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Abstract. A tropical (or min-plus) semiring is a set Z (or Z ∪ {∞})
endowed with two operations: ⊕, which is just usual minimum, and �,
which is usual addition. In tropical algebra, a vector x is a solution to
a polynomial g1(x) ⊕ g2(x) ⊕ · · · ⊕ gk(x), where the gi(x)s are tropical
monomials, if the minimum in mini(gi(x)) is attained at least twice. In
min-plus algebra solutions of systems of equations of the form g1(x) ⊕
· · · ⊕ gk(x) = h1(x) ⊕ · · · ⊕ hl(x) are studied.
In this paper, we consider computational problems related to tropical
linear system. We show that the solvability problem (both over Z and
Z∪{∞}) and the problem of deciding the equivalence of two linear sys-
tems (both over Z and Z ∪ {∞}) are equivalent under polynomial-time
reductions to mean payoff games and are also equivalent to analogous
problems in min-plus algebra. In particular, all these problems belong
to NP ∩ coNP. Thus, we provide a tight connection of computational
aspects of tropical linear algebra with mean payoff games and min-plus
linear algebra. On the other hand, we show that computing the dimen-
sion of the solution space of a tropical linear system and of a min-plus
linear system is NP-complete.

Keywords. Tropical linear systems, min-plus linear systems, tropical
prevarieties, min-plus prevarieties, mean payoff games.
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1. Introduction

A min-plus or tropical semiring is defined by the set K endowed
with two operations ⊕ and �. For K, we can take Z, R, Z∪{+∞},
R ∪ {+∞} and so on. In this paper, we mainly consider the cases
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of Z and Z∞ = Z ∪ {+∞}. Our results also extend to the cases
of Q and Q∞ = Q ∪ {∞}. The operations tropical addition ⊕ and
tropical multiplication � are defined in the following way:

x ⊕ y = min{x, y}, x � y = x + y.

The tropical linear system associated with a matrix A ∈ Km×n

is the system of expressions

(1.1) min
1≤j≤n

{aij + xj}, 1 ≤ i ≤ m,

or, to state it the other way, the vector A � x for x = (x1, . . . , xn).
We say that x 	= (∞, . . . ,∞) is a solution to the system (1.1) if for
every row 1 ≤ i ≤ m, there are two columns 1 ≤ k < l ≤ n such
that

aik + xk = ail + xl = min
1≤j≤n

{aij + xj}.

For example, consider the matrix

A =

(
0 1 0
1 1 0

)
.

Clearly x = (0,−1, 0) is a solution to the corresponding tropical
linear systems. Also if we add some positive number to the first
coordinate of this solution, we will still have a solution. That is,
x = (t,−1, 0) is a solution for any t ≥ 0. Finally, note that if some
vector (x1, x2, x3) is a solution, then the vector (x1+t, x2+t, x3+t)
is also a solution. It is not hard to see that there are no other
solutions to this system.

Following the notation of Richter-Gebert et al. (2003), we call
the set of solutions of a tropical linear system a tropical linear pre-
variety. It follows from the analysis of Richter-Gebert et al. (2003)
that this set is a union of polyhedra of possibly different dimen-
sions (this is one of the reasons for using pre- in “prevariety”).
The dimension of a tropical prevariety is the largest dimension of
a polyhedron contained in it.

The (two-sided) min-plus linear system associated with a pair
of matrices A,B ∈ Km×n is the system

(1.2) min
1≤j≤n

{aij + xj} = min
1≤j≤n

{bij + xj}, 1 ≤ i ≤ m.
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We note that for all systems, we consider it is not essential
which of the functions min or max we use. The whole theory
remains the same.

The two branches of algebra related to (min, +) structure—tro-
pical algebra and min-plus algebra—have different origins. Tropi-
cal algebra had arisen in algebraic geometry (see the surveys Iten-
berg et al. 2007; Sturmfels 2002) and min-plus algebra had arisen
in combinatorial optimization and scheduling theory (see recent
monograph Butkovič 2010). Thus, these two branches developed
mostly independently in parallel. In this paper, we are interested
in computational aspects of these algebras. Naturally, the most
basic and important computational problems concern linear alge-
bra. In the case of classical algebra, the Gauss algorithm solves lin-
ear systems in polynomial time. In the case of tropical semirings,
things turn out to be more complicated and no polynomial-time
algorithm is known either for tropical linear systems or for min-
plus linear systems. For the tropical case, it is known, however,
that the solvability problem is in NP ∩ coNP. Pseudopolynomial
algorithms (Akian et al. 2012; Grigoriev 2013) are known, that is
the algorithms with complexity polynomial in the size of a system
and in the absolute values of its coefficients. Also it is known that
the problem reduces to the well-known and long-standing problem
mean payoff games (Akian et al. 2012) (see Section 2 for the defini-
tion). Concerning the algorithms, Grigoriev (2013) has constructed
an algorithm which is pseudopolynomial and polynomial for con-
stant size matrices, that is at the same time, its running time is
bounded by poly(m,n)M log M and poly(2nm, log M), where n is
the number of columns, m is the number of rows, and M is the
largest absolute value of matrix entries. Concerning the depen-
dence on n and m in the second upper bound, the best refinement
for Grigoriev’s algorithm is the roughly

(
m+n

n

)
upper bound which

was proven by Davydow (2012). It was also shown in Davydow
(2012) that this upper bound is tight for Grigoriev’s algorithm.
Later Davydow (2013) constructed another algorithm which works
in time

(
m
n

)
poly(n,m, log M).

We note that the hardness of the solvability problem for trop-
ical linear systems lies in the case when the number of rows m
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is substantially greater than the number of columns n. Indeed,
if m < n, then the system always has a solution. If m ≤ n + c
for constant c, then the solvability can be checked in polynomial
time, which follows for example from the upper bound of Davydow
(2013), mentioned above. In the same paper, it was also shown
that for m ≤ n + c, we not only can check the solvability, but also
can find a solution in polynomial time, if it exists.

More is known about the solvability problem for min-plus linear
systems. In addition to containment in NP∩coNP and pseudopoly-
nomial algorithms, as for tropical systems, it was proven (Akian
et al. 2012; Bezem et al. 2010) that the problem is polynomial-time
equivalent to mean payoff games. Note that the latter paper deals
with systems of min-plus inequalities, but they are equivalent to
systems of min-plus equations, see the preliminaries section.

The first result of our paper is that the solvability problem for
tropical linear systems is also equivalent to mean payoff games.
Thus, on the one hand, we characterize the complexity of the solv-
ability problem of tropical linear systems and on the other hand
give a new reformulation of mean payoff games.

In particular, our result means that the solvability problem for
tropical linear systems is equivalent to the solvability problem for
min-plus linear systems. Thus, we establish a tight connection
between two branches of algebra over the operations min and +.
Also from our reduction, the translation of Grigoriev’s algorithm
to mean payoff games follows. We are not aware of a “natural”1

algorithm for mean payoff games with similar complexity bounds as
in Grigoriev (2013), see above. This indicates that this translated
algorithm might be essentially different from known algorithms for
mean payoff games.

1 We note that if we have two algorithms for some problem with time upper
bounds t1(n) and t2(n), where n is the size of the input, then we can easily
construct an algorithm with the time bound min(O(t1(n)), O(t2(n))) simply
running both algorithms in parallel and stopping when one of them stops.
Thus, we can construct an algorithm with the same time upper bounds as
Grigoriev’s algorithm from two different known algorithms for mean payoff
games. However, this algorithm will hardly be natural and most likely will
essentially differ from Grigoriev’s algorithm.
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Next, we study other problems related to tropical linear sys-
tems: the problem of equivalence of two given tropical linear sys-
tems and the problem of computing the dimension of a tropical
prevariety. The former problem turns out to be also equivalent
to mean payoff games. The analogous statement for min-plus lin-
ear systems is also true and follows from the known results (see
Lemma 3.13 below).

Interestingly, the dimension problem of the tropical prevari-
ety turns out to be NP-complete. More precisely we prove NP-
completeness of the following problem: given an m × n matrix A
and a number k, decide whether the dimension of the tropical pre-
variety of the tropical linear system corresponding to A is at least
k. We also prove the analogous result for the case of min-plus
linear systems.

All results above we prove for both Z and Z∞ domains (there
is no obvious translation between these two cases).

The techniques of our proofs are mostly combinatorial. For
equivalence of the solvability problem for tropical linear systems
to mean payoff games, we use the result of Möhring et al. (2004)
in which the equivalence of mean payoff games to the max-atom
problem (MAP for short) was shown (see Section 2 for definitions).
This result was already used in Bezem et al. (2010) to show that
the solvability problem of min-plus linear systems is equivalent to
mean payoff games (for the case of Z)—it was shown there that
the solvability problem for min-plus linear systems is equivalent to
MAP. For our result, we show that the solvability problem for
tropical linear systems is equivalent to MAP. The main difficulty
with the tropical case is that MAP is easier to use for studying
min-plus structures than for the tropical ones. Indeed, a MAP

instance is very similar to the system of min-plus linear inequali-
ties, and the reductions between them are rather direct and simple.
The systems of tropical linear equations, however, look different,
and it seems that there is not such a simple connection. Another
approach to the solvability problem of min-plus linear systems was
taken in Akian et al. (2012), where a very nice and clear direct con-
nection between min-plus linear systems and mean payoff games
was constructed. The authors of that paper also considered a simi-
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lar analysis for tropical linear systems, but only proved a reduction
in one direction: from the solvability problem of tropical linear sys-
tems to mean payoff games. Once again, since the inner structure
of the tropical equations is different, it seems that there is not such
a simple direct connection to mean payoff games.

For the dimension problem of tropical linear systems, we give
a reduction from the vertex cover problem. The main technical
ingredient here is a combinatorial characterization of the dimension
of the tropical prevariety of a given tropical linear system.

In this paper, we deduce some equivalences between purely
tropical computational problems through the connection to mean
payoff games. We note that in the technical report Grigoriev &
Podolskii (2012) preceding this paper we also gave direct (not
referring to mean payoff games) combinatorial proofs of reductions
between some of these problems.

We also mention other complexity results in min-plus algebra.
First of all, it was shown by Theobald (2006) that if we do not
restrict ourselves to linear systems and consider systems of trop-
ical polynomial equations of arbitrary degree (and even of degree
2), then the solvability problem for such systems is NP-complete.
Also Kim and Roush have shown that computing both tropical
rank (Kim & Roush 2005) of a matrix and Kapranov rank (Kim
& Roush 2006) of a matrix is NP-complete.

The rest of the paper is organized as follows. In Section 2, we
give definitions and state the facts we need on the tropical linear
systems. In Section 3, we prove the result on the equivalence of the
solvability problem for tropical linear systems and of mean payoff
games. We also deduce the result on the equivalence problem there.
In Section 4, we discuss a relation between the dimension of the
solution space of a tropical linear system and the known notions
of matrix rank in min-plus algebra. In Sections 5 and 6, we prove
NP-completeness of the dimension of a tropical prevariety: In the
former, we give a combinatorial characterization of the dimension,
and in the latter, we use it to prove NP-completeness.
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2. Preliminaries

Throughout the paper for an integer n, we denote by [n] the
set {1, 2, . . . , n}. By ≤p, we denote Karp reductions (polynomial
time many to one reductions). We also consider Cook reductions
(polynomial-time Turing reductions). See Arora & Barak (2009)
for the definitions. When we do not specify the type of reduction,
we mean Karp reduction.

2.1. Mean payoff games. In an instance of a mean payoff
game, we are given a directed graph G = (V,E), whose vertices
are divided into two disjoint sets V = V1 � V2, some fixed initial
node v ∈ V1 and a function w : E → Z assigning weights to the
edges of G (see Figure). In the beginning of the game, a token is
placed on the initial vertex v. At each turn, one of the two players
moves the token to some other node of the graph. Each turn of
the game is organized as follows. If the token is currently in some
node u ∈ V1, then the first player (Alice) can move it to any node
w such that (u,w) ∈ E. If, on the other hand, u ∈ V2, then the
second player (Bob) can move the token to any node w such that
(u,w) ∈ E. The game is infinite, and the process of the game can
be described by a sequence of nodes v0, v1, v2, . . . which the token
visits. Note that v0 = v. The first player wins the game if

(2.1) lim inf
n→∞

1

t

t∑
i=1

w(vi−1, vi) > 0.

The corresponding mean payoff game problem is to decide whether
the first player has a winning strategy.

In the game on the figure, if the game starts in the upper left
vertex, then for Alice, it is not reasonable to move to the right
upper vertex since Bob will go back and win one point overall. If
instead Alice moves to the middle vertex on the right, then it is
easy to see that she will win whatever Bob does. So in this game,
Alice wins.

For more information on mean payoff games, see the survey
Klauck (2002). It is known that both of the players have an opti-
mal positional strategy, that is, strategies depending only on the
current position of the token and not on the history. From this,
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in particular, it follows that the optimal value of the game (the
largest left-hand side of (2.1) that the first player can achieve) is a
rational number with the denominator polynomial in the number
of vertices of G.

Also it is clear that the negated mean payoff game problem, that
is the problem whether the second player has a winning strategy,
is Karp reducible to mean payoff games. Indeed, just change the
roles of the players and add the new initial vertex v′ with no ingoing
edges and one outgoing edge (v′, v) to pass the move to the second
player. The problem that the value of the game might be zero can
be handled by changing all weights to small rational numbers (after
that the value of the game is always nonzero) and multiplying them
by the denominator to make them integer.

During our reductions, sometimes we will be in the situation
that we reduce some problem to solution of several instances of
another problem equivalent to mean payoff games, that is the
input to the original problem will be a “yes” instance if all inputs
constructed during the reduction are “yes” inputs of the problem
equivalent to mean payoff games. In this case, we can actually sub-
stitute several inputs by one since we can do this for mean payoff
games. Indeed, we can just consider the graph consisting of pair-
wise unconnected copies of all graphs corresponding to the several
inputs and we have added the node belonging to the second player
from which he can reach all starting nodes of all connected com-
ponents and add one more node to pass the first move to the first
player.
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2.2. Tropical and min-plus linear systems. Consider an
arbitrary tropical linear system (1.1). Note that its tropical pre-
variety S is closed under tropical scalar multiplication, or, to state
it the other way, S = S + Z�1, where by �1, we denote the vector
of all ones. Thus, we can consider the set of solutions of (1.1)
as a set in the projective space TP

n−1 = R
n/〈�1〉R. In this paper,

we will alternatively consider the solution prevariety in the spaces
R

n and TR
n−1 depending on which one is more convenient in the

current argument. Note that in the definition of the dimension of
the tropical prevariety, we consider the prevariety in the space R

n.
It is convenient also to introduce the projective dimension of the
tropical prevariety to be just the dimension of the prevariety in the
space TR

n−1. Clearly, the projective dimension is always smaller
by one than the usual dimension.

Consider some matrix A ∈ Z
m×n. Note that adding some num-

ber to all entries of some row of A does not change the tropical
prevariety of system (1.1). Thus, in the course of the proofs, we
can freely add and subtract some number from some row of the
matrix under consideration.

Let us add the same vector �v ∈ Z
n to all rows of A and denote

the resulting matrix by A�v. Then the tropical prevariety of A�v is
a linear translation of the tropical prevariety of A. Since many
important properties survive after translations, we will apply this
kind of transformations to matrices.

Finally, let us multiply all entries of the matrix by the same
constant c ∈ N. Note that all vectors in the tropical prevariety are
also multiplied by the same constant. Sometimes we will perform
this operation also. In particular, this observation implies that all
our results are also true for the domains Q and Q ∪ {∞}.

All observations above in this subsection are also true for min-
plus systems of equations.

Besides the systems of min-plus linear equations, we can con-
sider the systems of min-plus linear inequalities. The definition is
very similar: the (two-sided) min-plus linear system of inequalities
associated with a pair of matrices A,B ∈ Km×n is the system

(2.2) min
1≤j≤n

{aij + xj} ≤ min
1≤j≤n

{bij + xj}, 1 ≤ i ≤ m.
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It turns out that min-plus linear systems of equations and min-
plus linear systems of inequalities are essentially the same. More
precisely, given a min-plus system of linear equations, it is easy to
construct an equivalent system of min-plus linear inequalities and
vice versa. Indeed, each min-plus linear equation L1(x) = L2(x) is
equivalent to the pair of min-plus inequalities L1(x) ≥ L2(x) and
L1(x) ≤ L2(x). On the other hand, the min-plus linear inequality
L1(x) ≤ L2(x) is equivalent to the min-plus equation L1(x) =
min(L1(x), L2(x)). It is not hard to see that the last equation can
be transformed to the form of a min-plus linear equation. These
simple observations immediately give polynomial-time reductions
between min-plus linear systems of equations and inequalities for
all problems we consider. Thus, in this paper, we will switch freely
between min-plus linear equations and min-plus linear inequalities
and trivially all complexity results are true for both equations and
inequalities.

Consider a tropical linear system with the matrix A ∈ Z
m×n

and assume that aij ≥ 0 for all i ∈ [m], j ∈ [n] (we can reduce
any matrix to this form adding vectors c · �1 to the rows). Assume
that the entries of the matrix are bounded by some value M , that
is aij ≤ M .

We will use the following lemma proven in Grigoriev (2013)
and bounding the size of the smallest solution of the tropical linear
system.

Lemma 2.3 (Grigoriev 2013). If the system has a solution
(x1, . . . , xn), then it has a solution (x′

1, . . . , x
′
n) satisfying 0 ≤ x′

j ≤
M for all 1 ≤ j ≤ n.

In this paper, we consider the following problems.

◦ TropSolv. In this problem we are given an integer matrix
A ∈ Z

m×n. The problem is to decide whether the correspond-
ing tropical system (1.1) is solvable.

◦ TropEquiv. In this problem we are given two integer matri-
ces A ∈ Z

m×n and B ∈ Z
k×n. The problem is to decide

whether the corresponding tropical systems (1.1) over the
same set of variables are equivalent.
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◦ TropImpl. In this problem we are given an integer matrix
A ∈ Z

m×n and a vector l ∈ Z
n. The problem is to decide

whether the tropical system (1.1) corresponding to A implies
the tropical equation corresponding to l.

◦ TropDim. In this problem we are given an integer matrix
A ∈ Z

m×n and a number k ∈ N. The problem is to decide
whether the dimension of the tropical prevariety correspond-
ing to the tropical system (1.1) is at least k.

For all problems above, there are also variants of them over Z∞.
We denote them by the subscript ∞, for example, in the problem
TropSolv∞, we are given a matrix A ∈ Z

m×n
∞ and the problem

is to decide whether the corresponding tropical system over Z∞
is solvable. For local dimension of tropical prevariety (that is the
dimension of the neighborhood of some point) over Z∞ in a point
with some infinite coordinates, we consider just the dimension over
finite coordinates only.

Recall that when we consider systems over Z∞, we do not allow
solutions consisting only of infinities.

Next, we show some simple relations between the Z and Z∞
cases.

Lemma 2.4. (i) TropSolv ≤p TropSolv∞;

(ii) TropImpl ≤p TropImpl∞;

(iii) TropDim ≤p TropDim∞.

Proof. For the first reduction, if we are given a tropical linear
system with coefficients in Z, then it is solvable over Z iff it is
solvable over Z∞. For the nontrivial direction of this statement, if
there is a solution over Z∞ in which some coordinates are infinite,
we can just substitute them by large enough finite numbers.

For the second reduction, if we are given a tropical linear system
and a tropical linear equation over Z, consider them over Z∞. If
there was no implication over Z, that is there is a solution over Z

of the system, which is not a solution of the equation, then clearly
the same is true over Z∞, and there is also no implication. If there
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is no implication over Z∞, then there is a solution over Z∞ of
the system, which is not a solution of the equation. Substituting
infinities in the solution by large enough constants, we get that
there is also no implication over Z.

For the last reduction, again if we have a tropical linear sys-
tem with coefficients in Z and we have some solution with infinite
coordinates then if we substitute infinities by large enough finite
numbers, the local dimension at this point does not decrease. �

2.3. Max-atom problem. For the proof of our first result, we
need an intermediate max-atom problem or MAP. In this problem,
we are given a system of m inequalities in variables x1, x2, . . . , xn.
The system is given by integers a1, . . . , am, and each inequality has
the form

(2.5) max{xj1 , xj2} + aj ≥ xj3 ,

where j1, j2, j3 ∈ [n]. The problem is to decide whether there is
a solution to the system (over integers). It is known that this
problem is equivalent to mean payoff games Möhring et al. (2004).

3. Solving tropical systems is equivalent to
mean payoff games

In this section, we prove that the solvability problem for tropical
linear systems is equivalent to mean payoff games. For this, we
show that TropSolv is equivalent to MAP. First, we prove the
following simple lemma.

Lemma 3.1. TropSolv reduces in polynomial time to the solv-
ability problem for a system of min-plus equations. Moreover, for a
given tropical linear system, we can effectively construct a system
of min-plus equations over the same set of variables and with the
same set of solutions. The same is true for the domain Z∞.

Remark 3.2. This lemma is standard, and the arguments of this
type appears frequently in this area. We provide a proof for the
sake of completeness.
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Proof. Let A be some tropical linear system. For each of its
equations, we construct a system of min-plus equations over the
same set of variables which is equivalent to this tropical equation.

For this, let

(3.3) min{x1 + a1, x2 + a2, . . . , xn + an}

be one of the rows of the system A. For notational simplicity, we
denote yi = xi + ai for i = 1, . . . , n. Then we can rewrite (3.3) as
min{y1, . . . , yn}.

It is easy to see that the fact that the minimum in the expression
above is attained at least twice is equivalent to the fact that for
any i = 1, . . . , n it is true that

(3.4) min{y1, . . . , yn} = min{y1, . . . , yi−1, yi+1, . . . , yn}.

And each of these equations is in turn equivalent to the equation

min{y1, . . . , yi−1, yi, yi+1, . . . , yn}
= min{y1, . . . , yi−1, yi + 1, yi+1, . . . , yn}.

The last equation is already in min-plus form, and thus, we have
that any tropical equation is equivalent to a system of min-plus
equations. To get a min-plus system equivalent to the tropical
system, we just unite the min-plus systems for all equations of A.

Note that exactly the same analysis works for the case Z∞. �

Remark 3.5. It was proven in Akian et al. (2012, Corollary 3.7)
that the solvability problem for systems of min-plus inequalities
(and thus the same problem for the systems of equations) over
both Z and Z∞ is equivalent to mean payoff games. It was also
proven there that TropSolv and TropSolv∞ reduces to mean
payoff games. The lemma above shows, in particular, that the
latter result follows easily from the former.

As a corollary of Lemma 3.1, we have a reduction from
TropSolv to MAP.

Corollary 3.6. TropSolv ≤p MAP.
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Proof. First, by Lemma 3.1, we can reduce TropSolv to the
solvability problem for min-plus linear systems of equations. Mul-
tiplying all equations of the system by −1 and substituting −xi by
xi for all i, we can easily reduce min-plus linear systems of equa-
tions to max-plus linear systems of equations. Finally, it was shown
in Bezem et al. (2010, Theorem 1) that the solvability problem for
max-plus systems of linear equations is polynomial-time equivalent
to MAP. �

Now we proceed to the reduction in the reverse direction. For
this, we will need the following technical lemma.

Lemma 3.7. Let k ≤ n and consider an arbitrary vector �a =
(a1, . . . , ak) ∈ Z

k. Then for any C ∈ Z, there is a tropical lin-
ear system A ∈ Z

m×n, where m = n − k + 1, such that

◦ for any i ∈ [m] and any j ∈ [k] we have aij = aj;

◦ for any i ∈ [m] and any j ∈ [n]\[k] we have aij ≥ C;

◦ for any solution of A and for any row the minimum is attained
at least twice in the �a-part of the row.

Proof. To prove the lemma, we will introduce several tropi-
cal equations and the system A will be the union of them. First
consider the row corresponding to the following vector

l0 = (�a, C + 1, . . . , C + 1),

where l0 ∈ Z
n. Next, for each i = k + 1, . . . , n let

li = l0 − ei = (�a, C + 1, . . . , C, . . . , C + 1),

where ei ∈ Z
n is a vector with 1 in the i-th coordinate and 0 in all

other coordinates. We let A be the system consisting of equations
l0, lk+1, . . . , ln.

To make following the argument below easier, we provide an
example of the system A with n=6, k=3, �a=(1, 2, 3) and C=9:⎛

⎜⎝
⎞
⎟⎠

1 2 3 10 10 10
1 2 3 9 10 10
1 2 3 10 9 10
1 2 3 10 10 9

.
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Suppose, by way of contradiction, that A has a solution such
that in some row li, there is at most one minimum in the �a-part.
This means that in this row, there is a minimum in a column j
such that k + 1 ≤ j ≤ n. If j − k 	= i, consider the row lj−k. It
is easy to see that this row contains exactly one minimum (in the
column j) and this is the contradiction. Thus, the minimum in
the row li outside of the �a-part can be situated only in the column
i+ k (this corresponds to one of the 9-entries in the example) and,
in particular, i 	= 0. But since the minimum is attained at least
twice, there is at least one minimum in the �a-part of li. Thus,
there is exactly one minimum in the �a-part of the row li and one
more minimum in the column i + k. Now consider the row l0.
Clearly, there is exactly one minimums in this row, and this gives
a contradiction. �

To prove the desired reduction, we will make use of the following
lemma bounding the size of the minimal solution of MAP which
was proven in Bezem et al. (2010).

Lemma 3.8 (Bezem et al. 2010). Let M be a MAP system over
variables x1, . . . , xn and let C be the sum of absolute values of all
constants in M . If M is solvable, then it has a solution �x such that
maxi∈[n]{xi} − mini∈[n]{xi} ≤ C.

Now, we are ready to prove the reduction in the backwards
direction.

Theorem 3.9. MAP ≤p TropSolv.

Proof. Suppose we are given a system A of inequalities of the
form max{x, y} + k ≥ z. First multiply all inequalities by (−1)
and make a transformation of variables x �→ (−x). Then we have
a system B of inequalities of the form min{x, y} + k ≤ z which is
solvable if and only if the initial system is solvable. We denote by
C the sum of absolute values of all constants in B.

Now, we are ready to construct a tropical linear system T . Let
us denote the variables of B by x1, . . . , xn. Our tropical linear sys-
tem for each variable xi of B will have two corresponding variables
xi and x′

i. We would like these variables to be equal in any solution
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of T . This can be easily achieved by means of Lemma 3.7. For this,
let in this lemma k = 2, �a = (0, 0), C = C and apply it to the
variables xi, x

′
i. As a result, we get the system Ti which guarantees

that in each solution the variables xi and x′
i are equal. We include

systems Ti for all i into the system T .
Next, we have to guarantee that for any inequality min{x, y}+

k ≤ z of B, where x, y, z are some variables among x1, . . . , xn, the
same inequality is true for the solutions of T . Since we already
know that the variables xi and x′

i are equal for each solution of T ,
it suffices to say that

min{x, x′, y, y′, z − k, z′ − k + 1}
is attained at least twice. However, we have to add other variables
to this tropical polynomial. This can be done again by Lemma 3.7.
For this let in this lemma k = 6, �a = (0, 0, 0, 0,−k,−k+1), C = C,
apply the lemma to the variables x, x′, y, y′, z, z′ and include the
resulting system into the system T .

Now the construction of T is finished, and we have to show that
it is solvable if and only if B is solvable. Assume first that T has a
solution. Then it follows from the construction of T that for each
i = 1, . . . , n the variables xi and x′

i are equal. And from this and
again from the construction of T , it follows that each inequality of
B is true.

On the other hand, suppose that B is satisfiable. Then, by
Lemma 3.8, there is a solution �x such that

max
i∈[n]

{xi} − min
i∈[n]

{xi} ≤ C.

Since we can add any constant to all coordinates of �x, we can
assume that mini∈[n]{xi} = 0 and thus for all i we have 0 ≤ xi ≤ C.
For the solution of T , let xi be the same as in the solution of B
and let x′

i = xi for all i. It is left to check that this vector is a
solution of T . We can check it for all rows separately. If a row is
in Ti for some i, then clearly the minimum is attained on xi and x′

i

due to the choice of the constant C in application of Lemma 3.7.
And if a row came from some inequality min{x, y} + k ≤ z of B,
then clearly the minimum is attained either on x and x′, or on y
and y′. �
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From Theorem 3.9 and Corollary 3.6 we conclude the following.

Corollary 3.10. The problem TropSolv is polynomially equ-
ivalent to mean payoff games.

Moreover, we can also conclude the same for the problem
TropSolv∞.

Corollary 3.11. The problem TropSolv∞ is polynomially
equivalent to mean payoff games.

Proof. It was proven in Akian et al. (2012) that TropSolv∞
is Karp reducible to mean payoff games (see also the remark
after Lemma 3.1). Theorem 3.9 gives us that mean payoff games
can be reduced to TropSolv. Finally, TropSolv reduces to
TropSolv∞ by Lemma 2.4 and thus all three problems are equiv-
alent. �

In particular, it follows that the problems TropSolv and
TropSolv∞ are polynomial-time equivalent. But the given proof
of equivalence of these two purely tropical problems rather unnatu-
rally goes through mean payoff games. In the preliminary version of
this paper Grigoriev & Podolskii (2012), we give a direct combina-
torial proof of this equivalence (and also of analogous equivalences
for min-plus systems).

One more corollary of our analysis concerns the equivalence and
implication problems for tropical linear systems.

Corollary 3.12. The problems TropEquiv, TropEquiv∞
are equivalent to mean payoff games under Karp reductions. The
problems TropImpl and TropImpl∞ are equivalent to mean pay-
off games under Cook reductions.

Proof. It is easy to see that the problem TropEquiv is equiva-
lent to the problem TropImpl (under a Cook reduction). Indeed,
suppose we are given a tropical system A and a tropical equation l.
Deciding whether l follows from A is equivalent to deciding whether
systems A and A∪{l} are equivalent. On the other hand, if we need
to check whether two systems A and B are equivalent, it is enough
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to check whether each equation of the second system follows from
the first system and vise versa. Thus, we have that TropEquiv

is equivalent to TropImpl. The same argument gives us also that
TropEquiv∞ is equivalent to TropImpl∞. Note that the same
argument works also for min-plus systems.

Next, it is easy to construct the reduction from TropSolv to
TropEquiv. Indeed, to check whether some system is solvable, it
is enough to check whether it is equivalent to some fixed nonsolv-
able system.

The reduction of TropImpl to TropImpl∞ is in Lemma 2.4.
Thus, it is only left to show that TropEquiv∞ reduces to mean

payoff games. Assume that we are given two tropical systems A1

and A2 and we have to check whether they are equivalent. First
by Lemma 3.1 for each of the systems, we construct the system of
min-plus equations with the same solution sets. By the argument
in Preliminaries, each system of min-plus equations is equivalent to
a system of min-plus inequalities. Then we reduce the equivalence
problem for the systems of inequalities to the implication problem
for inequalities by the same argument as above. And finally we
can apply the result of Allamigeon et al. (2011) stating that the
implication problem for min-plus inequalities over Z∞ is equivalent
to mean payoff games.

Keeping in mind the discussion in the preliminaries, it is easy to
see that these reductions can be transformed into Karp reductions
for the case of the problems TropEquiv and TropEquiv∞. �

It is not hard to see that analogous results for min-plus linear
systems follow along the same lines from known results.

Lemma 3.13. The equivalence and implication problems for min-
plus systems of linear equations over both Z and Z∞ are equivalent
to mean payoff games.

Proof. The same proof as for Corollary 3.12 works, only we do
not need Lemma 3.1 here.

The result on the implication problem for min-plus systems of
linear inequalities over Z∞ was already proven in Allamigeon et al.
(2011). �
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In the preprint version of this paper Grigoriev & Podolskii
(2012), we give direct combinatorial proofs of equivalence between
solvability and equivalence problems for both min-plus and tropical
linear systems (both over Z and Z∞).

4. Dimension and the tropical rank

In the case of classical linear systems, the dimension of the solution
space is closely related to the rank of the matrix. The natural
idea is that maybe the dimension of the tropical prevariety is also
related to some “rank” of the tropical matrix and NP-completeness
can be derived from the completeness for this “rank.”

There are three widely considered notions of the “rank” in trop-
ical algebra studied in the literature: Barvinok rank, Kapranov
rank and tropical rank. We refer the reader to the paper Develin
et al. (2005) for the definitions and further information on these
notions. For us, only the tropical rank is relevant and it will be
convenient to use the following definition. The tropical rank of the
matrix A of size n × m is the largest integer r such that there is
a subset of r columns of A such that the tropical linear system
generated by them is unsolvable.

Also it is important for us that there is a relation
(4.1)

tropical rank(A) ≤ Kapranov rank(A) ≤ Barvinok rank(A),

for any matrix A. All inequalities in (4.1) can be strict (Develin
et al. 2005). It is known that the problem of computing the tropical
rank is NP-hard (Kim & Roush 2005) and the problem of comput-
ing the Kapranov rank is also NP-hard (Kim & Roush 2006).

We will show the following result.

Lemma 4.2. For any matrix A ∈ R
m×n we have

n − tropical dimension(A) ≤ tropical rank(A),

and the inequality can be both tight and strict. Here by the tropical
dimension, we mean the affine variant of dimension.
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This lemma together with (4.1) shows that there is a relation
between the tropical dimension and rank of the tropical matrix,
but this relation is not enough for computational needs.

Proof. To prove the inequality, let the tropical rank of the
matrix A be equal to r and consider a maximal set C of columns of
A such that the tropical linear system generated by them is unsolv-
able. The size of this set of columns is equal to r. Add one of the
remaining n− r columns to C and denote the resulting m× (r +1)
matrix by C ′. Due to the maximality property of C, there is a
solution to the tropical linear system with the columns C ′. This
solution can be extended to a solution of the whole system by fix-
ing all coordinates xi with i ∈ [n]\C ′ to be large enough numbers.
Note that these coordinates of the resulting solution of A can be
changed locally (if the numbers are chosen large enough). Thus,
we have that the solution space contains a subspace of dimension
n− (r +1). But note that currently we have projective dimension:
some of the coordinates never change in this subspace. So, we
can add the vector (1, . . . , 1) to our subspace and get the desired
subspace of dimension n − r.

To show that the inequality can be tight consider for example
the matrix ( )

1 0 0
0 1 0 .

It is easy to see that the solution space of the corresponding tropical
system consists of points (c, c, c) for any c and thus has dimension
1. The tropical rank of this matrix is 2. To see this, consider the
submatrix defined by the first two columns.

To show that on the other hand, the inequality can be strict
consider the matrix ⎛

⎜⎝
⎞
⎟⎠

0 0 0 0 0
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0

.

The tropical rank of this matrix is 4. To see this, consider
the submatrix defined by the first four columns. On the other
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hand, the dimension of the solution space is also 4 since it contains
the subspace generated by (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0),
(1, 1, 1, 1, 1).

Both of the examples above can be easily generalized to arbi-
trary matrix size. �

5. Combinatorial characterization of the
dimension of a tropical prevariety

In our analysis, it will be convenient to use the following definition.

Definition 5.1. Let A be a matrix of size m × n. We associate
with it the table A∗ of the same size m × n in which we put the
star ∗ to the entry (i, j) iff aij = mink aik and we leave all other
entries empty.

The table A∗ captures properties of the tropical system A essen-
tial to us. For example, the vector x = (x1, . . . , xn) is a solution
to the system A if there are at least two stars in every row of the
table ({aij + xj}ij)

∗.
Next, we give a combinatorial characterization of local dimen-

sion (at a given point) of a tropical prevariety in terms of the table
A∗. For this, we will use the following block triangular form of
the matrix (which exists if the table corresponding to the matrix
contains at least two stars in each row).

Definition 5.2. The block triangular form of size d of the matrix
A is a partition of the set of rows of A into sets R1, R2, . . . , Rd (some
of the sets Ri might be empty) and a partition of the set of columns
of A into nonempty sets C1, . . . , Cd with the following properties
(see figure):

(i) for every i each row in Ri has at least two stars in columns
Ci in A∗;

(ii) if 1 ≤ i < j ≤ d, then the rows in Ri have no stars in columns
Cj in A∗.
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A∗ =

C1 C2 · · · Cd⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∗ ∗
R1 ∗ ∗ ∅ ∅ ∅

∗ ∗
∗ ∗ ∗

R2 ∗ ∗ ∗ ∗ ∅ ∅
∗ ∗

∗ ∗ ∗
... ∗ ∗ ∗ ∗ ∗ ∗ ∅

∗ ∗ ∗
∗ ∗ ∗

Rd ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

For example, for the table

( )∗ ∗
∗ ∗

∗ ∗ ∗

there is a block triangular form of size 2 with C1 = {1, 3, 4}, C2 =
{2, 5}, R1 = {1, 2}, R2 = {3}. There is one more block triangular
form of size 2 with C1 = {1, 2, 3, 4}, C2 = {5}, R1 = {1, 2, 3}, R2 =
∅. It is not hard to see that there is no block triangular form of
size 3.

We are looking for a block triangular form of the matrix with
the largest possible d. We next make several observations on the
structure of the block triangular form of maximal size:

◦ Without loss of generality the pairs (Ci, Ri) with empty Ri

can be moved to the beginning of the list permuting corre-
spondingly the lists of Ci’s and of Ri’s.

◦ We can assume that the pairs with empty Ri have |Ci| = 1.
Indeed, if |Ci| > 1 we can break it into several sets of size 1
without violating the properties of the block triangular form
and the size will only increase.
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Now we are ready to give a combinatorial characterization of
the dimension of the prevariety.

Theorem 5.3. Assume that the zero vector is a solution of the
tropical linear system A over Z. Then the local projective dimen-
sion of the system A in the zero solution is equal to the maximal
d such that there is a block triangular form of A of size d + 1.

Clearly the case of arbitrary solutions can be reduced to the
zero solution.

To prove the theorem, we will use the following technical
lemma.

Lemma 5.4. In any cone of dimension k in the space R
n, there is

a vector with at least k distinct coordinates.

Proof. Consider some set of linearly independent vectors f 1, f 2,
. . . , fk in the cone.

For each coordinate i of the basis vectors f 1, . . . , fk, consider
the tuple fi = (f 1

i , . . . , fk
i ) of all ith coordinates of vectors in the

basis. Note that a = |{f1, f2, . . . , fn}| ≥ k, that is, the number
of different vectors among fi is at least k. Indeed, if the number
of different tuples among fi is less than k, then we can consider
the vector equation

∑
i cif

i = �0 for ci ∈ R as a linear system
on c1, . . . , ck. This system has fewer than k equations and thus
has a nonzero solution. This means that f 1, . . . , fk are linearly
dependent and we have a contradiction.

Next, multiplying all vectors f j by a positive number, we can
assume that if |f j

i − f j′
i′ | is nonzero, then it is greater or equal to

2. Denote C = maxi,j,i′,j′ |f j
i − f j′

i′ |.
Now we can consider the vector

f ′ =
k∑

j=1

C2j−2f j.

We claim that the number of different coordinates of f ′ is at least
k. For this, we show that if fi 	= fi′ , then f ′

i 	= f ′
i′ . Indeed, suppose

this is not the case. Then
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(5.5)
k∑

j=1

C2j−2(f j
i − f j

i′) = 0.

Consider the largest j such that f j
i −f j

i′ 	= 0. Then the correspond-
ing term in (5.5) is greater than C2j−2 in absolute value. On the
other hand, each previous term l is at most C2l−1. Since

C2j−2 >

2j−3∑
l=1

C l

for C ≥ 2, the sum in (5.5) cannot be zero and we have a contra-
diction. �

Proof (of the theorem). We can assume that the minimum in
each row of A is 0.

Denote by d the size of the largest block triangular form minus 1
and denote the local projective dimension of the tropical prevariety
in the zero solution by dim A.

It is not hard to see that dim A ≥ d. Indeed, consider the
block triangular form of size d + 1 and take as the basis for the
subspace of tropical prevariety the negated characteristic vectors
of
⋃

j≥i Cj for all i = 2, . . . , d + 1. It is clear that any point in the
cone generated by these vectors close enough to the zero vector is
a solution to the tropical system.

It remains to prove that dimA ≤ d. Consider the polytope
(over R

n) of the largest dimension k = dim A + 1 in the tropical
prevariety containing the zero point. We can restrict ourselves to
a cone of the same dimension whose vertex is the zero point and
such that the neighborhood of the vertex intersected with the cone
lies in the polytope. By Lemma 5.4, we can find a vector f ′ in this
cone with a ≥ k different coordinates. Dividing the vector by a
large enough number, we can ensure it to be in the prevariety and
all its coordinates to be at most 1. Since our prevariety is closed
under the translation by a vector c · �1 = (c, . . . , c), we can assume
that the coordinates of f ′ are nonpositive. Let us enumerate the
coordinates of f ′ in increasing order: b1 < · · · < ba ≤ 0.

We denote by Bj for j ∈ [a] the set of coordinates of f ′ with
the values at most bj, that is Bj = {l ∈ [n] | f ′

l ≤ bj}. Note that
B1 ⊂ B2 ⊂ · · · ⊂ Ba.
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Claim 5.6. For every j and for every row l columns in Bj contain
in l either no stars, or at least two stars in the table A∗.

Proof (of the claim). The proof goes by induction on j.
For the base of induction, consider the set B1. Note that the

columns in B1 are precisely the columns with the smallest coor-
dinates of f ′. Suppose that there is a star in row l and in the
columns of B1. Let us add to each column i of the matrix A the
i-th coordinate of f ′ (which is non-positive). Since f ′ is a solution,
the resulting matrix should have at least two stars in the row l.
But the star among the columns of B1 has the value b1 which is
the smallest possible value of coordinates in the row l. Thus, there
should be one more coordinate with the same value, which can
appear only in columns of B1 and it can only be a star of A. Thus,
the columns of B1 have at least two stars in the row l.

For the induction step assume that we have proved the claim
for Bj−1 and consider the set Bj. If the row l contains two stars in
Bj−1, it also contains two stars in Bj. Thus, we can assume that
the row l contains no stars in Bj−1. Assume that there is a star in
Bj. Again add coordinates of f ′ to the corresponding columns of A.
Since there are no stars in Bj−1, all corresponding coordinates of
the row l in these columns are positive (recall that the coordinates
of f ′ are less than 1). The star in Bj has coordinate bj, and this is
the smallest possible value of this coordinate. Since f ′ is a solution
to the system, there should be one more coordinate with the same
value and this can be only the coordinate in Bj and also the initial
star of A. Thus, there are at least two stars in Bj in the row l. �

Now, we are ready to describe the sets of rows and columns
corresponding to the desired triangular form. The size of this form
will be a. For the set Ca−i+1, we take Bi \Bi−1, which is nonempty.
The choice of Ri is straightforward: We take all rows that have at
least two stars in the set Ci and no stars in Ci+1, . . . , Ck.

The properties of the triangular form follow from the construc-
tion. We only have to check that every row is in some Ri. Consider
an arbitrary row l and let i be the smallest number such that Bi

contains a star of row l. By the claim, this star cannot be unique,
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and since by the choice of Bi, there are no stars in row l and in the
columns of Bi−1, we have l ∈ Ra−i+1. �

Clearly, the same argument works for R.
It is also easy to see that the same argument works for the trop-

ical linear systems over Z∞: We can ignore infinite coordinates of
the solution we consider, and infinite entries in the matrix do not
affect the proof. That is, given a solution x ∈ Z∞, we remove from
the matrix Ax (see Preliminaries for the definition) all columns for
which the corresponding coordinate of x is infinite and denotes the
resulting matrix by Ãx. Consider the corresponding table Ã∗

x. It is
not hard to see that the rows consisting of infinities do not affect
the maximal size of the block triangular form. Note that infini-
ties in other rows of the matrix cannot become stars in Ã∗

x in the
neighborhood of x and thus if we substitute them by large enough
numbers, neither the local dimension nor the block triangular forms
of maximal size change.

Almost the same argument works for min-plus linear systems
A � x = B � x, where A,B are in Z

m×n or Z
m×n
∞ . Here, we

consider the joint matrix D = ( A B ) and also consider the table
D∗. The block triangular form of size d is now the row partition
R1, R2, . . . , Rd, where some of the sets Ri might be empty, and
the partition C1, . . . , Cd of {1, . . . , n}, where all Ci are nonempty.
For a given set Ci, we associate the columns in the A-part of D
with the corresponding numbers and the columns in the B-part
of D with the same numbers. The partitions should satisfy the
following properties:

1. for every i each row in Ri has at least one star in columns
with numbers Ci in the A-part of D and at least one star in
columns with numbers Ci in the B-part of D;

2. if 1 ≤ i < j ≤ d, then the rows in Ri have no stars in columns
with numbers Cj in both parts of D∗.

The analog of Theorem 5.3 can be proven by a straightforward
adaptation of the proof above.
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6. Computing the dimension of tropical and
min-plus linear prevarieties is NP-complete

Before proving the completeness result, we prove the following tech-
nical lemma.

Lemma 6.1. If we are given a tropical linear system A over n vari-
ables the entries of which are nonnegative and of value at most M ,
then the maximal dimension of the tropical prevariety is achieved
at some point with all finite coordinates at most (M + 1)n.

Proof. We have seen in Theorem 5.3 that the dimension of the
tropical prevariety in a given point depends only on the star-table
in this point. Given a star-table, we consider a graph whose nodes
are stars in the table and two stars are connected by an edge if they
are in the same column or in the same row. We call this graph the
star-graph. We say that two columns of the table are connected if
there are two stars in these columns which are connected by a path
in the star-graph. Note that if there is a path, there is always a
path of length at most 2n (n row-steps and n column-steps). If all
columns are connected, then for each pair of solution coordinates
there is a path in a star-graph of length at most 2n connecting
these two columns. It is not hard to see that for each consecutive
solution coordinates in this path, their difference is at most M .

If not all columns are connected, then there are several con-
nected components. We take one of them and reduce all coordi-
nates in this component of the solution by the same number until
a new star appears in this set of columns. It is easy to see that this
star connects two different components. After that we increase all
the coordinates we have just reduced by 1. Then in the place of
a new star, we have an entry which is larger by 1 than the star-
entries in the same row. Instead of the star, we put the symbol ◦ in
this entry. And from now on, consider a star-circle-graph. Thus,
reducing components one by one and introducing new ◦-entries,
we get a connected graph. Applying the argument for connected
graphs, we obtain the desired (M + 1)n upper bound. �

Lemma 6.2. TropDim ∈ NP and TropDim∞ ∈ NP.



58 Grigoriev & Podolskii cc 24 (2015)

Proof. As a certificate of an inequality dim A ≥ k, one can take
a solution x at which the local dimension is at least k, together with
a block triangular form of Ax = {aij + xj}i,j of size at least k + 1
(see Theorem 5.3). By Lemma 6.1, there is a solution as needed
with small enough coordinates. It is easy to check in polynomial
time that the given vector is a solution and that the given row and
column partitions indeed give a block triangular form of needed
size.

The same proof works for TropDim∞. �

To prove NP-completeness, we give a reduction of the
VertexCover problem to our problem.

Definition 6.3. VertexCover: given an undirected graph G
and a natural number k, decide whether there is a vertex cover of
size at most k in G, that is whether there is a subset K of vertices
of G of size at most k such that each edge of G has at least one
end in K.

Let n be the number of vertices in G and m be the number of
edges in G. We make the following additional assumptions on G
and k:

1. G is connected;

2. k ≤ 2n/3.

With these additional assumptions, vertex cover problem is still
NP-complete (this follows from the standard proof of its complete-
ness in Garey & Johnson 1979).

Theorem 6.4. TropDim is NP-complete.

Proof. Given a fixed graph G, we will construct a matrix A of
a tropical linear system. The matrix A will have (n + 1) columns,
m rows and all its entries will be 0 or 1, that is A ∈ {0, 1}m×(n+1).
The zero vector will be a solution of the tropical system A and the
global dimension will be attained at this solution.

Now, we construct the matrix A. The first column of A consists
of zeros (and thus the first column of A∗ consists of stars). All other
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columns are labeled by the vertices of G and rows are labeled by
the edges of G. The entry (v, e) is set to 0 if and only if v is one
of the endpoints of e (see Figure). In particular, this means that
every row of A contains exactly 3 zeros and one of them is in the
first column.

v u⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

0
0
...

e 0 1 . . .1 0 1 . . .1 0 1 . . .1
...
0

The matrix A

Now, let us consider the zero solution to the tropical system A. We
are going to prove that the local dimension of the solution space
in this solution is at least n − k if and only if G has a vertex cover
of size k. Here, we consider the projective dimension.

First consider a vertex cover V1 ⊆ V of the graph G with |V1| =
k. Consider the set of columns V1 in A and add the first column to
it. It is not hard to see that this set of columns contains at least
two zeros in any row: one in the first column and the other one
in V1, since V1 is a vertex cover. Thus, we can increase all other
columns and the codimension is at least n − k.

Now suppose that the dimension of the tropical prevariety is
n − d. Thus, there is a block triangular form of A of size n − d + 1
(see Theorem 5.3). Consider the set Ci containing the first column
of A. We claim that for all j 	= i, the sets Rj are empty. To see this
suppose that the set Rj is nonempty for some j 	= i. First of all note
that j > i, otherwise we will have a star over the diagonal blocks in
block triangular form. Consider the largest j with nonempty Rj. It
is not hard to see that Cj contains all columns except the first one.
Indeed, if Cj corresponds to a proper subset of the set of vertices of
the graph G, then due to the connectedness of G, there are vertices
v, u such that v ∈ Cj, u /∈ Cj and there is an edge {v, u} in G.
This edge is clearly not in Rj, but it also cannot lie in any Rk with
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k < j, otherwise once more we get a star over the diagonal blocks
in the block triangular form. Thus, Cj contains all columns except
the first one. But then the size of this block triangular form is 2,
but we know that there is a larger block triangular form (recall
that the size of a minimal vertex cover is at most 2n/3). Thus, we
have proved that for all j 	= i the sets Rj are empty and thus we
can assume that i = n − d + 1.

Thus, we have that the block triangular form has the following
structure. R1, . . . , Rn−d are empty, |C1| = . . . = |Cn−d| = 1 and
thus |Cn−d+1| = d + 1 and Rn−d+1 = {1, . . . , m}. Also, the first
column is in Cn−d+1. It is easy to see that the set of all other
columns in Cn−d+1 forms a vertex cover and thus k ≤ d.

Now it is only left to show that the zero solution of the system
A achieves the maximal dimension in the prevariety. Consider
any solution x of the system (1.1). Since we are in the projective
tropical space, we can assume that x1 = 0. This means that the
first column of the matrix

(6.5) B = {aij + xj}i,j

is the same as in A.

Claim 6.6. For all j = 1, . . . , n we can assume that xj ≥ 0.

Proof (of the claim). Assume on the contrary that α = minj xj

< 0. Let C1 = {j | xj = α}. The set of columns C1 corresponds
to some set V1 ⊆ V of vertices of the graph G (note that 1 /∈ C1).
There are two cases.

Case 1. V1 	= V . Since G is connected, there is an edge e with
one end in V1 and the other end in V \ V1. Consider the row of
the matrix (6.5) corresponding to e. It is clear that in one entry
in this row, we have α and in all others we have numbers greater
than α. Thus, this row in the table B∗ contains only one star and
we have a contradiction.

Case 2. V1 = V . Then to obtain B, we have decreased all
columns of A by the same integer. Thus, there are exactly two
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stars in each row of B∗. And since the graph is connected, the
maximal triangular form in this case has size two: the first column
with empty set of rows and all other columns with all rows. Thus,
the dimension in this point of the prevariety is only 1 which is less
than for the zero solution. �

Now consider some column j such that xj > 0. It is not hard to
see that all entries of the matrix B in this column are greater than
zero. And since the first column consists of zeros, in the column
j in B∗ there are no stars. Thus, it is easy to describe how the
table B∗ differs from A∗: we just remove all stars in A∗ from the
columns j such that xj > 0. It is only left to show that the size of
the largest triangular form for A is at least the size of the largest
triangular form for B. For this consider the largest triangular form
for B. Note that each column j such that xj > 0 should constitute
a separate set Ci with an empty set Ri and note that we can assume
that all these sets are in the beginning of the list of Ci’s. Consider
the same system of Ci’s and Ri’s for the matrix A. It is easy to see
that this system is a triangular form for this matrix as well. Thus,
the maximal size of a triangular form for A can only be greater
than that for B and thus the dimension of the prevariety attains
its maximum at the zero solution. �

As a corollary we have the following result.

Corollary 6.7. TropDim∞ is NP-complete.

Proof. The containment in NP was already proven in
Lemma 6.2. The completeness follows since there is a simple reduc-
tion from TropDim to TropDim∞ given by Lemma 2.4. �

The results of this section can be easily extended to the case of
min-plus linear systems.

Theorem 6.8. Given a min-plus linear system and a natural
number k, the problem of deciding whether the solution space of
the system has dimension at least k is NP-complete.

Proof. Indeed, the analogs of Lemmas 6.1 and 6.2 can be pro-
ven in the same way. For completeness note that Lemma 3.1 gives
the reduction from TropDim. �
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