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Abstract. This paper presents an efficient parallel approximation
scheme for a new class of min-max problems. The algorithm is de-
rived from the matrix multiplicative weights update method and can
be used to find near-optimal strategies for competitive two-party clas-
sical or quantum interactions in which a referee exchanges any number
of messages with one party followed by any number of additional mes-
sages with the other. It considerably extends the class of interactions
which admit parallel solutions, demonstrating for the first time the exis-
tence of a parallel algorithm for an interaction in which one party reacts
adaptively to the other.
As a consequence, we prove that several competing-provers complex-
ity classes collapse to PSPACE, such as QRG(2), SQG and two new
classes called DIP and DQIP. A special case of our result is a paral-
lel approximation scheme for a specific class of semidefinite programs
whose feasible region consists of lists of semidefinite matrices that sat-
isfy a transcript-like consistency condition. Applied to this special
case, our algorithm yields a direct polynomial-space simulation of multi-
message quantum interactive proofs resulting in a first-principles proof
of QIP = PSPACE.
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1. Introduction

This paper presents a parallel approximation scheme for a new
class of min-max problems with applications to classical and quan-
tum zero-sum games and interactive proofs. In order to describe
this class of min-max problems, let us begin by considering a semi-
definite program (SDP) of the form

minimize Tr(XkP )

subject to TrMn(Xi+1) = Φi(Xi) for i = 1, . . . , k − 1,

Tr(X1) = 1,

0 � X1, . . . , Xk ∈ Mmn.

(1.1)

Here, Md denotes the space of all d × d complex matrices, and
TrMn is the partial trace—the unique linear map from matrices to
matrices satisfying

TrMn : Mmn → Mm : A⊗B �→ Tr(B)A

for every choice of A ∈ Mm and B ∈ Mn. An SDP (1.1) is specified
by arbitrary choices of a positive semidefinite matrix P ∈ Mmn

with ‖P ‖ ≤ 1 and completely positive and trace-preserving linear
maps Φ1, . . . ,Φk−1 : Mmn → Mm. (A linear map Φ is positive if
Φ(X) 	 0 whenever X 	 0. Such a map is completely positive if
Φ ⊗ 1Md

is positive for every positive integer d.)
Let A denote the feasible region of the SDP (1.1) (which is

always nonempty), and let P ⊂ Mmn be a nonempty compact con-
vex subset of positive semidefinite matrices having operator norm
at most 1. We are concerned with the following min-max problem,
which is a generalization of the SDP (1.1):

(1.2) λ(A,P)
def
= min

(X1,...,Xk)∈A
max
P∈P

Tr(XkP ).

The ordering of minimization and maximization is immaterial, as
implied by well-known extensions of von Neumann’s Min-Max The-
orem (Fan 1953; von Neumann 1928) given the fact that A,P are
convex compact sets and Tr(XkP ) is a bilinear form over the two
sets.
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Our main result is an efficient parallel oracle-algorithm for find-
ing approximate solutions to the min-max problem (1.2) and for
approximating the quantity λ(A,P) given an oracle for optimiza-
tion over the set P. We also describe parallel implementations of
this oracle for certain sets P, yielding an unconditionally efficient
parallel approximation scheme for the min-max problem (1.2) for
those choices of P. This result is stated formally below as Theo-
rem 1.5. Before stating this theorem, let us clarify terminology.

1.1. Review of parallel computation: formal statement of
results. Recall that a parallel algorithm is described by a fam-
ily of logarithmic-space uniform Boolean circuits. The uniformity
constraint insures that the size of each circuit in the family scales
as a polynomial in the bit length of the input, and therefore, the
family represents a polynomial-time computation. Boolean circuits
are an ideal model of parallel computation because computational
activity can occur concurrently at many different gates in the cir-
cuit. Indeed, the run time of a parallel algorithm is determined
by the depth of its circuits, which might be much smaller than the
total size of its circuits.

A parallel algorithm is said to be efficient if the depth of its
circuits (and therefore the run time of the algorithm) scales as a
polynomial in the logarithm of the bit length of the input. The
complexity class NC consists of those functions which can be com-
puted by efficient parallel algorithms. Efficient parallel algorithms
are sometimes called “NC algorithms” or “NC computations.” The
reader is referred to Papadimitriou (1994) for an accessible intro-
duction to parallel computation.

An oracle-algorithm is an algorithm endowed with the ability
to get instantaneous answers to questions that fall within the scope
of some specific oracle. In our case, we assume an oracle for op-
timization over P, which instantly solves problems of the form

Problem 1.3 (Optimization over P).

Input: A matrix X 	 0 with Tr(X) = 1 and an accuracy
parameter δ > 0.

Output: A near-optimal element P � ∈ P such that Tr(XP �) ≥
Tr(XP ) − δ for all P ∈ P.
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An oracle is incorporated into the circuit model of computation
by supplementing a standard gate set (such as {AND,OR,NOT})
with a special oracle gate. This oracle gate has many input bits
(describing the question) and many output bits (describing the
answer). As with standard gates, each oracle gate contributes unit
cost to circuit size and run time.

An approximation scheme refers to an algorithm that computes
one or more quantities to a given precision δ and whose run time
is efficient for each fixed choice of δ > 0 but does not necessarily
scale well with δ. In the circuit model (and other models too),
this property is encapsulated by defining the underlying problem
so that the accuracy parameter δ = 1/s is specified in unary as 1s,
thus forcing the bit length of the input to be proportional to 1/δ
instead of 1/ log(δ). The choice to specify the accuracy parameter
in unary allows parallel approximation schemes to be described
neatly by log-space uniform circuits with polylog depth.

The following is a formal statement of the problem solved by
our algorithm.

Problem 1.4 (Approximation of λ(A,P)).

Input: Completely positive and trace-preserving linear maps
Φ1, . . . ,Φk−1 specifying the feasible region A of an
SDP of the form (1.1). An accuracy parameter δ > 0.

Oracle: Optimization over P (Problem 1.3).

Output: Near-optimal elements (X�
1 , . . . , X

�
k) ∈ A and P � ∈ P

such that

Tr(X�
kP ) ≤ λ(A,P) + δ for all P ∈ P,

Tr(XkP
�) ≥ λ(A,P) − δ for all (X1, . . . , Xk) ∈ A,

and a quantity λ̃ with |λ̃− λ(A,P)| ≤ δ.

The maps Φ1, . . . ,Φk−1 are linear maps from a complex vector
space of dimension (mn)2 to another complex space of dimension
m2. As such, these maps can be represented by complex matri-
ces of size m2 × (mn)2. In both Problem 1.3 and Problem 1.4,
it is assumed that the real and imaginary parts of each entry in
each input matrix are represented as rational numbers expressed
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as the ratio of two p-bit integers written in binary for some p that
is promised to scale as a polynomial in the dimension mn. (Indeed,
it suffices for our purpose that p scales logarithmically with mn.)
As suggested previously, it is also assumed that the accuracy pa-
rameter δ is represented in unary. These assumptions allow us to
focus on the quantities mn, k, 1/δ as the dominating factors deter-
mining the run time of our parallel algorithm. We may now state
our main result.

Theorem 1.5 (Main result). There is a parallel oracle-algorithm
for Problem 1.4 (Approximation of λ(A,P)) with run time bounded
by a polynomial in k, 1/δ, and log(mn). This algorithm is efficient
if k, 1/δ are promised to scale as a polynomial in log(mn).

1.2. Application: parallel approximation of semidefinite
programs. The SDP (1.1) is recovered from (1.2) in the special
case where P = {P} is a singleton set. Thus, a special case of
Theorem 1.5 is a parallel approximation scheme for SDPs of the
form (1.1).

We restricted attention to SDPs for which ‖P ‖,Tr(X1) ≤ 1
because this restriction does not interfere with our application to
quantum interactive protocols, and because the run time of our
parallel algorithm scales polynomially with the largest eigenvalue
of P and with the trace ofX1, so it is only efficient when these quan-
tities are bounded by a fixed polynomial in the logarithm of the
bit length of the input P,Φ1, . . . ,Φk−1. (In keeping with conven-
tion, one can think of these quantities as the width of the SDPs we
consider. Our algorithm is efficient only for width-bounded SDPs.)

It has long since been known that the problem of approximat-
ing the optimal value of an arbitrary SDP is logspace-hard for P
(Megiddo 1992; Serna 1991), so there cannot be a parallel approx-
imation scheme for all SDPs unless NC = P. The precise extent
to which SDPs admit parallel solutions is not known. This special
case of our result adds considerably to the set of such SDPs, sub-
suming all prior work in the area at the time it was made public.
(Since that time, parallel approximation schemes have been found
for some SDPs of unbounded width that are not covered by our
scheme (Jain & Yao 2011, 2012; Peng & Tangwongsan 2012).)
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Some of what is known about SDPs in this respect is inher-
ited knowledge from linear programs (LPs). For example, Luby &
Nisan (1993) describe a parallel approximation scheme for so-called
positive LPs of the form

minimize xp∗ subject to Cx ≥ q and x ≥ 0,

where each entry of the matrix C and vectors p, q is a nonnegative
real number. Young (2001) provides a generalization of Luby-Nisan
to arbitrary mixed packing and covering problems. By contrast,
Trevisan & Xhafa (1998) show that it is P-hard to find exact so-
lutions for positive LPs.1

The notion of a positive instance of an LP can be generalized
to SDPs as follows. An SDP of the form

minimize Tr(XP ) subject to Ψ(X) 	 Q and X 	 0

is said to be positive if P,Q 	 0 and Ψ is a positive map. Of course,
P-hardness of exact solutions for positive LPs implies P-hardness
of exact solutions for positive SDPs. Jain & Watrous (2009) give a
parallel approximation scheme for width-bounded positive SDPs.
Subsequent improvements extend to all positive SDPs (Jain & Yao
2011; Peng & Tangwongsan 2012) and even to mixed packing and
covering SDPs (Jain & Yao 2012).

The Jain-Watrous algorithm for positive SDPs is derived from
a correspondence between positive SDPs and one-turn quantum
games and can therefore be recovered as a special case of the work
of the present paper. In their proof of QIP = PSPACE, Jain
et al. (2011) give a parallel algorithm for a specific SDP based on
quantum interactive proofs. It is not difficult to see that their SDP
can be written in the form (1.1) considered in the present paper.

As mentioned above, our algorithm is not efficient when used for
SDPs of unbounded width, leaving the recent works of Jain & Yao
(2011, 2012) and Peng & Tangwongsan (2012) on mixed packing

1 For clarification, a polynomial-time algorithm finds an exact solution to an
LP or SDP if it finds solutions that are within ε of optimal in time polynomial
in the bit length of ε—that is, log(1/ε). By contrast, an approximation scheme
for LPs or SDPs finds solutions that are within ε of optimal with run time
that depends super-polynomially in the bit length of ε—typically 1/ε.
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and covering SDPs as the only known parallel SDP approximation
schemes that are not subsumed by the present work. These recent
works do not subsume our results, as neither the SDP instance used
in Jain et al. (2011) to prove QIP = PSPACE nor its generalization
(1.1) in the present paper are mixed packing and covering SDPs.

1.3. Application: interactive proofs with competing
provers.

1.3.1. Definitions. An interactive proof with competing provers
consists of a conversation between a verifier and two provers re-
garding some input string x. The verifier may use randomness, but
must run in time that scales as a polynomial in the input length |x|;
the provers are permitted unlimited computational power. One of
the provers—the yes-prover—tries to convince the verifier to accept
x, while the other—the no-prover—tries to convince the verifier to
reject x. A decision problem L is said to admit an interactive
proof with competing provers with completeness c and soundness
s if there exists c, s with c > s and a randomized polynomial-time
verifier who meets the following conditions:

Completeness condition. If x is a yes-instance of L, then the
yes-prover can convince the verifier to accept with probability
at least c regardless of the no-prover’s strategy.

Soundness condition. If x is a no-instance of L, then the no-
prover can convince the verifier to reject with probability at
least 1 − s regardless of the yes-prover’s strategy.

The completeness and soundness parameters c, s need not be
fixed constants, but may instead vary as a function of the input
length |x|. If these parameters are not specified, then it is assumed
that L admits an interactive proof with competing provers for some
choice of c(|x|), s(|x|) for which there exists a polynomial-bounded
function p(|x|) such that c − s ≥ 1/p. The complexity class RG
consists of all decision problems that admit interactive proofs with
competing provers. (The acronym RG stands for “refereed games,”
a term inspired by the field of game theory).

Often in the study of interactive proofs, the precise values of c, s
are immaterial because sequential repetition (or sometimes parallel
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repetition) can be used to transform any verifier for which c− s ≥
1/p into another verifier for which c tends toward one and s tends
toward zero exponentially quickly in the bit length of x. (For
example, sequential repetition followed by a majority of vote can
be used to reduce the error for RG.) For this reason, it is typical
to assume without loss of generality that c, s are constants such as
2/3, 1/3 or that c is exponentially close to one and s is exponentially
close to zero whenever it is convenient to do so. However, it is not
always clear that a given complexity class is robust with respect
to the choice of c, s so it is a good practice to be as inclusive as
possible when defining these classes.

Interesting subclasses of RG are obtained by placing restrictions
upon the number and timing of messages in the interaction between
the verifier and provers. In this paper, we introduce one such
subclass based upon interactions of the following form:

1. The verifier exchanges several messages with only the yes-prover.

2. After processing this interaction with the yes-prover, the verifier
exchanges several additional messages with only the no-prover.

3. After further processing, the referee declares acceptance or re-
jection.

Interactive proofs of this form shall be called double interactive
proofs : The verifier in such a protocol executes a standard single-
prover interactive proof with the yes-prover followed by a second
single-prover interactive proof with the no-prover. The class of
problems that admit double interactive proofs shall be called DIP.

By contrast to RG, it is not immediately clear that the defi-
nition of DIP is robust with respect to the choice of parameters
c, s. But it follows from our result that DIP is, in fact, robust with
respect to the choice of c, s. Also, whereas RG is trivially closed
under complement, the protocol for double interactive proofs is
asymmetric, and so, it is not immediately clear that DIP is closed
under complement. Again, it follows from our result that DIP is
closed under complement.

Another example of an interesting subclass of RG is the fam-
ily of bounded-turn classes. For each positive integer k, the class
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RG(k) consists of those problems that admit an interactive proof
with competing provers in which the verifier exchanges no more
than k messages with each prover. It is understood that messages
are exchanged with the provers in parallel so that RG(k), like RG,
is trivially closed under complement.

Quantum interactive proofs with competing provers are defined
similarly except that the verifier is a polynomial-time quantum
computer who exchanges quantum information with the provers.
The analogous complexity classes are denoted QRG, DQIP, and
QRG(k).

1.3.2. Prior work. As noted by Feige & Kilian (1997); Feigen-
baum et al. (1995), the results of Koller & Megiddo (1992); Koller
et al. (1994) imply that RG ⊆ EXP. The reverse containment
was proven by Feige & Kilian (1997), yielding the characterization
RG = EXP. It was proven in Gutoski & Watrous (2007) that
QRG ⊆ EXP, from which one obtains

QRG = RG = EXP,

which is the competing-provers version of the well-known collapse
QIP = IP = PSPACE for single-prover interactive proofs (Jain
et al. 2011; Lund et al. 1992; Shamir 1992).

For bounded-turn classes, the results of Fortnow et al. (2008)
tell us that RG(1) is essentially a randomized version of SP

2 . Feige &
Kilian (1997) proved RG(2) = PSPACE.2 For bounded-turn quan-
tum classes, Jain & Watrous (2009) proved QRG(1) ⊆ PSPACE.
The complexity of QRG(2) is an open question of Jain et al. (2011)
that is solved in the present paper. The exact complexity of RG(k)
and QRG(k) for all other k is not known.

Bounded-turn double quantum interactive proofs have been
studied previously under the name short quantum games ; the asso-
ciated complexity class has been called SQG. In an effort to unify

2 The class we call RG(2) is called RG(1) by Feige & Kilian (1997). This
conflict in notation stems from the fact that we measure the length of an
interaction in turns (i.e. messages per prover), whereas those authors measure
an interaction in rounds of messages. This switch of notation was instigated
by Jain & Watrous (2009), who required a convenient symbol for one-turn
interactions.
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the notation, let DQIP(k, l) denote the class consisting of prob-
lems that admit a double quantum interactive proof with com-
peting provers in which the verifier exchanges no more than k
messages with the yes-prover followed by no more than l mes-
sages with the no-prover. The class SQG was first defined in
Gutoski & Watrous (2005) to be equal to DQIP(1, 2), wherein it
was shown that this class contains QIP = DQIP(poly , 0). The
importance of short quantum games has been diminished by the
proof of QIP = PSPACE, as containment of QIP is no longer such
a peculiar property. However, the containment of PSPACE inside
DQIP(1, 2) is still interesting, as it is not known whether PSPACE
is contained in DIP(1, 2), the classical version of this class.

1.3.3. Our contribution. As we explain in Section 5, the oracle-
algorithm of Theorem 1.5—together with a parallel implementation
of a suitably chosen oracle—implies that near-optimal strategies for
the provers in a double quantum interactive proof can be computed
efficiently in parallel. The following containment then follows from
a standard argument (summarized in Section 5.4).

Theorem 1.6. DQIP ⊆ PSPACE.

This containment, when combined with the trivial contain-
ments IP ⊆ DIP ⊆ DQIP and the well-known fact that PSPACE ⊆
IP (Lund et al. 1992; Shamir 1992), yields the following character-
ization.

Corollary 1.7. DQIP = DIP = PSPACE.

As a special case of Corollary 1.7, we obtain the solution to an
open problem of Jain et al. (2011):

Corollary 1.8. QRG(2) = PSPACE.

Another special case of our result is a direct polynomial-space
simulation of multi-message quantum interactive proofs, resulting
in a first-principles proof of QIP = PSPACE.

Corollary 1.9. QIP = PSPACE via direct polynomial-space
simulation of multi-message quantum interactive proofs.
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By contrast, all other known proofs (Jain et al. 2011; Wu 2010)
rely upon the fact that the verifier can be assumed to exchange
only three messages with the prover (Kitaev & Watrous 2000).
The original proof of Jain et al. (2011) also relies on the additional
fact that the verifier’s only message to the prover can be just a
single classical coin flip (Marriott & Watrous 2005).

Of course, every other competing-provers complexity class
whose protocol can be cast as a double interactive proof also col-
lapses to PSPACE, such as the aforementioned class DQIP(1, 2)
based on short quantum games.

It follows from the collapse of DQIP and DIP to PSPACE that
these classes are closed under complement and that they are robust
with respect to the choice of parameters c, s. (Indeed, it may be
assumed that c = 1 and s ≤ 2−q for any desired polynomially
bounded function q(|x|)—see Section 6.3.)

Prior to the present work, polynomial-space algorithms were
known only for two-turn classical interactive proofs with compet-
ing provers (RG(2)), for one-turn quantum interactive proofs with
competing provers (QRG(1)), and for single-prover quantum inter-
active proofs (QIP). Our result unifies and subsumes all of these
algorithms. It also demonstrates for the first time the existence of
a polynomial-space algorithm for a competing-prover interaction
(classical or quantum) in which one prover reacts adaptively to
the other.

Finally, our results illustrate a difference in the effect of public
randomness between single-prover interactive proofs and compet-
ing-prover interactive proofs. Any classical interactive proof with
single prover can be simulated by another public-coin interactive
proof where the verifier’s messages to the prover consist entirely
of uniformly random bits and the verifier uses no other random-
ness (Goldwasser & Sipser 1989). Extending the notion of public-
coin interaction to competing-prover interactions, it is easy to see
that any such interaction with a public-coin verifier can be simu-
lated by a double interactive proof.3 We therefore have that the

3 Proof sketch: As the verifiers’ questions to each prover are uniformly
random, they cannot depend on prior responses from the other prover and
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public-coin version of RG is a subset of DIP, which we now know
is equal to PSPACE. Thus, by contrast to the single-prover case
where public-coin-IP = IP, in the competing-prover case, we es-
tablish the following.

Corollary 1.10. public-coin-RG = RG unless PSPACE = EXP.

1.4. Summary of techniques.

1.4.1. The matrix multiplicative weights update method.
The parallel oracle-algorithm we exhibit in the proof of Theo-
rem 1.5 is an example of the matrix multiplicative weights update
method (MMW) as presented in Arora et al. (2005); Kale (2007);
Warmuth & Kuzmin (2006). We draw upon the valuable experi-
ence of recent applications of this method to parallel algorithms
for quantum complexity classes (Jain et al. 2011, 2009; Jain &
Watrous 2009; Wu 2010). We also make extensive use of effi-
cient parallel algorithms for various matrix manipulation tasks,
such as computing the singular value decomposition or exponen-
tial of a matrix. The reader is referred to von zur Gathen (1993)
for more detail on parallel algorithms for matrix operations and to
works of Jain et al. (2011, 2009) for discussion of the use of these
algorithms in parallel implementations of the matrix multiplicative
weights update method.

In its unaltered form, the MMW can be used to solve min-max
problems over the domain of density operators—positive semidef-
inite matrices X with Tr(X) = 1. We introduce a new extension
to this method for min-max problems over the domain A defined
in the SDP (1.1)—a domain consisting of k-tuples of density oper-
ators lying within a strict subspace of the affine space associated
with k-tuples of density operators. The high-level approach of our
method is as follows:

Foonote 3 continued
can therefore be reordered so that all messages with one prover are exchanged
before any messages with the other.
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1. Extend the domain from a single density matrix to a
k-tuple of density matrices.
This step is straightforward: The MMW can be applied with-
out complication to all k density matrices at the same time.
(Equivalently, k density matrices may be viewed as a single,
larger, block-diagonal density matrix.)

2. Restrict the domain to a strict subspace of k-tuples
of density matrices.
This step is more difficult. It is accomplished by relaxing the
problem so as to allow all k-tuples, with an additional penalty
term to remove incentive for the players to use inconsistent
transcripts.

3. Round strategies in the relaxed problem to strategies
in the original protocol.
For this step, one must prove a “rounding” theorem (Theo-
rem 3.1), which establishes that near-optimal, fully admissi-
ble strategies can be obtained from near-optimal strategies
in the unrestricted domain with penalty term.

1.4.2. Finding optimal strategies for the provers in a dou-
ble quantum interactive proof. In Section 5, we observe that
the verifier in a double quantum interactive proof induces a min-
max problem of the form (1.2) in which elements of A correspond
to strategies for the yes-prover and elements of P correspond to
strategies for the no-prover. Thus, the parallel oracle-algorithm of
Theorem 1.5—together with a parallel implementation of the ora-
cle for optimization over P—can be used to find optimal strategies
for the provers in a double quantum interactive proof.

Our implementation of this oracle is itself a special case of the
algorithm of Theorem 1.5, so that the overall algorithm employs
the MMW method twice in a two-level recursive fashion. At the top
level, the MMW is used to iteratively converge toward an optimal
strategy for the yes-prover; at the bottom level, the MMW is used
again to solve an SDP for “best responses” for the no-prover to a
given strategy for the yes-prover.

The central challenge in using the MMW to find optimal strate-
gies for parties in a quantum interaction is to find a representation
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for strategies that are amenable to the MMW method. In Kitaev’s
transcript representation (Kitaev 2002), the actions of a prover
in a double quantum interactive proof are represented by a list
X1, . . . , Xk of density matrices that satisfy a special consistency
condition that is captured by the definition of the feasible region
A of the SDP (1.1). Intuitively, these density matrices correspond
to “snapshots” of the state of the verifier’s qubits at various times
during the interaction. (See Figure 5.2 on page 415.)

The key property of double quantum interactive proofs that we
exploit is the ability to draw a “temporal line” in the interaction
before which only the yes-prover acts and after which only the
no-prover acts. Given a transcript X1, . . . , Xk for the yes-prover,
the actions of the no-prover can then be represented by another
transcript Y1, . . . , Y�. By optimizing over all such transcripts, one
obtains an oracle for “best responses” for the no-prover to a given
strategy of the yes-prover as required by the MMW method.

1.4.3. Comparison of methods for semidefinite program-
ming. In their proof of QIP = PSPACE, Jain et al. (2011) em-
ploy the MMW to solve a special SDP for quantum interactive
proofs by making direct use of the primal-dual approach described
in the thesis of Kale (2007). Subsequent parallel algorithms for
positive SDPs (Jain & Yao 2011; Peng & Tangwongsan 2012) and
for mixed packing and covering SDPs (Jain & Yao 2012) are ma-
trix generalizations (also based on MMW) of existing algorithms
for linear programs (Luby & Nisan 1993; Young 2001).

We do not use any of these approaches for solving SDPs. In-
stead, we use the MMW to solve a min-max problem as suggested
by the algorithmic proof (also presented in Kale (2007)) of a min-
max theorem for a simple class of zero-sum quantum games. By
introducing a penalty term for inadmissible strategies, we are able
to extend this algorithm to a much richer class of games beyond
the one-turn games considered by Kale. We wish to stress that
our parallel algorithm for SDPs arises as a special case of a more
general min-max algorithm, whereas previous approaches for SDPs
do not generalize to min-max problems in any obvious way.
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1.4.4. Comparison of proofs of QIP = PSPACE. Unlike
the present paper, the original proof of QIP = PSPACE due
to Jain et al. (2011) does not take advantage of the transcript
representation for arbitrary multi-turn strategies. Instead, as men-
tioned earlier, those authors derive a special SDP by invoking sev-
eral nontrivial facts about quantum interactive proofs. Admittedly,
their SDP does bear a resemblance to Kitaev’s transcript condi-
tions, but this resemblance is only superficial and their solution ap-
plies only to a very restricted subset of transcripts. Indeed, their
derivation breaks down without the assumption that the verifier
sends only classical messages to the prover.

Previously, one of us (Wu 2010) presented a simplified proof
of QIP = PSPACE that, like the work of the present paper, em-
ploys Kale’s algorithmic min-max theorem (Kale 2007) instead of
the primal-dual approach for SDPs that was used in the original
proof by Jain et al. (2011). The QIP-completeness of the quan-
tum circuit distinguishability problem (Rosgen & Watrous 2005)
means that quantum interactive proofs can be decided by approx-
imating the diamond norm of the difference between two quantum
channels. Wu (2010) noticed that the diamond norm can be ap-
proximated in this special case by a direct application of Kale’s
algorithmic min-max theorem. His result did not require the penal-
ization method introduced in the present paper nor an attendant
rounding theorem.

1.4.5. The Bures angle. Finally, it is noteworthy that the proof
of our rounding theorem (Theorem 3.1) contains an interesting and
nontrivial application of the Bures angle, which is a distance mea-
sure for quantum states that is defined in terms of the more familiar
fidelity function.

Properties of the trace norm, which captures the physical dis-
tinguishability of quantum states, are sufficient for most needs in
quantum information. When some property of the fidelity is also
required, one uses the Fuchs-van de Graaf inequalities to convert
between the trace norm and fidelity (Fuchs & van de Graaf 1999).
(These inequalities are listed in Eq. (2.3) of Section 2.3.)

However, every such conversion incurs a quadratic slackening
of relevant accuracy parameters. Our study calls for repeated
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conversions, which would incur an unacceptable exponential slack-
ening if done naively via Fuchs-van de Graaf. Instead, we make
only a single conversion between the trace norm and the Bures an-
gle and then repeatedly exploit the simultaneous properties of (i)
the triangle inequality, (ii) contractivity under quantum channels,
and (iii) preservation of subsystem fidelity.

Although conversion inequalities between the trace norm and
Bures metric are implied by Fuchs-van de Graaf, to our knowl-
edge, explicit conversion inequalities have not yet appeared in the
published literature. The required inequalities are derived in the
present paper (Proposition 2.4).

2. Preliminaries

Hereafter, we must assume familiarity with standard concepts from
quantum information, though we have attempted to minimize our
use of quantum formalism for the benefit of a wider audience. The
reader is referred to Nielsen & Chuang (2000) and to the lecture
notes of Watrous (2011) for proper introductions to the field. This
section provides a short glossary clarifying our notation and termi-
nology in Section 2.1 followed by a review of two rarer but nonethe-
less simple and fundamental concepts from quantum information:
the preservation of subsystem fidelity in Section 2.2 and the Bures
angle in Section 2.3.

2.1. Terminology and notation.

Density matrix and quantum state. A density matrix or
quantum state is a positive semidefinite matrix X with
Tr(X) = 1. Thus far, we have used upper-case Roman let-
ters (X,Y, . . .) to denote density matrices, as well as other
matrices. But it is standard practice in quantum informa-
tion to denote density matrices with lower-case Greek letters
(ρ, ξ, . . .). Hereafter, we adopt this convention.

Measurement operator. A measurement operator is a positive
semidefinite matrix M with ‖M ‖ ≤ 1. Equivalently, it holds
that 0 � M � I.
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Quantum channel. A channel is a completely positive and trace-
preserving linear map Φ : Mm → Mn from matrices to ma-
trices. These maps correspond to physically realizable oper-
ations on quantum states.

Adjoint, matrix inner product. The adjoint A∗ of a matrix A
is simply the conjugate-transpose of A. The inner prod-
uct 〈A,B〉 between two m × n matrices A,B is given by
〈A,B〉 = Tr(A∗B). The inner product between two k-tuples
of matrices is given by the sum

〈(A1, . . . , Ak), (B1, . . . , Bk)〉 =
k∑

i=1

〈Ai, Bi〉.

More generally, the adjoint Φ∗ of a linear map Φ from ma-
trices to matrices is the unique linear map with 〈Φ(X), Y 〉 =
〈X,Φ∗(Y )〉 for all X,Y . This formula extends in the obvi-
ous way to linear maps from tuples of matrices to tuples of
matrices.

Trace norm. The trace norm ‖X‖Tr of a matrix X is defined as
the sum of the singular values of X. As a measure of distance
between quantum states, the trace norm is given by

(2.1)
1

2
‖ρ− ξ‖Tr = max

0�Π�I
〈ρ− ξ,Π〉

for all density matrices ρ, ξ.

Fidelity. The fidelity is another distance measure for quantum
states given by

F (ρ, ξ) =
∥∥∥
√
ρ
√
ξ
∥∥∥

Tr

for all density matrices ρ, ξ.

2.2. Preservation of subsystem fidelity. Consider the follow-
ing property of the fidelity function, which we call the preservation
of subsystem fidelity : If ρ, ξ are states of a quantum system with
fidelity F (ρ, ξ) and ρ′ is any state of a larger system consistent with
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ρ, then it is always possible to find ξ′ consistent with ξ such that
F (ρ′, ξ′) = F (ρ, ξ).

A formal construction of such a ξ′ appears in Jain et al. (2009).
Since their construction consists entirely of elementary matrix op-
erations, there is an efficient parallel algorithm that takes as input
ρ, ξ, ρ′ and produces the desired state ξ′ as output.

Proposition 2.2 (Preservation of subsystem fidelity, (Jain et al.
2009)). Let ρ, ξ ∈ Mm and ρ′ ∈ Mmn be density matrices
with TrMn(ρ′) = ρ. There exists a density matrix ξ′ ∈ Mmn with
TrMm(ξ′) = ξ and F (ρ′, ξ′) = F (ρ, ξ). Moreover, ξ′ can be com-
puted efficiently in parallel given ρ, ξ, ρ′.

2.3. The Bures angle. The Bures angle or simply the angle
A(ρ, ξ) between quantum states ρ, ξ is defined by

A(ρ, ξ)
def
= arccosF (ρ, ξ).

The angle is a metric on quantum states, meaning that it is non-
negative, equals zero only when ρ = ξ, and obeys the triangle
inequality (Nielsen & Chuang 2000). Moreover, the angle is con-
tractive, so that

A(Φ(ρ),Φ(ξ)) ≤ A(ρ, ξ)

for any quantum channel Φ. The Fuchs-van de Graaf inequalities
establish a relationship between the fidelity and trace norm (Fuchs
& van de Graaf 1999). The inequalities are

(2.3) 1 − F (ρ, ξ) ≤ 1

2
‖ρ− ξ‖Tr ≤

√
1 − F (ρ, ξ)2.

These inequalities can be used to derive a relationship between
A(ρ, ξ) and ‖ρ− ξ‖Tr. For example,

Proposition 2.4 (Relationship between trace norm and Bures
angle). For all density matrices ρ, ξ it holds that

1

2
‖ρ− ξ‖Tr ≤ A(ρ, ξ) ≤

√
π

2
‖ρ− ξ‖Tr.
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Proof. The lower bound on A(ρ, ξ) follows immediately from
Fuchs-van de Graaf:

1

2
‖ρ− ξ‖Tr ≤

√
1 − cosA(ρ, ξ)2 = sinA(ρ, ξ) ≤ A(ρ, ξ),

where we used the identity sin x ≤ x for all x ≥ 0.
To obtain the upper bound on A(ρ, ξ), we employ the identity

cos x ≤ 1 − x2/π for x ∈ [0, π/2], which can be verified using basic
calculus. Then, we have

1

2
‖ρ− ξ‖Tr ≥ 1 − cosA(ρ, ξ) ≥ A(ρ, ξ)2

π
,

from which the proposition follows. �

3. Rounding theorem for a
relaxed min-max problem

In this section, we define a new min-max expression με(A,P) that
approximates the desired quantity λ(A,P) from (1.2) in the limit
as ε approaches zero. This new expression is a relaxation of λ(A,P)
that is more amenable to the MMW. We prove a “rounding theo-
rem” (Theorem 3.1) by which near-optimal points for λ(A,P) are
efficiently obtained from near-optimal points for με(A,P). Our
use of the Bures angle occurs in the proof of Lemma 3.5, which is
used in the proof of our rounding theorem.

Define the relaxation με(A,P) of λ(A,P) by

με(A,P)

def
= min

(ρ1,...,ρk)
max
P∈P

(Π1,...,Πk−1)

〈ρk, P 〉 +
k

ε

k−1∑

i=1

〈TrMn(ρi+1) − Φi(ρi),Πi〉

= min
(ρ1,...,ρk)

max
P∈P

〈ρk, P 〉 +
k

ε

k−1∑

i=1

1

2
‖TrMn(ρi+1) − Φi(ρi)‖Tr .

Here, the minimum is taken over all density operators ρ1, . . . , ρk ∈
Mmn and the maximum over all P ∈ P and over all measurement
operators Π1, . . . ,Πk−1 ∈ Mm. The second equality follows imme-
diately from the identity (2.1) from Section 2.1.
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Notice that the minimum in the definition of με(A,P) is taken
over all k-tuples (ρ1, . . . , ρk) of density operators, not just those in
A. Each term in the summation serves to penalize any violation of
the conditions required for membership in A by adding the mag-
nitude of that violation to the objective function. The k/ε factor
amplifies the penalty so as to remove incentive to select an element
outside of A. Indeed, it is clear that

lim
ε→0

με(A,P) = λ(A,P).

The following “rounding” theorem establishes a specific rate of
convergence for this limit. A subsequent extension of this theorem
(Proposition 3.4) provides a means by which near-optimal points
for λ(A,P) are efficiently computed from near-optimal points for
με(A,P).

Theorem 3.1 (Rounding theorem). For any ε > 0, it holds that
λ(A,P) ≥ με(A,P) > λ(A,P) − ε.

Proof. The first inequality is easy: Let (ρ1, . . . , ρk) be opti-
mal for λ(A,P), and let (P,Π1, . . . ,Πk−1) be optimal for με(A,P).
Then, we have

λ(A,P) ≥ 〈ρk, P 〉 = 〈ρk, P 〉 +
k

ε

k−1∑

i=1

〈TrMn(ρi+1) − Φi(ρi),Πi〉

≥ με(A,P).

(The first inequality is because (ρ1, . . . , ρk) is optimal for λ(A,P).
The equality follows because (ρ1, . . . , ρk) ∈ A, so each term in the
sum is zero. The final inequality is because (P,Π1, . . . ,Πk−1) is
optimal for με(A,P).)

The second inequality is more difficult. We invoke the following
lemma, the proof of which appears later in this section.

Lemma 3.2 (Rounding lemma). For any ε > 0 and any states
ρ1, . . . , ρk ∈ Mmn, there exists (ρ′

1, . . . , ρ
′
k) ∈ A such that

1

2
‖ρk − ρ′

k‖Tr < ε+
k

ε

k−1∑

i=1

1

2
‖TrMn(ρi+1) − Φi(ρi)‖Tr.
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Moreover, ρ′
1, . . . , ρ

′
k can be computed efficiently in parallel given

ρ1, . . . , ρk.

Let (ρ1, . . . , ρk) be optimal for με(A,P), let (ρ′
1, . . . , ρ

′
k) be

the density operators obtained by invoking Lemma 3.2, and let
P ∈ P be optimal for λ(A,P). Because (ρ1, . . . , ρk) is optimal for
με(A,P), we have

με(A,P) ≥ 〈ρk, P 〉 +
k

ε

k−1∑

i=1

1

2
‖TrMn(ρi+1) − Φi(ρi)‖Tr .(3.3)

Employing the identity (2.1), the quantity 〈ρk, P 〉 becomes

〈ρk, P 〉 = 〈ρ′
k, P 〉 + 〈ρk − ρ′

k, P 〉 ≥ 〈ρ′
k, P 〉 − 1

2
‖ρk − ρ′

k‖Tr .

Substituting the bound on 1
2
‖ρk − ρ′

k‖Tr from Lemma 3.2, we see
that the summation of trace norms in (3.3) is canceled, leaving

με(A,P) > 〈ρ′
k, P 〉 − ε ≥ λ(A,P) − ε

as desired. (The final inequality is because P is optimal for
λ(A,P).) �

Proposition 3.4 (Construction of near-optimal strategies). The
following hold for any δ, ε > 0:

(i) If (ρ1, . . . , ρk) is δ-optimal for με(A,P), then there is an effi-
cient parallel algorithm to compute (ρ′

1, . . . , ρ
′
k) ∈ A that is

(δ + ε)-optimal for λ(A,P).

(ii) If (P,Π1, . . . ,Πk−1) is δ-optimal for με(A,P), then P is also
(δ + ε)-optimal for λ(A,P).

Proof of item (i). Let (ρ1, . . . , ρk) be δ-optimal for
με(A,P), let (ρ′

1, . . . , ρ
′
k) ∈ A be obtained by invoking Lemma 3.2,

and let P ∈ P. We have

〈ρ′
k, P 〉 ≤ 〈ρk, P 〉 +

1

2
‖ρk − ρ′

k‖Tr

≤ 〈ρk, P 〉 + ε+
k

ε

k−1∑

i=1

1

2
‖TrMn(ρi+1) − Φi(ρi)‖Tr

≤ με(A,P) + ε+ δ ≤ λ(A,P) + ε+ δ.
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(The first inequality follows from (2.1); the second from Lemma 3.2;
the third because (ρ1, . . . , ρk) is δ-optimal for με(A,P); and the
fourth because με(A,P) ≤ λ(A,P).) It therefore follows that
(ρ′

1, . . . , ρ
′
k) is (δ + ε)-optimal for λ(A,P). �

Proof of item (ii). Let (P,Π1, . . . ,Πk−1) be δ-optimal for
με(A,P). For any (ρ1, . . . , ρk) ∈ A, we have

〈ρk, P 〉 = 〈ρk, P 〉 +
k

ε

k−1∑

i=1

〈TrMn(ρi+1) − Φi(ρi),Πi〉

≥ με(A,P) − δ > λ(A,P) − ε− δ.

(The equality is because (ρ1, . . . , ρk) ∈ A, so each term in the
sum is zero. The first inequality is because (P,Π1, . . . ,Πk−1) is
δ-optimal for με(A,P). The final inequality is because με(A,P) >
λ(A,P) − ε.) It therefore follows that P is (δ + ε)-optimal for
λ(A,P). �

We now prove Lemma 3.2, the statement of which appeared
in the proof of Theorem 3.1. Given any states ρ1, . . . , ρk, this
lemma asserts that these states can be “rounded” to an element
(ρ′

1, . . . , ρ
′
k) ∈ A in such a way that the distance between the final

states ρk and ρ′
k is bounded by a function of the extent to which

(ρ1, . . . , ρk) violate the conditions required for membership in A.
Let us restate Lemma 3.2 in terms of the Bures angle.

Lemma 3.5 (Rounding lemma). For any ε > 0 and any states
ρ1, . . . , ρk ∈ Mmn, there exists (ρ′

1, . . . , ρ
′
k) ∈ A such that

A(ρk, ρ
′
k) ≤

k−1∑

i=1

A (TrMn(ρi+1),Φi(ρi)) .

Moreover, ρ′
1, . . . , ρ

′
k can be computed efficiently in parallel given

ρ1, . . . , ρk.

Proof. Define ρ′
1, . . . , ρ

′
k recursively as follows. Let ρ′

1 = ρ1.
For each i = 1, . . . , k − 1 by the preservation of subsystem fidelity
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(Proposition 2.2), there exists ρ′
i+1 (which can be computed effi-

ciently in parallel) with TrMn(ρ′
i+1) = Φi(ρ

′
i) and

A(ρi+1, ρ
′
i+1) = A (TrMn(ρi+1),Φi(ρ

′
i)) .

By the triangle inequality, this quantity is at most

A (TrMn(ρi+1),Φi(ρi)) + A (Φi(ρi),Φi(ρ
′
i)) .

By contractivity of the Bures angle under channels, the summand
on the right is at mostA(ρi, ρ

′
i). The lemma now follows inductively

from the fact that A(ρ1, ρ
′
1) = 0. �

It is easy to recover Lemma 3.2 from Lemma 3.5: It follows
immediately from Lemma 3.5 and Proposition 2.4 (Relationship
between trace norm and Bures angle) that

1

2
‖ρk − ρ′

k‖Tr ≤
k−1∑

i=1

√
π

2
‖TrMn(ρi+1) − Φi(ρi)‖Tr.

Lemma 3.2 then follows from the fact that
√

π
2
x < 1

2δ
x + δ for all

x ≥ 0 and all δ > 0.

4. A parallel oracle-algorithm
for a min-max problem

In this section, we prove Theorem 1.5 (Main result) by exhibiting
an efficient parallel oracle-algorithm based on MMW for finding
approximate solutions to the min-max problem (1.2). The precise
formulation of the MMW method used in this paper is stated be-
low as Theorem 4.1. Our statement of this theorem is somewhat
nonstandard: The result is usually presented in the form of an algo-
rithm, whereas our presentation is purely mathematical. However,
a cursory examination of the literature—say, Kale (2007, Chapter
3)—reveals that our mathematical formulation is equivalent to the
more conventional algorithmic form.

Theorem 4.1 (Multiplicative weights update method, Kale 2007).
Fix γ ∈ (0, 1/2) and α > 0. Let M (1), . . . ,M (T ) be arbitrary d× d
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“loss” matrices with 0 � M (t) � αI. Let W (1), . . . ,W (T ) be d × d
“weight” matrices given by

W (1) = I W (t+1) = exp
(−γ (

M (1) + · · · +M (t)
))
.

Let ρ(1), . . . , ρ(T ) be density operators obtained by normalizing each
W (1), . . . ,W (T ) so that ρ(t) = W (t)/Tr(W (t)). For all density oper-
ators ρ, it holds that

1

T

T∑

t=1

〈ρ(t)M (t)〉 ≤ 〈
ρ

1

T

T∑

t=1

M (t)
〉

+ α
(
γ +

ln d

γT

)
.

Note that Theorem 4.1 holds for all choices of loss matrices
M (1), . . . ,M (T ), including those for which each M (t) is chosen ad-
versarially based upon W (1), . . . ,W (t). This adaptive selection of
loss matrices is typical in implementations of the MMW.

Let us establish some notation before stating our algorithm.
Let ε > 0 and consider the linear mapping fA,ε with the property
that

〈fA,ε(ρ1, . . . , ρk), (P,Π1, . . . ,Πk−1)〉

= 〈ρk, P 〉 +
k

ε

k−1∑

i=1

〈TrMn(ρi+1) − Φi(ρi),Πi〉 ,

so that we may write

με(A,P) = min
(ρ1,...,ρk)

max
P∈P

(Π1,...,Πk−1)

〈fA,ε(ρ1, . . . , ρk), (P,Π1, . . . ,Πk−1)〉 .

It is clear that the mapping fA,ε is given by

fA,ε : (ρ1, . . . , ρk)

�→ (
ρk,

k

ε
[TrMn(ρ2) − Φ1(ρ1)] , . . . ,

k

ε
[TrMn(ρk) − Φk−1(ρk−1)]

)
.

It is tedious but straightforward to verify that the adjoint map-
ping f ∗

A,ε is given by

f ∗
A,ε =

(
f ∗
A,ε,1, . . . , f

∗
A,ε,k

)
,
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where

f ∗
A,ε,1 : (P,Π1, . . . ,Πk−1) �→ −k

ε
Φ∗

1(Π1),

f ∗
A,ε,i : (P,Π1, . . . ,Πk−1) �→ k

ε
[Πi−1 ⊗ I − Φ∗

i (Πi)]

for i = 2, . . . , k − 1,

f ∗
A,ε,k : (P,Π1, . . . ,Πk−1) �→ P +

k

ε
Πk−1 ⊗ I.

Note that for any (P,Π1, . . . ,Πk−1), it holds that

−k
ε
I � f ∗

A,ε,1(P,Π1, . . . ,Πk−1) � 0,

−k
ε
I � f ∗

A,ε,i(P,Π1, . . . ,Πk−1) � k

ε
I (2 ≤ i ≤ k − 1),

0 � f ∗
A,ε,k(P,Π1, . . . ,Πk−1) � (

1 +
k

ε

)
I � 2k

ε
I.

(4.2)

Our MMW algorithm is stated as follows.

1. Let ε = δ/3, let γ = εδ
12k2 , and let T =

⌈
ln(mn)

γ2

⌉
. Let W

(1)
i =

I ∈ Mmn for each i = 1, . . . , k.

2. Repeat for each t = 1, . . . , T :

(a) For i = 1, . . . , k: Compute the updated density opera-

tors ρ
(t)
i = W

(t)
i /Tr(W

(t)
i ).

(b) For i = 1, . . . , k−1: Compute the projection Π
(t)
i ∈ Mm

onto the positive eigenspace of

TrMn(ρ
(t)
i+1) − Φi(ρ

(t)
i ).

(c) Use the oracle to obtain a δ/3-optimal solution P (t) ∈
Mmn to the optimization problem for P (Problem 1.3)

on input ρ
(t)
k .

(d) Compute the loss matrices
(
M

(t)
1 , . . . ,M

(t)
k

)

=
ε

2k2
[f ∗

R,ε

(
P (t),Π

(t)
1 , . . . ,Π

(t)
k−1

)
+
k

ε
(I, . . . , I, 0)].
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(e) Update each weight matrix according to the standard
MMW update rule:

W
(t+1)
i = exp(−γ(M (1)

i + · · · +M
(t)
i )).

3. Return

λ̃ =
1

T

T∑

t=1

〈
fR,ε

(
ρ

(t)
1 , . . . , ρ

(t)
a

)
,
(
P (t),Π

(t)
1 , . . . ,Π

(t)
k−1

)〉

as the δ-approximation to λ(A,P).

4. Compute

(ρ1, . . . , ρk) =
1

T

T∑

t=1

(ρ
(t)
1 , . . . , ρ

(t)
k )

(P,Π1, . . . ,Πk−1) =
1

T

T∑

t=1

(P (t),Π
(t)
1 , . . . ,Π

(t)
k−1),

the pair of which are 2
3
δ-optimal for με(A,P). Compute (ρ′

1,
. . . , ρ′

k) from (ρ1, . . . , ρk) as described in Proposition 3.4(i).
Return (ρ′

1, . . . , ρ
′
k) and P as the δ-optimal point for λ(A,P).

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. We argue that the theorem is estab-
lished by the above oracle-algorithm. To this end, note that each
loss matrix M

(t)
i ∈ Mmn satisfies 0 � M

(t)
i � 1

k
I—a fact that fol-

lows immediately from their definition in step 2d and the bounds
(4.2) on the adjoint mapping f ∗

A,ε.
For each i = 1, . . . , k, it is clear that the construction of the

density operators ρ
(t)
i in terms of the loss matrices M

(t)
i presented

in the above oracle-algorithm is as defined in Theorem 4.1. It
therefore follows that for any density operator ρ�

i ∈ Mmn, we have

1

T

T∑

t=1

〈ρ(t)
i M

(t)
i 〉 ≤ 〈ρ�

i

1

T

T∑

t=1

M
(t)
i 〉 +

1

k

(
γ +

ln(mn)

γT

)
.
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Summing these inequalities over all i, we find that for any density
operators (ρ�

1, . . . , ρ
�
k), it holds that

1

T

T∑

t=1

〈
(ρ

(t)
1 , . . . , ρ

(t)
k )(M

(t)
1 , . . . ,M

(t)
k )

〉

≤ 〈
(ρ�

1, . . . , ρ
�
k)

1

T

T∑

t=1

(M
(t)
1 , . . . ,M

(t)
k )

〉
+

(
γ +

ln(mn)

γT

)
.

Substituting the definition of the loss matrices M
(t)
i from step 2d

and simplifying, we obtain

λ̃ =
1

T

T∑

t=1

〈(
ρ

(t)
1 , . . . , ρ

(t)
k

)
, f ∗

R,ε

(
P (t),Π

(t)
1 , . . . ,Π

(t)
k−1

)〉

≤ 〈
(ρ�

1, . . . , ρ
�
k)

1

T

T∑

t=1

f ∗
R,ε(P

(t),Π
(t)
1 , . . . ,Π

(t)
k−1)

〉

+
2k2

ε
(γ +

ln(mn)

γT
)

︸ ︷︷ ︸
error term

.(4.3)

Substituting the choice of γ, T from step 1, we see that the error
term on the right side is at most δ/3. Since this inequality holds for
any choice of (ρ�

1, . . . , ρ
�
k), it certainly holds for the optimal choice,

from which it follows that the right side is at most με(A,P)+ δ/3.

By construction, each (P (t),Π
(t)
1 , . . . ,Π

(t)
k−1) is a δ/3-best response

to (ρ
(t)
1 , . . . , ρ

(t)
k ), so it must be that the left side of this inequality is

at least με(A,P)− δ/3. It then follows from Theorem 3.1 (Round-
ing theorem) and the choice ε = δ/3 that |λ̃ − λ(A,P))| < 2

3
δ as

desired.
Next, we argue that the point (ρ′

1, . . . , ρ
′
k) returned in step 4 is

δ-optimal for λ(A,P). By Proposition 3.4(i), it suffices to argue
that (ρ1, . . . , ρk) is 2

3
δ-optimal for με(A,P). To this end, choose

any (P �,Π�
1, . . . ,Π

�
a). Since each (P (t),Π

(t)
1 , . . . ,Π

(t)
k−1) is a δ/3-best

response to (ρ
(t)
1 , . . . , ρ

(t)
k ), it holds that the inner product

〈
(ρ

(t)
1 , . . . , ρ

(t)
k )f ∗

R,ε(P
(t),Π

(t)
1 , . . . ,Π

(t)
k−1)

〉
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can increase by no more than δ/3 when (P �,Π�
1, . . . ,Π

�
k−1) is sub-

stituted for (P (t),Π
(t)
1 , . . . ,Π

(t)
k−1). It then follows rom 6 that

〈 1

T

T∑

t=1

(ρ
(t)
1 , . . . , ρ

(t)
k )f ∗

R,ε

(
P �,Π�

1, . . . ,Π
�
k−1

) 〉

≤ λ̃+ δ/3 ≤ με(A,P) + 2
3
δ,

and hence, (ρ1, . . . , ρk) is 2
3
δ-optimal for με(A,P) as desired.

Next, we argue that the operator P returned in step 4 is
δ-optimal for λ(A,P). By Proposition 3.4(ii), it suffices to ar-
gue that (P,Π1, . . . ,Πk−1) is 2

3
δ-optimal for με(A,P). To this end,

choose any (ρ�
1, . . . , ρ

�
k). It follows from 6 that

〈
(ρ�

1, . . . , ρ
�
k), f

∗
R,ε (P,Π1, . . . ,Πk−1)

〉 ≥ λ̃− δ/3 ≥ με(A,P) − 2
3
δ,

and hence, (P,Π1, . . . ,Πk−1) is 2
3
δ-optimal for με(A,P) as desired.

The efficiency of this algorithm is not difficult to argue. Each
individual step consists only of matrix operations that are known to
admit an efficient parallel implementation. Efficiency then follows
from the observation that the number T of iterations is polynomial
in k, 1/δ, and log(mn). �

5. Double quantum interactive proofs

In this section, we prove DQIP ⊆ PSPACE by means of Theo-
rem 1.5. Specifically, in Section 5.2, we argue that the verifier in
a double quantum interactive proof induces a min-max problem
of the form (1.2) in which elements of A correspond to strategies
for the yes-prover, elements of P correspond to strategies for the
no-prover, and the value λ(A,P) corresponds to the probability
with which the verifier rejects when both provers act optimally.

Thus, the parallel oracle-algorithm of Theorem 1.5—together
with a parallel implementation of the oracle for optimization over
P—can be used to compute this probability to sufficient accuracy
so as to determine which prover has the winning strategy. In Sec-
tion 5.3, we provide a parallel implementation of the oracle required
by Theorem 1.5. Finally, in Section 5.4, we recite the argument
by which the existence of a parallel algorithm for approximating
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λ(A,P) leads to the containment of DQIP inside PSPACE. First,
we briefly introduce new notation in Section 5.1

5.1. Notation. Until now, we have used the symbol Mn to de-
note the space of complex n × n matrices. This notation is ideal
when only one or two distinct quantum systems are under consid-
eration. However, discussion henceforth deals with many different
systems (called registers), and so, we adopt the convention that dis-
tinct finite-dimensional complex vector spaces of the form C

d shall
be denoted with calligraphic letters (X ,Y , . . .). We also adopt the
following notation:

XY Shorthand for the Kronecker product X ⊗Y .
If X = C

d and Y = C
d′

then XY = C
dd′

.
MX The complex space of all linear operators

(matrices) acting on X .
IX ∈ MX The identity operator acting on X .
TrX : MXY → MY The partial trace over X .

5.2. Characterization of strategies for the yes-prover. The
verifier in a double quantum interactive proof can be assumed to
act upon two quantum registers: an m-qubit register M that is
shared with the provers for the purpose of exchanging messages
and a v-qubit register V that serves as a private memory for the
verifier. Associated with the registers M,V are complex Euclidean
spaces M = C

2m
,V = C

2v
, respectively. A verifier who exchanges

a rounds of messages with the yes-prover followed by b rounds
of messages with the no-prover is completely specified by a tuple
V = (|ψ〉, V1, . . . , Va+b−1,Π), where

1. |ψ〉 ∈ MV is a pure state.

2. V1, . . . , Va+b−1 ∈ MMV are unitary operators.

3. Π ∈ MMV is a projective measurement operator.

The yes-prover acts upon the shared communication register M and
a private memory register W with associated space W . The actions
of the yes-prover are specified by unitaries A1, . . . , Aa ∈ MMW .
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Figure 5.1: An illustration of a double quantum interactive proof
in which the verifier V = (|ψ〉, V1, . . . , V5,Π) exchanges a = 3
rounds of messages with the yes-prover followed by b = 3 rounds of
messages with the no-prover before performing the measurement
{Π, I − Π} that dictates acceptance or rejection. Any choice of
(A1, A2, A3) and (B1, B2, B3) induces a state ρ and a measurement
operator P as indicated. The probability of rejection is given by
〈ρ, P 〉 = Tr(ρP )

Similarly, the no-prover acts upon the shared communication reg-
ister M and a private memory register Z with associated space Z.
The actions of the no-prover are specified by unitaries B1, . . . , Bb ∈
MMZ . The interaction proceeds as suggested by Figure 5.1 with
measurement outcome Π indicating rejection.

Basic quantum formalism tells us that if the yes- and no-provers
act according to �A = (A1, . . . , Aa) and �B = (B1, . . . , Bb), respec-
tively, then the probability of rejection is given by

Pr
[
reject | �A, �B

]

= ‖ΠBbVa+b−1Bb−1 · · ·B1VaAaVa−1Aa−1 · · ·A2V1A1|ψ〉‖2 .
(5.1)

(For clarity, we have suppressed numerous tensors with identity
and the initial states |0〉 of the provers’ private memory registers.)

For any �A, let ρ be the reduced state of the verifier’s registers
(M,V) immediately after Aa is applied so that the actions of the
yes-prover are completely represented by the state ρ. Similarly, for
any �B, let P be the measurement operator on (M,V) obtained by
bundling the verifier–no-prover interaction into a single measure-
ment operator as suggested by Figure 5.1. The expression (5.1) for
the probability of rejection can be rewritten in terms of ρ, P as

Pr[reject | �A, �B] = 〈ρ, P 〉.
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Figure 5.2: The states ρ1, ρ2, ρ3 are a transcript of the referee’s
conversation with the yes-prover. It follows easily from the uni-
tary equivalence of purifications that a triple (ρ1, ρ2, ρ3) is a valid
transcript if and only if it obeys the recursive relation TrMi

(ρi) =
TrAi

(Vi−1ρi−1V
∗
i−1) for i = 1, 2, 3 where V0 = I

By definition, the no-prover wishes to maximize this quantity, while
the yes-prover wishes to minimize it. Let λ(V ) denote the verifier’s
probability of rejection when both provers act optimally. For a ver-
ifier with completeness c and soundness s, our goal is to determine
whether λ(V ) is closer to 1 − c or to 1 − s.

Let Y(V ) ⊂ MMV denote the set of states of (M,V) obtainable
by the yes-prover, and let P(V ) ⊂ MMV denote the set of mea-
surement operators on (M,V) obtainable by the no-prover. Then,
the desired quantity λ(V ) is given by the min-max problem

(5.2) λ(V ) = min
ρ∈Y(V )

max
P∈P(V )

〈ρ, P 〉.

What can be said of the sets Y(V ),P(V )? Let us begin by consid-
ering the set Y(V ). As suggested by Figure 5.2, each element of
Y(V ) can be viewed as the final entry ρa in a transcript (ρ1, . . . , ρa)
of the verifier’s conversation with the yes-prover. Moreover, it is
straightforward to use the unitary equivalence of purifications to
characterize those a-tuples of density matrices which constitute
valid transcripts. This characterization was first noted by Kitaev
(2002).

Proposition 5.3. [Kitaev’s consistency conditions, Kitaev 2002]
Let V = (|ψ〉, V1, . . . , Va+b−1,Π) be a verifier, and let Y(V ) be
the set of admissible states for the yes-prover. A given state ρ
is an element of Y(V ) if and only if there exist density matrices
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ρ1, . . . , ρa ∈ MMV with ρa = ρ and

TrM(ρi) = TrM(Vi−1ρi−1V
∗
i−1) for i = 1, . . . , a,

where we have written V0 = I and ρ0 = |ψ〉〈ψ| for convenience.

With these observations in mind, we consider completely posi-
tive and trace-preserving linear maps

Φ0, . . . ,Φa−1 : MMV → MV

defined by

Φ0 : X �→ Tr(X) TrM(|ψ〉〈ψ|)
Φi : X �→ TrM(ViXV

∗
i ) for i = 1, . . . , a− 1.

These maps specify the feasible region A(V ) of an SDP of the form
(1.1) from Section 1. Moreover, it follows from Kitaev’s consistency
conditions (Proposition 5.3) that (ρ0, . . . , ρa) ∈ A(V ) if and only
if ρa ∈ Y(V ). Thus, the min-max problem (5.2) for λ(V ) can
equivalently be written as

λ(V ) = min
(ρ0,...,ρa)∈A(V )

max
P∈P(V )

〈ρa, P 〉 .(5.4)

We have not yet shown that the set P(V ) of measurement operators
for the no-prover is compact and convex. But if we assume for the
moment that it is, then we may already apply Theorem 1.5 so as
to obtain a parallel oracle-algorithm for approximating λ(V ) on
input Φ0, . . . ,Φa−1 given an oracle for optimization over P(V ).

5.3. Implementation of the oracle for best responses of the
no-prover. In order to complete the description of our parallel
algorithm for double quantum interactive proofs, it remains only
to describe the implementation of the oracle for optimization for
P(V ) (Problem 1.3). In this section, we establish the following.

Proposition 5.5. Let V = (|ψ〉, V1, . . . , Va+b−1,Π) be a verifier,
and let P(V ) be the set of admissible measurement operators for
the no-prover. There is a parallel algorithm for optimization over
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P(V ) (Problem 1.3) with run time bounded by a polynomial in b,
1/δ, and log(dim(MV)).

It follows that the algorithm of Section 4 yields an uncondi-
tionally efficient parallel algorithm for approximating λ(V ) given
an explicit matrix representation of the verifier V .

As mentioned earlier, this instance of optimization over P(V )
(Problem 1.3) will be rephrased as an SDP of the form (1.1) (plus
some postprocessing) so that the algorithm of Section 4 can be
reused in the implementation of our oracle.

To this end, choose any state ρ ∈ MMV and suppose that a
(possibly cheating) yes-prover was somehow able to make it so that
the registers (M,V) after the interaction with the yes-prover are in
state ρ. Let W be a register large enough to admit a purification of
ρ, and let |ϕ〉 ∈ WMV be any such purification. If the no-prover
acts according to (B1, . . . , Bb), then the probability of rejection (as
per Eq. (5.1)) is

Pr[reject | ρ, (B1, . . . , Bb)] = ‖ΠBbVa+b−1Bb−1 · · ·B1Va|ϕ〉‖2 .

Notice that this quantity also represents the probability of rejec-
tion in a different, single-prover interactive proof with a verifier V ′

whose initial state is Va|ϕ〉. (Formally, the verifier V ′ exchanges
b rounds of messages with one of the provers and zero messages
with the other.) The unitaries B1, . . . , Bb could specify actions for
either the yes-prover or the no-prover—a choice that depends only
upon how we label the components of the verifier V ′.

Since our goal is to reduce optimization over P(V ) (which is
a maximization problem) to an SDP of the form (1.1) (which is a
minimization problem), it befits us to view B1, . . . , Bb as actions
for the yes-prover in the interactive proof with verifier V ′. Let us
write

V ′ = (Va|ϕ〉, V ′
1 , . . . , V

′
b−1,Π

′),

where V ′
1 , . . . , V

′
b−1,Π

′ ∈ MMVW are given by

V ′
i = Va+i ⊗ IW for i = 1, . . . , b− 1,

Π′ = (I − Π) ⊗ IW .
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The private memory register V′ of the new verifier V ′ is identified
with the registers (V,W), and communication register M′ of the
new verifier is identified with M.

Each choice of unitaries (B1, . . . , Bb) induces both a measure-
ment operator P ∈ P(V ) and a state ξ ∈ Y(V ′) with

〈ρ, P 〉 = ‖ΠBbVa+b−1Bb−1 · · ·B1Va|ϕ〉‖2 = 1 − 〈ξ,Π′〉 ,

and therefore,

max
P∈P(V )

〈ρ, P 〉 = 1 − λ(V ′) = 1 − min
ξ∈Y(V ′)

〈ξ,Π′〉 .

Moreover, P ∈ P(V ) achieves the maximum on the left side if and
only if the unitaries (B1, . . . , Bb) that induce P also induce a state
ξ ∈ Y(V ′) that achieves the minimum on the right side.

Incidentally, by identifying elements of P(V ) with elements of
A(V ′), we have established that the set P(V ) is compact and
convex as required by Theorem 1.5. We are now ready to prove
Proposition 5.5.

Proof of Proposition 5.5. Consider the following algorithm
for optimization over P(V ):

1. Use the algorithm of Section 4 to find ξ ∈ Y(V ′) minimizing
〈ξ,Π′〉.

2. Find the unitaries (B1, . . . , Bb) that induce ξ. These unitaries
also induce a measurement operator P ∈ P(V ) maximizing
〈ρ, P 〉. Compute P using (B1, . . . , Bb) via standard matrix
multiplication.

We already saw how the algorithm of Section 4 can be used to
accomplish step 1 given an oracle for optimization over P(V ′). In
this case, P(V ′) = {Π′} is a singleton set, and thus, the oracle
for optimization over P(V ′) admits a trivial implementation by
returning the only element.

It remains only to fill in the details for step 2. Recall that the
algorithm of Section 4 finds a near-optimal transcript (ξ0, . . . , ξb) ∈
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A(V ′), meaning that

TrM(ξ1) = TrM(Va|ϕ〉〈ϕ|V ∗
a ),

TrM(ξi+1) = TrM(V ′
i ξiV

′∗
i ) for each i = 1, . . . , b− 1.

(Here, ξ0 is an arbitrary density matrix that is not used in our
construction. The presence of this matrix is an artifact of the
identification of Y(V ′) with A(V ′).) The following algorithm finds
the unitaries (B1, . . . , Bb):

1. Let Z be a space large enough to admit purifications of
ξ1, . . . , ξb. Write |α0〉 = |ϕ〉|0Z〉 and V ′

0 = Va.

2. For each i = 1, . . . , b:

(a) Compute a purification |αi〉 ∈ ZMVW of ξi.

(b) Compute a unitary Bi ∈ MZM that maps V ′
i−1|αi−1〉 to

|αi〉.
3. Return the desired unitaries (B1, . . . , Bb).

Correctness of this construction is straightforward (though nota-
tionally cumbersome). Let us argue that each individual step con-
sists only of matrix operations that are known to admit an efficient
parallel implementation, from which it follows that the entire con-
struction is efficient.

Step 2a requires that we compute a purification |α〉 of a given
mixed state ξ. This can be achieved by computing a spectral de-
composition

ξ =
∑

i

μi|φi〉〈φi|

of ξ; the purification |α〉 is then given by

|α〉 =
∑

i

√
μi|φi〉|φi〉.

Given two pure states |α〉, |α′〉 ∈ ZMVW with

TrZM(|α〉〈α|) = TrZM(|α′〉〈α′|),
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step 2b requires that we compute a unitary B ∈ MZM that maps
|α〉 to |α′〉. This can be achieved by computing Schmidt decompo-
sitions

|α〉 =
∑

i

si|φi〉|ψi〉, |α′〉 =
∑

i

s′
i|φ′

i〉|ψi〉

with respect to the partition ZM ⊗ VW. (Schmidt decomposi-
tions on vectors are equivalent to singular value decompositions on
matrices and hence can be implemented in parallel.) The desired
unitary is then given by straightforward matrix multiplication and
summation: B =

∑
i |φ′

i〉〈φi|. �

5.4. Containment of DQIP inside PSPACE. The argument
by which a parallel algorithm for double quantum interactive proofs
leads to a proof of DQIP ⊆ PSPACE is by now a familiar one. (See
Section 3 of Jain et al. (2011) for a good exposition of this type of
argument.)

Proof of Theorem 1.6. For each decision problem L∈DQIP,
we must prove that there is a polynomial-space algorithm for L. To
this end, consider a “scaled up” version of NC known as NC(poly),
which consists of all functions computable by polynomial-space
uniform Boolean circuits of polynomial depth. It has long since
been known that NC(poly) algorithms can be simulated in polyno-
mial space (Borodin 1977), so in order to prove L ∈ PSPACE, it
suffices to give an NC(poly) algorithm for L.

Let V be a verifier with completeness c, soundness s, and
polynomial-bounded p with c−s ≥ 1/p witnessing the membership
of L in DQIP. Let x be any input string and consider the following
algorithm for deciding whether x is a yes-instance or a no-instance
of L:

1. Compute an explicit matrix representation of the verifier
V = (|ψ〉, V1, . . . , Va+b−1,Π) on input x. As argued earlier,
this representation specifies sets A(V ),P(V ) for a min-max
problem of the form (1.2).

2. Compute a δ-approximation of λ(V ) for the choice δ = (c−
s)/3 so as to determine which of the two provers has a win-
ning strategy. Accept or reject accordingly.
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The dimension dim(MV) = 2m+v of the matrix representation of a
verifier on input x might grow exponentially in the bit length of x.
Nevertheless, as argued in Jain et al. (2011) for ordinary quantum
interactive proofs, it is not difficult to see that step 1 admits a
straightforward implementation in NC(poly) via standard matrix
multiplication.

Earlier in this section, we argued that the parallel oracle-
algorithm of Theorem 1.5 can be used to compute the desired ap-
proximation of λ(V ). We also presented a parallel implementation
of the oracle for optimization over P(V ) required by Theorem 1.5.
To see that this parallel algorithm is efficient, it suffices to observe
that the number of rounds a + b and the inverse of the accuracy
parameter 1/δ both scale as a polynomial in |x| and hence also in
log(dim(MV)).

Thus, the above algorithm computes the composition of a func-
tion in NC(poly) with another function in NC. As NC(poly) is
closed under such compositions, it follows that the above algorithm
admits an NC(poly) implementation and hence also a polynomial-
space implementation. It follows that L ∈ PSPACE, and hence,
DQIP ⊆ PSPACE. �

6. Consequences and extensions

6.1. A direct polynomial-space simulation of QIP. As men-
tioned in the introduction, a special case of our result is a direct
polynomial-space simulation of multi-message quantum interactive
proofs, resulting in a first-principles proof of QIP ⊆ PSPACE. Re-
call that an ordinary, single-prover quantum interactive proof is a
double quantum interactive proof in which the verifier exchanges
zero messages with the no-prover. We already observed in Sec-
tion 5.3 that such a verifier induces an SDP of the form (1.1) in
which elements of the feasible region A are identified with strate-
gies for the prover. In this case, Theorem 1.5 yields an efficient
parallel algorithm for finding optimal strategies for the prover in
a single-prover quantum interactive proof with no need to specify
an oracle.
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6.2. Finding near-optimal strategies. The algorithm of Sec-
tion 4 not only approximates the value λ(A,P) of the min-max
problem (1.2), but it also finds near-optimal points (ρ1, . . . , ρk) ∈
A and P ∈ P. By contrast, in Section 5, we were primarily con-
cerned with the problem of approximating only the value λ(V ) of
the min-max problem (5.4). This quantity is the verifier’s proba-
bility of rejection when both provers act optimally; approximating
it suffices to prove DQIP ⊆ PSPACE.

However, our result readily extends to the related search prob-
lem of finding near-optimal strategies for the provers. Indeed, step
4 of the algorithm of Section 4 returns a transcript (ρ0, . . . , ρa) ∈
A(V ) and a measurement operator P ∈ P(V ), both of which are
δ-optimal for λ(V ). The unitaries (A1, . . . , Aa) for the yes-prover
can be recovered from the transcript (ρ0, . . . , ρa) via the method
described in Section 5.3 with no additional complication.

It is only slightly more difficult to recover the no-prover’s
unitaries (B1, . . . , Bb) from P . Our definition of Problem 1.3 (op-
timization over P) specifies only that a solution produce a near-
optimal measurement operator P ∈ P for a given state ρ. But the
algorithm for Problem 1.3 described in Section 5.3 for optimiza-
tion over P(V ) produces its output P by first constructing the
associated unitaries (B, . . . , Bb). It is a simple matter to modify
our definition of Problem 1.3 so as to also return those unitaries in
addition to P .

The near-optimal measurement operator P returned in step 4
of the algorithm of Section 4 is given by

P =
1

T

T∑

t=1

P (t),

which indicates a strategy for the no-prover that selects
t ∈ {1, . . . , T} uniformly at random and then acts according to

(B
(t)
1 , . . . , B

(t)
b ). It is a simple matter to construct unitaries

(B1, . . . , Bb) that implement this probabilistic strategy by sam-
pling the integer t during the first round, recording that integer in
the no-prover’s private memory (which must be enlarged slightly
to make room for it), and controlling the operation in subsequent
turns on the contents of that integer. All of the matrix operations
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required to construct (B1, . . . , Bb) from each (B
(t)
1 , . . . , B

(t)
b ) in this

way can be implemented efficiently in parallel.

6.3. Robustness with respect to error. In Section 1.3.1, we
noted that it is not immediately obvious that the classes DIP and
DQIP are robust with respect to completeness and soundness pa-
rameters c, s. Because of this, we defined the classes to be inclusive
as possible, allowing any verifier for which c − s ≥ 1/p for some
polynomial-bounded function p(|x|).

Nevertheless, it follows from the collapse of these classes to
PSPACE that they are indeed robust with respect to complete-
ness and soundness. In particular, classical interactive proofs for
PSPACE (Lund et al. 1992; Shamir 1992) imply that if a deci-
sion problem L admits a double (quantum) interactive proof with
c − s ≥ 1/p, then L also admits a double (quantum) interactive
proof with c = 1 and s ≤ 2−q for any desired polynomial-bounded
function q(|x|).

However, the method by which the original verifier is trans-
formed into the low-error verifier is very circuitous: The original
verifier must be simulated in polynomial space according to The-
orem 1.6 and then that polynomial-space computation must be
converted back into an interactive proof with perfect completeness
and exponentially small soundness according to proofs of IP =
PSPACE. It would be nice to know whether a more straight-
forward transformation such as parallel repetition followed by a
majority vote could be used to reduce error for double quantum
interactive proofs and other bounded-turn interactive proofs with
competing provers.

6.4. Arbitrary payoff observables. In the study of interactive
proofs, attention is generally restricted to the accept-reject model,
wherein the verifier’s measurement {Π, I − Π} indicates only ac-
ceptance or rejection without specifying a payout to the provers.
From a game-theoretic perspective, one might wish to consider a
more general verifier whose final measurement {Πa}a∈Σ could have
outcomes belonging to some arbitrary finite set Σ. In this case,
the verifier awards payouts to the provers according to a payout
function v : Σ → R where v(a) denotes the payout to the yes-
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prover in the event of outcome a. (Since the game is zero-sum, the
no-prover’s payout must be −v(a).)

Jain & Watrous (2009) describe a simple transformation by
which their algorithm for one-turn quantum games can be used
to approximate the expected payout in this more general setting.
Their transformation extends without complication to double quan-
tum interactive proofs.

In our case, the expected payout to the yes-prover when she
and the no-prover play according to (A1, . . . , Aa) and (B1, . . . , Bb),
respectively, is given by

∑

a∈Σ

v(a)〈φ|Πa|φ〉 = 〈φ|ΠΣ|φ〉,

where

|φ〉 = BbVa+b−1Bb−1 · · ·B1VaAaVa−1Aa−1 · · ·A2V1A1|ψ〉

is the final state of the system, and the Hermitian operator ΠΣ =∑
a∈Σ v(a)Πa denotes the payout observable induced by the verifier.

The expected payout of this interaction can be computed simply by
translating and rescaling ΠΣ so as to obtain a measurement opera-
tor 0 � Π � I and then running our algorithm for double quantum
interactive proofs with verifier V = (|ψ〉, V1, . . . , Va+b−1,Π). The
expected payout of the original protocol is then obtained by invert-
ing the scaling and translation operations by which Π was obtained
from ΠΣ. As noted by Jain and Watrous, this transformation has
the effect of inflating the additive approximation error δ by a fac-
tor of ‖ΠΣ‖, which is the maximum absolute value of any given
payout.
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