard as separating their nonrela-
tivized counterparts. This nicely generalizes known results (Simon
1977; Wilson 1987, 1988).

180 Aehlig, Cook & Nguyen cc 25 (2016)

On the other hand, oracles that separate the classes ACk (for
k = 0, 1, 2, . . .) and P have been constructed (Wilson 1987). Here
we prove a sharp separation between relativized circuit classes
whose nesting depths of oracle gates differ by one. More precisely,
we show that a family of uniform circuits with nesting depth of
oracle gates bounded by k cannot compute correctly the (k + 1)
iterated compositions

(1.2) f(f(. . . f(0) . . .))

for all oracle function f . (Clearly (1.2) can be computed correctly
by a circuit with oracle gates having nesting depth (k + 1).) As a
result, there is an oracle α such that

(1.3) NL(α) � AC1(α) � AC2(α) � · · · � P(α).

The idea of using (1.2) to separate relativized circuit classes
is already present in the work of Takeuti (1995) where it is used
to separate the relativized versions of first-order theories TLS(α)
and TAC1(α). Here TLS and TAC are (single sorted) theories
associated with L and AC1, respectively. Thus, with simplified
arguments, we strengthen his results.

Finally, building up from the work of the second two authors
(Nguyen & Cook 2006, 2010), we develop relativized two-sorted
theories that are associated with the newly defined classes
NC1(α),L(α), NL(α) as well as other relativized circuit classes.

The paper is organized as follows. In Section 2, we define the
relativized classes and prove the inclusions mentioned above. An
oracle that separates classes in (1.3) is shown in Section 3. In Sec-
tion 4, we define the associated theories and show their separation
using the oracle defined in Section 3.

2. Small relativized classes

2.1. Relativized circuit classes. Throughout this paper, α
denotes a unary relation on binary strings.

A problem is in ACk if it can be solved by a polynomial size
family of Boolean circuits whose depth is bounded by O((log n)k)
(n is the number of input bits), where ∧ and ∨ gates are allowed

cc 25 (2016) Relativizing small complexity classes 181

unbounded fanin. The relativized class ACk(α) generalizes this by
allowing, in addition to (unbounded fanin) Boolean gates (¬,∧,∨),
oracle gates that output 1 if and only if the inputs to the gates
(viewed as binary strings) belong to α (these gates are also called
α gates).

In this paper, we always require circuit families to be uniform.
Our default definition of uniform is DLOGTIME, a robust notion
of uniformity that has a number of equivalent definitions (Bar-
rington et al. 1990; Immerman 1999). In particular, a language
L ⊆ {0, 1}∗ is in (uniform) AC0 iff it represents the set of finite
models {1, . . . , n} of some fixed first-order formula with an unin-
terpreted unary predicate symbol and ternary predicates which are
interpreted as addition and multiplication.

Here an AC0 reduction refers to a ‘Turing’ style reduction.
Thus, a problem A is AC0 reducible to a problem B if there is a
uniform polynomial size constant-depth family of circuits comput-
ing A, where the circuits are allowed to have oracle gates for B, as
well as Boolean gates.

Recall that TC0 (resp. AC0(m)) is defined in the same way as
AC0, except the circuits allow unbounded fanin threshold (resp.
modm) gates.

Definition 2.1 (ACk(α), AC0(m,α), TC0(α)). For k ≥ 0, the
class ACk(α) (resp. AC0(m,α), TC0(α)) is defined as uniform
ACk (resp. AC0(m), TC0) except that unbounded fanin α gates
are allowed.

The class NCk is the subclass of ACk defined by restricting
the ∧ and ∨ gates to have fanin 2. Defining NCk(α) is more
complicated. In Cook (1985), the depth of an oracle gate with
m inputs is defined to be log(m). A circuit is an NCk(α)circuit
provided that it has polynomial size and the total depth of all
gates along any path from the output gate to an input gate is
O((log n)k). Note that if there is a mix of large and small oracle
gates, the nested depth of oracle gates may not be O((log n)k−1).

Here we restrict the definition further, requiring that the nested
depth of oracle gates is O((log n)k−1). This restriction implies con-
stant oracle nesting depth for NC1(α) circuits and allows us to

182 Aehlig, Cook & Nguyen cc 25 (2016)

show that in the relativized world NC1 is still contained in L.
Also the circuit value problem (for oracle NCk circuits) is still
complete for NCk, as expected.

Definition 2.2 (NCk(α)). For k ≥ 1, a language is in NCk(α)
if it is computable by a uniform family of NCk(α) circuits, i.e.,
ACk(α) circuits where the ∧ and ∨ gates have fanin 2, and the
nested depth of α gates is O((log n)k−1).

The following inclusions extend the inclusions of the nonrela-
tivized classes:

AC0(α) ⊆ AC0(m,α) ⊆ TC0(α) ⊆ NC1(α) ⊆ AC1(α)

⊆ · · · ⊆ P(α)

Further the AC0-complete problems for AC0(m), TC0 and
NC1 are also AC0(α)-complete for the corresponding relativized
classes. This is expressed by the next result, using the follow-
ing complete problems: MODm and THRESH (the threshold func-
tion) are AC0-complete for AC0(m) and TC0 respectively, and
FORMVAL (the Boolean formula value problem) is both AC0-
complete and AC0-many-one complete for NC1.

Proposition 2.3.

AC0(m,α) = AC0(MODm,α)(2.4)

TC0(α) = AC0(THRESH, α)(2.5)

NC1(α) = AC0(FORMVAL, α)(2.6)

Proof. Each class on the right is included in the corresponding
class on the left because a query to the complete problem can be
replaced by a circuit computing the query. Each class on the left is
a subset of the corresponding class on the right because the queries
to α on the left have bounded nesting depth. �

Note that there is no similar characterization of AC1(α) or
P(α), because here the queries to α can have unbounded nesting
depth.

cc 25 (2016) Relativizing small complexity classes 183

2.2. Relativized logspace classes. To define oracle logspace
classes, we use a modification of Wilson’s stack model (Wilson
1988). An advantage is that the relativized classes defined here
are closed under AC0 reductions. This is not true for the nonstack
model.

A Turing machine M with a stack of oracle tapes can write 0
or 1 onto the top oracle tape if it already contains some symbols,
or it can start writing on an empty oracle tape. In the latter case,
the new oracle tape will be at the top of the stack, and we say
that M performs a push operation. The machine can also pop the
stack, and its next action and state depend on α(Q), where Q is
the content of the top oracle tape. Note that here the oracle tapes
are write-only.

Instead of allowing an arbitrary number of oracle tapes, we
modify Wilson’s model by allowing only a stack of constant height
(hence the prefix ‘cs’ in csL(α) and csNL(α)). This places the rel-
ativized classes in the same order as the order of their unrelativized
counterparts.

In the definition of csNL(α), we also use the restriction (Ruzzo
et al. 1984) that the machine is deterministic when the oracle stack
is non empty or when it is in a push state.

Definition 2.7 (csL(α), csNL(α)). For a unary relation α on
strings, csL(α) is the class of languages computable by logspace,
polytime Turing machines using an α-oracle stack whose height is
bounded by a constant. csNL(α) is defined as csL(α) but the Tur-
ing machines are allowed to be nondeterministic when the oracle
stack is empty.

Theorem 2.8. NC1(α) ⊆ csL(α) ⊆ csNL(α) ⊆ AC1(α).

Proof. The second inclusion is immediate from the definitions,
and the first can be proved as in the standard proof of the fact that
NC1 ⊆ L (see also Wilson 1988). The last inclusion can actually
be strengthened, as shown in the next theorem. �

The next theorem partly extends Proposition 2.3 to the two
new classes. Recall that STCONN is the problem: given (G, s, t),

184 Aehlig, Cook & Nguyen cc 25 (2016)

where s, t are two designated vertices of a directed graph G, decide
whether there is a path from s to t. We define 1-STCONN to be
the same, except we require that every node in G has out degree
at most one. Then STCONN and 1-STCONN are AC0-many-one
complete for NL and L, respectively.

A csL(α) function is defined by allowing the csL(α) machine to
write on a write-only output tape. Then the notion of many-one
csL(α) reducibility is defined as usual.

Theorem 2.9. (i) csL(α) = AC0(1-STCONN, α)

(ii) csNL(α) ⊆ AC0(STCONN, α)

(iii) A language is in csNL(α) iff it is many-one csL(α)-reducible
to STCONN.

Proof. We start by proving the inclusion AC0(1-STCONN, α)
⊆ csL(α) in (i). A problem in AC0(1-STCONN, α) is given by
a uniform polynomial size constant-depth circuit family {Cn}n∈N
with oracle queries to 1-STCONN and α. A csL(α) machine M
on an input x of length n performs a depth-first search of the
circuit Cn with input x. Each α oracle gate at depth k is answered
using an oracle query at stack height k, and each oracle query to
1-STCONN is answered by a logspace computation.

Note that this argument does not work for the correspond-
ing inclusion in (ii), because once the oracle stack is nonempty, a
csNL(α) machine becomes deterministic and cannot answer oracle
queries to STCONN (assuming L �= NL).

Now we prove the inclusion (ii). (The corresponding inclusion
in the equation (i) is proved similarly.) Let M be a nondeterministic
logspace Turing machine with a constant-height stack of oracle
tapes. Let h be the bound on the height of the oracle stack. There
is a polynomial p(n) so that for each input length n and oracle α,
M has at most p(n) possible configurations:

(2.10) u0 = START , u1 = ACCEPT , u2, . . . , up(n)−1.

Here a configuration ui encodes information about the internal
state, the content and head position of the work tape, and the

cc 25 (2016) Relativizing small complexity classes 185

position of the input tape head, but no explicit information about
the oracle stack (although the internal state might encode implicit
information).

Given an input x of length n, we construct a sequence
G0, . . . , Gh of directed graphs such that the set Vk of nodes in
Gk consists of all pairs (k, u), where u is a configuration and k is
the current height of the oracle stack (so 0 ≤ k ≤ h). Thus (k, u)
represents a ‘height k configuration.’ Note that the computation
of M on input x can be described by a sequence of nodes in

⋃
k Vk.

We want to define the edge set Ek so that

((k, u), (k, u′)) ∈ Ek iff (k, u′) can be the next height k

configuration after (k, u).
(2.11)

The edges Ek in Gk comprise the union

Ek = E0
k ∪ E1

k .

Define E0
k to consist of all pairs ((k, u), (k, u′)) such that u does not

cause a push or pop and u′ is a possible successor to u. If k ≥ 1,
then we also require that u be a deterministic configuration. Define
E1

k to be empty if k = h, and if 0 ≤ k < h, then E1
k consists of

all pairs ((k, u), (k, u′)) such that u is a deterministic configuration
causing a push, and there is a sequence

(2.12) (k + 1, v0), . . . , (k + 1, vt)

of configurations such that v0 is the successor of u and ((k +
1, vi), (k + 1, vi+1)) ∈ Ek+1 for 0 ≤ i < t and vt causes a pop
and u′ is the successor of vt (given that (k, u) is the most recent
level k node preceding (k + 1, vt)).

Note that in a computation from (k, u) to (k, u′) the sequence
(2.12) is the sequence of height k + 1 nodes, and this sequence
determines the string Q that is written on the height k + 1 oracle
tape, and hence determines whether u′ is the successor of vt.

It is easy to prove (2.11) by induction on k = h, h−1, . . . , 0. For
k = 0, this implies that M accepts x iff there is a path in G0 from
(0, START) to (0,ACCEPT). Thus it suffices to show that some
AC0(STCONN, α) circuit computes the adjacency matrix of each

186 Aehlig, Cook & Nguyen cc 25 (2016)

graph Gk given the input x. In fact, it is easy to see that some
AC0 circuit with input x outputs the adjacency matrix for each
edge set E0

k . Hence it suffices to show that some AC0(STCONN, α)
circuit computes the adjacency matrix for E1

k given input x and
the adjacency matrix for E1

k+1, 0 ≤ k < h. This can be done since
the elements for the sequence (2.12) can be obtained from Ek+1

using oracle queries to STCONN, and the string Q that is written
on the height k+1 oracle tape can be extracted from this sequence
using an AC0 circuit, and so α(Q) can be used to determine u′ is
the successor of vt.

Note that the depth of nesting of oracle calls to α is h.
To prove (iii), we note that the direction (⇐) is easy: A

csNL(α) machine M on input x answers the single query f(x, α)
to STCONN by simulating the NL machine M′ that answers the
query on input f(x, α), and each time M′ requires another input
bit, M deterministically computes that bit.

To prove (iii) in the direction (⇒), we note that the edge rela-
tion E0 defined in the proof of (ii) can be computed by an csL(α)
machine. Then as noted above, M accepts its input x iff there is a
path in G0 from (0, START) to (0,ACCEPT), which is an instance
of STCONN. �

The next result states an unusual relationship between the rel-
ativized and nonrelativized versions of some of our complexity
classes. This leaves open the possibility that a proof separating
two nonrelativized classes might take advantage of an oracle con-
struction which separates the corresponding relativized classes.

Corollary 2.13. The existence of an oracle α separating any
two of the classes

AC0(m,α) ⊆ TC0(α) ⊆ NC1(α) ⊆ csL(α) ⊆ csNL(α)

implies the separation of the respective nonrelativized classes.

Proof. This follows from Proposition 2.3 and Theorem 2.9
parts (i) and (ii). If any two of the nonrelativized classes are
equal, then the corresponding complete problems would be AC0-
equivalent, and hence, the relativized classes would be equal. �

cc 25 (2016) Relativizing small complexity classes 187

Corollary 2.14 (Relativized Immerman-Szelepcsényi Theorem).
csNL(α) is closed under complementation.

Proof. By Theorem 2.9 (iii) any language in co-csNL(α) is
many-one csL(α) reducible to STCONN, which is many-one AC0

reducible to STCONN. So co-csNL(α) ⊆ csNL(α). �

Let csL2(α) denote the class of languages computable by a
deterministic oracle Turing machine in O(log2) space and constant-
height oracle stack.

Corollary 2.15 (Relativized Savitch’s Theorem). csNL(α) ⊆
csL2(α).

Proof. The corollary follows from Theorem 2.9 (iii) and the
fact that the composition of a csL(α) function and a (log2) space
function (for STCONN) is a csL2(α) function. �

It is easy to see that the function class associated with either
of the classes AC0(1-STCONN, α) or AC0(STCONN, α) is closed
under composition, so we have the following result.

Corollary 2.16. The function class associated with csL(α) is
closed under composition.

However, it is an open question whether the function class asso-
ciated with csNL(α) is necessarily closed under composition, for
the same reason that we cannot necessarily conclude that inclusion
in part (ii) of Theorem 2.9 can be changed to equality. Once the
oracle stack in a csNL(α) machine becomes nonempty, it becomes
deterministic, so it is not clear that the machine can solve an
STCONN problem.

3. Separating the ACk hierarchy

One of the obvious benefits of considering relativized complexity
classes is that separations are at hand. Even though the unrela-
tivized inclusion of AC1 in the polynomial hierarchy is strongly
conjectured to be strict, no proof is currently known. On the other
hand, Wilson (1987) showed the existence of an oracle αW which

188 Aehlig, Cook & Nguyen cc 25 (2016)

makes the relativized ACk hierarchy is strict. Here we reconstruct
a technique used by Takeuti (1995) to separate theories in weak
bounded arithmetic and use it to give a simpler definition of an
oracle α separating the ACk hierarchy. In the next section, we
show how to use this result together with a witnessing theorem to
obtain an unconditional separation of relativized theories capturing
the ACk hierarchy.

The idea is that computing the k’th iterate fk(0) = f(f(. . .
f(0))) of a function f is essentially a sequential procedure, whereas
shallow circuits represent parallel computation. So a circuit per-
forming well in a sequential task has to be deep. To avoid the fact
that the sequential character of the problem can be circumvented
by precomputing all possible values, the domain of f is chosen big
enough; we will consider functions f : {0, 1}n → {0, 1}n.

Of course with such a big domain, we cannot represent such
functions simply by a value table. That is how oracles come into
play: oracles allow us to provide a predicate on strings as input,
without the need of having an input bit for every string. In fact,
the number of bits potentially accessible by an oracle gate is expo-
nential in the number of its input wires.

Therefore, we represent the i’th bit of f(x) for x ∈ {0, 1}n by
whether or not the string xi belongs to the language of the oracle.
Here i is some canonical coding of the natural number i using log n
bits.1

Our argument can be summarized as follows. We assume a
circuit of depth d (i.e., the circuit has d levels) is given that sup-
posedly computes the �’th iterate of any function f given by the
oracle. Then we construct, step-by-step, an oracle that fools this
circuit, if � > d. To do so, for each layer of the circuit, we decide
how to answer the oracle questions, and we do this in a way that
is consistent with the previous layers and such that all the circuit
at layer i knows about f is at most the value of f i(0). To make
this step-by-step construction possible, we have to consider partial
functions during our construction.

If A and B are sets, we denote by f : A ⇀ B that f is a partial
function from A to B. In other words, f is a function, its domain

1We use log n to stand for log2(n + 1)�.

cc 25 (2016) Relativizing small complexity classes 189

dom(f) is a subset of A and its range rng(f) is a subset of B.

Definition 3.1. A partial function f : {0, 1}n ⇀ {0, 1}n is
called �-sequential if for some k ≤ � it is the case that
0, f(0), f 2(0), . . . , fk(0) are all defined, but fk(0) �∈ dom(f).

Note that in Definition 3.1, it is necessarily the case that
0, f(0), f 2(0), . . . , fk(0) are distinct.

Lemma 3.2. Let n ∈ N and f : {0, 1}n ⇀ {0, 1}n be an �-
sequential partial function. Let M ⊂ {0, 1}n be such that
|dom(f) ∪ M | < 2n. Then there is an (� + 1)-sequential exten-
sion f ′ ⊇ f with dom(f ′) = dom(f) ∪ M .

Proof. Let a ∈ {0, 1}n\(M ∪ dom(f)). Such an a exists by our
assumption on the cardinality of M∪dom(f). Let f ′ be f extended
by setting f ′(x) = a for all x ∈ M\dom(f). This f ′ is as desired.

Indeed, assume that 0, f ′(0), . . . , f ′�+1(0), f ′�+2(0) are all
defined. Then, since a �∈ dom(f ′), all the 0, f ′(0), . . . , f ′�+1(0)
have to be different from a. Hence these values have already been
defined in f . But this contradicts the assumption that f was �-
sequential. �

Definition 3.3. To any natural number n and any partial func-
tion f : {0, 1}n ⇀ {0, 1}n, we associate its bit graph βn,f as a par-
tial function βn,f : {0, 1}n+log n ⇀ {0, 1} in the obvious way. More
precisely, βn,f (xv) is the i’th bit of f(x) if f(x) is defined, and
undefined otherwise, where v is a string of length log n coding the
natural number i. If f : {0, 1}n → {0, 1}n is a total function, we
define the oracle αf by

αf (w) ↔ βn,f (w) = 1.

Thus αf (w) can only hold for strings w of length n + log n.
Immediately, from Definition 3.3, we note that f can be

uniquely reconstructed from αf .
If α is an oracle, we define α[n] by

α[n](w) ↔ (α(w) ∧ |w| = n + log n),

190 Aehlig, Cook & Nguyen cc 25 (2016)

so α[n] has finite support.
In what follows, circuits refer to oracle circuits as discussed in

Section 2.1. We are mainly interested in circuits with no Boolean
inputs, so the output depends only on the oracle.

Theorem 3.4. Let C be any circuit of depth d and size strictly
less then 2n. If C(α) correctly computes the last bit of f �(0) for the
(uniquely determined) f : {0, 1}n → {0, 1}n such that αf = α[n],
and this is true for all oracles α, then � ≤ d.

Proof. Assume that such a circuit computes f �(0) correctly for
all oracles. We have to find an oracle that witnesses � ≤ d. First fix
the oracle arbitrarily on all strings of length different from n+log n.
So, in effect we can assume that the circuit only uses oracle gates
with n + log n inputs.

By induction on k ≥ 0, we define partial functions fk : {0, 1}n

⇀ {0, 1}n with the following properties. (Here we number the
levels of the circuit 0, 1, . . . , d − 1.)

◦ f0 ⊆ f1 ⊆ f2 ⊆ . . .

◦ The size |dom(fk)| of the domain of fk is at most the number
of oracle gates in levels strictly smaller than k.

◦ βn,fk
determines the values of all oracle gates at levels strictly

smaller than k.

◦ fk is k-sequential.

We can take f0 to be the totally undefined function, since f 0(0) = 0
by definition, so f0 is 0-sequential. As for the induction step, let
M be the set of all x of length n such that, for some i < n, the
string xi is queried by an oracle gate at level k and let fk+1 be a
k+1-sequential extension of fk to domain dom(fk) ∪ M according
to Lemma 3.2.

For k = d, we get the desired bound. As βn,fd
already deter-

mines the values of all gates, the output of the circuit is already
determined, but fd+1(0) is still undefined and we can define it in
such a way that it differs from the last bit of the output of the
circuit. �

cc 25 (2016) Relativizing small complexity classes 191

Inspecting the proof of Theorem 3.4, we note that it does not at
all use what precisely the nonoracle gates compute, as long as the
value only depends on the input, not on the oracle. In particular,
the proof still holds if we consider subcircuits without oracle gates
as a single complicated gate. Thus we have the following corollary
of the above argument and part (ii) of Theorem 2.9.

Corollary 3.5. csNL(α) can iterate a function given by an ora-
cle only constantly far. In particular, there exists α such that
csNL(α) is a strict subclass of AC1(α).

Having obtained a lower bound on the depth of an individual
circuit, it is a routine argument to separate the corresponding cir-
cuit classes. In other words, we are now interested in finding one
oracle that simultaneously witnesses that the ACk(α) hierarchy is
strict. For the uniform classes, this is possible by a simple diagonal-
ization argument; in fact, the only property of uniformity we need
is that there are at most countably many members in each com-
plexity class. So we will use this as the definition of uniformity.
It should be noted that this includes all the known uniformity
notions.

Definition 3.6. If g : N → N is a function from the natural num-
bers to the natural numbers, and α is an oracle, we define the
language

Lα
g = {x | the last bit of f g(n)(0) is 1,

where n = |x| and f is such that αf = α[n]}.

We note that in Definition 3.6 the function f is uniquely deter-
mined by the length n of x and the restriction of α to strings of
length n + log n.

Also, for logspace-constructible g the language Lα
g can be com-

puted by logspace-uniform circuits (with oracle gates) of depth
g(n) and size n · g(n).

Recall that a circuit family is a sequence {Cn}n∈N of circuits,
such that Cn has n inputs and one output and may have oracle
gates.

192 Aehlig, Cook & Nguyen cc 25 (2016)

The language of a circuit family {Cn}n∈N with oracle α is the
set of all strings x ∈ {0, 1}∗ such that the output of C|x|(α) with
input x is 1.

Definition 3.7. A notion of uniformity is any countable set U
of circuit families.

Let U be a notion of uniformity, and let d, s : N → N be func-
tions. The U -uniform (d, s)-circuit families are those circuit fam-
ilies {Cn}n∈N of U such that Cn has oracle nested depth at most
d(n) and size at most s(n).

We use a diagonal argument to obtain the following theorem.

Theorem 3.8. Let U be a notion of uniformity and let {dk}k∈N be
a family of functions such that for all k ∈ N the function dk+1 even-
tually strictly dominates dk. Moreover, let {sk}k∈N be a family of
strictly subexponentially growing functions. Then there is a single
oracle α that simultaneously witnesses that for all k, Lα

dk+1
cannot

be computed by any U -uniform (O(dk),O(sk))-circuit family.

Proof. Let C0, C1, . . . be an enumeration of U . Let (ki, ci,mi)
be an enumeration of all triples of natural numbers.

We will construct natural numbers ni, and oracles αi such that
the following properties hold.

◦ The ni strictly increase.

◦ αi(w) holds at most for strings w of length ni + log ni.

◦ If Cmi = {Cmi
n }n∈N and Cmi

ni
has oracle depth at most ci ·

dki
(ni) and size at most ci · ski

(ni), then the language of

Cmi
ni

with oracle
∨

j≤i αj differs from L
∨

j≤i αj

dki+1
at some string

of length ni, and Cmi
ni

contains no oracle gates with ni+1 +
log ni+1 or more inputs.

Then
∨

i αi will be the desired oracle α. For suppose otherwise.
Then there is k and a (O(dk),O(sk)) circuit family Cm such that
Cm with oracle α computes Lα

dk+1
. Hence there is a triple (ki, ci,mi)

such that the circuit Cmi
ni

has oracle depth at most ci · dki
(ni) and

cc 25 (2016) Relativizing small complexity classes 193

size at most ci · ski
(ni) and Cmi

ni
(α) correctly computes Lα

dki+1
on

inputs of length ni. But this contradicts the above properties.
At stage i take ni big enough so that it is bigger than all the

previous nj’s and ni +log ni is bigger than the maximal fanin of all
the oracle gates in all the circuits looked at so far; moreover, take
ni big enough such that ci ·ski

(ni) < 2ni and ci ·dki
(ni) < dki+1(ni).

This is possible as ski
has strictly subexponential growth and dki+1

dominates dki
eventually.

Look at the ni’th circuit in the circuit family Cmi , and call it
C. We may assume that C has oracle depth at most ci ·dki

(ni) and
size at most ci · ski

(ni) for otherwise there is nothing to show and
we can choose αi to be the empty set.

By Theorem 3.4, we can find an oracle αi whose support
includes only strings of length ni + log ni such that C with ora-
cle

∨
j≤i αi does not solve the decision problem associated with

fdki+1(ni)(0) for f given by αf = αi. �

Corollary 3.9. There is a single oracle α ⊆ {0, 1}∗ for which

(3.10) ACk(α) ⊆ NCk+1(α) � ACk+1(α), for all k ≥ 1

and csNL(α) � AC1(α).

Proof. In Theorem 3.8, let U be logspace uniformity and let
dk(n) = logk n and sk(n) = 2�n/2�. Then for k ≥ 1, every problem
in ACk(α) can be computed by a U -uniform (O(dk),O(sk))-circuit
family with oracle α, and Lα

dk
is in ACk(α). Then Theorem 3.8

shows that there is a single oracle α satisfying (3.10).
To show csNL(α) � AC1(α), by Theorem 2.9 part (ii), it suf-

fices to show

(3.11) Lα
d1

/∈ AC0(STCONN, α).

Theorem 3.8 shows how to construct α so Lα
d1

/∈ AC0(α), and
we can modify the proof by starting with α which is a version of
STCONN in which no string has length n + log n for any n. The
result of the construction in the proof satisfies (3.11) as well as
(3.10). �

194 Aehlig, Cook & Nguyen cc 25 (2016)

4. Theories for relativized classes

4.1. Two-sorted languages and complexity classes. Our
theories are based on a two-sorted vocabulary, and it is convenient
to re-interpret the complexity classes using this vocabulary (Cook
& Nguyen 2010). Our two-sorted language has variables x, y, z, . . .
ranging over N and variables X,Y, Z, . . . ranging over finite subsets
of N (interpreted as bit strings). Our basic two-sorted vocabulary
L2

A includes the usual symbols 0, 1, +, ·, =,≤ for arithmetic over
N, the length function |X| on strings, the set membership relation
∈, and string equality =2 (where we usually drop mention of the
subscript 2). The function |X| denotes 1 plus the largest element
in the set X, or 0 if X is empty (roughly the length of the corre-
sponding string). We will use the notation X(t) for t ∈ X, and we
will think of X(t) as the t-th bit in the string X.

Number terms of L2
A are built from the constants 0,1, variables

x, y, z, ..., and length terms |X|, using + and ·. The only string
terms are string variables X,Y, Z, The atomic formulas are
t = u, X = Y , t ≤ u, t ∈ X for any number terms t, u and string
variables X,Y . Formulas are built from atomic formulas using
∧,∨,¬ and both number and string quantifiers ∃x, ∃X,∀x, ∀X.
Bounded number quantifiers are defined as usual, and the bounded
string quantifier ∃X ≤ t ϕ stands for ∃X(|X| ≤ t ∧ ϕ) and ∀X ≤
t ϕ stands for ∀X(|X| ≤ t ⊃ ϕ), where X does not occur in the
term t.

ΣB
0 is the set of all L2

A-formulas in which all number quantifiers
are bounded and with no string quantifiers. ΣB

1 (corresponding
to strict Σ1,b

1 in Kraj́ıček 1995) formulas begin with zero or more
bounded existential string quantifiers, followed by a ΣB

0 formula.
These classes are extended to ΣB

i , i ≥ 2, (and ΠB
i , i ≥ 0) in the

usual way.
We use the notation ΣB

0 (L) to denote ΣB
0 formulas which may

have two-sorted function and predicate symbols from the vocabu-
lary L in addition to the basic vocabulary L2

A.

Two-sorted complexity classes contain relations R(�x, �X) (and

possibly number-valued functions f(�x, �X) or string-valued func-

tions F (�x, �X)), where the arguments �x = x1, . . . , xk range over N,

and �X = X1, . . . , X� range over finite subsets of N. In defining

cc 25 (2016) Relativizing small complexity classes 195

complexity classes using machines or circuits, the number argu-
ments xi are presented in unary notation (a string of xi ones), and
the arguments Xi are presented as bit strings. Thus the string
arguments are the important inputs, and the number arguments
are small auxiliary inputs useful for indexing the bits of strings.

As mentioned before, uniform AC0 has several equivalent char-
acterizations (Immerman 1999), including LTH (the log time hier-
archy on alternating Turing machines) and FO (describable by a
first-order formula using predicates for plus and times). Thus in
the two-sorted setting, we can define AC0 to be the class of rela-
tions R(�x, �X) such that some alternating Turing machine accepts
R in time O(log n) with a constant number of alternations, using
the input conventions for numbers and strings given above. Then
from the FO characterization of AC0 we obtain the following nice
connection between the classes AC0 and NP and our two-sorted
L2

A-formulas (see Theorems IV.3.6 and IV.3.7 in Cook & Nguyen
2010).

Theorem 4.1 (Representation Theorem). A relation R(�x, �X) is
in AC0 (resp. NP) iff it is represented by some ΣB

0 (resp. ΣB
1)

formula ϕ(�x, �X).

In general, if C is a class of relations (such as AC0), then
we want to associate a class FC of functions with C. Here FC
will contain string-valued functions F (�x, �X) and number-valued

functions f(�x, �X). We require that these functions be p-bounded;
i.e., for each F and f there is a polynomial g(n) such that

|F (�x, �X)| ≤ g(max(�x, | �X|)) and f(�x, �X) ≤ g(max(�x, | �X|)).
We define the bit graph BF (i, �x, �X) to hold iff the ith bit of

F (�x, �X) is one. Formally

(4.2) BF (i, �x, �X) ↔ F (�x, �X)(i).

(Compare this with Definition 3.3.)

Definition 4.3. If C is a two-sorted complexity class of rela-
tions, then the corresponding function class FC consists of all p-
bounded number functions whose graphs are in C, together with
all p-bounded string functions whose bit graphs are in C.

196 Aehlig, Cook & Nguyen cc 25 (2016)

For example, binary addition F+(X,Y) = X + Y is in FAC0,
but binary multiplication F×(X,Y) = X · Y is not.

Definition 4.4. A string function is ΣB
0 -definable from a collec-

tion L of two-sorted functions and relations if it is p-bounded and
its bit graph is represented by a ΣB

0 (L) formula. Similarly, a num-
ber function is ΣB

0 -definable from L if it is p-bounded and its graph
is represented by a ΣB

0 (L) formula.

It is not hard to see that FAC0 is closed under ΣB
0 -definability,

meaning that if the bit graph of F is represented by a ΣB
0 (FAC0)

formula, then F is already in FAC0. Of course the set of functions
in FAC0 is closed under composition, but for a general vocabulary
L the set of functions ΣB

0 -definable from L may not be closed under
composition. For example, if a relation α(Y) codes the bit graph of
a function F , then F could be ΣB

0 -definable from L∪{α} but F ◦F
may not be. In order to define complexity classes such as AC0(m)
and TC0, as well as relativized classes such as AC0(α), we need
to iterate ΣB

0 -definability to obtain the notion of AC0 reduction.

Definition 4.5. We say that a string function F (resp. a number
function f) is AC0-reducible to L if there is a sequence of string
functions F1, . . . , Fn (n ≥ 0) such that
(4.6)

Fi is ΣB
0 -definable from L ∪ {F1, . . . , Fi−1}, for i = 1, . . . , n;

and F (resp. f) is ΣB
0 -definable from L ∪ {F1, . . . , Fn}. A relation

R is AC0-reducible to L if there is a sequence F1, . . . , Fn as above,
and R is represented by a ΣB

0 (L ∪ {F1, . . . , Fn}) formula.

If F and G are string-to-string functions in L, then the term
F (G(X)) can appear in ΣB

0 (L) formulas, so the set of functions
AC0-reducible to L is always closed under composition. In fact,
from the techniques used to prove Theorem 4.1, we can show that F
is AC0-reducible to L iff there is a uniform constant-depth polysize
circuit family that computes F , where the circuits are allowed gates
(each of depth one) which compute the functions and predicates in
L (as well as the Boolean connectives).

The (two-sorted) classes AC0(m),TC0,NC1,L and NL are
the closuresunder AC0reductions of their respective complete

cc 25 (2016) Relativizing small complexity classes 197

problems, so they become AC0(MODm), AC0(THRESH), AC0

(FORMVAL), AC0(1-STCONN) and AC0(STCONN). The rel-
ativized versions AC0(α), AC0(m,α), TC0(α), NCk(α), and
ACk(α) of the circuit classes are all closed under AC0 reductions,
and so is csL(α) (Theorem 2.9 part (i)), but csNL(α) may not be
so closed.

4.2. Nonrelativized theories. In this paper, we consider the-
ories T over two-sorted vocabularies which contain L2

A.

Definition 4.7. If F (�x, �X) is a string function, we say that F
is ΣB

1 -definable (or provably total) in T if there is a ΣB
1 formula

ϕ(�x, �X, Y) which represents the graph of F and

T � ∃!Y ϕ(�x, �X, Y)

where ∃!Y means there exists a unique Y .

A similar definition applies to number functions f(�x, �X). When
we associate a theory T with a complexity class C, we want the
provably total functions in T to coincide with the functions in FC.

The theory V0 (essentially Σp
0-comp in Zambella 1996, and

IΣ1,b
0 (without #) in Kraj́ıček 1995) is the theory over L2

A that
is axiomatized by the axioms listed in Figure 4.1 together with
the comprehension axiom scheme ΣB

0 -COMP, i.e., the set of all
formulas of the form

(4.8) ∃X ≤ y∀z < y(X(z) ↔ ϕ(z)),

B1. x + 1 = 0 B7. (x ≤ y ∧ y ≤ x) ⊃ x = y
B2. x + 1 = y + 1 ⊃ x = y B8. x ≤ x + y
B3. x + 0 = x B9. 0 ≤ x
B4. x + (y + 1) = (x + y) + 1 B10. x ≤ y ∨ y ≤ x
B5. x · 0 = 0 B11. x ≤ y ↔ x < y + 1
B6. x · (y + 1) = (x · y) + x B12. x = 0 ⊃ ∃y ≤ x(y + 1 = x)
L1. X(y) ⊃ y < |X| L2. y + 1 = |X| ⊃ X(y)
SE. [|X| = |Y | ∧ ∀i < |X|(X(i) ↔ Y (i))] ⊃ X = Y

Figure 4.1: 2-BASIC

198 Aehlig, Cook & Nguyen cc 25 (2016)

where ϕ(z) is any formula in ΣB
0 , and X does not occur free in

ϕ(z).
We associate V0 with the complexity class AC0, and indeed,

the provably total functions of V0 comprise the class FAC0. All
theories considered in this paper extend V0.

In Cook & Nguyen (2010), Chapter IX, for various subclasses
C of P, a theory VC is developed which is associated with C as
above, so the provably total functions of VC are precisely those
in FC. Essentially, the theory VC is axiomatized by the axioms
of V0 together with an axiom that states the existence of a poly-
time computation for a complete problem of C, assuming the para-
meters as given inputs. The additional axioms for the classes of
interest in this paper will be listed below. For the logspace classes
(i.e., AC0(m), . . . ,NL), we use roughly the same problems as those
mentioned in the previous sections. For other classes in the AC
hierarchy, we use the monotone circuit value problem, with appro-
priate restrictions on the depth and fanin of the circuits.

To formulate these axioms, we introduce the pairing function
〈y, z〉, which stands for the term (y+z)(y+z+1)+2z. This allows
us to interpret a string X as a two-dimensional bit array, using the
notation

(4.9) X(y, z) ≡ X(〈y, z〉).

For example, a graph with a vertices can be encoded by a pair
(a,E) where E(u, v) holds iff there is an edge from u to v, for
0 ≤ u, v < a.

We will also use the number function (Z)x which is the x-th
element of the sequence of numbers encoded by Z:

y = (Z)x ↔ (y < |Z| ∧ Z(x, y) ∧ ∀z < y¬Z(x, z))∨
(∀z < |Z|¬Z(x, z) ∧ y = |Z|).

In addition, log a, or |a|, denotes the integral part of log2(a + 1).
Note that these functions are provably total in V0. Note also
that the functions (Z)x and |a| can be eliminated using their ΣB

0

defining axioms, so that ΣB
0 formulas that contain these functions

are in fact equivalent to ΣB
0 formulas over L2

A (see Cook & Nguyen
2010, Lemma V.4.15.)

cc 25 (2016) Relativizing small complexity classes 199

We now list the additional axioms for the classes considered
in this paper. (Recall that the base theory is always V0.) First,
consider TC0. The theory VTC0 is axiomatized by the axioms of
V0 and the following axiom:

NUMONES ≡ ∃Y ≤ 1 + 〈x, x〉δNUM (x,X, Y)

where

δNUM (x,X, Y) ≡ (Y)0 = 0 ∧
∀z < x

[
(X(z) ⊃ (Y)z+1=(Y)z + 1) ∧ (¬X(z) ⊃ (Y)z+1=(Y)z)

]
.

Here NUMONES formalizes a computation of the number of 1-
bits in the string X(0), X(1), . . . , X(x − 1): for 1 ≤ z ≤ x, (Y)z

is the number of 1 bits in X(0), X(1), . . . , X(z − 1). (Note that
computing the number of 1-bits in the input string is roughly the
same as computing the threshold function.)

Now consider AC0(m). The additional axiom for the theory
V0(m) associated with AC0(m) is

MODm ≡ ∃Y δMODm(x,X, Y)

where

δMODm(x,X, Y) ≡ Y (0, 0) ∧ ∀z < x
[
(X(z) ⊃ (Y)z+1=(Y)z + 1 mod m) ∧ (¬X(z) ⊃ (Y)z+1=(Y)z)

]
.

Similar to NUMONES above, here (Y)z is the number of 1-bits in
the sequence X(0), . . . , X(z − 1) modulo m.

For NC1, the additional axiom MFV for VNC1 states the
existence of a polytime computation for the balanced monotone
sentence value problem which is complete for VNC1 (Buss 1987):

(4.10) MFV ≡ ∃Y δMFVP(a,G, I, Y)

where

δMFVP(a,G, I, Y) ≡ ∀x < a [Y (x + a) ↔ I(x)∧
0 < x ⊃ Y (x) ↔

((
G(x) ∧ Y (2x) ∧ Y (2x + 1)

)
∨

(
¬G(x) ∧ (Y (2x) ∨ Y (2x + 1))

))
.

200 Aehlig, Cook & Nguyen cc 25 (2016)

Here the balanced monotone sentence is viewed as a balanced
binary tree encoded by (a,G) and I specifies the leaves of the
tree: node x’s children are 2x and 2x + 1, G(x) indicates whether
node x is an ∨ or ∧ node, and I(z) is the value of leaf z. Y is the
bottom-up evaluation of the sentence: Y (x) is the value of node x.

Next, the theory VNL for NL is axiomatized by V0 and the
following axiom

CONN ≡ ∃Y δCONN (a,E, Y),

where δCONN (a,E, Y) states that Y encodes a polytime compu-
tation for the following problem, which is equivalent to STCONN
under AC0-many-one reductions: on input (a,E) which encodes a
directed graph, compute the nodes that are reachable from node
0. Here Y (z, x) holds iff there is a path from 0 to x of length ≤ z;
more precisely,

δCONN (a,E, Y) ≡ Y (0, 0) ∧ ∀x < a(x �= 0 ⊃ ¬Y (0, x)) ∧
∀z<a∀x < a [Y (z + 1, x) ↔ (Y (z, x) ∨ ∃y<a, Y (z, y)∧E(y, x))] .

For L, the additional axiom in VL is PATH , which states the
existence of a polytime computation for the following problem,
which is equivalent to 1-STCONN under AC0 reductions: on input
a directed graph with out degree at most one which is encoded by
(a,E), compute the transitive closure of vertex 0:

PATH ≡ ∀x < a∃!y < aE(x, y) ⊃
∃P

[
(P)0 = 0 ∧ ∀v < a

(
(P)v+1 < a ∧ E((P)v, (P)v+1)

)]
.

((P)v is the vertex of distance v from 0.)
Now we consider the classes ACk for k ≥ 1. We use the

monotone circuit value problem under an appropriate setting.
In particular, the circuit has unbounded fanin, and its depth is
(log n)k, where n is the number of its inputs. Thus the additional
axiom in VACk states the existence of a polytime evaluation Y for
a circuit of this kind which is encoded by (a,E,G, I):

(4.11) ∃Y δLMCV (a, |a|k, E,G, I, Y),

cc 25 (2016) Relativizing small complexity classes 201

where the depth parameter d is set to |a|k in the formula

δLMCV (w, d,E,G, I, Y) ≡ ∀x < w∀z < d, (Y (0, x) ↔ I(x)) ∧
Y (z + 1, x) ↔

[
[G(z + 1, x) ∧ ∀u < w (E(z, u, x) ⊃ Y (z, u))]∨
[¬G(z + 1, x) ∧ ∃u < w (E(z, u, x) ∧ Y (z, u))]

]
.

The formula δLMCV (w, d,E,G, I, Y) (layered monotone circuit
value) states that Y is an evaluation of the circuit encoded by
(w, d,E,G) on input I. The circuit is encoded as follows. There
are (d + 1) layers in the circuit, each of them contains w gates.
Hence each gate is given by a pair (z, x) where z indicates the
layer (inputs to the circuits are on layer 0 and outputs are on layer
d), and x is the position of the gate on that layer. E specifies the
wires in the circuit: E(z, u, x) holds if and only if gate (z, u) is an
input to gate (z + 1, x), and G specifies the gates: G(z, x) holds if
gate (z, x) is an ∧ gate, otherwise it is an ∨ gate. Bit Y (z, x) is
the value of gate (z, x).

For NCk (k ≥ 2), the circuit value problem is restricted fur-
ther, so that the circuit’s fanin is at most 2. We express this
condition by the formula Fanin2 (w, d,E), where (w, d,E) encodes
the underlying graph of the circuit as above:

Fanin2 (w, d,E) ≡ ∀z < d∀x < w∃u1 < w∃u2 < w∀v < w

E(z, v, x) ⊃ (v = u1 ∨ v = u2).

Similar to VACk, the theory VNCk (for k ≥ 2) is axiomatized by
the axioms of V0 together with

(4.12) (Fanin2 (a, |a|k, E) ⊃ ∃Y δLMCV (a, |a|k, E,G, I, Y)).

The connection between the above theories VACk and VNCk

and their corresponding classes is discussed in detail in Cook &
Nguyen (2010), Section IX.5.6. The key point for these theories
(as well as the others) is that the problem of witnessing the exis-
tential quantifiers in the axiom for each theory (in this case (4.11)
and (4.12)) is complete for the associated complexity class. For
ACk and NCk this is shown by using the characterization of these
classes in terms of alternating Turing machines.

202 Aehlig, Cook & Nguyen cc 25 (2016)

In the remainder of this section, we will present relativized the-
ories VC(α) that characterize the relativized classes discussed in
Section 2.

4.3. Relativized theories.

4.3.1. Classes with bounded nested oracle depth. We first
look at AC0(m,α), TC0(α), NC1(α) and csL(α). These classes
have constant nested depth of oracle gates, and they are the AC0-
closure of the oracle α and an appropriate complete problem (see
Proposition 2.3 and Theorem 2.9 (i)). We can treat these as the
AC0(α)-closure of the complete problem for their respective non-
relativized version. Thus the development in Cook & Nguyen
(2010), Chapters VIII and IX, can be readily extended to these
classes. The change we need to make here is to replace the base
theory V0 by its relativized version, V0(α), which is axiomatized
by comprehension axioms (4.8) over ΣB

0 (α) formulas instead of just
ΣB

0 formulas.
First note that a sequence of strings can be encoded using the

string function Row , where Row(x, Z) extracts row x from the
array coded by Z. Thus

(4.13) Row(x, Z)(i) ↔ i < |Z| ∧ Z(x, i).

We will also write Z [x] for Row(x, Z).
Notation. For a predicate α we use L2

A(α) to denote L2
A ∪

{Row , α}, and we use ΣB
0 (α) and ΣB

1 (α) to denote the classes
ΣB

0 (Row , α) and ΣB
1 (Row , α), respectively. Definitions 4.4, 4.5,

and 4.7 of ΣB
0 -definable, AC0-reducible, and ΣB

1 -definable in a the-
ory, are extended in the obvious way to ΣB

0 (α)-definable, AC0(α)-
reducible, and ΣB

1 (α)-definable in a theory.
Atomic formulas containing α have the form α(T), where T is

a string term, namely either a variable X or a term Row(t, T ′) for
terms t, T ′.

Notice that while the string function Row can occur nested
in a ΣB

0 (α) formula, the predicate α cannot. Thus a ΣB
0 (α) for-

mula represents relations computable by a family of polynomial
size AC0(α) circuits whose oracle nested depth is one.

cc 25 (2016) Relativizing small complexity classes 203

The function Row is useful in constructing formulas describing
circuits which query the oracle α. For example, if an n-ary gate g
has inputs from n different α gates, we can code the sequence of
inputs to the α gates using a string X, so the ith input bit to g is
α(X [i]).

Definition 4.14. The following theories have vocabulary L2
A(α)

and include the defining axiom (4.13) for Row . V0(α) = V0 +
ΣB

0 (α)-COMP. The theories V0(m,α), VTC0(α), VNC1(α) and
VL(α), VNL′(α) are axiomatized by the axioms of V0(α) together
with the axiom: MODm, NUMONES , MFV , PATH , CONN ,
respectively. (See Section 4.2.)

Note that equality axioms (implicitly) hold for the new symbols
Row and α.

The next result connects the theories with their corresponding
complexity classes, except for the theory VNL′(α), which corre-
sponds to the class AC0(STCONN, α) (see part (ii) of Theorem 2.9)
rather than csNL(α). We are not able to provide a theory exactly
associated with csNL(α) because we cannot show that the associ-
ated function class is closed under composition.

The first step in the proof of the next theorem is to show that
a function is in FAC0(α) iff it is ΣB

1 (α)-definable in V0(α). For
the direction (⇒), the proof of the unrelativized case uses the ΣB

0

Representation Theorem (Theorem 4.1), but that result does not
hold for the relativized case, because, as remarked above, ΣB

0 (α)
formulas only represent AC0(α) relations that can be computed
by circuits of oracle depth one.

So results in Chapter IX of Cook & Nguyen (2010) are required.

Theorem 4.15. For a class C in {AC0,AC0(m),TC0,NC1,L},
a function is in FC(α) if and only if it is ΣB

1 (α)-definable in VC(α).

Proof. We start by proving this when C is AC0: A function
is in FAC0(α) iff it is ΣB

1 (α)-definable in V0(α). The ‘if’ direc-
tion follows from a standard witnessing theorem (see, for example,
Chapter V in Cook & Nguyen 2010), because the existential quan-
tifier in each ΣB

0 (α)-COMP axiom is witnessed by an FAC0(α)
function whose graph is represented by a ΣB

0 (α) formula.

204 Aehlig, Cook & Nguyen cc 25 (2016)

The converse follows from a slight generalization of Theorem
IX.2.3 in Cook & Nguyen (2010), where the original states that
a function is ΣB

1 -definable in VC iff it is in FC. That theorem
applies to complexity classes C consisting of the relations AC0-
reducible to a string function F (X) whose graph is represented by
a ΣB

0 -formula δF (X,Y). The theory VC has vocabulary L2
A and

is axiomatized by the axioms of V0 together with

(4.16) ∃Y ≤ b∀i < bδF (X [i], Y [i]).

The generalization we need (which is proved in the same way) is
that the theory VC is replaced by a theory VC(α) with vocabulary
L2

A(α) axiomatized by the axioms of V0(α) and (4.16), where now
δF (X,Y) is a ΣB

0 (α)-formula. The assertion now is that a function
is ΣB

1 (α)-definable in VC(α) iff it is in FC(α).
To apply this to the theory V0(α) we take F = Fα where

δFα(X,Y) is the formula |Y | ≤ |X| ∧ ∀j < |X|(Y (j) ↔ α(X [j])).
Thus Fα(X) is the bit string resulting from applying α successively
to the elements of the sequence of strings coded by X, and so
the AC0 closure of Fα is FAC0(α). The theory V0(α) has the
comprehension axiom ΣB

0 (α)-COMP, which implies (4.16) when
F is taken to be Fα. Thus our generalized Theorem IX.2.3 in
Cook & Nguyen (2010) implies that every function in FAC0(α) is
ΣB

1 (α)-definable in V0(α).
Theorem 4.15 for the other complexity classes follows from

Proposition 2.3 and Theorem 2.9 (i) and the fact that the theo-
ries for the nonrelativized classes capture the nonrelativized classes
(Section 4.2). �

The same argument shows that the theory V0(α) + CONN is
associated with the class AC0(STCONN, α). But this class might
not be the same as csNL(α). In fact, as pointed out after the proof
of Corollary 2.16, the function class associated with csNL(α) may
not be closed under composition, and hence, csNL(α) may not be
closed under AC0reductions, so the framework of Cook & Nguyen
(2010), Chapter IX, may not apply to this class.

Notice also that we can relativize the axioms MODm,
NUMONES , MFV and PATH in the obvious way, i.e., by replac-
ing the string variables X in NUMONES and MODm, G and I in

cc 25 (2016) Relativizing small complexity classes 205

MFV , and E in PATH by ΣB
0 (α) formula(s). It turns out that

these relativized axioms are provable in the respective relativized
theories, and in fact, they can be used together with V0 to axiom-
atize the theories. More specifically, let NUMONES (α) denote the
following axiom scheme:

(4.17) ∃Y ≤ 1 + 〈x, x〉 (Y)0 = 0 ∧
∀z < x

[
(ϕ(z) ⊃ (Y)z+1 = (Y)z + 1) ∧ (¬ϕ(z) ⊃ (Y)z+1 = (Y)z)

]

for all ΣB
0 (α) formulas ϕ that do not contain Y . Similarly, we can

define MODm(α), MFV (α), and PATH (α).
The next result is useful in the next subsection.

Proposition 4.18. VTC0(α) can be equivalently axiomatized
by the axioms of V0 and NUMONES (α). Similarly for V0(m,α),
VNC1(α), and VL(α), with NUMONES (α) replaced, respectively,
by MODm(α), MFV (α) and PATH (α).

Proof. We prove this for NUMONES (α). The other cases are
similar.

It is relatively simple to show that the axioms of NUMONES (α)
are provable in VTC0(α). Indeed, consider an axiom in
NUMONES (α) as in (4.17) above. By ΣB

0 (α)-COMP, there is
a string X such that X(z) ↔ ϕ(z) for all z < x. Hence, the string
Y that satisfies δNUM (x,X, Y) satisfies (4.17).

For the other direction, suppose that we want to prove the
following instance of ΣB

0 (α)-COMP using NUMONES (α) and V0:

∃Z ≤ b∀z < b, Z(z) ↔ ϕ(z),

where ϕ is a ΣB
0 (α) formula. Using NUMONES (α) we obtain a

string Y as in (4.17) (for x = b). Now, it is straightforward to
identify those z < b such that ϕ(z) holds:

ϕ(z) ↔ (Y)z+1 = (Y)z + 1.

Thus Z can be defined using ΣB
0 -COMP from Y .

The arguments for V0(m,α), VNC1(α) and VL(α) are similar.
�

206 Aehlig, Cook & Nguyen cc 25 (2016)

4.3.2. Classes with unbounded oracle nested depth. Now
we present the theories VACk(α) (for k ≥ 1) and VNCk(α) (for
k ≥ 2). For the nonrelativized case, the axioms for the theories
use the fact that the problem of evaluating an unbounded fanin
(resp. bounded fanin) circuit of depth (log n)k is AC0-complete
for ACk (resp. NCk).2 Unfortunately, these nonrelativized prob-
lems are not AC0(α)-complete for the corresponding relativized
problems, unlike the situation for the classes with bounded oracle
nested depth considered previously. However, for the oracle ver-
sions of the circuit classes, the evaluation problems become AC0-
complete for the corresponding relativized classes, provided (in the
case of NCk) the circuit descriptions tell the nested oracle depth
of each oracle gate. Thus VACk(α) (or VNCk(α)) will be axiom-
atized by V0 together with an additional axiom that formalizes an
oracle computation that solves the respective complete problem.

First we describe the encoding of the input. As before, a circuit
of width w and depth d will be encoded by (w, d,E,G), and its
input will be denoted by I. Since the order of inputs to an oracle
gate is important, the string variable E that encodes the wires
in the circuit is now four-dimensional: E(z, u, t, x) indicates that
gate (z, u) (i.e., the u-th gate on layer z) is the t-th input to gate
(z + 1, x). Also, the type of a gate (z, x) is specified by (G)〈z,x〉 as
before, but now it can have value in ∧, ∨, ¬, or α (we no longer
consider just monotone circuits). We use the following formula to
ensure that this is a valid encoding; it says that each gate (z+1, x)
has an arity s which is 1 if the gate is a ¬-gate. Moreover, for t < s
the t-th input to a gate is unique.

Proper(w, d,E,G) ≡ ∀z < d ∀x < w ∃!s ≤ w

(s ≥ 1 ∧ Arity(z + 1, x, s, E))∧
(G)〈z+1,x〉 = “¬” ⊃ Arity(z + 1, x, 1, E),

where Arity(z + 1, x, s, E) (which asserts that gate (z + 1, x) has
arity s) is the formula:
(4.19)
∀t < s∃!u < w E(z, u, t, x)∧∀t < w(s ≤ t ⊃ ¬∃u < wE(z, u, t, x)).

2For NC1 the circuit must be presented in a transparent way, such as a
balanced monotone formula as in the axiom (4.10) for VNC1.

cc 25 (2016) Relativizing small complexity classes 207

The formula δα
LOCV (w, d,E,G, I,Q, Y) defined below states

that (Q, Y) is an evaluation of the oracle circuit (w, d,E,G) on
input I. Here the string Q[z+1,x] encodes the query to the oracle
gate (z + 1, x), and bit Y (z, x) is the value of gate (z, x). (LOCV
stand for ‘layered oracle circuit value.’)

Definition 4.20. The formula δα
LOCV (w, d,E,G, I,Q, Y) is the

formula

∀z < d ∀x < w, [Y (0, x) ↔ I(x)]∧
[
∀t < w(Q[z+1,x](t) ↔ (∃u < w, E(z, u, t, x) ∧ Y (z, u)))

]
∧

[
Y (z+1, x)↔

(
((G)〈z+1,x〉 =“∧”∧∀t, u<w, E(z, u, t, x)⊃Y (z, u))∨

((G)〈z+1,x〉 = “∨” ∧ ∃t < w∃u < w, E(z, u, t, x) ∧ Y (z, u))∨
((G)〈z+1,x〉 = “¬” ∧ ∃u < w, E(z, u, 0, x) ∧ ¬Y (z, u))∨

((G)〈z+1,x〉 = “α” ∧ α(Q[z+1,x]))
)]

.

Definition 4.21 (VACk(α)). For k ≥ 1, VACk(α) is the theory
over the vocabulary L2

A(α) and is axiomatized by the axioms of V0

and the following axiom:
(4.22)

(Proper(w, d,E,G) ⊃ ∃Q∃Y δα
LOCV (w, |w|k, E,G, I,Q, Y)).

The axiom (4.22) asserts that VACk circuits can be evaluated.
Since a function in FACk(α) is computed by an AC0-uniform fam-
ily of ACk(α) circuits, and our method of describing an oracle cir-
cuit by the tuple (w, d,E,G) can be taken as a definition, the axiom
is clearly strong enough to show that the functions in FACk(α) are
ΣB

1 (α)-definable in VACk(α). But in order to show the converse,
we need to show that the existential quantifiers ∃Q∃Y can be wit-
nessed by functions in FACk(α), and for this, we need to show the
existence of universal circuits for ACk(α). This is done in the next
result.

Proposition 4.23. For k ≥ 1, the problem of evaluating the
circuit encoded by (w, |w|k, E,G) on a given input I, assuming

208 Aehlig, Cook & Nguyen cc 25 (2016)

Proper(w, |w|k, E,G) is satisfied, is complete for FACk(α) under
AC0-many-one reductions.

Proof. The hardness direction follows by the discussion above:
every function F (X) in FACk(α) can be computed by a circuit
family in which the parameters w,E,G, I for each circuit can be
computed by AC0 functions of X.

Conversely, we need to prove membership of the circuit evalu-
ation problem in FACk(α). We do this for the case k = 1. The
proof for the general case is similar. Thus we need to construct a
universal circuit for oracle circuits of depth log n. In fact, we will
construct a universal circuit (of depth O(d), size polynomial in
w, d) for all circuits of depth d and width w. Let C = (w, d,E,G)
denote the given circuit. The idea is to construct a component
Kz,x for each gate (z, x) in C, where z < d and x < w: Kz+1,x is
an AC0(α) circuit that takes inputs from E, G, I and Kz,u for all
u < w, so that when each Kz,u computes gate (z, u) in C, Kz+1,x

computes the value of gate (z + 1, x). We will present Kz,x as a
bounded depth formula.

The circuits K0,x are easy to define: for all x < w, K0,x ≡ I(x).
For z ≥ 0, Kz+1,x is the following disjunction:

(G)〈z+1,x〉 = “∧” ∧
∧

t<w

∧

u<w

E(z, u, t, x) ⊃ Kz,u∨

(G)〈z+1,x〉 = “∨” ∧
∨

t<w

∨

u<w

E(z, u, t, x) ∧ Kz,u∨

(G)〈z+1,x〉 = “¬” ∧
∨

u<w

E(z, u, 0, x) ∧ ¬Kz,u∨

[
(G)〈z+1,x〉 = “α” ∧

∨

s<w

(
Arity(z, x, s, E)

∧ α(
∨

u<w

(E(z, u, 0, x) ∧ Kz,u), . . . ,

∨

u<w

(E(z, u, s − 1, x) ∧ Kz,u))
)]

.

Now by arranging Kz,x in the same order as (z, x), we obtain an
AC1(α) circuit that evaluates C. �

cc 25 (2016) Relativizing small complexity classes 209

Theorem 4.24. For k ≥ 1, the functions in FACk(α) are pre-
cisely the ΣB

1 (α)-definable functions of VACk(α).

Proof. By Proposition 4.23, the problem of witnessing the
quantifiers ∃Q∃Y in the axiom (4.22) is in FACk(α), and so by
a standard witnessing argument every ΣB

1 (α)-definable function is
in FACk(α). The converse follows from the hardness direction of
Proposition 4.23 and the fact that the ΣB

1 (α)-definable functions in
VACk(α) are closed under AC0 reductions, by the methods used
in Chapter IX of Cook & Nguyen (2010). �

Finally, we consider NCk(α) classes for k ≥ 2. To spec-
ify an NCk(α) circuit, we need to express the condition that
∧ and ∨ gates have fanin 2. We use the following formula
Fanin2 ′(w, d,E,G) to express this, see also (4.19):

∀z < d,∀x < w
(
(G)〈z,x〉 �= “α” ∧ (G)〈z,x〉 �= “¬”

)
⊃ Arity(z, x, 2, E).

Moreover, the nested depth of oracle gates in circuit (w, d,E,G)
needs to be bounded separately from the circuit depth d. We use
a formula

ODepthk(w, d,E,G,D),

which states that this nested depth is bounded by |w|k. Here the
extra string variable D is to compute the nested depth of oracle
gate: D is viewed as a sequence, where (D)〈z,x〉 is the oracle depth
of gate (z, x). (Recall that the gates (0, x) are input gates.) The
sequence is computed inductively, starting with the input gates.
An explicit formulation is rather straightforward but tedious, so we
omit the details here. Note that we can use AC0 number functions
such as |x| and max which returns the maximum element in a
bounded sequence), because they can be eliminated, see Cook &
Nguyen (2010), Lemma V.6.7.

Definition 4.25 (VNCk(α)). For k ≥ 2, VNCk(α) is the theory
over L2

A(α) and is axiomatized by V0 and the axiom

(4.26) [Proper(w, d,E) ∧ Fanin2 ′(w, |w|k, E,G)∧
ODepthk−1(w, d,E,G,D)] ⊃ ∃Q∃Y δα

LOCV (w, |w|k, E,G, I,Q, Y).

210 Aehlig, Cook & Nguyen cc 25 (2016)

Proposition 4.27. For k ≥ 2, the problem of witnessing the
quantifiers ∃Q∃Y in the axiom for VNCk(α) is complete for
NCk(α) under AC0-many-one reductions.

First we exhibit a problem complete under AC0reductions for
NC1(α). Informally, this is the problem of evaluating a relativized
sentence which is given using the extended connection language
(Ruzzo 1981). More precisely, we consider encoding relativized
sentences by tuples (a,G, I, J) in the following way. The sentence
is viewed as a balanced binary tree as in the axiom MFV (4.10),
but now each leaf Y (x + a) can be an input bit (from I) or (the
negation of) an α-gate that takes its input from J . In other words,
the underlying circuit for the sentence has exactly one layer of
oracle gates which take input directly from the input constants.
More precisely, let

δ(a,G, I,J, Y) ≡ ∀x<a, G(x + a)=“α”⊃(Y (x + a)↔α(J [x])) ∧
G(x + a) = “¬α” ⊃ (Y (x + a) ↔ ¬α(J [x])) ∧
G(x + a) = “const” ⊃ (Y (x + a) ↔ I(x)) ∧
0 < x ⊃ Y (x) ↔
((

G(x) ∧ Y (2x) ∧ Y (2x + 1)
)
∨

(
¬G(x) ∧ (Y (2x) ∨ Y (2x + 1))

))
.

In the next result, we emphasize that the AC0reductions referred
to are the ‘Turing’ reductions given in Definition 4.5.

Lemma 4.28. The relation given by the formula ∃Y (δ(a,G, I, J, Y)
∧ Y (1)) is AC0-complete for NC1(α).

Proof. For the hardness direction, we note that the circuits
solving a problem in NC1(α) have oracle nested depth bounded
by some constant d. Hence such a circuit can be simulated by d
circuits of the form described above, forming d layers. The layers
can be evaluated by d successive queries to the relation in the
lemma, where in each layer except the first, the constant inputs I
and the oracle inputs J are determined by the gate values in the
previous layer.

cc 25 (2016) Relativizing small complexity classes 211

For membership in NC1(α), observe that we can evaluate the
first layer of the circuit by an AC0(α) circuit (see also the proof of
Proposition 4.23). Once this has been done, the remaining task is
to evaluate a nonrelativized, balanced, monotone Boolean sentence,
which can be done by an NC1 circuit. �

Proof (Proof outline of Proposition 4.27). The hardness direc-
tion is proved as for Proposition 4.23: We assume that by definition
an NCk(α)circuit must satisfy the hypotheses of the axiom (4.26).

Now we argue that the problem actually belongs to NCk(α).
Consider the case k = 2; other cases are similar. First, the given
problem reduces to the following restriction of it, called P , where
the layers in the given circuit are grouped together to form |w|
many blocks B1, B2, . . . , B|w|, where each block Bi has exactly |w|
layers and w outputs. Furthermore, each block is an NC1(α) cir-
cuit (with multiple outputs) such that all α-gates appear in the
first layer. Moreover, these NC1(α) circuits are presented using
the extended connection language. The reduction can be done by
uniform circuits of polynomial size, log log n depth and unbounded
fanin, where n is the length of the input to our original problem.

It remains to show that the new problem P is solvable by a
uniform family of NC2(α) circuits. Note that the input now can
be viewed as the sequence

B1, B2, . . . , B|w|,

where each Bi consists of w single-output NC1(α) circuits

Bi,1, Bi,2, . . . , Bi,w.

Here each Bi,j is an NC1(α) circuit where all α-gates are on the
first layer. Lemma 4.28 above shows that each Bi,j can be evaluated
by an NC1(α) circuit Ci,j. As a result, the circuits for solving P
are obtained by arranging Ci,j appropriately. �

The next theorem is proved in the same way as Theorem 4.24,
using Proposition 4.27.

212 Aehlig, Cook & Nguyen cc 25 (2016)

Theorem 4.29. For k ≥ 2, the functions in FNCk(α) are pre-
cisely the ΣB

1 (α)-definable functions of VNCk(α).

Now we can apply the separations of the relativized classes
obtained in Section 3 to prove separations of the corresponding
theories.

Corollary 4.30. VL(α) � VAC1(α), and for k ≥ 1:

VACk(α) ⊆ VNCk+1(α) � VACk+1(α).

Proof. The first inclusion follows from Proposition 4.18, and
the fact that the axiom PATH (α) is implied by the axiom for
VAC1(α). The remaining inclusions are easy to check, so it suf-
fices to show the strictness of the strict inclusions. By Theorems
4.15, 4.24 and 4.29, we know that the ΣB

1 (α)-definable functions
in each theory are those in the corresponding complexity class. By
Corollary 3.9, we know that the inclusions of the corresponding
complexity classes are strict, where indicated in the statement of
the corollary. �

5. Conclusion

The relativized class ACk(α), k ≥ 0, has an obvious definition:
treat an oracle gate α(x1, . . . , xn) in the same way as ∧ and ∨
gates. However, definitions of the relativized versions of the classes
NCk, L and NL are not so obvious. Here we give new definitions
for these classes that preserve many of the properties of the unrel-
ativized classes, namely class inclusions, Savitch’s Theorem and
the Immerman-Szelepcsényi Theorem. However, there is a weak-
ness in our definition of csNL(α) (relativized NL), namely the
corresponding function class may not be closed under composition
(all other function classes are so closed). A possible way out is
to define relativized NL to be AC0(STCONN, α) (see Theorem
Theorem 2.9 part (ii) and its proof). This class has nice closure
properties and satisfies the expected inclusions with other rela-
tivized classes. It also has a natural associated relativized theory,
namely VNL′(α) (see Definition Definition 4.14). But we do not

cc 25 (2016) Relativizing small complexity classes 213

know how to define AC0(STCONN, α) in terms of nondeterministic
logspace oracle Turing machines. We leave this conundrum as an
open problem.

We note that the first author has carried out in Aehlig (2010) a
detailed study of propositional versions of our relativized theories.

Acknowledgements

A preliminary version of this paper appeared as Aehlig et al. (2007).
The first author was supported by DFG Grant Ae 102/1-1, and the
second and third authors were supported by NSERC.

References

Klaus Aehlig (2010). Parallel Time and Proof Complexity. Habilita-
tion, Ludwig-Maximilians-University, Munich.

Klaus Aehlig, Stephen Cook & Phuong Nguyen (2007). Rela-
tivizing Small Complexity Classes and their Theories. In 16th EACSL
Annual Conference on Computer Science and Logic, 374–388. Springer.
LNCS 4646.

David A. Mix Barrington, Neil Immerman & Howard Straub-

ing (1990). On Uniformity within NC1. Journal of Computer and
System Sciences 41(3), 274–306.

Jonathan Buss (1986). Relativized Alternation. In Proceedings Struc-
ture in Complexity Theory Conference, 66–76. Springer.

Samuel Buss (1987). The Boolean formula value problem is in
Alogtime. In Proceedings of the 19th Annual ACM Symposium on
Theory of Computing, 123–131.

Stephen Cook (1985). A Taxonomy of Problems with Fast Parallel
Algorithms. Information and Control 64(1–3), 2–22.

Stephen Cook & Phuong Nguyen (2010). Logical Foundations of
Proof Complexity. ASL Perspectives in Logic Series. Cambridge Uni-
versity Press.

Neil Immerman (1999). Descriptive Complexity. Springer.

214 Aehlig, Cook & Nguyen cc 25 (2016)

Jan Kraj́ıček (1995). Bounded Arithmetic, Propositional Logic, and
Complexity Theory. Cambridge University Press.

Richard Ladner & Nancy Lynch (1976). Relativization of Ques-
tions About Log Space Computability. Mathematical Systems Theory
10, 19–32.

Phuong Nguyen & Stephen Cook (2006). Theories for TC0 and
Other Small Complexity Classes. Logical Methods in Computer Science
2(1), 1–40.

P. Orponen (1983). General Nonrelativizability Results for Parallel
Models of Computation. In Proceedings, Winter School in Theoretical
Computer Science, 194–205.

Walter Ruzzo (1981). On Uniform Circuit Complexity. Journal of
Computer and System Sciences 22, 365–383.

Walter Ruzzo, Janos Simon & Martin Tompa (1984). Space-
Bounded Hierarchies and Probabilistic Computations. Journal of Com-
puter and System Sciences 28(2), 216–230.

Istvan Simon (1977). On some subrecursive reducibilities. Ph.D. the-
sis, Stanford University.

Gaisi Takeuti (1995). Separations of Theories in Weak Bounded
Arithmetic. Annals of Pure and Applied Logic 71, 47–67.

Christopher Wilson (1987). Relativized NC. Mathematical Systems
Theory 20, 13–29.

Christopher Wilson (1988). A Measure of Relativized Space Which
Is Faithful with Respect to Depth. Journal of Computer and System
Sciences 36, 303–312.

Domenico Zambella (1996). Notes on Polynomially Bounded Arith-
metic. Journal of Symbolic Logic 61(3), 942–966.

Manuscript received 23 April 2012

cc 25 (2016) Relativizing small complexity classes 215

Klaus Aehlig

Mathematisches Institut
Ludwig-Maximilians-Universität
München
80333 München, Germany
aehlig@math.lmu.de

Stephen Cook

Department of Computer Science
University of Toronto
Toronto, ON M5S 3G4, Canada
sacook@cs.toronto.edu

Phuong Nguyen

Department of Computer Science
University of Toronto
Toronto, ON M5S 3G4, Canada
phuong.the.nguyen@gmail.com

	Relativizing small complexity classesand their theories
	Introduction
	Small relativized classes
	Relativized circuit classes
	Relativized logspace classes

	Separating the ACk hierarchy
	Theories for relativized classes
	Two-sorted languages and complexity classes
	Nonrelativized theories
	Relativized theories
	Classes with bounded nested oracle depth
	Classes with unbounded oracle nested depth

	Conclusion
	Acknowledgements
	References

