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Abstract. In this paper, we show that the problem of deterministically
factoring multivariate polynomials reduces to the problem of determin-
istic polynomial identity testing. Specifically, we show that given an
arithmetic circuit (either explicitly or via black-box access) that com-
putes a multivariate polynomial f , the task of computing arithmetic
circuits for the factors of f can be solved deterministically, given a
deterministic algorithm for the polynomial identity testing problem (we
require either a white-box or a black-box algorithm, depending on the
representation of f).
Together with the easy observation that deterministic factoring implies
a deterministic algorithm for polynomial identity testing, this estab-
lishes an equivalence between these two central derandomization prob-
lems of arithmetic complexity.
Previously, such an equivalence was known only for multilinear circuits
(Shpilka & Volkovich, 2010).
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1. Introduction

In this paper, we study the relation between two fundamental alge-
braic problems, polynomial identity testing (PIT for short) and
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polynomial factorization. We show that the tasks of giving deter-
ministic algorithms for polynomial identity testing and for polyno-
mial factorization are, essentially, equivalent. We first give some
background on both problems and then discuss our results in detail.

Polynomial factorization. The problem of polynomial factor-
ization for multivariate polynomials over a field F asks the follow-
ing: Given a polynomial f(X1, . . . , Xn) ∈ F[X1, . . . , Xn], compute
each of the irreducible factors (in F[X1, . . . , Xn]) of f . From the
arithmetic complexity point of view, it is most natural to have
f be presented as an arithmetic circuit and ask that the algo-
rithm returns irreducible factors of f in the form of arithmetic
circuits (this is called the white-box model). Alternatively, we
could assume that we have black-box access to f and ask that the
factorization algorithm outputs a black box for each of the irre-
ducible factors. One can also consider a (simpler) decision version
of this question: Given an arithmetic circuit computing a multi-
variate polynomial, decide whether the polynomial is irreducible
or not. In the decision version, the algorithm just has to answer
“yes” or “no” and it is not required to find the factorization.

A surprising and fundamental result in arithmetic complex-
ity states that factoring of multivariate polynomials can be done
efficiently in both the black-box and white-box settings (Kaltofen
1989; Kaltofen & Trager 1990). This implies the amazing fact that
if f has a circuit of size s and degree d in n variables, then the irre-
ducible factors of f have arithmetic circuits of size poly(s, d, n).
Both these factorization algorithms are randomized, and just as
in the case of polynomial identity testing (that we discuss below),
it is a long-standing open question whether there is an efficient
deterministic algorithm for factoring multivariate polynomials (see
Gathen & Gerhard 1999; Kayal 2007). Moreover, there is no known
deterministic algorithm even for (1) the decision problem of irre-
ducibility testing and (2) the problem of factoring multilinear poly-
nomials.

An important tool in designing randomized factorization algo-
rithms is Hilbert’s irreducibility theorem, which in one formulation
says that restricting an irreducible polynomial to a random two-
dimensional subspace keeps the polynomial irreducible with high



cc 24 (2015) Equivalence of PIT and factorization 297

probability. In other words, restricting a polynomial f to a ran-
dom two-dimensional subspace does not change the number of irre-
ducible factors of f . Given this, multivariate factoring algorithms
proceed as follows. First, restrict the polynomial to a randomly
chosen two-dimensional space. Then, perform bi-variate factoriza-
tion of the restricted polynomial. Finally, “lift” each factor to the
whole space. The study of factorization of multivariate polynomials
has led to significant advances in our understanding of the quanti-
tative aspects of Hilbert’s irreducibility theorem (Kaltofen 1995).

In Shpilka & Volkovich (2010), Shpilka and Volkovich proved
that factoring multilinear polynomials reduces to polynomial iden-
tity testing for multilinear polynomials. Their algorithm relies
heavily on the fact that factors of multilinear polynomials must be
supported on disjoint sets of variables, and in particular, it does not
follow the usual methodology outlined above for factoring polyno-
mials. This result has two interesting aspects. First, it gives a close
connection between these two basic problems. Second, it shows
that deterministic factorization algorithms may be hard to find,
as they are equivalent to the PIT problem for multilinear circuits,
which, if found, would yield an explicit multilinear polynomial with
exponential multilinear circuit complexity. In their work, Shpilka
and Volkovich left open the question of whether the same funda-
mental relation holds for the general case (i.e., for general (non-
multilinear) polynomials). In this paper, we resolve this problem
affirmatively by giving a reduction from multivariate polynomial
factorization to PIT for general circuits. This highlights the signif-
icance of the polynomial identity testing problem as the problem
closest to being “complete” for the algebraic version of the class RP.

For more on polynomial factorization, we refer the reader to the
surveys (Gathen 2006; Kaltofen 1990, 1992, 2003) as well as to the
lecture notes of Sudan (1999). For more on algebra in computation,
we refer to the excellent book (Gathen & Gerhard 1999).

Polynomial identity testing. Let C be a class of arithmetic
circuits defined over some field F. The polynomial identity testing
problem (PIT for short) for C is the question of deciding whether
a given circuit from C computes the identically zero polynomial.
This question can be considered both in the black-box model, in
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which we can only access the polynomial computed by the circuit
using queries, or in the white-box model where the circuit is given
to us. The importance of this fundamental problem stems from
its many applications. For example, the deterministic primality
testing algorithm of Agrawal et al. (2004) and the fast parallel
algorithm for perfect matching of Mulmuley et al. (1987) are based
on solving PIT problems.

In this paper, we consider PIT for the class of poly(n)-size and
poly(n)-degree arithmetic circuits in n variables. PIT has a well-
known randomized algorithm (DeMillo & Lipton 1978; Schwartz
1980; Zippel 1979), but no sub-exponential time deterministic algo-
rithm is known in the general case. This question received a lot of
attention recently, and several deterministic black-box algorithms
were devised for restricted classes of arithmetic circuits, but the
solution for the general model remains elusive. The works of Heintz
& Schnorr (1980), Kabanets & Impagliazzo (2004), Agrawal (2005)
and Dvir et al. (2009) proved that derandomizing PIT, either in
the white-box setting or in the black-box setting, implies lower
bounds for arithmetic circuits. The work of Kabanets and Impagli-
azzo (and Dvir et al. (2009) for small depth circuits) also proved
the reverse direction, namely that using a hard problem, one can
devise a hitting set for arithmetic circuits, i.e., given a hard func-
tion, one can use it to construct a black-box algorithm for PIT. It
is interesting to note that the PIT problem becomes very difficult
already for depth 3 circuits. Indeed, Gupta et al. (2013) proved
that a polynomial time black-box PIT algorithm for depth 3 cir-
cuits (of unbounded degree) implies an exponential lower bound for
general arithmetic circuits (and hence using the ideas of Kabanets
& Impagliazzo (2004), a quasi-polynomial time PIT for general
circuits). For more on PIT, see the survey (Shpilka & Yehudayoff
2010).

In this work, we show that the two derandomization problems
are (essentially) equivalent. Namely, we show that a polynomial
time deterministic PIT algorithm exists if and only if there is a
deterministic polynomial time factorization algorithm. The result
holds both in the black-box and the white-box models. That is, if
the PIT algorithm is in the black-box setting, then deterministic
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black-box factorization is possible and vice versa, and similarly
for the white-box case. The black-box case essentially follows by
carefully inspecting the proofs of the original randomized factoring
algorithms. It is the white-box case that is the core of the technical
contribution of this work.

1.1. Our results. Before stating our main result, we first define
the model of arithmetic circuits.

An arithmetic circuit in the variables X = (X1, . . . , Xn), over
the field F, is a labeled directed acyclic graph. The inputs (nodes
of in-degree zero) are labeled by variables from X or by constants
from the field. The internal nodes are labeled by + or ×, computing
the sum and product, respectively, of the polynomials on the tails
of incoming edges (subtraction is obtained using the constant −1).
Outputs are nodes of out-degree zero.

The size of a circuit (or formula) is the number of gates in it.
The depth of the circuit is the length of a longest path between an
output node and an input node.

When we say degree of a multivariate polynomial, we mean its
total degree. An arithmetic circuit C has degree bounded by d if
all the gates computed by the circuit have degree bounded by d.
Finally, we shall say that C is an (n, s, d)-circuit if it is an n-variate
arithmetic circuit of size s with degree bounded by d.

Our main result states that if PIT can be solved determinis-
tically in polynomial time, then given as input a size-s n-variate
arithmetic circuit over Fp� or Q computing a degree d polynomial
f , one can deterministically in time poly(n, s, d, p�) (in the case
of Fp�) or poly(n, s, d, t) (where t is the bit-complexity of the con-
stants in the circuit, in the case of Q) compute the factors of f .
We now formally state our main result.

Theorem 1.1 (Main). Let F be either the finite field Fp� (with
characteristic p) or the rationals Q.

Suppose white-box (black-box) polynomial identity testing for
size s, degree d, n-variable arithmetic circuits over F can be solved
deterministically in time poly(n, s, d).

Suppose we are given white-box (black-box, respectively) access
to a polynomial f(X1, . . . , Xn) ∈ F[X1, . . . , Xn] computed by an



300 Kopparty, Saraf & Shpilka cc 24 (2015)

arithmetic circuit of size at most s and degree at most d. Let

f =
k∏

i=1

gpei ·ji

i

be the factorization of f , where the gi are irreducible and p � ji for
each i.

Then we can compute, for each i ∈ [k]: (i) ei, (ii) ji, and (iii) an
arithmetic circuit (black-box, respectively) for the factor gpei

i (the
factor gi, respectively) in deterministic time poly(n, s, d, t), where:

(i) t = � · p, if F = Fp� is a field of characteristic p.

(ii) t = maximum bit-complexity of the constants used in the
circuit, if F = Q.

The main new technical content of this theorem is for the white-
box case. In the process, we also give a new (and possibly simpler)
proof of Kaltofen’s result (1989), showing that factors of polynomi-
als computed by small circuits have small circuits. This new proof
has the advantage of being constructive in a certain precise sense,
and this plays an important role in our main result.

The fact that we only compute arithmetic circuits for gpei

i in
the white-box setting can be interpreted as follows: We produce an
“augmented” arithmetic circuit for each gi, which is in the form of
an arithmetic circuit, followed by a unary gate, which computes the
peith root. Even the randomized white-box factorization algorithm
of Kaltofen (1989) only achieves this kind of factorization.

Over finite fields, note that dependence on the field in the run-
ning time of the above multivariate factoring algorithm is poly-
nomial in p · �, while in principle, it could be simply polyno-
mial in � · log p. This dependence on the characteristic is a well-
known fundamental problem: Today, it is not even known how to
deterministically factor univariate polynomials of degree d in time
poly(d, �, log p) (this is unknown even for d = 2!). This is the only
bottleneck for our multivariate factoring algorithm: If one could
factor univariate polynomials of degree d over Fp� deterministically
in time poly(d, �, log p), then the running time in our main theo-
rem can be improved to depend polynomially on � · log p (instead
of depending polynomially on � · p).
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We note that the other direction in the equivalence of PIT and
factorization was observed in Shpilka & Volkovich (2010), namely
that deterministic factorization (even for the decision problem of
irreducibility testing) implies deterministic PIT.

Observation 1.2 (Observation 1 in Shpilka & Volkovich 2010).
Let C be a class of arithmetic circuits. Assume that there is a deter-
ministic algorithm for the decision version of the polynomial fac-
torization problem. That is, an algorithm that when given access
(explicit or via a black box) to an (n, s, d) circuit C ∈ C runs in
time T (s, d) and outputs “true” iff the polynomial computed by C
is irreducible. Then, there is a deterministic algorithm that runs in
time O(T (s + 2, d)) and solves the PIT problem for size s circuits
from C.

1.2. Proof technique. Our algorithms are closely related to the
randomized black-box factorization algorithms of Kaltofen (1989)
and Kaltofen & Trager 1990, and so we start by first giving a high-
level view of those algorithms. In the explanation below, we adopt
the terminology of lecture 9 in Sudan (1999). The initialization
step in all factoring algorithms is to massage the polynomial f
to be factored to the case where it is square free, monic in some
variable X, and satisfies ∂f

∂X
�= 0. The next step of the randomized

algorithms is to restrict f to a randomly chosen two-dimensional
subspace composed of all points {(X,α1T + β1, . . . , αnT + βn)}
(where α1, . . . , αn, β1, . . . , βn are chosen at random). The idea is
that for such a random subspace, all irreducible factors of f remain
irreducible with high probability. This is an “effective” version
of Hilbert’s irreducibility theorem that was proved by Kaltofen
(1995).

Theorem 1.3 (Effective Hilbert irreducibility). Let S ⊆ F be a
finite set and g(X,A1, . . . , An) a monic polynomial in X of total
degree at most d. If g is irreducible, then it holds that

Pr
α,β

[g(X,α1T + β1, . . . , αnT + βn) is not irreducible ] < O(d5/|S|),

where α and β are chosen uniformly and independently from Sn.
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Note that the lemma guarantees that if we pick the set S to
be large enough, then with high probability, all irreducible factors
of f remain irreducible when restricted to the chosen subspace.
The randomized algorithm then proceeds by factoring f over the
subspace {(X,α1T + β1, . . . , αnT + βn)}. At this stage, we have a
restriction of each factor to the chosen two-dimensional space. The
final step of the factorization algorithms is to use these restrictions,
either via the Hensel lifting lemma (Kaltofen 1989) (in the white-
box case) or via trivariate factorizations (Kaltofen & Trager 1990)
(in the black-box case), to find a global factor over the entire space.

We now explain how we derandomize these algorithms using
PIT in the black-box case and in the white-box case. Perhaps
surprisingly, the proof is simpler in the black-box case. This can
be explained by the fact that our assumption is also stronger—
in this case, we assume that we have a black-box PIT algorithm,
which is a stronger assumption than a white-box PIT algorithm.

1.2.1. The black-box case. We would like to simulate the
above randomized algorithm in the black-box case. Using black-
box PIT, one can easily do the preprocessing to make f monic and
square free. All that remains is to find a good two-dimensional sub-
space to restrict to. The main observation here is that Theorem 1.3
can be strengthened in the following way.

Theorem 1.4 (Effective and efficient Hilbert irreducibility). Let
g(X,A1, . . . , An) ∈ F[X,A1, . . . , An] be a monic polynomial in
X of total degree at most d, which is computed by an arith-
metic circuit of size s. If g is irreducible, then there is a cir-
cuit of size poly(s, d) in 2n variables computing a polynomial
h(Z1, . . . , Zn, Y1, . . . , Yn) of degree O(d5) so that if h(α,β) �= 0,
then g(X,α1T + β1, . . . , αnT + βn) is irreducible. Furthermore,
this circuit can be computed in a black-box manner from the cir-
cuit for g.

We do not prove this theorem here, but it is implicit in the proof
of Theorem 1.3 in Kaltofen (1995) (for an excellent exposition, see
Theorem 1 of Lecture 9 of Sudan 1999).

We would like to use our black-box PIT algorithm on the poly-
nomial h given in Theorem 1.4 to find a two-dimensional subspace
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that will preserve irreducibility for all irreducible factors of f (i.e.,
we want to find a nonzero simultaneously for all h’s corresponding
to factors of f). For this, we need to know that h has a small
circuit, and this in turn requires us to know that each irreducible
factor g of f indeed has a small circuit (so that we can apply The-
orem 1.4 with reasonable parameters). Luckily, Kaltofen (1989)
proved that if f can be computed by an arithmetic circuit of size
s, then each of its factors can be computed by arithmetic circuits of
size poly(s, d, n). We conclude that there exists a circuit of degree
O(d6) and size poly(s, d, n) in 2n variables such that any nonzero
assignment to it gives a “good” two-dimensional space. We can
thus use the assumed black-box PIT for such circuits to claim that
the black-box PIT algorithm finds such a good pair (α,β). Notice
that we do not need to know the circuits for the factors nor the cir-
cuit of Theorem 1.4, but rather it is enough to have a bound on its
complexity to be able to use the black-box PIT algorithm to find
a good subspace. This is the main difference from the white-box
model (we shall elaborate on this point more later).

Having found a good two-dimensional subspace using the PIT
algorithm, we can proceed with the proof as in the black-box ran-
domized case (Kaltofen & Trager 1990), noting that all remaining
steps can be performed in the black-box model deterministically.
Putting all these steps together, the deterministic black-box fac-
toring algorithm follows in a straightforward way.1 The rest of the
paper is devoted to the proof of the white-box case.

1.2.2. The white-box case. In the white-box case, things are
trickier. We first explain why we cannot adopt the same strat-
egy as in the black-box case. The natural thing would be to try
and compute the circuit guaranteed by Theorem 1.4 for each of
the irreducible factors of f , and then use the white-box PIT algo-
rithm to find a good subspace. However, the theorem only tells us
that to compute the polynomial h (associated with an irreducible
factor g of f), we need to start from a circuit computing g. But
getting a circuit for g is the original problem we are trying to solve!
Rephrasing, this strategy says that in order to factor f , we should

1This was also independently observed by Dvir and Mendes de Oliveira
(personal communication).
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first compute small circuits for each of its irreducible factors, which
can then help us find a subspace that will help us compute cir-
cuits for its irreducible factors. This circularity prevents the above
approach from being feasible in the white-box case.

A central piece of the deterministic black-box factorization algo-
rithm (using PIT) is Kaltofen’s theorem on the existence of small
arithmetic circuits for the factors. Perhaps the proof of that theo-
rem will suggest a way to construct the small circuits for the factors
deterministically (using white-box PIT). Unfortunately, the main
step in the proof of that theorem is Hilbert’s irreducibility theo-
rem, Theorem 1.3! One first restricts to a random 2-dimensional
subspace, which with high probability preserves the factorization
pattern of the original polynomial f . The proof merely uses the
existence of such a 2-dimensional subspace, and the proof does not
require nor show either how to construct such a subspace, or even
how to construct a circuit detecting such a subspace.2

The above explains why the white-box case requires a new con-
structive ingredient over the black-box case. The main techni-
cal contribution of this work is to show that instead of finding a
good two-dimensional subspace, one can work with a “formal” two-
dimensional subspace. Concretely, we work over the field of frac-
tions F(A1, . . . , An) (in the formal variables A1, . . . , An; we may
think of (A1, . . . , An) as defining the “direction” of the formal sub-
space). That is, we define a new polynomial f̄(X,T,A1, . . . , An)
given by f̄(X,T,A1, . . . , An) = f(X,TA1, . . . , TAn) and view f̄
as a polynomial in K[X,T ] over the field of rational functions
K = F(A1, . . . , An). It is not hard to prove that if f is monic
in X, then irreducible factors of f map to irreducible factors of f̄
and vice versa. Thus, in some sense, we have found a way to reduce
the problem to the two-dimensional case. The main issue now is
that the field is much more complicated, and instead of working
with constants from F, we have to work with constants from K.

2Neeraj Kayal pointed out to us that, in fields of characteristic 0 or in
fields of characteristic > poly(d), results of Ritt (see the nice paper of Gao
2003) give an efficient way to detect subspaces that preserve the factorization
pattern for a polynomial of degree d. Using this, over fields of the appropriate
characteristic, one can solve the white-box polynomial factorization problem
using white-box PIT just like we did in the black-box case.
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The standard way to factorize a general bivariate polynomial
over a field K would (1) perform a univariate polynomial factor-
ization over the field K (which is nearly as hard as the original
problem since K is so complicated), (2) perform Hensel lifting, (3)
solve a linear system, (4) compute a GCD. However, the polyno-
mial f̄ was chosen to have a special form, which allows the uni-
variate polynomial factorization over K (which is what we need) to
reduce to a univariate factorization over the small field F! We then
show that the remaining steps of the bivariate factorization can
be done despite the complexity of the field K. This is where the
white-box PIT comes into play; it enables us to perform basic tasks
over the field K, such as linear algebra and working with polyno-
mials in K[X,T ], deterministically. Here we need to verify that all
“constants” from K appearing in intermediate computations can
be computed by small circuits (in the variables A1, . . . , An). In
other words, while the field K = F(A1, . . . , An) is quite complex,
the elements from K that we will be using can all be computed by
small circuits, and we will be able to compute and work with those
circuits efficiently using white-box PIT.

1.3. Notation. We shall use capital letters X,T,Ai to denote
variables. Lower case Greek letters α, β, c will be used to denote
assignments to the variables or, more generally, constants from
the field. Bold face letters α,β will denote vectors. Polynomials
will be denoted by lower case letters a, b, f, g, h, and vectors of
polynomials by bold face lower case v.

1.4. Organization. In the next section, we recall some algebraic
tools and algebraic algorithms that will be useful for us. We then
give our factorization algorithm. We conclude with some open
questions.

2. Algorithmic and algebraic tool kit

In this section, we set up our notation and give some known facts
about circuits and known facts from algebra.

2.1. Known facts about arithmetic circuits. The following
well-known lemma states that given access to a circuit computing a
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polynomial f , we can construct (in a black-box manner) a circuit
for each of the homogeneous components of f . For a proof see,
e.g., Shpilka & Yehudayoff (2010). We denote the homogeneous
components of f by H0(f), . . . , Hd(f), where H i(f) is the sum of
all monomials in f of degree exactly i.

Lemma 2.1. Given an arithmetic circuit C(X,Y1, . . . , Yn), of size
s, that computes a polynomial f(X,Y1, . . . , Yn) ∈ F[X,Y1, . . . , Yn]
of degree d, we can construct arithmetic circuits for the homo-
geneous components of f in time poly(n, d, s). Furthermore,
the circuit for each H i(f) is of size O(ds). Similarly, if we let
f(X,Y1, . . . , Yn) =

∑d
i=0 X ifi(Y1, . . . , Yn), then we can in time

poly(n, d, s) compute arithmetic circuits for the polynomials fi.
Furthermore, the circuit for each fi is of size O(ds).

Another useful tool is that given a white-box PIT algorithm, we
can use it to find a nonzero assignment for a given nonzero circuit.

Lemma 2.2 (Decision to search reduction for white-box PIT).
Given an arithmetic circuit C computing a nonzero n-variate poly-
nomial f(Y1, . . . , Yn) of degree d, and a white-box PIT algorithm
that runs in time polynomial in the size of C, n and d, we can find
a point a ∈ F

n such that f(a) �= 0 in time poly(|C|, n, d).

Proof. Let S = {α0, . . . , αd} be a set of d + 1 distinct val-
ues from F. Notice that we can check, using the PIT algorithm,
whether the restriction Y1 = αi ∈ S makes f vanish. Since the
degree of f is d and f �≡ 0, there exists a value of αi ∈ S such
that f(αi, Y2, . . . , Yn) �≡ 0. Hence, by a linear scan over S, we
can find such an index 0 ≤ i ≤ d such that f(αi, Y2, . . . , Yn) �≡ 0.
Fix Y1 = αi and repeat this procedure with the other variables
{Y2, . . . , Yn}. The running time is clearly bounded by nd times the
running time of the PIT algorithm. �

2.2. Algebraic tool kit.

Lemma 2.3 (Gauss’ Lemma). Let f(X,Y1, . . . , Yn)∈F[X,Y1, . . . ,
Xn] be monic in X. Let g(X,Y1, . . . , Yn) ∈ F(Y1, . . . , Yn)[X] be
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a monic (in X) factor of f(X,Y1, . . . , Yn). Then g(X,Y1, . . . , Yn) ∈
F[X,Y1, . . . , Yn].

For the proof see, e.g., Chapter 6.2 in Gathen & Gerhard (1999).

The resultant Let f =
∑d

i=0 X iai(Y1, . . . , Yn), g =
∑e

i=0 X ibi

(Y1, . . . , Yn) be polynomials of X-degree exactly d and e, respec-
tively. Consider the (d + e) × (d + e) Sylvester matrix whose first
e rows contain e shifts of the vector of coefficients (ad, . . . , a0,
0, . . . , 0). Namely, the kth row begins with k − 1 zeros and
ends with e − k zeros, e.g., the (e)th row is (0, . . . , 0, ad, . . . , a0).
The next d rows contain shifts of the vector of coefficients
(be, . . . , b0, 0, 0, . . . , 0). Thus, the (e + 1)st row in the matrix
equals (be, . . . , b0, 0, . . . , 0) and the (d + e)th row contains the
vector (0, . . . , 0, be, . . . , b0). The resultant of the polynomials
f(X,Y1, . . . , Yn) and g(X,Y1, . . . , Yn) with respect to the variable
X is defined to be the determinant of the Sylvester matrix defined
above.

If we know that each ai is a polynomial of degree at most d and
each bj is a polynomial of degree at most e, a crude upper bound
on the degree of the resultant as a polynomial in the Yis is 2de.

We have the following basic properties of the resultant (see
Sudan 1999).

Lemma 2.4 (Resultant facts). Let d, e ≥ 1. Let f(X,Y1, . . . , Yn)
have X-degree exactly d and let g(X,Y1, . . . , Yn) have X-degree
exactly e. Let u(Y1, . . . , Yn) be their resultant with respect to the
variable X. Then:

(i) u = 0 if and only if f(X,Y1, . . . , Yn) and g(X,Y1, . . . , Yn)
have a nontrivial GCD in the ring F(Y1, . . . , Yn)[X].

(ii) there exist polynomials v(X,Y1, . . . , Yn) and w(X,Y1, . . . , Yn)
such that:

f · v + g · w = u.

The discriminant Df (Y1, . . . , Yn). Let f =
∑d

i=0 X iai(Y1, . . . ,

Yn) be a degree d polynomial. Let ∂f
∂X

=
∑d

i=0 i ·X i−1ai(Y1, . . . , Yn)
be its derivative with respect to X.
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The discriminant of a polynomial f(X,Y1, . . . , Yn) with respect
to the variable X, denoted Df (Y1, . . . , Yn), is defined to be the
resultant of the polynomials f and ∂f

∂X
. Since each ai is a polyno-

mial of degree at most d, a crude upper bound on the degree of
Df (Y1, . . . , Yn), as a polynomial in the Yis is 2d2.

Lemma 2.5 (Small circuit for the Discriminant). Let f(X,Y1, . . . ,
Yn) be a degree d polynomial computed by an arithmetic circuit of
size s. Given this arithmetic circuit, we can find in deterministic
time poly(s, n, d) an arithmetic circuit of size poly(s, n, d) comput-
ing the discriminant Df (Y1, . . . , Yn).

Proof. The proof follows from the following two simple facts:
A small arithmetic circuit computing the coefficients of the X i

in f can be found using the arithmetic circuit for f , and, the
Determinant has small arithmetic circuits. �

The main property of the discriminant that we need is
that if the polynomial f(X,Y1, . . . , Yn) is square free, then
Df (Y1, . . . , Yn) is nonzero. Furthermore, if Df (α1, . . . , αn) �= 0,
then f(X,α1, . . . , αn) is a square-free univariate polynomial.

2.3. Linear algebra using PIT. In this section, we explain
how to perform linear algebra when coefficients of vectors are given
as circuits.

Lemma 2.6 (Solving linear systems). Let M = (Mi,j) be a k × n
matrix, with each entry being a degree ≤ Δ polynomial in
F[A1, . . . , An]. Suppose that we have an arithmetic circuit C of
size at most s computing M . Then, given access to a PIT oracle,
we can either:

(i) find an arithmetic circuit of size at most poly(n, k, s, Δ)
computing a nonzero vector v ∈ (F[A1, . . . , An])n such that
Mv = 0, or

(ii) declare that there are no nonzero vectors v ∈ (F[A1, . . . ,
An])n such that Mv = 0,

deterministically in time poly(k, n, s, Δ).
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Proof. The idea of the proof is the following. Iteratively, for
every j = 1, . . . , n we shall find an j × j minor contained in the
first j columns that is full rank. We will continue doing so until
we either reach j = n in which case it means that the matrix has
full column rank, and hence, the only solution is v = 0, or we
get stuck at some value j = j0. Using the fact that we cannot
increase j further we will use this minor to construct the required
vector v.

We now explain the process. Using PIT, we look for some
nonzero entry in the first column. If no such entry is found we
can simply take v = (1, 0, . . . , 0). So assume that such a nonzero
entry is found. After permuting the rows we can assume wlog that
this is M1,1. Thus, we have found a 1 × 1 minor satisfying the
requirements. Assume that we have found an j × j full rank minor
that, wlog, is composed of the first j rows and columns. Denote
this minor with Mj. Now for every (j+1)×(j+1) submatrix of M
contained in the first j +1 columns and containing Mj, we use our
PIT oracle to check if its determinant is nonzero. If any of these
submatrices have nonzero determinant, then we pick one of them
and call it Mj+1. Otherwise, we have that the first j + 1 columns
of M are linearly dependent. In this case we can use Kramer’s
formula to find the unique (up to multiplication by elements of the
field F(A1, . . . , An)) vector u = (u1, . . . , ur) ∈ F(A1, . . . , An)j such
that Mj ·u = (M1,j+1, . . . ,Mj,j+1). Notice that each entry of u is of

the form
det(M

(i)
j )

det(Mj)
, where M

(i)
j is the matrix obtained from replacing

the ith column of Mj with the vector (M1,j+1, . . . ,Mj,j+1).

Thus, the vector (det(M
(1)
j ), . . . , det(M

(j)
j ),− det(Mj), 0, 0, . . . ,

0) is the desired vector v. Observe that v can be computed by a
circuit of size s + poly(n, k, Δ). �

2.4. Computing division with remainder and GCD. In
this subsection, we explain how to compute division with remainder
and GCD (greatest common divisor) for univariate polynomials in
X, whose coefficients are given by arithmetic circuits in variables
A1, . . . , An. We rely on the description of the algorithms in Chap-
ter 9 of Gathen & Gerhard (1999). In what follows, each time
we discuss arithmetic circuits that compute a ratio of polynomials,
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we can think of the circuit as computing two outputs, one for the
numerator and one for the denominator.

Lemma 2.7. Let f ∈ F(A1, . . . , An)[X] be a polynomial of degree
d such that f(0) = 1. Assume there is an arithmetic circuit of
size s computing all of f ’s coefficients (possibly as a ratio of two
polynomials), of size s. Then, for every m, one can add poly(d,m)
many gates to the circuit to obtain a circuit computing all coeffi-
cients of a polynomial g (as well as the coefficient of f) such that
fg ≡ 1 mod Xm. Moreover, this new circuit can be computed in
a black-box fashion, namely, we only add gates to the circuit of f
and connect them either to other new gates or to the outputs of
the circuit for f .

The upper bound that we give on the size of the circuit is very
crude, and it can be greatly improved, but for sake of simplicity,
we give the crude bound.

Proof. The proof basically follows from Algorithm 9.3 of
Gathen & Gerhard (1999). In that algorithm, we define g0 = 1

and recursively compute gi+1
def
=(2gi − fg2

i ) mod X2i
. It is shown

in Theorem 9.2, there that fgi ≡ 1 mod X2i
. Thus, we only have

to compute gi for 2i > m. By induction, it is not hard to see that if
there is a circuit of size si that outputs all the coefficients of f and
of gi (recall that gi has degree smaller than 2i in X) then there is
a circuit of size si + poly(d,m) computing the coefficients of f and
gi+1. Indeed, each coefficient of gi+1 is a sum of poly(d, 2i) terms,
each of which is a product of a coefficient of f with two coefficients
of gi. As the size of the circuit grows additively at each step, after
O(log m) steps we get a circuit of size s+poly(d,m). Thus, there is
a circuit of size s+poly(d,m) computing g�logm�, as required. �

Lemma 2.8 (Division with remainder). Let f, g ∈ F(A1, . . . , An)
[X], where g is a monic polynomial in X. Assume there is a circuit
of size s computing all the coefficients of f and g with respect to
X (possibly each coefficient is a ratio of two polynomials). Let
deg(f), deg(g) ≤ d. Then one can add to this circuit poly(d) many
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gates to obtain a circuit computing all coefficients of the polyno-
mials h, r (as well as those of f, g) such that f = hg + r with
deg(r) < deg(g). Moreover, this new circuit can be computed in a
black-box fashion, namely, we only add gates to the circuit of f, g
and connect them either to other new gates or to the outputs of
the circuit for f, g.

Proof. The proof follows from Theorem 9.6 of Gathen & Ger-
hard (1999) and uses Lemma 2.7. �

As we can compute division with remainder, we can also com-
pute GCD’s efficiently, using PIT.

Lemma 2.9 (GCD). Suppose we have access to a PIT oracle.
Let f and g be univariate polynomials of degree at most Δ in
F(T, Y1, Y2, . . . , Yn)[X]. Assume there is a size s arithmetic circuit
computing all coefficients of f and g (possibly as ratios of poly-
nomials). Then one can compute in time s + poly(Δ) a circuit
that outputs the coefficients of f , g and the (monic) GCD(f, g) in
F(T, Y1, Y2, . . . , Yn)[X].

Proof. We note that in order to follow Euclid’s algorithm, it
is enough to be able to compute division with remainder, and to
detect when to stop. Computing division with remainder can be
done via Lemma 2.8, and detecting when to stop can be done using
the PIT oracle. Hence, the usual execution of Euclid’s algorithm
gives the required circuit. Note that in Lemmas 2.7 and 2.8 we do
not need to compute a new circuit at any step, but rather we add
polynomially many new gates to the circuit at hand. Thus, the
upper bound on size follows. �

As noted above, all the bounds that we obtain in these lemmas
are far from being optimal. One can go more carefully over the
usual algorithms for GCD, division with remainder, etc. to obtain
circuits of size Õ(s).

3. White-box factorization algorithm

In this section, we give our deterministic white-box factorization
algorithm (assuming a deterministic white-box PIT algorithm).
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We give the basic outline of our algorithm below. We will
elaborate on the various steps of the algorithm in the later sections.

Input: An arithmetic circuit for the polynomial f(X,Y1 . . . ,
Yn)

1. If the characteristic of F is p > 0, then make f not a p’th power,
if the characteristic is 0 then do nothing (See Section 3.1).

2. Make f monic in X. (See Section 3.2).

3. Reduce to the case where f is square free. (See Section 3.3).

4. Reduce to the case of bivariate factoring over a large field. (See
Section 3.4).

(a) Define f̄(X,T,A1, A2, . . . , An)
def
=f(X,TA1, TA2, . . . , TAn).

(b) Show that factors of f̄ in F(A1, A2, . . . , An)[X,T ] corre-
spond to factors of f in F[X,Y1, Y2, . . . , Yn]

5. Univariate factorization. (See Section 3.5).

(a) Note that f̄(X, 0, A1, A2, . . . , An) ∈ F[X].

(b) Via univariate polynomial factorization, find an irreducible
factor g0(X) ∈ F[X] of f̄(X, 0, A1, A2, . . . , An).

(c) Write

f̄(X,T,A1, A2, . . . , An)
=g0(X,T,A1, A2, . . . , An) · h0(X,T,A1, A2, . . . , An) mod T.

Now view this as an equation in K[X,T ].

6. Hensel Lifting. (See Section 3.6).
For k = O(log d), Hensel lift k times to get

f̄(X,T,A1, A2, . . . , An)

= gk(X,T,A1, A2, . . . , An) · hk(X,T,A1, A2, . . . , An) mod T 2k

.

7. Solve a linear system (See Section 3.7).
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(a) Suppose gk(X,T,A1, . . . , An) =
∑

i≤d,j≤D cij(A1, . . . ,

An)X iT j. Consider the following homogeneous system
of linear equations over the field F(A1, . . . , An) in the
variables Rij, Sij:

∑

i<d,j≤d

RijX
iT j

=

(
∑

i≤D,j≤D

cijX
iT j

) (
∑

i≤D,j≤D

SijX
iT j

)
mod T 2k

.

This is a system of O(D2) homogeneous linear equa-
tions in O(D2) unknowns. Solve this system to get a
nontrivial solution (if any).

(b) If there is no solution, then f̄ is irreducible.

(c) Otherwise, if there is a solution, we find a polynomial
with nontrivial GCD with f̄ .

8. Compute the GCD (See Section 3.8).
Use it to obtain a nontrivial factor of f .

9. Continue by recursion to factor f completely (See Section 3.9).

3.1. Making f not a pth power. Suppose F = Fp� is a field
of characteristic p. The case where f is a perfect pth power causes
problems for the derivative-based methods that will be used. Here
we see how to reduce to the case where f is not a pth power.

We first describe how to find the largest e such that f is a
perfect peth power. It is easy to see that f is a perfect peth power
(but not a pe+1th power) if and only if:

1. for every variable Xi, the coefficient of the monomial Xj
i in

f(X1, . . . , Xn, Xn+1) is zero whenever pe
� j,

2. there is some variable Xi, and some monomial M contain-
ing Xj

i (with pe+1
� j) such that the coefficient of M in

f(X1, . . . , Xn, Xn+1) is nonzero.
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This can be easily checked by making poly(n, deg(f)) calls to the
given PIT algorithm (via Lemma 2.1).

Now suppose f is a perfect peth power, but not a pe+1th power.
Renaming the variables X,Y1, . . . , Yn, we may assume the variable
X has a monomial Xj, with pe+1

� j, that appears in f with a
nonzero coefficient (possibly as part of a larger monomial). Let us
write

f(X,Y1, . . . , Yn) =
d∑

i=0

ai(Y1, . . . , Yn)X i.

Thus, the polynomial ai(Y1, . . . , Yn) ≡ 0 whenever pe
� i.

Then f(X,Y1, . . . , Yn) can be written as f ∗(Xpe
, Y1, . . . , Yn).

Notice that f ∗(Z, Y1, . . . , Yn) is not a pth power.
We now show that the irreducible factors of f ∗ are in 1 − 1

correspondence with the irreducible factors of f and that if h∗

divides f ∗ then the corresponding h divides f , and viceversa.
Suppose we find a factor h∗(Z, Y1, . . . , Yn) of f ∗(Z, Y1, . . . , Yn).

Then h∗(Xpe
, Y1, . . . , Yn) divides f ∗(Xpe

, Y1, . . . , Yn)=f(X,Y1, . . . ,
Yn).

Conversely, if h(X,Y1, . . . , Yn) is an irreducible factor of
f(X,Y1, . . . , Yn). Since f is a perfect peth power, and h is irre-
ducible, we have that hpe

must divide f(X,Y1, . . . , Yn) too. Note
that hpe

(X,Y1, . . . , Yn) is of the form h∗(Xpe
, Y1, . . . , Yn), and since

h∗(Xpe
, Y1, . . . , Yn) divides f(X,Y1, . . . , Yn) = f ∗(Xpe

, Y1, . . . , Yn),
we have that h∗(Z, Y1, . . . , Yn) divides f ∗(Z, Y1, . . . , Yn).

We note that if f is computed by a circuit of size s, then f ∗

can be computed by a circuit of size poly(s, d). Indeed, Lemma 2.1
implies there is a circuit of size poly(s, d) computing all coefficients
ai(Y1, . . . , Yn). All that is left to do now is to multiply each ai with
X i/pe

(recall that pe|i when ai �≡ 0).
Thus, we have reduced to the case of factoring f ∗, which is not

a perfect pth power. However, we can now only produce arithmetic
circuits for the peth powers of the irreducible factors of f , not the
irreducible factors themselves.

Note that when F = Q, then we do not have to do anything in
this step.
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3.2. Making f monic. Let f(X,Y1, . . . , Xn) ∈ F[X,Y1, . . . , Yn]
be a polynomial of total degree d. We would like to find an invert-
ible linear transformation M ∈ F

(n+1)×(n+1) of the variables that
makes f monic in X. We would also like to ensure that the deriv-
ative ∂f

∂X
is a nonzero polynomial (which is a condition that will

be useful in Section 3.3). It is easy to convert a factorization of
f(M · (X,Y1, . . . , Yn)) into a factorization of f(X,Y1, . . . , Yn).

Consider the polynomial

g(〈Zi,j〉i,j∈[n+1], X, Y1, . . . , Yn) = f(Z · (X,Y1, . . . , Yn)),

where Z is an (n+1)× (n+1) matrix consisting of the formal vari-
ables Zi,j, and · represents matrix-vector multiplication. Observe
that we can construct an arithmetic circuit for g using the given
arithmetic circuit for f .

Thus, (by Lemma 2.1), for each i ∈ {0, 1, . . . , d} we can con-
struct an arithmetic circuit for the coefficient ci(Z, Y1, . . . , Yn) of
X i in g(Z, X, Y1, . . . , Yn).

If d is the total degree of f , it is easy to see that the poly-
nomial cd(Z, Y1, . . . , Yn) is nonzero. Since f is not a pth power,
there is some i with p � i for which either X i or some Y i

j appears
within a monomial with a nonzero coefficient in the polynomial
f(X,Y1, . . . , Yn). In particular, by substituting Z to be a suitable
permutation matrix, we see that the polynomial ci(Z, Y1, . . . , Yn)
is not identically 0. We can find one such i with p � i using our
given white-box PIT algorithm polynomially many times.

Now consider the nonzero polynomial

cd(Z, Y1, . . . , Yn) · ci(Z, Y1, . . . , Yn) · det(Z),

(for which we have explicit circuits). Using the white-box PIT
algorithm (via Lemma 2.2), we can find a setting M of the variables
Z such that:

cd(M, Y1, . . . , Yn) · ci(M, Y1, . . . , Yn) · det(M)

is a nonzero polynomial in Y1, . . . , Yn.
We then define f̃(X,Y1, . . . , Yn) to be the polynomial:

f(M · (X,Y1, . . . , Yn)).
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We know that M is invertible since det(M) is nonzero. If we write:

f̃(X,Y1, . . . , Yn) =
d∑

i=0

c̃i(Y1, . . . , Yn)X i,

then we have (by construction) that: c̃d(Y1, . . . , Yn) is a nonzero
polynomial (which must in fact be a nonzero constant in F since the
total degree of f̃ is d), and c̃i(Y1, . . . , Yn) is a nonzero polynomial.

We can compute this constant c̃d explicitly by picking an arbi-
trary (y1, y2, . . . , yn) ∈ F

n and substituting it into the arithmetic
circuit we have for c̃d(Y1, . . . , Yn).

Dividing f̃ by c̃d, we get the desired f̃ that is an invertible

linear transformation of f , monic in X, for which ∂f̃
∂X

is a nonzero

polynomial. Indeed the coefficient of X i−1 in ∂f̃
∂X

is i· c̃i(Y1, . . . , Yn),
which is not zero since p � i and c̃i(Y1, . . . , Yn) �≡ 0. Finally, redefine
f to equal f̃ , and note that it suffices to factor the new f .

3.3. Reduction to the square-free case. We now assume that
we have a monic f(X,Y1, . . . , Yn) ∈ F[X,Y1, . . . , Yn] (which is not
a pth power in the event that F has characteristic p > 0), and we
wish to reduce to the case that it is square free, namely, that no
irreducible factor of f has multiplicity larger than one. Let f =∑d

i=0 X ifi(Y1, . . . , Yn) and further assume that we are given a cir-
cuit computing each fi. We can assume this wlog (see Lemma 2.1).

Observe that if f is not square free, i.e., f = g2h where deg(g) ≥
1, then ∂f

∂X
= 2 ∂g

∂X
· gh + g2 ∂h

∂X
= g · h̃, for h̃ = 2 ∂g

∂X
h + g ∂h

∂X
. Note

that by adding d additional gates to the circuit such that the ith
new gate computes i ·fi we get a circuit of size s+O(d) computing
all coefficients of f and of ∂f

∂X
. Crucially, the polynomial ∂f

∂X
is not

the zero polynomial (because of the nonzero coefficient of X i for
some p � i). Our initial work ensuring that f was not a pth power
was in order to ensure this.

Now, using the GCD algorithm of Lemma 2.9, we get a circuit of
size s+poly(d) computing all coefficients of f, ∂f

∂X
and GCD(f, ∂f

∂X
).

We now observe some facts about this GCD. First, g|GCD(f, ∂f
∂X

).
Secondly, the degree of the GCD is smaller than the degree of f .
Thirdly, using Lemma 2.8 we can find a circuit of size s + poly(d)
computing all coefficients of f, ∂f

∂X
, GCD(f, ∂f

∂X
) and q1, where q1 is
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such that f = q1 · GCD(f, ∂f
∂X

). Thus, we managed to express f as
a product of two distinct polynomials each having a small circuit,
and each having degree at least 1.

We can continue in this fashion to get a circuit of size s+poly(d)
(the process can run for at most d steps each step adding poly(d)
many new gates (by Lemma 2.8)) that computes all coefficients
of polynomials q1, . . . , q� such that f = q1 · · · q� where each qi is
nonconstant and square free.

We note that in the process above, we may encounter factors
of f that are perfect p powers, although f is not and whose par-
tial derivative with respect to X is zero. Thus, we repeat the
earlier steps to make each factor have the desired properties. It
is clear that this process takes polynomial time and incurs a one
time blowup to the size of the circuit.

Thus, from now on, we assume wlog that we have a circuit of
size s computing a square-free monic polynomial f(X,Y1, . . . , Yn) ∈
F[X,Y1, . . . , Yn].

3.4. Reducing to the bivariate case. As described earlier,
the first step in our proof, after the preprocessing steps described
above, is translating f(X,Y1, . . . , Yn) to a bivariate polynomial.

Let f(X,Y1, . . . , Yn) ∈ F[X,Y1, . . . , Yn] be a polynomial of total
degree d, which is square free and monic in X. We know that the
discriminant Df (Y1, . . . , Yn) of f (with respect to the variable X)
is a nonzero polynomial, and we have an arithmetic circuit for
it. Thus, using our white-box PIT algorithm and Lemma 2.2, we
can find an a ∈ F

n such that Df (a) �= 0. By translating the
origin, we assume Df (0, . . . , 0) �= 0. Define f̄(X,T,A1, . . . , An) ∈
F[X,T,A1, . . . , An] by:

f̄(X,T,A1, . . . , An) = f(X,A1T,A2T, . . . , AnT ).

To ease notations, we shall denote K = F(A1, . . . , An).
We first prove that irreducible factors of f̄ are in 1 − 1 corre-

spondence with those of f .

Lemma 3.1. Let f and f̄ be as above.
Let h̄(X,T,A1, . . . , An) ∈ F[X,T,A1, . . . , An] be a factor of

f̄(X,T,A1, . . . , An). Then there exists h(X,Y1, . . . , Yn) ∈ F[X,Y1,
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. . . , Yn] such that:

h̄(X,T,A1, . . . , An) = h(X,A1T,A2T, . . . , AnT ).

h(X,Y1, . . . , Yn) | f(X,Y1, . . . , Yn) in F[X,Y1, . . . , Yn].

Proof. Denote h̄(X,T,A1, . . . , An) =
∑

i,j X iT jh̄i,j(A1, . . . ,

An). We first show that h̄i,j is a homogeneous polynomial in
A1, . . . , An of degree j.

Suppose ḡ(X,T,A1, . . . , An) is such that
h̄(X,T,A1, . . . , An)·ḡ(X,T,A1, . . . , An) = f̄(X,T,A1, . . . , An). By
square freeness and monicness of f̄ , we have that h̄ and ḡ are
relatively prime in F[X,T,A1, . . . , An]. Note that
f̄(X,ZT,A1, . . . , An) = f̄(X,T, ZA1, . . . , ZAn). Thus:

h̄(X,ZT,A1, . . . , An) · ḡ(X,ZT,A1, . . . , An)

= h̄(X,T, ZA1, . . . , ZAn) · ḡ(X,T, ZA1, . . . , ZAn).

Furthermore, reducing both sides of the above equation mod
(Z − 1) (i.e., substituting Z = 1), we get that the correspond-
ing terms are equal. Applying the Hensel lifting lemma to both
sides, and using the uniqueness guaranteed by it, we conclude that
h̄(X,ZT,A1, . . . , An) = h̄(X,T, ZA1, . . . , ZAn). This implies that
hi,j(A1, . . . , An) is a homogeneous polynomial of degree j.

Let h(X,Y1, . . . , Yn) = h̄(X, 1, Y1, . . . , Yn), i.e., h =
∑

i,j X ih̄i,j

(Y1, . . . , Yn). It is straightforward to verify that h has the required
properties. �

Combining Gauss’ lemma (Lemma 2.3) with Lemma 3.1, and
noting that f̄ is monic in X, we get:

Corollary 3.2. Let f and f̄ be as above. Let h̄(X,T,A1, . . . ,
An) ∈ K[X,T ] be a monic (in X) factor of f̄(X,T,A1, . . . , An).
Then there exists h(X,Y1, . . . , Yn) ∈ F[X,Y1, . . . , Yn] such that:

h̄(X,T,A1, . . . , An) = h(X,A1T,A2T, . . . , AnT ).

h(X,Y1, . . . , Yn) | f(X,Y1, . . . , Yn) in F[X,Y1, . . . , Yn].

Furthermore, h(X,Y1, . . . , Yn) simply equals h̄(X, 1, Y1, . . . , Yn).
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Thus, in order to factor f(X,Y1, . . . , Yn), it suffices to factor
the polynomial f̄(X,T,A1, . . . , An) into its factors in K[X,T ] =
F(A1, . . . , An)[X,T ]. These factors in K[X,T ], when made monic
in X will, by the above fact, give us the factors of f(X,Y1, . . . , Yn)
in F[X,Y1, . . . , Yn]. Conversely it is easy to see that every factor of
f(X,Y1, . . . , Yn) in F[X,Y1, . . . , Yn] can be obtained in this way.

3.5. Factoring over the big field 1: univariate factoriza-
tion. Consider the univariate polynomial f(X, 0, 0, . . . , ) ∈ F[X].
We know that it is a nonzero polynomial of degree d (by the mon-
icness of f in X), and that it is square free (by the nonvanishing
of Df (0, 0, . . . , 0)).

The next step of the algorithm is to factorize f(X, 0, . . . , 0)
over F[X] using known algorithms for univariate polynomial fac-
torization. By the well-known algorithms of Lenstra–Lenstra–
Lovasz (Lenstra et al. 1982) and Berlekamp (1970), this can be
performed in time poly(t, d) (where t is as in Theorem 1.1).

Theorem 3.3 (Berlekamp 1970; Lenstra et al. 1982). Let f ∈
F[X] be a monic polynomial of degree d, then there is a deter-
ministic algorithm computing all factors of f that runs in time
poly(n, s, d, t), where:

(i) t = � · p, if F = Fp� is a field of characteristic p.

(ii) t = maximum bit-complexity of the constants used in the
circuit, if F = Q.

Let g0(X) be an irreducible monic factor of f(X, 0, . . . , 0) in
F[X]. Let h0(X) be such that:

g0(X) · h0(X) = f(X, 0, . . . , 0).

By the square freeness of f(X, 0, . . . , 0), we have that g0(X) and
h0(X) are relatively prime in F[X].

By definition of f̄ :

g0(X) · h0(X) = f̄(X, 0, A1, . . . , An).

Therefore, we have the following identity in the ring K[X,T ]:

g0(X) · h0(X) = f̄(X,T,A1, . . . , An) mod T.
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3.6. Factoring over the big field 2: Hensel lifting. We now
perform Hensel lifting, as in Lecture 7 of Sudan (1999). Define k
to be an integer such that

k > 2 log d + 1.

Let a0(X), b0(X) be univariate polynomials in F[X] such that
a0g0 + b0h0 = 1. Such a0(X), b0(X) can be efficiently found using
Euclid’s algorithm. We will now show how to use Hensel lifting to
lift the solution

g0(X) · h0(X) = f̄(X,T ) mod T,

(in K[X,T ]) to a solution

gk(X,T ) · hk(X,T ) = f̄(X,T ) mod T 2k

,

(in K[X,T ]).
To illustrate what the goal of the Hensel lifting step is, we give a

small example. Suppose f̄(X,T,A1, . . . , An) = X2−(1+TA1). We
can take g0(X) = X −1 and h0(X) = X +1, since g0(X) ·h0(X) =
X2−1, and X2−1 ≡ f̄(X,T,A1, . . . , An) mod T . Let us see what
Hensel lifting does to this. Let ζ(T ) = 1 + A1

2
T + . . . be the power

series of
√

1 + A1T . We have (X − ζ(T )) · (X + ζ(T )) = f̄(X,T ).
In light of this, it is instructive to note that k steps of Hensel
lifting will give gk(X,T ) = (X − ζ(T )) mod T 2k

, and hk(X,T ) =
(X + ζ(T )) mod T 2k

.
Below we state and prove the Hensel lifting lemma for our con-

text.

Lemma 3.4 (Lifting the solution). Given polynomials f, gi, hi, ai,
bi ∈ K[X,T ] such that

(a) f = gihi mod T 2i
,

(b) aigi + bihi = 1 mod T 2i
and

(c) gi is monic in X,

consider the following process:
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(i) mi+1 = f − gi · hi

(ii) ĝi+1 = gi + bi · mi+1

(iii) ĥi+1 = hi + ai · mi+1

(iv) vi+1 = (ĝi+1 − gi)/T
2i

(v) Write vi+1 = giqi+1 + ri+1, with degX(ri+1) < degX(gi), (by
the division alg. Lemma 2.8)

(vi) gi+1
def
=gi + T 2i · ri+1

(vii) hi+1
def
= ĥi+1 · (1 + T 2i

qi+1)

(viii) wi+1 = aigi+1 + bihi+1 − 1

(ix) ai+1
def
=ai − aiwi+1

(x) bi+1
def
=bi − biwi+1

Then

(a) f = gi+ihi+1 mod T 2i+1
,

(b) ai+1gi+1 + bi+1hi+1 = 1 mod T 2i+1
,

(c) gi+1 is monic in X. Also

(d) gi+1 = gi mod T 2i
, and

(e) hi+1 = hi mod T 2i
.

Moreover, gi+i and hi+1 are the unique polynomials (mod T 2i+1
)

satisfying properties (a), (c), (d) and (e).

Proof. Straightforward calculations show mi+1 = 0 mod T 2i
,

ĝi+1 · ĥi+1 = f mod T 2i+1
, ĝi+1 = gi mod T 2i

, and hi+1 = hi

mod T 2i
. However, ĝi+1 may not be monic in X. Steps 4-7 show

how to construct gi+1 and hi+1 with the same properties as ĝi+1

and ĥi+1, but now ensuring that the property of being monic in X
also holds.
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Observe that since gi is monic in X and degX(ri+1) < degX(gi),
then by the definition of gi+1 we get that gi+1 is also monic in X.
Moreover,

gi+1 = gi + T 2i · ri+1

= gi + T 2i · (vi+1 − giqi+1)

= gi + T 2i ·
(
(ĝi+1 − gi)/T

2i − giqi+1

)

= ĝi+1 − T 2i · giqi+1

= ĝi+1 − T 2i · ĝi+1qi+1 mod T 2i+1

= ĝi+1 · (1 − T 2i

qi+1) mod T 2i+1

From this and the definition of hi+1, it is easy to see that gi+1 ·
hi+1 = ĝi+1 · ĥi+1 = f mod T 2i+1

. Moreover, gi+1 = gi mod T 2i

and hi+1 = hi mod T 2i
. From the definitions of ai+1 and bi+1, it is

again easy to verify that ai+1gi+1 + bi+1hi+1 = 1 mod T 2i+1
. Also

gi+1 is monic in X, and degX(gi+1) equals degX(gi).
All it remains is to show that gi+1 and hi+1 are the unique

polynomials (mod T 2i+1
) satisfying properties (a), (c), (d) and (e).

If possible, let g′
i+1 and h′

i+1 be polynomials such that

1. g′
i+1 · h′

i+1 = f mod T 2i+1

2. g′
i+1 = gi mod T 2i

and h′
i+1 = hi mod T 2i

3. g′
i+1 is monic in X

Let g̃i+1 = g′
i+1 − gi+1 and let h̃i+1 = h′

i+1 − hi+1. Observe that

g̃i+1 = h̃i+1 = 0 mod T 2i
. Let u = ai+1g̃i+1 − bi+1h̃i+1. Then,

gi+1(1 + u) = gi+1(1 + ai+1g̃i+1 − bi+1h̃i+1)

= gi+1 + ai+1gi+1g̃i+1 − bi+1gi+1h̃i+1

= gi+1 + (1 − hi+1bi+1)g̃i+1 − bi+1gi+1h̃i+1 mod T 2i+1

= gi+1 + g̃i+1 − bi+1(hi+1g̃i+1 + gi+1h̃i+1) mod T 2i+1

= g′
i+1 − bi+1(hi+1g̃i+1 + g′

i+1h̃i+1) mod T 2i+1

since h̃i+1(gi+1 − g′
i+1) = 0 mod T 2i+1
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= g′
i+1 − bi+1(hi+1(g

′
i+1 − gi+1) + g′

i+1(h
′
i+1 − hi+1))

mod T 2i+1

= g′
i+1 − bi+1(f − f) mod T 2i+1

by expanding and

canceling

= g′
i+1 mod T 2i+1

Moreover, since gi+1 and g′
i+1 are both monic in X, and since

gi+1 = g′
i+1 = gi mod T 2i

, this implies that the X-degree of g′
i+1,

gi+1 and gi are all the same. Hence, considering the coefficient of
the leading monomial in X we obtain u = 0 mod T 2i+1

. Thus,
gi+1(1 + u) = g′

i+1 mod T 2i+1
implies that gi+1 = g′

i+1 mod T 2i+1
.

�

We are given g0, h0 in F[X]. Since f(X, 0, 0, . . . , ) is square free,
observe that g0 and h0 are relatively prime. Thus, we can obtain
a0(X), b0(X), univariate polynomials in X, such that a0g0+b0h0 =
1. We view g0, h0, a0, b0 as elements of F(A1, . . . , An)[X,T ].

We can iterate the above lemma for i = 0, 1, . . . , k − 1, to
obtain gk, hk ∈ F(A1, . . . , An)[X,T ], such that f = gkhk mod T 2k

,
and such that gk is monic in X, and gk = g0 mod T .

Claim 3.5. The pair gk, hk obtained above is the unique pair of
polynomials (mod T 2k

) such that (a) f = gkhk mod T 2k
, (b) gk is

monic in X, and (c) gk = g0 mod T .

Proof. If possible, let g′
k, h′

k be another distinct pair of poly-
nomials (mod T 2k

) satisfying (a), (b) and (c). Notice that (a), (b)
and (c) imply that it also must hold that h′

k = hk = h0 mod T .
For 0 ≤ i ≤ k, let g̃i = gk mod T 2i

, and h̃i = hk mod T 2i
,

g̃′
i = g′

k mod T 2i
, and h̃′

i = h′
k mod T 2i

. Consider the first i
for which the pair g̃i, h̃i is distinct from g̃′

i, h̃′
i. This pair would

contradict the uniqueness part of Lemma 3.4. �

Lemma 3.6 (Small circuits). The polynomials gk, hk lie in F[X,T,
A1, . . . , An]. Let D = max{d, 2k}, then we can express gk and hk as
the following: gk(X,T,A1, . . . , An) =

∑
j,j′≤D cjj′(A1, . . . , An)XjT j′
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and hk(X,T,A1, . . . , An) =
∑

j,j′≤D djj′(A1, . . . , An)XjT j′
. Fur-

thermore, there is a single arithmetic circuit C in the variables
A1, . . . , An where C computes all the coefficients cjj′ of gk and djj′

of hk. C has size at most size(f) + poly(n, k, d), degree at most
d2k, and can be computed in time at most poly(n, k, d).

Proof. Observe that none of the steps in Lemma 3.4 require
division in K (not even step 5 which uses the division algorithm
as described in Lemma 2.8). Thus, each mi, ĝi, ĥi, gi, hi, qi, ai, bi, vi,
qi, ri, wi actually lies in F[X,T,A1, . . . , An].

Let Ci be a circuit in the input variables A1, . . . , An that out-
puts each of the coefficients of XjT j′

for each of the polynomials
mi, ĝi, ĥi, gi, hi, qi, ai, bi, vi, qi, ri, wi that are computed at stage i.
Let si be the size of Ci, and di be the degree of Ci. Then, applying
Lemmas 2.1 and 2.8 when needed, we obtain a circuit Ci+1 that
outputs each of the coefficients of XjT j′

for each of the polyno-
mials mi+1, ĝi+1, ĥi+1, gi+1, hi+1, qi+1, ai+1, bi+1, vi+1, qi+1, ri+1, wi+1

that are computed at stage i + 1, where the size of Ci+1, si+1,
is at most si +poly(d), and the degree of Ci+1, di+1, is at most 2di.
Moreover, given Ci, Ci+1 can be computed in time poly(d, n).

Thus, by a simple induction argument, we obtain the bounds
in the lemma. �

3.7. Factoring over the big field 3: solving a linear sys-
tem. We have that f̄ = gk · hk mod T 2k

, where gk is monic, and
k > 2 log d + 1. Moreover, gk ∈ K[X,T ] can be expressed as
gk =

∑
i≤D,j≤D cij(A1, . . . , An)X iT j, where D = max{d, 2k}, and

there is a polynomial sized arithmetic circuit (in the input variables
A1, A2, . . . , An) computing the various cij.

Now consider the following homogeneous system of linear equa-
tions over the field F(A1, . . . , An) in the variables Rij, Sij:

(3.7)
∑

i<d,j≤d

RijX
iT j =

⎛

⎝
∑

i≤D,j≤D

cijX
iT j

⎞

⎠

⎛

⎝
∑

i≤D,j≤D

SijX
iT j

⎞

⎠ mod T 2k
.

This is a system of O(D2) homogeneous linear equations in O(D2)
unknowns.
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If this system of linear equations has a nontrivial solution, then
one such solution can be obtained by Lemma 2.6. We will soon
show how to use such a solution to obtain a factor of f̄ .

Claim 3.8. If f̄(X,T,A1, . . . , An) is reducible in F(A1, . . . , An)
[X,T ], then the linear system (3.7) has a nontrivial solution.

Proof. Suppose f̄ is reducible.
Recall that we have that f̄(X, 0, . . . , 0) is square free (see Sec-

tion 3.4), that

f̄(X, 0, A1, . . . , An) = g0(X, 0, A1, . . . , An) · h0(X, 0, A1, . . . , An),

that g0(X, 0, A1, . . . , An) ∈ F[X] is irreducible, and that g0(X, 0,
A1, . . . , An) and h0(X, 0, A1, . . . , An) are relatively prime. Let
c(X,T,A1, . . . , An) ∈ F(A1, . . . , An)[X,T ] be the unique irre-
ducible factor of f̄(X,T,A1, . . . , An) for which g0(X, 0, A1, . . . , An)
divides c(X, 0, A1, . . . , An). Uniqueness of c follows from the fact
that f̄(X, 0, . . . , 0) is square free. Let c′(X,T,A1, . . . , An) be such
that c · c′ = f̄ . Note that since f̄ is monic, thus by Lemma 2.3, so
are c and c′.

Let t0(X, 0, A1, . . . , An) be such that

g0(X, 0, A1, . . . , An) · t0(X, 0, A1, . . . , An) = c(X, 0, A1, . . . , An).

We want to apply Hensel lifting to this situation. Note that the
polynomials g0(X, 0, A1, . . . , An) and t0(X, 0, A1, . . . , An) are rela-
tively prime in K[X] (again, this follows since f̄(X, 0, A1, . . . , An),
and hence, c(X, 0, A1, . . . , An), is square free). Thus, there exists
ã0, b̃0 ∈ K[X] such that g0 · ã0 + t0b̃0 = 1 mod T . Thus, we can
perform the lifting, as given in Lemma 3.4. After k steps of lifting,
we get g∗

k, tk, ãk, b̃k ∈ K[X,T ] such that g∗
k is monic in X, and:

g∗
ktk = c mod T 2k

.

Thus:

(3.9) f̄ = gk · hk = g∗
k · tk · c′ mod T 2k

.
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Since gk, g
∗
k are both monic in X, and gk = g∗

k = g0 mod T , we con-
clude by Claim 3.5 that gk = g∗

k mod T 2k
. Hence, Equation (3.9)

is equivalent to

c · c′ = f̄ = gk · hk = gk · tk · c′ mod T 2k

.

In other words,

c′(c − tk · gk) = 0 mod T 2k

.

As c′ is monic in X it follows that

(c − tk · gk) = 0 mod T 2k

.

Therefore, ∑

i<d,j≤d

RijX
iT j = c,

and ∑

i≤D,j≤D

SijX
iT j = tk

gives a nontrivial solution to the linear system, as desired. �
We now see how to extract a factor of f̄ using any nontrivial

solution to the linear system (3.7).
Consider a nontrivial solution and define the polynomials:

r(X,T,A1, . . . , An) =
∑

i<d,j≤d

RijX
iT j,

s(X,T,A1, . . . , An) =
∑

i≤D,j≤D

SijX
iT j.

Claim 3.10. The polynomials r(X,T,A1, . . . , An) and f̄(X,T,
A1, . . . , An) have a nontrivial GCD in the ring F(T,A1, . . . , An)[X].

Proof. Let u(X,T,A1, . . . , An) ∈ F[A1, . . . , An, T ] be the resul-
tant of r(X) and f̄(X). Then, the T -degree of u is at most
2d2. Moreover, by Lemma 2.4, there exist v(X,T,A1, . . . , An),
w(X,T,A1, . . . , An) such that:

v · r + w · f̄ = u.
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Thus:

v · r + w · f̄ = u mod T 2k

v · gk · s + w · gk · hk = u mod T 2k

gk · (v · s + w · hk) = u mod T 2k

.

Recall that the right-hand side is a polynomial in F[A1, . . . , An, T ]
and thus does not depend on the variable X. However, the poly-
nomial gk appearing on the left hand side is monic in the variable
X. The only way this equation can hold is if v · s + w · hk equals
0 mod T 2k

, and thus, u = 0 mod T 2k
. By our bound on the T -

degree of u, and since 2d2 < 2k,3 we get that u is identically 0.
Thus, by Lemma 2.4, r(X) and f̄(X) have a nontrivial GCD in
F(T,A1, . . . , An)[X]. �

3.8. Factoring over the big field 4: Computing the GCD.
Let h̄(X,T,A1, . . . , An) be the monic GCD of the polynomials r(X)
and f̄(X) in F(T,A1, . . . , An)[X]. A small arithmetic circuit (i.e.,
of size size(f) + poly(d, n)) for the coefficient of each monomial
X i in h̄ can be computed using Lemmas 2.1 and 2.9. By Gauss’
Lemma (Lemma 2.3), h̄(X,T,A1, . . . , An) lies in K[X,T ]. Thus,
by Corollary 3.2, h(X,Y1, . . . , Yn) := h̄(X, 1, Y1, . . . , Yn) satisfies

h(X,Y1, . . . , Yn) ∈ F[X,Y1, . . . , Yn],

and

h(X,Y1, . . . , Yn) | f(X,Y1, . . . , Yn) in F[X,Y1, . . . , Yn].

3.9. Obtaining a complete factorization. So far, we only
found a nontrivial factor h of f . To obtain a complete factor-
ization, we compute a circuit for f, h, f/h. By our result on the
complexity of h and Lemma 2.8, we can achieve this with a circuit
of size size(f)+poly(d, n). Furthermore, both h and f/h are monic
and square free. Thus, we can continue to factor them until we are
left with irreducible factors. At each step of the factorization, we

3It is here where we use our choice k > 2 log d + 1.
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can check whether we have found a trivial factor by running the
PIT algorithm with the original polynomial. For example, checking
whether f = h will tell us whether f is irreducible or not, etc.

Combining all steps above, we obtain a proof of Theorem 1.1.

4. Open Questions

We conclude by listing some open problems.

1. If Fp� has characteristic p, and g(X1, . . . , Xn) ∈ Fp� [X1, . . . , Xn]
is a polynomial of low degree such that gp has a small arithmetic
circuit, then does g have a small arithmetic circuit? If so, then
in the theorem of Kaltofen, which states that factors of small
arithmetic circuits have small arithmetic circuits (with possibly
a pth root gate on top), one would no longer require a pth root
gate on top.

2. One can consider the problem of PIT for polynomial size cir-
cuits without a polynomial bound on the degree of the circuits.
How does this problem relate to the problem of PIT with a
polynomial bound on the degree of the circuits? What can be
said about the problem of factorization of polynomials com-
puted by polynomial size circuits (without a polynomial bound
on their degree)? Can this be done efficiently? Do all the
factors have polynomial size circuits?

3. Suppose a multivariate polynomial f can be computed by a
small formula/algebraic branching program. Does it follow
that all the factors of f can be computed by small formu-
las/algebraic branching programs? What if f is computed by
a small depth circuit?

4. Can factorization of univariate polynomials of degree d over the
finite field Fp� be done deterministically in time poly(d, � log p)?
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