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MODULAR COMPOSITION

MODULO TRIANGULAR SETS

AND APPLICATIONS

Adrien Poteaux and Éric Schost

Abstract. We generalize Kedlaya and Umans’ modular composition
algorithm to the multivariate case. As a main application, we give
fast algorithms for many operations involving triangular sets (over a
finite field), such as modular multiplication, inversion, or change of
order. For the first time, we are able to exhibit running times for these
operations that are almost linear, without any overhead exponential in
the number of variables. As a further application, we show that, from
the complexity viewpoint, Charlap, Coley, and Robbins’ approach to
elliptic curve point counting can be competitive with the better known
approach due to Elkies.
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1. Introduction

Our purpose in this paper is to give complexity results for opera-
tions involving triangular sets. We start by recalling the definition.

Triangular sets. Let F be our base field, and let Y = Y1, . . . , Ys

be indeterminates over F; we order them as Y1 < · · · < Ys. A
(monic) triangular set T = (T1, . . . , Ts), for the given variable
ordering, is a family of polynomials in F[Y] with the following
triangular structure:
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Ts(Y1, . . . , Ys)
...

T1(Y1),

such that for all i, Ti is monic in Yi, and Ti is reduced modulo
〈T1, . . . , Ti−1〉. Note that T is a zero-dimensional lexicographic
Gröbner basis for the order Y1 < · · · < Ys, with a triangular struc-
ture.

Such representations can be used to solve systems of equations,
whereby the solution set is described by one, or several, triangular
set(s) as above (or generalizations thereof, called regular chains,
that are well suited to situations of positive dimensions). There
exists a vast literature dedicated to algorithms with triangular sets,
regular chains, and applications: without being exhaustive, we
refer the reader to Kalkbrener (1993), Aubry et al. (1999), Moreno
Maza (1999), Hubert (2003), Schost (2003). In this paper, we will
be concerned with some basic subroutines at the heart of these
algorithms: multiplication, inversion, norm computation modulo a
triangular set, as well as change of order on the variables.

It is easy to show examples, involving very few variables, where
these operations are useful. The following is taken from Pascal &
Schost (2006): suppose that we wish to find a factor of the self-
reciprocal polynomial T1 = Y 6− 5Y 5 +6Y 4− 9Y 3 +6Y 2− 5Y +1.
The set of roots of T1 is globally invariant under the map α �→ 1

α
,

so the function α �→ α+ 1
α

is invariant for this action. Hence, it is
natural to introduce the bivariate triangular set

T
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T2 = Y2 − (Y1 + 1
Y1

) mod T1

= Y2 − (Y 5
1 − 5Y 4

1 + 6Y 3
1 − 9Y 2

1 + 5Y1 − 5)

T1 = Y 6
1 − 5Y 5

1 + 6Y 4
1 − 9Y 3

1 + 6Y 2
1 − 5Y1 + 1.

Now, change the order of Y1, Y2 in T; we obtain another triangular
set that generates the same ideal:

∣
∣
∣
∣

Y 2
1 − Y2Y1 + 1
Y 3

2 − 5Y 2
2 + 3Y2 + 1.

We factor the last polynomial as Y 3
2 −5Y 2

2 +3Y2+1=(Y 2
2 −4Y2− 1)

(Y2 − 1) and keep for instance the factor Y 2
2 − 4Y2 − 1. Then, we

restore the initial order in the system. This yields
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Y2 + Y 3
1 − 4Y 2

1 − 4
Y 4

1 − 4Y 3
1 + Y 2

1 − 4Y1 + 1,

where we can read off a factor of the initial polynomial T1. Hence,
through change of order, we were able to halve the degree of the
polynomial to factor. The last section of this paper will present a
less trivial application of this idea to elliptic curve point counting.

Complexity issues. Despite a growing literature, the complex-
ity of the former operations remains imperfectly understood. For
instance, in the previous example, it is not clear a priori that the
cost of change of order would not offset the gains obtained by
reducing the degree in the factorization.

To measure costs, we will write di = deg(Ti, Yi), and d =
(d1, . . . , ds) will be called the multidegree of T. Then, δd = d1 · · · ds

is the natural complexity measure associated with computations
modulo 〈T〉, as it represents the dimension of F[Y]/〈T〉. The
objective of our work is to give algorithms with a running time
linear in δd, up to logarithmic factors.

The simplest nontrivial question is multiplying two polynomi-
als A,B modulo 〈T〉, assuming A and B are initially reduced
modulo 〈T〉. As of now, there is no known algorithm with a
quasi-linear cost. For instance, the modular multiplication algo-
rithm of Li et al. (2009) starts by expanding the product AB,
then reduces it modulo 〈T〉. As a result, an overhead exponential
in the dimension appears: after expansion, the product AB has
δ′ = (2d1 − 1) · · · (2ds − 1) monomials; we always have δ′ ≤ 2sδd,

and in the extreme case d1 = · · · = ds = 2, we have δ′ = δ
log2(3)
d .

Presently, the best general algorithm is that of Li et al. (2009),
with a cost of 4sδd base field operations, up to polylogarithmic
factors; see also Bostan et al. (2011) for some particular cases.

The next question is that of inversion modulo 〈T〉, when possi-
ble. The best previous known result for this question, due to Dahan
et al. (2006), also has a cost of the form Ksδd, up to polylogarith-
mic terms, for some (large) constant K. It should be pointed out
that this algorithm does more than inversion: it allows one to han-
dle zero divisors modulo 〈T〉, by splitting T when needed.
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Next, we consider norm computation: by analogy with the case
of field extensions, the norm of an element A in F[Y]/〈T〉 is the
determinant of the endomorphism of multiplication by A modulo
〈T〉; it coincides with the iterated resultant resY1(· · · resYs(A, Ts) . . . ,
T1), which is used for instance in algorithms for parametric systems
(see, e.g., Yang et al. 2001). We do not know of a published com-
plexity estimate for this question; the techniques of Dahan et al.
(2006) could possibly be applied and yield a result of the form
Ksδd (up to the usual polylogarithmic factors).

The former algorithms run in quasi-linear time when s is fixed:
the challenge is to remove the exponential overhead in s. For our
last question, change of order, the situation is much worse. On
input T, this problem consists in finding a triangular set T′ for a
new variable order that generates the same ideal as T (provided
such a T′ exists). As of now, there is no quasi-linear algorithm
for this task, even when the number of variables is kept constant
(actually, even for s = 2, for which the best result known to us is
due to Pascal & Schost 2006).

Modular composition and power projection. A main
ingredient for the algorithms to follow are operations called mod-
ular composition and power projection. These operations are well
known for univariate polynomials (see Brent & Kung 1978; Shoup
1994), in which case they respectively read as follows:

◦ modular composition: given polynomials G,H in F[Y ], with
deg(G) < d and deg(H) = d, and F in F[X], with deg(F ) <
e, compute F (G) mod H,

◦ power projection: given polynomials G,H in F[Y ], such that
deg(G) < d and deg(H) = d, an F-linear form τ : F[Y ]/H →
F, and a bound e, compute τ(Gi mod H) for all i < e.

Over an abstract field (in an algebraic complexity model), no quasi-
linear algorithm is known for these operations: the most well-
known results are due to Brent & Kung (1978) and Shoup (1994),
with a cost of O(d(ω+1)/2) for e = d, where ω is a feasible expo-
nent for matrix multiplication (here, we assume ω > 2, other-
wise logarithmic factors appear). For the best known values of
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ω � 2.37 due to Coppersmith & Winograd (1990), Stothers (2010),
Williams (2012), we get an exponent of about 1.69. Huang & Pan
(1998) showed that using rectangular matrix multiplication, one
can reduce the exponent to 1.67.

The starting point for this work is a recent result by Kedlaya &
Umans (2011): when F is a finite field, they came up with quasi-
linear time algorithms for these problems, in a boolean RAM model
(where bit operations, not field operations, are counted). They
actually do more, by considering an m-uple (G1, . . . , Gm) of poly-
nomials instead of G, and computing, respectively, F (G1, . . . , Gm)
mod H, for some multivariate F , or values of the form
τ(Ga1

1 · · ·Gam
m ).

Part of our tasks will be to extend these results to multivari-
ate situations. Indeed, it has been known for long that modular
composition and power projection are important for algorithms
involving triangular sets: this is in essence due to Shoup (1994) for
some particular cases and detailed in Pascal & Schost (2006).

To state the multivariate versions, we need the following nota-
tion: for d = (d1, . . . , ds) in N

s, F[Y]d denotes the F-vector space
of polynomials F ∈ F[Y] with deg(F, Yi) < di for all i ≤ s. If
T is a triangular set of multidegree d in F[Y], RT will represent
the residue class ring F[Y]/〈T〉. Remark that RT � F[Y]d as
a vector space; as a consequence, in all our algorithms, elements
of RT are represented on the monomial basis {Y a1

1 · · ·Y as
s | 0 ≤

ai < di for all i}. Then, multivariate modular composition, with
parameter e = (e1, . . . , em) ∈ N

m, is the following problem:

◦ multivariate modular composition: given T, F in F[X1, . . . ,
Xm]e and (G1, . . . , Gm) in Rm

T , compute F (G1, . . . , Gm)∈RT.

Remark that the classical version of this question has m = s = 1,
and Kedlaya–Umans’ result hasm arbitrary and s = 1 (under some
restrictions on e). Remark also that in the particular case m = 1
and F = X2

1 , modular composition boils down to squaring modulo
〈T〉, so it is already nontrivial.

To discuss power projection, we let R∗
T = HomF(RT,F) be the

dual of RT over F; naturally, the elements of R∗
T will be given

on the dual basis of the monomial basis seen before. Then, the
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multivariate version of power projection, with parameter e as above,
reads as follows:

◦ multivariate power projection: given T, (G1, . . . , Gm) in Rm
T

and τ in R∗
T, compute the values τ(Ga1

1 · · ·Gam
m ), for 0 ≤ ai <

ei, i = 1, . . . ,m.

Modular composition is F-linear in the coefficients of F ; the trans-
pose map is precisely power projection (this was noted by Shoup
(1994) in the univariate case). Indeed, the former problem amounts
to multiplying the δd × δe matrix M whose columns are the
coefficients of the polynomials Ga1

1 · · ·Gam
m mod 〈T〉, for 0 ≤ a1 <

e1, . . . , 0 ≤ am < em, by the δe × 1 column vector of coefficients of
F . Then, the dual problem amounts to multiplying the matrix M
on the left by a 1×δd vector, which we see as the coefficient vector
of a linear form τ ∈ R∗

T.

Main results. We will revisit the questions for triangular sets
discussed previously and provide new estimates, under the addi-
tional assumptions that (i) the base field is a finite field Fq and (ii)
〈T〉 is a radical ideal, in which case we say that T is squarefree.

The following notation is in use: if S is a set and g is a real-
valued function on S, plog(g) denotes a real-valued function h on S
for which there exist α, β>0 such that h(s)≤α log2(max(g(s), 2))β

holds for all s in S (so using this notation allows us to omit big-
O’s). If we do not indicate otherwise, the constant α implied in a
plog( ) is universal; if it does depend on some parameters (typically
a parameter ε), we indicate them in subscript. The constant β will
always be universal (it will not depend on any parameter such as ε).

Our algorithms crucially rely on the results of Kedlaya & Umans
(2011) cited previously. As a consequence, the complexity results
are expressed in a similar manner: typically, for any ε > 0, one
can obtain a running time of the form δ1+ε

d log(q) plogε(log q), with
a (large) constant hidden in the term plogε(log q). As in Kedlaya
& Umans (2011), these results are expressed in a boolean RAM
model (we may, e.g., use the logarithmic cost model, see Aho et al.
1974).

To be complete, we must say how the elements of Fq are encoded:
elements of Fp, for p prime, are represented as integers in {0, . . . ,
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p− 1}; for q = pn, Fq is assumed to be given as Fp[T ]/〈P 〉, with P
irreducible, so elements of Fq are represented as polynomials over
Fp of degree less than n. With this representation, arithmetic oper-
ations in Fq can be done in time log(q) plog(log(q)) in our RAM
model (disregarding the cost induced by fetching and storing data,
which depends on the data location in memory).

The algorithms are Las Vegas (we give expected running time,
but results are always correct), as we rely on random selection of
field elements. Thus, we assume that our RAM can produce a
random integer uniformly distributed in the range {0, . . . , p − 1}
in time log(p) plog(log(p)).

Finally, for modular composition and power projection, we add
the constraint that e be of the form e = (e1, e2), that is, we take
m = 2: this covers the most useful applications.

Theorem 1.1. Fix ε > 0. Given a triangular set T of multidegree
d = (d1, . . . , ds) in Fq[Y1, . . . , Ys], one can do the following using
an expected s2 δ1+ε

d log(q) plogε(log q) bit operations:

◦ test whether T is squarefree,

◦ if T is squarefree, multiplication, invertibility test and inver-
sion, norm computation in RT.

With notation as above, for e = (e1, e2) in N
2, one can do the

following using an expected s2 (δd + δe)
1+ε log(q) plogε(log q) bit

operations:

◦ if T is squarefree, modular composition and power projection
modulo 〈T〉, with parameter e.

We continue the presentation of our results with change of
order. For this question, we will need a stronger assumption than
before: the characteristic of Fq must be large enough.

Theorem 1.2. Fix ε > 0. Given a squarefree triangular set T of
multidegree d = (d1, . . . , ds) in Fq[Y1, . . . , Ys], one can do the fol-
lowing using an expected s2 δ1+ε

d log(q) plogε(log q) bit operations,
provided the characteristic of Fq is greater than δd:
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◦ given a target order Yσ(1) < · · · < Yσ(s) on the variables
determine whether the ideal 〈T〉 is generated by a triangular
set T′ for this order;

◦ if so:

– compute T′;

– given A in RT, compute its image in RT′ ;

– given A in RT′ , compute its image in RT.

Comments and relation to previous work. For most items
above, except modular composition and power projection, the input
and output bit sizes are essentially δd log(q); for modular compo-
sition and power projection, the input and output have bit size
(δd + δe) log(q). Thus, our cost estimates which are respectively
s2 δ1+ε

d log(q) plogε(log q) and s2 (δd + δe)
1+ε log(q) plogε(log q) are

close to linear.
The term s2 is rather inconsequential. In many cases, we can

make the assumption that di ≥ 2 for all i. Indeed, if di = 1, Ti

has the form Yi− ri(Y1, . . . , Yi−1) so if they are not essential to the
problem at hand, Yi and Ti can be dismissed altogether. Under
this assumption, s becomes logarithmic in δd.

For a fixed ε, recall that the constant factor in plogε(log q) is
fixed as well. Thus, for multiplication and inversion, our results
complement former ones: in a fixed number of variables, previous
results of the form Ksδd plog(δd) operations in F are marginally
better, as they do not involve the factor δε

d; our results get better
when s grows large with respect to δd, for instance when di = 2
for all i. In this case, our results are of the form δ1+ε

d (forgetting
about the dependency in q), whereas no previous result did better

than δ
log2(3)
d .

For modular composition and power projection, our results
extend those of Kedlaya & Umans (2011), which hold only for
s = 1 (those results actually cover different cases for e than we
do: they have e = (e, . . . , e)). Other results known for s > 1 are
due to Shoup (1994) and Kaltofen (2000), which have m= 1 and
s=2, and Pascal & Schost (2006), which discusses m=2 and s=2.
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These last works are based on Brent and Kung’s idea, so the best
cost they can obtain has the form δ

(ω+1)/2
d , for δe � δd.

For change of order, the situation is similar: no previous algo-
rithm achieved a quasi-linear running time, even in the simplest
case s = 2. Some previous approaches by Boulier et al. (2001) are
based on resultant and gcd computations, but it is unknown how to
obtain a subquadratic cost in δd with such techniques: on examples
such as the one given at the beginning of this introduction, even
using a fast resultant algorithm, known techniques (either evalua-
tion/interpolation or the direct approach of Reischert 1997) take
quadratic time. The algorithms of Pascal & Schost (2006) (which
are limited to s = 2) use modular composition and power projec-
tion as we do; however, they rely on the techniques inspired by
Brent and Kung’s algorithm discussed above, with a cost of order
δ

(ω+1)/2
d .

Main ideas and practical aspects. For both Theorem 1.1
and Theorem 1.2, the idea is to introduce a primitive element mod-
ulo 〈T〉 (that is, a generator of RT), which allows us to replace
multivariate operations by univariate ones.

The delicate point is the conversion between the multivariate
and univariate representations. The basic idea, using trace for-
mulas, is well known. The key problem is how to compute the
required traces efficiently: this is an instance of power projection,
which we will solve using Kedlaya and Umans’ idea. There is a
subtle point here: a direct generalization of Kedlaya and Umans’
algorithm gives a cost of the form Ksδ1+ε

d , for some constant K
(when δe � δd). This is already better than previous results
(as this is almost linear in δd for fixed s), but it turns out that
one can remove the exponential overhead Ks altogether. This is
done by using this algorithm only for bivariate triangular sets (with
s = 2), since then a term of the form Ks becomes irrelevant, and
doing the conversion from multivariate to univariate representa-
tions by handling one variable after the other, using only bivariate
algorithms.

All algorithms are completely explicit, but it remains a chal-
lenge to make them competitive in practice. The central issue is
to obtain an efficient implementation of our multivariate versions
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of Kedlaya and Umans’ algorithms for modular composition and
power projection. Just as with their original version, the constants
hidden in the complexity estimates makes a direct implementation
of these algorithms slower than the classical solutions based on
Brent and Kung’s idea for inputs of realistic size. Further work is
needed to solve this issue.

We also want to point out that the “higher-level” algorithms we
build on top of modular composition and power projection (such as
multiplication, inversion, change of order) have an interest on their
own; they are simple to understand and easy to implement. All
they require is a subroutine for bivariate modular composition and
power projection. For instance, they could also be implemented
on top of the algorithms for modular composition and power pro-
jection given in Pascal & Schost (2006), at the cost, however, of a
worse theoretical complexity.

2. Preliminaries

This section recalls a few known algorithmic and complexity results
involving triangular sets and finite fields. These results will be used
all along this paper.

Algebraic complexity and bit complexity. Our first remark
concerns the two models of computation that will be used in the
paper. Both are RAM models: the algebraic RAM of Kaltofen
(1988) and the boolean one. We will often use implicitly the fol-
lowing principle: given an algorithm written for an algebraic RAM
over an abstract ring R, doing T operations in R, we will deduce an
algorithm in the boolean model that solves the same problem over
Fq in time T log(q) plog(T ) plog(log(q)); the plog(T ) term allows
us to take into account the logarithmic cost induced by fetching
and storing data. This assumes that the cost of index manipula-
tions, loop control, etc., is negligible, and that all data are stored
in the first TO(1) memory locations; this will be the case in our
examples.

The transposition principle. Let r, s ≥ 1 and let M be an
r × s matrix with entries in a field F. The transposition principle
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(Bürgisser et al. 1997, Theorem 13.20) states that the existence of
an algebraic circuit for the matrix-vector product b �→Mb implies
the existence of a circuit with the same size, up to O(r + s), to
perform the transposed matrix-vector product c �→ M tc. We will
rely on the same idea, but in an algebraic RAM model, we will not
offer a general proof, but rather indicate case-by-case how to do
the transposition.

Note that for boolean models, there is no such transposition
result; as a consequence, extra care must be taken when discussing
transposed algorithms in this context (as already pointed out in
Kedlaya & Umans 2011).

Arithmetic modulo triangular sets. We continue by describ-
ing basic algorithms for triangular sets. Let T be a triangular set of
multidegree d = (d1, . . . , ds) in F[Y]. We are concerned here with
the cost of multiplication and reduction modulo T. Theorem 1
in Li et al. (2009) shows the following:

(F1) given A and B in F[Y]d, one can compute the product AB
mod 〈T〉 in 4sδd plog(δd) operations in F.

(F2) given d′ = (d′
1, . . . , d

′
m), with d′

i ≥ di for all i, and A in F[Y]d′ ,
the remainder A mod 〈T〉 can be computed in 4sδd′ plog(δd′)
operations in F.

Finite field embeddings. Given a finite field Fq, and a positive
integer t, we are interested in the cost of finding an embedding
Fq → Fq′ , with q′ = qt. Following our convention, we suppose that
Fq is given as Fp[T ]/〈P 〉, with deg(P ) = r, and we will look for Fq′

as Fp[T
′]/Q, with deg(Q) = rt. Then, the key results we will use

are the following.

(F3) One can construct in
√
p plog(q′) operations in Fp two polyno-

mials Q and V in Fp[T
′] such that ι : Fp[T ]/〈P 〉 → Fp[T

′]/Q
defined by T �→ V is an embedding Fq → Fq′ . Given Q and
V , one can compute ι(x) for x in Fq, and ι−1(y) for y in ι(Fq),
in plog(q′) operations in Fp.
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Let us justify this claim. First, we compute an irreducible poly-
nomial Q of degree rt in Fp[T

′] using
√
p plog(q′) operations in Fp

as in Shoup (1990). Then, we factor Q in Fq[T
′] for a similar cost,

as in Shoup (1991). Take a factor ψ of Q in Fq[T
′] and lift it

canonically to Fp[T, T
′]. We then consider the system

∣
∣
∣
∣

ψ(T, T ′)
P (T )

and change the order of the variables. Since this system generates a
maximal ideal, the change of order results in a set of two equations
of the form

∣
∣
∣
∣

T − V (T ′)
Q(T ′).

The map ι : Fp[T ]/〈P 〉 → Fp[T
′]/Q defined by T �→ V (T ′) realizes

the requested embedding Fq → Fq′ . The polynomial V can be
computed using a number of Fp-operations polynomial in rt, thus in
plog(q′), e.g., by plain linear algebra; once V is known, computing
ι(x), for x ∈ Fq, takes a similar time, by modular composition.
Finally, given y ∈ Fq′ in the range of ι, one can recover its preimage
in time plog(q′), by linear algebra again.

3. Modular composition and power projection

In this section, we give our first algorithms for multivariate modu-
lar composition and power projection; we work modulo a triangular
set T of multidegree d ∈ N

s, and we take a parameter e ∈ N
m.

The cases we will need in the further sections have m, s ≤ 2; for
convenience, the following theorem emphasizes this special case.

Theorem 3.1. Fix ε > 0 and positive integers m, s in {1, 2}.
Given a triangular set T in Fq[Y] of multidegree d ∈ N

s, one
can solve the problems of multivariate modular composition and
multivariate power projection modulo 〈T〉, with parameter e ∈
N

m, using (δd + δe)
1+ε log(q) plogε(log(q)) bit operations.

We will actually have to prove slightly more: first, we study the
case where m is arbitrary and e = (e, . . . , e) ∈ N

m, then the case
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m = 2 and e arbitrary (the former case is needed to deal with the
latter). In our notation, Kedlaya and Umans dealt with the case
s = 1 and e = (e, . . . , e).

In the complexity analysis, we will assume that s is arbitrary
and fixed: the cost estimates will actually hide factors exponential
in s. This will, however, induce no harm later on, since, as we
said above, these results will be employed with s ≤ 2 in the next
sections.

3.1. Useful facts. We start with some known results about top-
ics such as multivariate polynomial evaluation. These results will
be used in this section only.

Multivariate evaluation. We consider the problem of evalu-
ating a multivariate polynomial at a set of points, as well as its
transpose. The following is (up to a minor modification) the quasi-
linear result of Kedlaya & Umans (2011, Corollary 4.3 and The-
orem 7.6). One difference is that we write the dependency in q
as log(q) plog(log(q)) rather than log(q)1+o(1); this is possible by
slightly modifying the proof given in that reference (by augment-
ing by 1 the value of a parameter t used in the proof). The other
difference is that we fix the number of variables m (the original
statement had the condition m = eo(1)), which allows us to dis-
pense with the original condition that e be large enough.

The result we quote holds in a boolean model, so we take Fq as
a base field. Given e in N

m and a set B ⊂ F
m
q of cardinality N , we

define

EvalB : Fq[X]e→ F
N
q

F �→ [F (b) | b ∈ B];

the transpose map is EvaltB : F
N
q → Fq[X]∗e.

(F4) Fix ε>0 and a positive integer m. Given e∈N
m of the form

e=(e, . . . , e), a set B ⊂ F
m
q of cardinality N and F ∈ Fq[X]e,

one can compute EvalB(F ) in (δe+N)1+ε log(q) plogε,m(log(q))
bit operations.
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(F5) Fix ε>0 and a positive integer m. Given e ∈ N
m of the form

e=(e, . . . , e), a set B ⊂ F
m
q of cardinality N and u ∈ F

N
q , one

can compute EvaltB(u) in (δe+N)1+ε log(q) plogε,m(log(q)) bit
operations.

Fact F5 is from Kedlaya & Umans (2011, Theorem 7.6). That
reference has the extra assumption that N = δe; we briefly discuss
how to lift this assumption. If N ≥ δe, the input of EvaltB has
larger cardinality than the output. Then, we do as in Kedlaya &
Umans (2011, Theorem 7.7), by solving N/δe� instances of size δe
and adding the results. If N ≤ δe, we do not have enough points,
so we add δe − N dummy points and pad the input vector with
zeros. In both cases, the cost fits into our claimed bound.

Structured evaluation and interpolation. Next, we discuss
multivariate evaluation and interpolation at special sets of points.
The following results hold over an abstract field F. Let e =
(e1, . . . , em) be in N

m, and consider a subset of F
m of the form

B = B1 × · · · × Bm, with Bi of cardinality ei (thus, B is an
m-dimensional grid). For input polynomials with support in F[X]e,
evaluation and interpolation at such a grid are simple problems.

(F6) given F ∈ F[X]e and B as above, one can compute EvalB(F )
in δe plog(δe) operations in F.

(F7) given values v = [vb | b ∈ B] and B as above, there exists a
unique polynomial F ∈ F[X]e such that EvalB(F ) = v; one
can compute F in δe plog(δe) operations in F.

The multivariate algorithms simply consist in applying the classical
univariate algorithms, variable by variable; see for instance Pan
(1994).

Reformatting a polynomial. One of the main ideas used in
Kedlaya & Umans (2011), and before it in the algorithm of Umans
(2008), is to simultaneously increase the number of variables and
decrease the degrees of a polynomial. Our definition slightly
extends the one used there, by allowing arbitrary partial degrees.
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In what follows, as in the previous paragraph, our polynomials will
have coefficients in an abstract field F.

Given e = (e1, . . . , em) ∈ N
m, we will be interested in mapping

polynomials in F[X1, . . . , Xm]e to polynomials in more variables,
with lower degree. Let (
1, . . . , 
m) be positive integers; to each
variable Xi, we will associate 
i new variables Xi,0, . . . , Xi,�i−1, so
that the total number of new variables is m′ = 
1 + · · ·+ 
m.

Consider a vector e′ = (e′
1, . . . , e

′
1, . . . , e

′
m, . . . , e

′
m) ∈ N

m′
, such

that each e′
i is repeated 
i times. This will be our new degree

vector, so that we put the constraint e′
i
�i ≥ ei. Then, we can define

the F-linear map Λe,e′ by

Λe,e′ : F[X1, . . . , Xm]e → F[X1,0, . . . , Xm,�m−1]e′

Xa1
1 · · ·Xam

m �→ X
a1,0

1,0 · · ·X
a1,�1−1

1,�1−1 · · ·X
am,0

m,0 · · ·Xam,�m−1

m,�m−1 ,

where ai,0, . . . , ai,�−1 are the coefficients of the expansion of ai in
base e′

i. Next, given an F-algebra R, we define the map Λ�
e,e′ as

Λ�
e,e′ : Rm → Rm′

G = (G1, . . . , Gm) �→ (Gi, G
e′
i

i , . . . , G
e′
i
�i−1

i )i=1,...,m.

The key equality is then the following: for F in F[X1, . . . , Xm]e and
G in Rm, we have F (G) = Λe,e′(F )

(

Λ�
e,e′(G)

)

. Computing Λe,e′(F )
and Λ�

e,e′(G) induces a cost, which we summarize here:

(F8) Given F in F[X1, . . . , Xm]e, one can compute Λe,e′(F ) in
O(δe′) operations in F. Given G in Rm, one can compute
Λ�

e,e′(G) using O(log(δe′)) multiplications in R.

The first point is obvious: we simply fill an array of size δe′ . For the

second point, for a fixed i≤m, we must computeGi, G
e′
i

i , . . . , G
e′
i
�i−1

i .
This is done using 
i exponentiations by e′

i, that is, O(
i log(e′
i))

multiplications in R. The total is thus O(log(e′
1
�1 · · · e′

m
�m))

= O(log(δe′)).

3.2. The case e = (e, . . . , e). We can now turn to modular
composition and power projection, starting with the case where
e = (e, . . . , e). This situation is very close to Kedlaya & Umans
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(2011, Theorem 3.1), as the only (conceptually trivial) difference
is that we work modulo a triangular set, instead of a single poly-
nomial. The proof we give follows the one given in that reference:
the key idea developed in Kedlaya & Umans (2011), and previously
in Umans (2008), is to reduce the problem to multipoint evaluation.

In the following theorem, s andm are fixed, so the cost estimate
hides the dependency in these parameters. The dependency in m
could easily be controlled, by requiring m = eo(1), as in Kedlaya
& Umans (2011, Theorem 3.1). With respect to s, however, the
cost would turn out to involve a factor of the form 4s, due to the
application of facts F1 and F2; as said before, this is not harmful
since we will use this result with s ≤ 2.

Theorem 3.2. Fix ε > 0 and positive integers m, s. Given a
triangular set T in Fq[Y] of multidegree d ∈ N

s, one can solve the
problem of multivariate modular composition modulo 〈T〉, with
parameter e = (e, . . . , e) ∈ N

m, using (δd + δe)
1+ε log(q) plogε,s,m

(log(q)) bit operations.

Proof. Without loss of generality, we may assume that ε ≤
1. Given a triangular set T ∈ Fq[Y1, . . . , Ys] of multidegree d =
(d1, . . . , ds), (G1, . . . , Gm) in Rm

T and F in Fq[X1, . . . , Xm]e, we will
show how to compute F (G1, . . . , Gm) ∈ RT. The algorithm follows
that of Kedlaya & Umans (2011, Theorem 3.1), up to handling
reduction modulo multivariate polynomials. In all that follows,
remember that we have fixed ε, s,m, so they should be seen as
constants.

The idea is to proceed by evaluation and interpolation. To
enable this, we will replace (m,d, e, q) by better suited parame-
ters (m′,d′, e′, q′). First, we define 
 = 2s/(mε)�, m′ = 
m and
e′ = e1/��. Remark that 
 and m′ are bounded from above by a
constant. On the other hand, we have the lower bound m′ ≥ 2s/ε:
m′ will our new number of variables; it is large enough, but not
too large.

Let next e′ be the vector (e′, . . . , e′) of length m′. Finally, let
d = max(d1, . . . , ds), and define d′ = (d′

1, . . . , d
′
s), with d′

i = m′e′di.
Before going further, we establish the following inequalities:
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◦ There exists a constant c1 depending on (ε,m, s) such that
δe′ ≤ c1δ

1+ε
e . Indeed, we have δe′ = e1/���m. We deduce the

inequalities

δe′ ≤ (e1/� + 1)�m and thus δe′ ≤ δe(1 + e−1/�)�m.

There exists c0 depending on (ε,m, s) such that (1 + e−1/�)�

admits the upper bound c0e
ε for all e, and the conclusion

follows by raising to the power m and taking c1 = cm0 .

◦ For ε ≤ 1, there exists a constant c2 depending on (ε,m, s)
such that δd′ ≤ c2δ

ε
eδd. Indeed, we have δd′ = (m′e′)sδd. The

equality e′ = δ
1/m′
e′ implies

m′e′ = m′δ1/m′
e′ , so that (m′e′)s = m′sδs/m′

e′ .

Recall that m′ ≥ 2s/ε; then, the former equality gives (m′e′)s

≤ m′sδε/2
e′ . The upper bounds δe′ ≤ c1δ

1+ε
e ≤ c1δ

2
e enable us

to conclude, by taking c2 = m′scε/2
1 .

We will need to ensure that the base field contains at leastm′e′d
elements. The final correction we do is thus to change q into q′,
defined below; in what follows, in any case, our base field will be
Fq′ .

◦ If q ≥ m′e′d, we do nothing and we let q′ = q.

◦ Else, we construct an irreducible polynomial of degree n =
logq(m

′e′d)� over Fq and an embedding ι : Fq → Fq′ , with
now q′ = qn. By fact F3, this can be done in

√
p plog(q′)

operations in Fp. Remark that q′ ≤ qm′e′d ≤ (m′e′d)2, so
that a quantity polylogarithmic in q′ is polylogarithmic in
m′e′d, and thus in δd + δe. Since p ≤ q, and q ≤ m′e′d,

√
p is

O(
√
δdδe), with a constant depending on ε, s,m, so the time

for building Fq′ is (δd +δe) plogε,s,m(δd +δe) operations in Fp.

Fact F3 also shows that applying and inverting ι on its image
can be done in plog(q′) operations in Fp. In view of what
was said before, this is plogε,s,m(δd + δe) operations. As a
consequence, the sum of all costs related to ι and ι−1 will as
well be (δd + δe) plogε,s,m(δd + δe) operations in Fp.
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We can now explain the algorithm. To compute F (G1, . . . , Gm)
mod 〈T〉, we will actually compute F ′(G′

1, . . . , G
′
m′) mod 〈T〉, with

F ′ = Λe,e′(F ) and (G′
1, . . . , G

′
m′) = Λ�

e,e′(G1, . . . , Gm) mod 〈T〉.

We saw (Section 3.1, fact F8) that computing F ′ and (G′
1, . . . , G

′
m′)

takes O(δe′) operations in Fq′ and O(log(δe′)) multiplications mod-
ulo 〈T〉. Fact F1 shows that the cost of one multiplication mod-
ulo 〈T〉 is 4sδd plog(δd) operations in Fq′ , so the total is (4sδd +
δe′) plog(δd + δe′) operations in Fq′ , which we may rewrite as (δd +
δe′) plogs(δd + δe′).

To compute F ′(G′
1, . . . , G

′
m′) mod 〈T〉, we will first compute

ϕ = F ′(G′
1, . . . , G

′
m′), then reduce it modulo 〈T〉. The reduction

will raise no difficulty; the delicate step is the computation of ϕ.
This will be done by evaluation and interpolation. Remark

that ϕ lies in Fq′ [Y]d′ . Thus, we choose subsets B1, . . . , Bs of
Fq′ of cardinalities d′

1, . . . , d
′
s; this is possible by assumption on q′.

We first compute all values g′
b = (G′

1(b), . . . , G
′
m′(b)) ∈ F

m′
q′ for

b ∈ B1 × · · · × Bs, then all values f ′
b = F ′(g′

b); we finally compute
ϕ by interpolating the values f ′

b at B1 × · · · ×Bs.
Let us postpone the cost of the evaluation of F ′ at the points

g′
b and estimate all other costs first. To compute all g′

b, we evaluate
each G′

i at B1 × · · · × Bs, for i ≤ m′. By fact F6, each evaluation
takes δd′ plog(δd′) operations in Fq′ , for a total of m′δd′ plog(δd′)
operations in Fq′ . Since m′ is bounded by a constant, this is
δd′ plogε,s,m(δd′). By fact F7, this also controls the cost of inter-
polation. Finally, since s is constant, Fact F2 implies a cost of
4sδd′ plog(δd′) = δd′ plogs(δd′) operations in Fq′ for the reduction
of ϕ modulo 〈T〉.

The total cost for all previous steps is bounded from above by
(δd′ + δe′) plogε,s,m(δd′ + δe′) operations in Fq′ .

We finish by estimating the cost of computing all f ′
b. Since m′

is bounded by a constant, we can apply fact F4 with parameters e′

and N = δd′ , to get a cost of (δd′ + δe′)1+ε log(q′) plogε,s,m(log(q′))
bit operations. In view of the claim of the previous paragraph,
the total time fits into this bound as well. Using the bounds given
previously on δe′ and δd′ , and a quick simplification, this becomes
(δd + δe)

1+3ε log(q′) plogε,s,m(log(q′)) for ε ≤ 1.
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Remember that q′ ≤ qm′e′d, so that log(q′) is at most log(q) +
plogε,s,m(δeδd). The polylogarithmic terms in δeδd admit as well
an upper bound of the form c(ε,m, s)(δd +δe)

ε, and the conclusion
follows, up to replacing ε by ε/4. �

We continue with a description of the transposition of this algo-
rithm that deals with power projection. The reasoning follows the
one of Kedlaya & Umans (2011, Section 7.2).

Theorem 3.3. Fix ε > 0 and positive integers m, s. Given a tri-
angular set T in Fq[Y] of multidegree d ∈ N

s, one can solve the
problem of multivariate power projection modulo 〈T〉, with para-
meter e = (e, . . . , e) ∈ N

m, using (δd+δe)
1+ε log(q) plogε,s,m(log(q))

bit operations.

Proof. We will show how to transpose the algorithm given in
the proof of the previous theorem. Seen as a linear map in F ,
the former algorithm replaces F by F ′ = Λe,e′(F ), performs a
multipoint evaluation of F ′, then a multivariate interpolation at a
grid and finally a reduction modulo 〈T〉.

We explain here how to transpose these four steps in reverse
order (the other steps, which are nonlinear, are unchanged). The
last step is a modular reduction. Its transpose is described in Bostan
et al. (2003) in the case s = 1 and in Pascal & Schost (2006) for
s = 2; in general, it suffices to transpose step by step the reduction
algorithm of Li et al. (2009), and the cost remains unchanged.

The third step is a multivariate interpolation at a grid of dimen-
sion s, which is done by interpolating one variable after the other.
The transposed algorithm thus requires to perform s transposed
univariate interpolations; we refer to Kaltofen & Laskhman (1989),
Bostan et al. (2003) for such an algorithm. Again, the cost remains
unchanged. The second step is a multidimensional multipoint eval-
uation, with monomial support e′, at N = δd′ points; its transpose
is handled by invoking fact F5 (instead of fact F4 for the forward
direction). Finally, the first step is an injection, whose transpose
is a projection, and takes linear time.

The costs of all transposed steps are thus the same as the ones
for the forward direction, and as a consequence, the overall running
time admits the same bound. �



482 Poteaux & Schost cc 22 (2013)

3.3. The case e = (e1, e2). The results of the previous subsec-
tion assume that e ∈ N

m has the special form (e, . . . , e). What we
will actually need in the sequel are the cases m = 1 (which is thus
covered) and m = 2, but in this case with e = (e1, e2) arbitrary.
This subsection shows how to handle this case using the former
theorems. Again, the number of variables s in our triangular set is
fixed.

Theorem 3.4. Fix ε > 0 and a positive integer s. Given a tri-
angular set T in Fq[Y] of multidegree d ∈ N

s, one can solve the
problem of multivariate modular composition modulo 〈T〉, with
parameter e = (e1, e2) ∈ N

2, using (δd+δe)
1+ε log(q) plogε,s(log(q))

bit operations.

Proof. Given a triangular set T ∈ Fq[Y1, . . . , Ys] of multidegree
d, (G1, G2) in RT and F in Fq[X1, X2](e1,e2), we will show how to
compute F (G1, G2) ∈ RT. Since the order of the variables X1 and
X2 is irrelevant, we may assume that e1 ≤ e2. We will distinguish
two cases, depending on whether e2 ≤ e

1/ε
1 or not.

Suppose first that e2 ≤ e
1/ε
1 holds. Let


1 =

⌈
1

ε

⌉

, 
2 =

⌈
1

ε
loge1

(e2)

⌉

and e = eε
1�;

as a consequence of our assumption on e1, e2, both 
1 and 
2 are
bounded by constants (since ε is fixed). Define the vector e′ =
(e, . . . , e) in N

�1+�2 , and let further

F ′ = Λe,e′(F )

and

(G′
1,1, . . . , G

′
1,�1
, G′

2,1, . . . , G
′
2,�2

) = Λ�
e,e′(G1, G2) mod 〈T〉,

so that we have

F (G1, G2) mod 〈T〉 = F ′(G′
1,1, . . . , G

′
1,�1
, G′

2,1, . . . , G
′
2,�2

) mod 〈T〉.
We saw in fact F8 that F ′ and all G′

i,j can be computed in O(δe′)
operations in Fq and O(log(δe′)) multiplications modulo 〈T〉. This
will be negligible compared to what follows.
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Knowing the G′
i,j, we are left with an instance of modular com-

position modulo 〈T〉 with parameter e′. Because 
1+
2 is bounded
by a constant, we can apply Theorem 3.2, giving a running time
of (δd + δe′)1+ε log(q) plogε,s(log(q)) bit operations. Next, using all
equalities written before, we obtain the upper bound

δe′ = e�1+�2 ≤ (2 eε
1)

1
ε
+ 1

ε
loge1

(e2)+2 ≤ 2
1
ε
+ 1

ε2
+2δ1+ε

e

using the upper bound e ≤ 2 eε
1 and, for the exponents, x� ≤ x+1.

Thus, (δd + δe′)1+ε admits the upper bound 2
1
ε
+ 1

ε2
+2(δd + δe)

1+3ε

for ε ≤ 1. This finishes the proof in this case (up to replacing ε by
say ε/3).

Next, we consider the case e2 ≥ e
1/ε
1 ; in particular, we have

e1 ≤ δε
e. Write F (X1, X2) =

∑e1−1
i=0 Fi(X2)X

i
1, with deg(Fi) < e2

for all i, and recall that we want to compute

F (G1, G2) mod 〈T〉 =

e1−1∑

i=0

Fi(G2)G
i
1 mod 〈T〉.

We proceed as follows:

1. We first compute Fi(G2) mod 〈T〉, for 0 ≤ i ≤ e1 − 1. Each
of these computations is an instance of modular composi-
tion modulo 〈T〉 with parameter (e2) ∈ N

1, that is, with
m = 1. By Theorem 3.2, the cost of this step is e1(δd +
e2)

1+ε log(q) plogε,s(log(q)) bit operations. Since e1 ≤ δε
e, this

is at most (δd + δe)
1+2ε log(q) plogε,s(log(q)).

2. Then, we use these values in a Horner scheme to get the
result in e1 multiplications and additions in RT; this gives
us a cost of e1δd plogs(δd) operations in Fq. Using again the
bound e1 ≤ δε

e, this is (δd + δe)
1+ε plog(δd) operations in

Fq, and thus (δd + δe)
1+ε plogs(δd + δe) log(q) plog(log(q)) bit

operations. The latter cost admits the upper bound (δd +
δe)

1+2ε log(q) plogε,s(log(q)).

Replacing ε by ε/2 concludes the proof. �

We conclude this section with the transposed version of the
former algorithm.
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Theorem 3.5. Fix ε > 0 and a positive integer s. Given a tri-
angular set T in Fq[Y] of multidegree d ∈ N

s, one can solve the
problem of multivariate power projection modulo 〈T〉, with para-
meter e = (e1, e2) ∈ N

2, using (δd + δe)
1+ε log(q) plogε,s(log(q)) bit

operations.

Proof. As in the proof of the previous theorem, we assume
that e1 ≤ e2 and we consider the two cases e2 ≤ e

1/ε
1 or e2 ≥ e

1/ε
1 .

In the forward direction, both cases involve modular composition
(which was handled using Theorem 3.2), so the transpose will rely
on power projection.

◦ In the first case, the linear part of the algorithm amounts to
replacing F by F ′ and solving an instance of modular compo-
sition modulo 〈T〉, with parameter e′; we use Theorem 3.3 to
do the transposed operation, power projection, in the same
amount of time as in the forward direction.

◦ In the second case, the first step consists in solving e1 instances
of modular composition modulo 〈T〉, with parameter (e2);
their transposes are all handled by Theorem 3.3. The second
step is simply Horner’s rule modulo 〈T〉 and can be trans-
posed without difficulty (see, e.g., Bostan et al. 2006).

In both cases, the costs of all transposed steps are the same as the
ones for the forward direction, so the overall running time admits
the same bound. �

4. Representations of zero-dimensional ideals

In this section, we change our focus: we discuss representations of
zero-dimensional algebraic sets using either univariate polynomials,
triangular sets, or an intermediate data structure.

For our discussion, we consider a zero-dimensional ideal I in
F[Y] = F[Y1, . . . , Ys], where F is a perfect field; we do not neces-
sarily assume that I is defined by a triangular set for any order.
Finally, we let R = F[Y]/I be the residue class ring modulo I, and
let δ be the dimension of the F-vector space R.
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To A ∈ R, we associate the multiplication-by-A endomorphisms
of R, written MA. The minimal polynomial and the characteristic
polynomial of A, respectively, written mA ∈ F[Y ] and χA ∈ F[Y ],
are then defined as those of MA. Let V be the zero set of I in
F

s
, where F is an algebraic closure of F. Then, when I is radical,

because of our perfectness assumption, we have the factorization
(over F)

(4.1) χA =
∏

y∈V

(Y − A(y))

and mA is the squarefree part of χA. Finally, the trace tr(A) is, by
definition, the trace of the endomorphism MA; note that the trace
is an F-linear form.

4.1. Primitive representations. Primitive representations will
allow us to work modulo I using only univariate polynomials. To
start with, we say that A ∈ R is a primitive element if the powers
of A generate R. This is the case if and only if χA = mA; when I
is radical, this is the case if and only if χA has no multiple root. In
all that follows, we will be concerned only with primitive elements
of the form A =

∑

i≤s 
iYi (as in many previous works, such as
Alonso et al. 1996; Gianni & Mora 1989; Giusti et al. 1998, 2001;
Rouillier 1999). The following well-known result gives a condition
on such an A to be a primitive element.

Lemma 4.2. If I is radical, there exists a nonzero homogeneous
polynomial Δ in F[L1, . . . , Ls] of degree less than δ2/2 such that if
Δ(
1, . . . , 
s) �= 0, then A = 
1Y1 + · · ·+
sYs is a primitive element.

Proof. The argument is well known: A = 
1Y1 + · · ·+ 
sYs is a
primitive element if and only if the form (y1, . . . , ys) �→ 
1y1 + · · ·+

1ys separates the zeros of I, that is, if 
1(y1−y′

1)+· · ·+
s(ys−y′
s) is

nonzero for all y and y′ distinct zeros of I. Thus, it suffices to take
for Δ the product of the linear forms L1(y1−y′

1)+ · · ·+Ls(ys−y′
s),

for all pairs (y, y′); Δ has coefficient in F, as it is the square root
of the discriminant of

∏

y∈V (T − L1y1 − · · · − Lsys), which has
coefficients in F. There are at most δ(δ − 1)/2 such pairs (y, y′),
and the conclusion follows. �
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When A =
∑

i≤s 
iYi is a primitive element, R and F[Y ]/〈P 〉
are isomorphic, with P = mA; then, deg(P ) = δ. In this case, a
primitive representation P = (P,V, �) contains the information
necessary to encode this isomorphism: it consists of polynomials
P and V = (V1, . . . , Vs) in F[Y ], and � = (
1, . . . , 
s) in F

s, with
deg(Vi) < δ for all i, such that the mappings

ψP : R → F[Y ]/〈P 〉
Y1, . . . , Ys �→ V1, . . . , Vs

and
ϕP : F[Y ]/〈P 〉 → R

Y �→ ∑

i≤s 
iYi

are isomorphisms, inverses of one another. In particular, Y =
∑

i≤s 
iVi.

4.2. Mixed representations. We continue our discussion, with
the purpose of introducing an intermediate data structure, between
triangular sets and primitive representations.

We start with a variation on the notion of primitive element.
For j ≤ s, let Ij be the ideal I ∩ F[Y1, . . . , Yj] and let Rj be the
residue class ring F[Y1, . . . , Yj]/Ij.

We say that A ∈ R is a primitive element of level j if A is in
Rj and if the powers of A generate Rj. The following lemma will
be helpful to quantify linear forms that are primitive elements of
level j; the proof is the same as that of Lemma 4.2.

Lemma 4.3. Suppose that I is radical. Then, for j ≤ s, there
exists a nonzero homogeneous polynomial Δj in F[L1, . . . , Lj] of
degree less than δ2/2 such that if Δj(
1, . . . , 
j) �= 0, then A =

1Y1 + · · ·+ 
jYj is a primitive element of level j.

A mixed representation M = (P,V, �) of I of format (j, s−j+
1) consists in a triangular set P = (P, Pj+1, . . . , Ps) in F[Y, Yj+1, . . . ,
Ys], for the order Y < Yj+1 < · · · < Ys, some polynomials V =
(V1, . . . , Vj) in F[Y ] and � = (
1, . . . , 
j) in F

j, such that we have
mutually inverse isomorphisms
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ΨM : R → RP

Y1, . . . , Yj �→ V1, . . . , Vj

Yj+1, . . . , Ys �→ Yj+1, . . . , Ys

and

ΦM : RP → R

Y �→ ∑

i≤j 
iYi

Yj+1, . . . , Ys �→ Yj+1, . . . , Ys.

In particular,
∑

i≤j 
iVi = Y . Also, in this case,
∑

i≤j 
iYi is a
primitive element of level j, Rj is isomorphic to F[Y ]/〈P 〉, and Rj′

is isomorphic to F[Y, Yj+1, . . . , Yj′ ]/〈P, Pj+1, . . . , Pj′〉 for j′ > j.
In other words, a mixed representation provides us with a prim-

itive representation for the first j variables and has a triangular
shape for the last variables. The “format” (j, s − j + 1) provides
a quick way to know how many elements are in V and � (here, j)
and in P (here, s − j + 1). When j = s, a mixed representation
is thus the same thing as a primitive representation. When j = 1,
if we additionally suppose that 
1 = 1, we have V1 = Y , so up to
renaming Y as Y1, ΨM maps Y1, . . . , Ys to themselves, and P is a
triangular set that generates I.

The following technical lemma will be useful in Section 6.

Lemma 4.4. Suppose that I is radical and that |F| ≥ δ2. Then
for j ≤ s, the following are equivalent:

◦ the ideal I admits a mixed representation of format (j, s −
j + 1),

◦ for i = j, . . . , s − 1, there exists a positive integer di+1 such
that Ri+1 is a free Ri-module with basis 1, Yi+1, . . . , Y

di+1−1
i+1 .

Proof. Suppose that I admits a mixed representation M =
(P,V, �) of format (j, s−j+1), with polynomials P = (P, Pj+1, . . . ,
Ps) in variables Y, Yj+1, . . . , Ys. Through ΨM , we see that for i =
j, . . . , s−1, Ri+1 has the form Ri[Yi+1]/〈Pi+1〉; the second assertion
in the lemma follows.

Conversely, we always have that Ri+1 = Ri[Yi+1]/Ii+1. Suppose

Ri+1 is a free Ri-module with basis 1, Yi+1, . . . , Y
di+1−1
i+1 . Then,
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there exists a polynomial Pi+1 in Ri[Yi+1], monic of degree di+1

in Yi+1, that belongs to Ii+1 (this is the characteristic polyno-
mial of the multiplication by Yi+1); one verifies that Pi+1 actu-
ally generates Ii+1 in Ri[Yi+1]. As a consequence, we get that
R = Rj[Yj+1, . . . , Ys]/〈Pj+1, . . . , Ps〉. Using our assumption on the
cardinality of F, Lemma 4.3 ensures the existence of a primitive
element of level j of the form 
1Y1 + · · · + 
jYj (since F is large
enough, there must be a point in F

j where Δj does not vanish);
this allows us to write Rj � F[Y ]/〈P 〉, and the conclusion follows.

�

4.3. Trace formulas. Finally, we describe how using trace for-
mulas enables one to perform various conversions. The following
claims are classical: see, e.g., Shoup (1994) for similar results using
another linear form and Rouillier (1999) for a more general case,
where I is not supposed to be radical.

Lemma 4.5. Suppose that I is radical and let A and B be in R.
Then, one can do the following in δ plog(δ) operations in F:

◦ given (tr(Aj))j<2δ, decide whether A is a primitive element,
and if so compute its minimal polynomial mA;

◦ given mA and (tr(BAj))j<δ, compute a polynomial V ∈ F[Y ]
of degree less than δ, such that if B can be expressed as a
polynomial in A, then B = V (A) in R.

Remark that in the second item, we do not suppose that A is a
primitive element, so that B may not be expressible in the form
V (A); the point is that if it is the case, we can find V . We do
not include the cost of the verification that B = V (A), since this
would involve modular composition, which we do not know how to
do in time δ plog(δ).

Proof. We start from the following classical formula (which is
essentially a generating series version of Newton–Girard’s identi-
ties)

(4.6)
∑

j≥0

tr(Aj+1)Y j ∈ F[[Y ]] = − 1

revδ(χA)

d revδ(χA)

dY
,
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where we write revd(P ) = Y dP (1/Y ) for any P ∈ F[Y ] and d ≥ 0.
To recover χA using this equality, algorithms using Newton’s for-
mula (such as Rouillier 1999) require divisions by integers 2, . . . , δ,
which may not be possible in small characteristic. Instead, we will
use the Berlekamp–Massey algorithm; it allows us to compute the
minimal polynomial μA of the sequence (tr(Aj+1)) from the values
(tr(Aj))j<2δ.

Since I is radical, A is a primitive element if and only if χA

has no multiple root, or equivalently if revδ(χA) has no multiple
root, or equivalently if the rational function in Equation (4.6) is
reduced. This is the case if and only if μA has degree δ; when this
is the case, we have μA = mA = χA. This proves the first point,
since Berlekamp–Massey’s algorithm runs in time δ plog(δ).

The second point is in Shoup (1994, Theorem 5), up to an
inconsequential difference (that result is proved using another lin-
ear form than the trace). �

The previous lemma allows one to compute a primitive repre-
sentation by means of trace computations. We now discuss how to
compute a triangular representation. While the idea of using trace
formulas remains, the computations are more involved. For this
reason, we consider only bivariate situations. The following result
is from Pascal & Schost (2006, Section 3); it requires a stronger
assumption on the characteristic than the previous lemma (as we
use a bivariate version of Newton’s identities). This assumption
may most likely be lifted, but we leave this generalization to future
work.

Lemma 4.7. Suppose that I ⊂ F[Y1, Y2] is radical and let p be the
characteristic of F. If p > δ, then one can do the following using
δ plog(δ) operations in F:

◦ given (tr(Y j
1 ))j<δ, verify whether I is generated by a trian-

gular set (T1(Y1), T2(Y1, Y2)), and if so compute T1;

◦ given T1 and (tr(Y i
1Y

j
2 ))i<d1,j<d2 , with d1 = deg(T1) and d2 =

δ/d1, compute T2.
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5. Proof of Theorem 1.1

We will now prove our first main theorem, on the cost of multi-
plication, inversion, norm computation, modular composition, and
power projection modulo a triangular set. The algorithms in this
section will solve these problems by computing a primitive repre-
sentation, since the questions mentioned in Theorem 1.1 can all be
solved in quasi-linear time for univariate polynomials.

The basic idea to convert to a primitive representation uses
trace formulas (by means of Lemma 4.5); it mainly amounts to
solving some instances of power projection and modular compo-
sition. The delicate question is how to perform efficiently these
power projections or modular compositions. Section 3 gave algo-
rithms that are efficient when the number of variables s is fixed,
but not when s is allowed to grow (recall that the estimates of that
section hide an exponential dependency in s).

To solve this issue, we will not proceed directly. The key step is
to first solve the problem for s = 2, that is, for bivariate triangular
sets, as this alleviates the issue of the exponential cost in s; this is
done in Section 5.2. For higher values of s, with T = (T1, . . . , Ts),
we will then first deal with (T1, T2), finding a univariate polyno-
mial P such that Fq[Y1, Y2]/〈T1, T2〉 � Fq[Y ]/〈P 〉, then continue
with (P, T3), and so on. This is done in Section 5.3. The proof
of Theorem 1.1 is then given in Section 5.4. First, though, we
show the details of our conversion algorithm on an example in
three variables.

5.1. A worked example. The following example, with s = 3
over F101, will be used in this section and in the next one. We start
from T = (T1, T2, T3) given by

T

∣
∣
∣
∣
∣
∣

T3 = Y 2
3 + 100Y1

T2 = Y 2
2 + Y1

T1 = Y 2
1 + 1.

We will show how to establish that Z = Y1 +Y2 +Y3 is a generator
of RT = F101[Y1, Y2, Y3]/〈T〉, as well as expressions for Y1, Y2, Y3 in
terms of Z.
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As said before, we do not proceed directly: the key is to first
solve the problem for (T1, T2). This is done by introducing the
linear combination Y1 + Y2 and using a bivariate change of order
algorithm (coming from Lemma 4.5) to yield the isomorphism

F101[Y1, Y2]/〈T1, T2〉 → F101[Y ]/〈P 〉
Y1 �→ V1

Y2 �→ V2

Y1 + Y2 ←� Y,

with P = Y 4 + 2Y 2 + 97Y + 2 and

V1 = 68Y 3 + 34Y 2 + 2Y + 32

V2 = 33Y 3 + 67Y 2 + 100Y + 69.

Re-introducing Y3, this can be readily extended to the following
isomorphism

F101[Y1, Y2, Y3]/〈T〉 → F101[Y, Y3]/〈T′〉
Y1 �→ V1

Y2 �→ V2

Y3 �→ Y3

Y1 + Y2 ←� Y,

where T′ is the bivariate triangular set (P (Y ), T3(V1, V2, Y3)) in
F101[Y, Y3]. Next, we apply the bivariate algorithm to T′; this
gives the isomorphism

F101[Y, Y3]/〈T′〉 → F101[Z]/〈P ′〉
Y �→ V ′

Y3 �→ V ′
3

Y + Y3 ←� Z,

with this time P ′ = Z8 + 4Z6 + 99Z4 + 52Z2 + 9 and

V ′ = 51Z7 + 30Z6 + 32Z5 + 30Z4 + 48Z3 + 14Z2 + 3Z + 78

V ′
3 = 50Z7 + 71Z6 + 69Z5 + 71Z4 + 53Z3 + 87Z2 + 99Z + 23.

Composing the previous results, this leads to the following isomor-
phism, which is what we were looking for:
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F101[Y1, Y2, Y3]/〈T〉 → F101[Z]/〈P ′〉
Y1 �→ W1

Y2 �→ W2

Y3 �→ W3

Y1 + Y2 + Y3 ←� Z,

with

W1 = V1(V
′) mod P ′

= Z7 + 64Z5 + 96Z3 + 5Z

W2 = V2(V
′) mod P ′

= 50Z7 + 30Z6 + 69Z5 + 30Z4 + 53Z3 + 14Z2 + 99Z + 78

W3 = V ′
3

= 50Z7 + 71Z6 + 69Z5 + 71Z4 + 53Z3 + 87Z2 + 99Z + 23.

5.2. The bivariate case. In this subsection, we handle the
bivariate case only. Let Fq be our base field and consider a tri-
angular set T = (T1, T2) in Fq[Y1, Y2], of multidegree d = (d1, d2).
In the following proposition, we give cost estimates on the com-
putation of a primitive representation P = (P, �,V), and on the
cost of applying ψP : RT → Fq[Y ]/〈P 〉 and its inverse ϕP . We
must make the assumption that q is large enough, so as to be
sure that there exist enough primitive elements of the requested
form. Then, the algorithm to find P is Las Vegas: we choose the
candidate primitive element at random, but we can always verify
whether our choice is correct.

We choose additionally to set one of the 
i to 1, as this will be
useful in the next section.

Proposition 5.1. For ε > 0, one can do the following in an
expected δ1+ε

d log(q) plogε(log(q)) bit operations: for T = (T1, T2)
of multidegree d = (d1, d2) in Fq[Y1, Y2], such that q ≥ δ2

d,

◦ determine whether T is squarefree;

◦ if so, after choosing either 
1 = 1 or 
2 = 1, compute a prim-
itive representation P = (P,V, �) of T, with � = (
1, 
2).

Further, one can do the following using δ1+ε
d log(q) plogε(log(q)) bit

operations:
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◦ given P and B in RT, compute ψP(B) ∈ Fq[Y ]/〈P 〉;

◦ given P and B in Fq[Y ]/〈P 〉, compute ϕP(B) ∈ RT.

Proof. To test whether T generates a radical ideal, it is enough
to compute the gcd of T1 and dT1/dY1, as well as a gcd of T2

and ∂T2/∂Y2 modulo T1, and check whether all are constant. The
first computation is a simple application of the half-gcd algorithm
and takes time d1 plog(d1). The second one is more delicate, as it
involves the half-gcd algorithm with coefficients modulo T1, and T1

may not be irreducible: this question is treated by Accettella et al.
(2003), with an algorithm of cost δd plog(δd), with δd = d1d2. This
settles the first point.

To determine whether A = 
1Y1+
2Y2 is a primitive element, we
compute the traces (tr(Aj))j<2δd and apply Lemma 4.5. Comput-
ing these traces requires to first compute the traces of the mono-
mial basis modulo 〈T〉: it is shown in Pascal & Schost (2006)
that this can be done in quasi-linear time. Then, we are left with
an instance of power projection with parameter e = (2δd). Invok-
ing Theorem 3.1, this takes δ1+ε

d log(q) plogε(log(q)) bit operations;
the other δd plog(δd) Fq-operations that appear in Lemma 4.5 are
not more expensive. Because q ≥ δ2

d, Lemma 4.2 shows that at
least half of the linear combinations A = 
1Y1 + 
2Y2, with either

1 = 1 or 
2 = 1, are primitive elements. Thus, we expect to have
to go through this process at most twice.

If A is a primitive element, we next compute tr(Y1A
i)i<δd and

tr(Y2A
i)i<δd ; again, this is done by invoking Theorem 3.1. From

these values, Lemma 4.5 shows how to deduce V1 and V2 in quasi-
linear time. Thus, we have obtained P = (P, (V1, V2), �), proving
the second point.

Given P and B in RT, computing ψP(B) amounts to com-
puting B(V1, V2) mod P . This is an instance of modular com-
position modulo P with parameter d ∈ N

2, so it can be done
in δ1+ε

d log(q) plogε(log(q)) bit operations by Theorem 3.1. This
proves the third point.

Given P and B in Fq[Y ]/〈P 〉, computing ϕP(B) amounts to
computing B(
1Y1+
2Y2) mod 〈T〉. This is an instance of modular
composition modulo 〈T〉 with parameter (δd) ∈ N

1; it can be done
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in δ1+ε
d log(q) plogε(log(q)) bit operations by Theorem 3.1. This

proves the last point. �

5.3. The general case. We will now extend the former con-
struction to a higher number of variables. Suppose thus that s is
arbitrary, and let T = (T1, . . . , Ts) be a triangular set of multide-
gree d = (d1, . . . , ds) in Fq[Y], with Y = Y1, . . . , Ys. As explained
before, our idea is to deal first with (T1, T2) and continue this way
until there is only one variable left. We start from a primitive rep-
resentation P = (P, (V1, V2), (
1, 
2)) of (T1, T2); as in the previous
subsection, we choose to add the constraint that either 
1 = 1 or

2 = 1, for future use. We can then define

P =

∣
∣
∣
∣
∣
∣
∣
∣
∣

Ps = Ts(V1, V2, Y3, . . . , Ys) mod P )
...
P3 = T3(V1, V2, Y3) mod P
P.

This is a triangular set in Fq[Y, Y3, . . . , Ys] of multidegree d′ =
(d1d2, d3, . . . , ds) ∈ N

s−1. It follows from this construction that we
have the following isomorphisms, inverse of one another:

RT → RP

Y1, Y2 �→ V1, V2

Y3, . . . , Ys �→ Y3, . . . , Ys

and
RP → RT

Y �→ 
1Y1 + 
2Y2

Y3, . . . , Ys �→ Y3, . . . , Ys.

In other words, we have obtained a mixed representation M of
format (2, s−1) of T, and the mappings above are none other than
the isomorphisms ΨM and ΦM associated with it. The following
lemma summarizes all the costs involved.

Lemma 5.2. Fix ε > 0. Then, for d in N
s and T = (T1, . . . , Ts)

of multidegree d = (d1, . . . , ds) in Fq[Y1, . . . , Ys], such that q ≥ δ2
d,

one can do the following in an expected s δ1+ε
d log(q) plogε(log(q))

bit operations:

◦ determine whether 〈T1, T2〉 is a radical ideal;

◦ if so, after choosing either 
1 = 1 or 
2 = 1, compute a mixed
representation M = (P,V, �) of T of format (2, s− 1), with
� = (
1, 
2).
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Further, one can do the following in δ1+ε
d log(q) plogε(log(q)) bit

operations:

◦ given M and B in RT, compute ΨM (B) ∈ RP;

◦ given M and B in RP, compute ΦM (B) ∈ RT.

Proof. The first point was proved in Proposition 5.1, as well
as the estimate on the cost of computing a primitive represen-
tation P = (P, (V1, V2), (
1, 
2)) of (T1, T2), with either 
1 = 1
or 
2 = 1. To compute all other polynomials in P, we need
to apply some modular compositions: for i ≤ s, Pi is obtained
applying ψP to all coefficients of Ti, assuming we view Ti as a
polynomial in Y3, . . . , Yi. This requires d3 · · · di applications of
ψP for Ti, for a total of d3 + · · · + d3 · · · ds ≤ sd3 · · · ds applica-
tions. Each application takes time (d1d2)

1+ε log(q) plogε(log(q)) bit
operations by Proposition 5.1. This proves the second point, since
(d1d2)(d3 · · · ds) = δd. The third and fourth points are proved
similarly. �

Our idea is now straightforward: continue is a similar manner
with P, introducing a primitive representation for (P, P3), until we
are left with univariate polynomials.

Proposition 5.3. Fix ε > 0. For d in N
s and T = (T1, . . . , Ts)

of multidegree d = (d1, . . . , ds) in Fq[Y1, . . . , Ys], such that q ≥ δ2
d,

one can do the following in an expected s2 δ1+ε
d log(q) plogε(log(q))

bit operations:

◦ determine whether T is a radical ideal;

◦ if so, compute Ms−1, . . . ,M1, with Mi = (Pi,Vi, �i), such
that

– Ms−1 is a mixed representation of T, of format (2, s−1),

– for i = s − 2, . . . , 1, Mi is a mixed representation of
Pi+1, of format (2, i),

– for i = s − 1, . . . , 1, �i = (
i,1, 
i,2), with either 
i,1 = 1
or 
i,2 = 1.
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With notation as before, let P be the minimal polynomial of M1,
let Ψ = ΨM1 ◦ · · · ◦ΨMs−1 and let Φ be its inverse. Then, one can
do the following in s δ1+ε

d log(q) plogε(log(q)) bit operations:

◦ given Ms−1, . . . ,M1andB inRT, computeΨ(B)∈Fq[Y ]/〈P 〉;
◦ given Ms−1, . . . ,M1 and B in Fq[Y ]/〈P 〉, compute Φ(B) ∈
RT.

Finally, one can do the following in s2 δ1+ε
d log(q) plogε(log(q)) bit

operations:

◦ given Ms−1, . . . ,M1, compute a primitive representation P
= (P,V, �) for T such that Ψ = ΨP and Φ = ΦP .

Besides, if we choose a priori j ≤ s, one can ensure that � =
(
1, . . . , 
s) is such that 
j = 1.

Proof. To compute Ms−1, . . . ,M1, apply s times Lemma 5.2.
The cost of applying Ψ and Φ follows similarly from Lemma 5.2.
At this point, to determine P = (P,V, �), it suffices to compute
V = (V1, . . . , Vs) and � = (
1, . . . , 
s). The Vi are obtained by
computing Ψ(Yi), thus requiring s applications of Ψ.

Finally, to compute (
1, . . . , 
s) and ensure 
j =1, let us deter-
mine the image of Y by Φ: a quick check shows that it is given
by Y �→ 
1,1 · · · 
s−1,1Y1+
1,1 · · · 
s−2,1
s−1,2Y2+· · ·+
1,1
2,1
3,2Ys−2+

1,1
2,2Ys−1+
1,2Ys, so that the coefficient of Yj is 
1,1 · · · 
s−j,1
s−j+1,2

(where undefined terms are set to 1). Choosing 
1,1 = · · ·=
s−j,1 =1
and 
s−j+1,2 = · · ·=
s−1,2 = 1 ensures that this coefficient equals 1.

�

5.4. Proof of Theorem 1.1. We will finally use the former
results to solve the questions stated in Theorem 1.1; in all that
follows, ε > 0 is fixed. We start from a triangular set T of mul-
tidegree d = (d1, . . . , ds) in Fq[Y1, . . . , Ys]. To solve the questions
of Theorem 1.1, we will want to apply Proposition 5.3. To apply
this result, we need to ensure that the base field Fq has cardinality
at least δ2

d:

◦ if q ≥ δ2
d, we just let q′ = q,
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◦ if q < δ2
d, we use fact F3 to build an extension Fq′ of Fq

of degree logq(δ
2
d)�, and embed all coefficients of T in Fq′ ;

remark that q′ ≤ qδ2
d ≤ δ4

d. From fact F3, the cost of finding
the embedding is

√
p plog(q′) Fp-operations, where p is the

characteristic of Fq; this fits into the bound δd plog(δd) Fp-
operations. The cost of mapping an element of Fq to Fq′ , and
back, is plog(δd) Fp-operations. Thus, in all problems, the
costs of all embeddings and of all back conversions will fit
into the bound δd plog(δd), or (δd + δe) plog(δd) for modular
composition and power projection.

From now on, our base field is Fq′ . For all questions below, we
start by testing whether T is squarefree, and if so, we compute
a primitive representation P = (P,V, �) of T (over Fq′). By
Proposition 5.3, this can be done in an expected s2 δ1+ε

d log(q′)
plogε(log(q′)) bit operations. Applying ΨP and its inverse can then
be done in time s δ1+ε

d log(q′) plogε(log(q′)), by the same proposi-
tion. This setup allows us to do operations in RT by mapping to
Fq′ [Y ]/〈P 〉, solving the univariate problem, and mapping back to
RT:

◦ Multiplication is straightforward, since multiplication mod-
ulo P can be done in δd plog(δd) operations in Fq′ .

◦ The same holds for inversion: to test whether A ∈ RT is
a unit, and invert it if possible, we will attempt to invert
A′ = ΨP(A) modulo P and pull back the inverse. This
amounts to computing the extended gcd of A′ and P : A is
a unit in RT if and only if this gcd is 1, in which case the
cofactor provides the desired inverse. The cost of extended
gcd computation is again δd plog(δd) operations in Fq′ .

◦ Computing the norm of A modulo 〈T〉 works in a similar
manner. Recall that the norm is the determinant of the endo-
morphism MA of multiplication by A modulo 〈T〉. Given
A′ = ΨP(A), the norm of A is thus given by the resultant of
A′ and P . The cost of computing this resultant is δd plog(δd)
operations in Fq′ .
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◦ We consider next modular composition: given (G1, . . . , Gm)
in Rm

T , e ∈ N
m and F in Fq[X1, . . . , Xm]e, we want to com-

pute F (G1, . . . , Gm) ∈ RT. As in the theorem, we will work
under the assumption that m ≤ 2. Then, we get our result
by computing

ΦP

(

F (G′
1, . . . , G

′
m) mod P

)

,

with G′
i = ΨP(Gi). This requires m + 1 ≤ 3 applications of

ΦP or ΨP and a modular composition modulo P . The latter
can be done in (δd+δe)

1+ε log(q′) plogε(log(q′)) bit operations
by Theorem 3.1.

◦ We use a similar strategy for power projection. On input
(G1, . . . , Gm) in Rm

T , e ∈ N
m and τ in R∗

T, we want to com-
pute the values τ(Ga1

1 · · ·Gam
m ), for 0 ≤ ai < ei, i ≤ m. Again,

we suppose that m ≤ 2. Then, the algorithm is the trans-
pose of the one for modular composition: we compute all G′

i

as above, then the linear form τ ′ = Φt
P(τ) defined modulo

P , and obtain our result by computing all τ ′(G′
1
a1 · · ·G′

m
am)

by univariate power projection.

The cost analysis is the same as before; the only missing
ingredient is the cost of applying the transpose map Φt

P .
It is, however, straightforward to transpose the algorithm we
gave for Φ. Indeed, this algorithm boils down to s−1 applica-
tions of maps of the form ΦMi

. Each of them is done through
modular composition with m = 1 and s = 2. The trans-
posed map uses power projection with the same parameters;
using Theorem 3.1, we obtain the same asymptotic estimate
as in the forward direction.

Summing all contributions, and using the upper bound plog(δd) ≤
cδε

d, for some constant c depending on ε, all costs are of the form
s2 δ1+ε

d log(q′) plogε(log(q′)), or s2 (δd + δe)
1+ε log(q′) plogε(log(q′))

for those involving a parameter e.
It remains to express these estimates in terms of log(q) instead

of log(q′). In any case, log(q′) is at most log(q) + 2 log(δd), so
that any cost of the form log(q′) plogε(log(q′)) is actually in δε

d
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log(q) plogε(log(q)). Up to replacing ε by ε/2 everywhere, this
proves Theorem 1.1.

6. Proof of Theorem 1.2

We will now answer the last question, change of order, thereby
proving Theorem 1.2. In the previous section, the approach con-
sisted in introducing successive mixed representations to progres-
sively convert from a triangular representation to a univariate one;
here, we will go in the opposite direction. As before, we start with
a worked example. Then, we deal with the algorithm in the bivari-
ate case and extend the results to an arbitrary number of variables
in a second step.

6.1. A worked example. We first illustrate our strategy on the
example of Subsection 5.1. We are given the triangular set

T

∣
∣
∣
∣
∣
∣

Y 2
3 + 100Y1

Y 2
2 + Y1

Y 2
1 + 1,

for the order Y1 < Y2 < Y3, defined over F101. We will show how
to determine a triangular set T′ for the order Y3 < Y1 < Y2 that
generates the same ideal as T. In Subsection 5.1, up to a slight
change of notation, we obtained the isomorphism

F101[Y1, Y2, Y3]/〈T〉 → F101[Y ]/〈P 〉
Y1 �→ V1

Y2 �→ V2

Y3 �→ V3

with P = Y 8 + 4Y 6 + 99Y 4 + 52Y 2 + 9 and

V1 = Y 7 + 64Y 5 + 96Y 3 + 5Y

V2 = 50Y 7 + 30Y 6 + 69Y 5 + 30Y 4 + 53Y 3 + 14Y 2 + 99Y + 78

V3 = 50Y 7 + 71Y 6 + 69Y 5 + 71Y 4 + 53Y 3 + 87Y 2 + 99Y + 23.

This will be our starting point here; all operations that follow are
either bivariate change of orders or modular compositions.
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Introducing Y2. Let A = V1 + V3: this plays the role of a
“random” linear combination of V1 and V3 that corresponds to
the lowest variables for the new order. Since A has been chosen
“randomly” enough, we can express V1 and V3 as polynomials in
A: Lemma 4.5 gives us two polynomials V ′

1 and V ′
3 in F101[Z] such

that V1 = V ′
1(A) mod P and V3 = V ′

3(A) mod P . Explicitly, we
have V ′

1 = 68Z3+67Z2+2Z+69 and V ′
3 = 33Z3+34Z2+100Z+32.

Consider now the polynomials (P (Y ), Z − A(Y )), which form
a triangular set for the order Y < Z. Using trace computations as
in Lemma 4.7, we can determine a triangular set (Q(Z), R(Z, Y ))
for the order Z < Y that generates the same ideal; explicitly, we
get

∣
∣
∣
∣

R = Y 2 + 99Y Z + 68Z3 + 68Z2 + 2Z + 69
Q = Z4 + 2Z2 + 4Z + 2.

At this point, we have thus determined an isomorphism

F101[Y ]/〈P 〉 → F101[Z, Y ]/〈Q(Z), R(Z, Y )〉
Y �→ Y
A �→ Z

which maps V1 to V ′
1 and V3 to V ′

3 . Remembering that Y = V1 +
V2 + V3 = A+ V2, we deduce that the image of V2 is Y − Z.

This leads us to define S = R(Z, Y + Z) mod Q, or, explicitly,
S = Y 2 + 68Z3 + 67Z2 + 2Z + 69. Then, we get the isomorphism

F101[Y ]/〈P 〉 → F101[Z, Y ]/〈Q(Z), S(Z, Y )〉
Y �→ Y + Z
A �→ Z
V2 �→ Y.

Remembering that F101[Y ]/〈P 〉 is isomorphic to F101[Y1, Y2, Y3]/
〈T〉, we finally obtain

F101[Y1, Y2, Y3]/〈T〉 → F101[Z, Y ]/〈Q(Z), S(Z, Y )〉
Y1 �→ V ′

1(Z)
Y2 �→ Y
Y3 �→ V ′

3(Z).

At this stage, we have obtained a representation by means of the
bivariate triangular set (Q(Z), S(Z, Y )), with Y � Y2 as highest
variable.
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Introducing Y1. To reintroduce Y1, the process is similar, except
that we are left to work modulo Q. Consider the triangular set
(Q(Z), T − V ′

3(Z)) and perform as before a bivariate change of
order; we obtain (F (T ), G(T, Z)), with

∣
∣
∣
∣

G = Z + 100T 2 + 100T
F = T 4 + 1.

Thus, we have the isomorphism

F101[Z]/Q → F101[T, Z]/〈F (T ), G(T, Z)〉
Z �→ Z
V ′

3 �→ T ;

since Z = V ′
1 + V ′

3 , the image of V ′
1 is Z − T . As before, this leads

us to introduce H = G(T, Z + T ) mod F = Z + 100T 2. This gives
us an isomorphism

F101[Z]/Q → F101[T, Z]/〈F (T ), H(T, Z)〉
Z �→ Z + T
V ′

3 �→ T
V ′

1 �→ Z.

Finally, we let K(T, Z, Y ) be obtained by applying the former map
coefficient-wise to S(Z, Y ); explicitly, we obtain the polynomial
K(T, Z, Y ) = Y 2 + T 2, and the isomorphism

F101[Z, Y ]/〈Q,S〉 → F101[T, Z, Y ]/〈F,H,K〉
V ′

3 �→ T
V ′

1 �→ Z
Y �→ Y.

Taking into account the result of the previous paragraph, we deduce
by composition the isomorphism

F101[Y1, Y2, Y3]/〈T〉 → F101[T, Z, Y ]/〈F,H,K〉
Y3 �→ T
Y2 �→ Y
Y1 �→ Z.
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Renaming (T, Z, Y ) as (Y3, Y1, Y2), we see that our result is

T′

∣
∣
∣
∣
∣
∣

K(Y3, Y1, Y2) = Y 2
2 + Y 2

3

H(Y3, Y1) = Y1 + 100Y 2
3

F (Y3) = Y 4
3 + 1.

6.2. The bivariate case. The former example shows the impor-
tance of bivariate change of order. In this subsection, we give the
details of the actual operation we need. We start from a univariate
polynomial P in Fq[Y ], and A, V ∈ Fq[Y ], both reduced modulo P ;
our question is to determine whether there exists an isomorphism
of the form

Fq[Y ]/〈P 〉 → Fq[Z, Y ]/〈Q(Z), S(Z, Y )〉
A �→ Z
V �→ Y,

where (Q(Z), S(Z, Y )) is a bivariate triangular set in Fq[Z, Y ]. We
will say that hypothesis (h) holds if such a triangular set exists.

Our purpose is to decide whether (h) holds, and if so, to com-
pute (Q(Z), S(Z, Y )). To help, we will additionally impose the
relation Y = V + B(A) mod P , for some given polynomial B in
Fq[Z]. Then, (h) holds if and only if there exists an isomorphism
of the form

Fq[Y ]/〈P 〉 → Fq[Z, Y ]/〈Q(Z), R(Z, Y )〉
A �→ Z
Y �→ Y,

the polynomials R and S being related by S(Z, Y ) = R(Z, Y +
B) mod Q. Equivalently, (h) holds if and only if the ideal 〈P (Y ),
Z − A(Y )〉 is generated by a triangular set of the form (Q(Z),
R(Z, Y )). The following lemma shows how to use these remarks to
solve our question; we rely on trace computations, where all traces
are computed modulo P .

Lemma 6.1. Let d = deg(P ), and suppose that q = pn, with p
prime and p > d, and that P is squarefree. Given B such that
Y = V + B(A) mod P , one can do the following using d plog(d)
operations in Fq:
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◦ given (tr(Aj))j<d, verify whether (h) holds, and if so compute
Q,

◦ given Q and (tr(Y iAj))i<d1,j<d2 , with d2 = deg(Q) and d1 =
d/d2, compute S.

Proof. The proof is a consequence of Lemma 4.7. In view of the
remarks above, given (tr(Aj))j<d, we can use that lemma to verify
whether (h) holds (and compute Q) using d plog(d) operations in
Fq. If the condition holds, from the traces (tr(Y iAj))i<d1,j<d2 , we
deduce R in a similar amount of time. Finally, S is deduced by
a polynomial shift, with coefficients taken modulo Q. Using the
divide-and-conquer algorithm of von zur Gathen (1990), this takes
time d plog(d) as well. �

The following equivalent form of assumption (h) will be useful
in the next subsection. The proof is similar to that of Lemma 4.4.

Lemma 6.2. Let SA be the Fq-algebra generated by A in Fq[Y ]/
〈P 〉. Then, assumption (h) holds if and only if Fq[Y ]/〈P 〉 is a free
SA-module, generated by powers of V of the form 1, V, . . . , V e.

Proof. Since Y = V +B(A), the second condition is equivalent
to Fq[Y ]/〈P 〉 being a free SA-module, generated by powers of Y of
the form 1, Y, . . . , Y e. We use this latter condition in the rest of
the proof.

Let I be the ideal 〈P (Y ), Z −A(Y )〉, so that Fq[Y ]/〈P 〉 is iso-
morphic to Fq[Z, Y ]/I. Then, SA is isomorphic to the subalge-
bra Fq[Z]/Q of Fq[Z, Y ]/I, where Q is the minimal polynomial
of A modulo P . If (h) holds, then Fq[Y ]/〈P 〉 is isomorphic to
Fq[Z, Y ]/〈Q(Z), R(Z, Y )〉, and the conclusion follows.

Conversely, suppose that Fq[Y ]/〈P 〉 is a free SA-module, gen-
erated by powers of Y of the form 1, Y, . . . , Y e. Let R(Z, Y ) be
the characteristic polynomial of Y in this free SA-module, so that
deg(R, Y ) = e + 1; to conclude, we prove that (Q(Z), R(Z, Y ))
generates I. Obviously, both Q and R are in I. Conversely, take
F in I and let F ′ be its remainder modulo 〈Q(Z), R(Z, Y )〉. Then,
deg(F ′, Y ) ≤ e, so we can write F ′ =

∑

i≤e fi(Z)Y i. Since F ′ is in
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I, all fi must be zero modulo Q, that is, identically zero, and F ′

itself must be zero. �

6.3. The general case. Suppose now that s is arbitrary, let
Y = Y1, . . . , Ys, and let I be a zero-dimensional radical ideal in
Fq[Y]. We let R be the residue class ring Fq[Y]/I, and let δ be
the dimension of R over Fq. In all that follows, p denotes the
characteristic of Fq.

Our goal here is to decide whether there exists a triangular set
T for the order Y1 < · · · < Ys such that 〈T〉 = I, and if so compute
it. Our input is a univariate representation P = (Q,λ,W) of I,
with λ = (λ1, . . . , λs) and λs = 1.

Starting from P, we will reintroduce the variables Ys, . . . , Y1

one by one, in this order, and eventually deduce T (or prove there is
no such T). Remark that P can be seen as a mixed representation
Ms of format (s, 1) for I. We will use it as the starting point
for an iterative process, constructing mixed representations Mj of
formats (j, s− j + 1), for j = s− 1, . . . , 1.

We will thus say that (Hj) holds if I admits a mixed represen-
tation of format (j, s− j + 1). Then, we have the following:

◦ By the former remark, (Hs) holds.

◦ (H1) holds if and only the triangular set T we are looking for
exists; in this case, writing M1 = (P1,V1, �1), and assuming
�1 = (1), we have T = P1 (up to renaming the variables).

◦ Assuming q ≥ δ2, if (Hj−1) holds, then (Hj) holds (this is a
consequence of Lemma 4.4).

Thus, starting from s, it is sufficient to iteratively test whether
(Hs−1), . . . , (H1) hold and if so compute corresponding mixed rep-
resentations. If the test fails at any j, we know that T does not
exist. The following lemma shows how to do the iterative step,
from format (j, s− j + 1) to (j − 1, s− j + 2).

Lemma 6.3. Fix ε > 0, and suppose that the inequalities q ≥ δ2

and p > δ hold. Given a mixed representation M = (P,V, �) of
format (j, s − j + 1) for I, with � = (
1, . . . , 
j) and 
j = 1, one
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can do the following using an expected s δ1+ε log(q) plogε(log(q))
bit operations:

◦ decide whether (Hj−1) holds;

◦ if so, compute a mixed representation M ′ = (P′,V′, �′) of
format (j − 1, s − j + 2) for I, with �′ = (
′1, . . . , 


′
j−1) and


′j−1 = 1.

Further, one can do the following using δ1+ε log(q) plogε(log(q)) bit
operations:

◦ given M , M ′ and A in RP, compute its image through the
isomorphism ΨM ′ ◦ ΦM : RP → RP′ .

◦ given M , M ′ and A in RP′ , compute its image through the
isomorphism ΨM ◦ ΦM ′ : RP′ → RP.

Proof. Let M = (P,V, �) be a mixed representation of format
(j, s−j+1) for I, with P = (P, Pj+1, . . . , Ps) in Fq[Y, Yj+1, . . . , Ys],
V = (V1, . . . , Vj) in Fq[Y ], � = (
1, . . . , 
j), and 
j = 1.

Our first purpose is to find �′ = (
′1, . . . , 

′
j−1) in F

j−1
q , with


′j−1 = 1 such that
∑

i≤j−1 

′
iYi is a primitive element of level j− 1.

To do so, we choose �′ at random and test whether Y1, . . . , Yj−1

can be written as polynomials in
∑

i≤j−1 

′
iYi modulo I. Recall

that associated with M , we have mutually inverse isomorphisms

ΨM : R → RP

Y1, . . . , Yj �→ V1, . . . , Vj

Yj+1, . . . , Ys �→ Yj+1, . . . , Ys

and

ΦM : RP → R

Y �→ ∑

i≤j 
iYj

Yj+1, . . . , Ys �→ Yj+1, . . . , Ys.

Applying ΨM , the former condition is equivalent to testing whether
V1, . . . , Vj−1 can be written as polynomials in A =

∑

i≤j−1 

′
iVi

modulo P . This is done as follows:
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◦ we compute the traces tr(Ak)k<2δ and tr(ViA
k)k<δ, for i ≤

j − 1 (these are traces defined modulo P ),

◦ using Lemma 4.5, we first compute the minimal polynomial
Q of A modulo P , then candidates polynomials V ′

1 , . . . , V
′
j−1

in Fq[Z],

◦ we test whether V ′
i (A) = Vi mod P for i ≤ j − 1.

For a fixed �′, in view of Lemma 4.5 and Theorem 3.1, going
through this process takes an expected s δ1+ε log(q) plogε(log(q))
bit operations. Since q ≥ δ2, Lemma 4.3 shows that we expect
to test 2 choices of �′ before finding a primitive element of level
j−1. Thus, the expected cost to find �′ and V′ is s δ1+ε log(q) plogε

(log(q)) bit operations.
Recall that (Hj) holds by assumption. Using the notation

of Section 4.2, Lemma 4.4 implies that (Hj−1) holds if and only if
Rj is a free Rj−1-module, with a basis consisting of the first powers
of Yj. Through ΨM , we have the isomorphism Rj � Fq[Y ]/〈P 〉,
Rj−1 is the subring of Rj generated by A, and Yj is mapped to Vj.

Let B =
∑

i≤j−1 
iV
′
i , so that we have Y = Vj + B(A) mod P

(because 
j = 1). This remark allows us to apply Lemma 6.2:
this shows that (Hj−1) holds if and only if assumption (h) of the
last subsection holds, for the polynomials P , A, and Vj. Using
Lemma 6.1, we can thus decide whether (Hj−1) holds, and if so
compute polynomials (Q(Z), S(Z, Y )) that form a triangular set
in Fq[Z, Y ], and such that we have isomorphisms

ψ : Fq[Y ]/〈P 〉 → Fq[Z, Y ]/〈Q,S〉
Y �→ Y +B

and

ϕ : Fq[Z, Y ]/〈Q,S〉 → Fq[Y ]/〈P 〉
Z �→ A
Y �→ Vj.

Remark in particular that ψ sends V1, . . . , Vj−1, Vj to V ′
1 , . . . , V

′
j−1,

Y . Computing all traces required by Lemma 6.1 and doing all
postprocessing fits into the same time bound as before.
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Next, we reintroduce the variables Yj+1, . . . , Ys. We consider
the triangular set P′ = (Q,S, P ′

j+1, . . . , P
′
s) in Fq[Z, Y, Yj+1, . . . , Ys],

with

P ′
k = Pk(Y +B, Yj+1, . . . , Yk) mod Q.

Recalling that we write RP = Fq[Y, Yj+1, . . . , Ys]/〈P〉 and RP′ =
Fq[Z, Y, Yj+1, . . . , Ys]/〈P′〉, we deduce the existence of the mutually
inverse isomorphisms

Ψ : RP → RP′

Y �→ Y +B
Yj+1, . . . , Ys �→ Yj+1, . . . , Ys

and

Φ : RP′ → RP

Z �→ A
Y �→ Vj

Yj+1, . . . , Ys �→ Yj+1, . . . , Ys;

as before, the former map sends V1, . . . , Vj−1, Vj to V ′
1 , . . . , V

′
j−1, Y .

Let us fix k and determine the cost of computing P ′
k: this is

done by applying ψ coefficient-wise, which amounts to a total
of deg(Pj+1, Yj+1) · · · deg(Pk, Yk) applications. By Theorem 3.1,
each of them takes time d1+ε log(q) plogε(log(q)), with d = deg(P ).
Since d deg(Pj+1, Yj+1) · · · deg(Pk, Yk) = δ, all P ′

k can be computed
in an expected s δ1+ε log(q) plogε(log(q)) bit operations.

Composing with ΨM and ΦM with Ψ and Φ, we obtain the
following:

R → RP′

Y1, . . . , Yj−1 �→ V ′
1 , . . . , V

′
j−1

Yj, . . . , Ys �→ Y, Yj+1, . . . , Ys

and

RP′ → R
Z �→ ∑

i≤j−1 

′
iYi

Y, Yj+1, . . . , Ys �→ Yj, . . . , Ys.

Thus, M ′ = (P′,V′, �′) is a mixed representation of format (j −
1, s− j + 2) for I, and the previous maps are ΨM ′ and ΦM ′ .

The final point to discuss is the cost of applying the isomor-
phisms Ψ = ΨM ′ ◦ ΦM andΦ = ΨM ◦ ΦM ′ . Both of them leave
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Yj+1, . . . , Ys unchanged, so these operations amount to apply deg
(Pj+1, Yj+1) · · · deg(Pk, Yk) times ψ and ϕ, respectively. By The-
orem 3.1, each application takes time d1+ε log(q) plogε(log(q)), so
the total time is δ1+ε log(q) plogε(log(q)). �

As a consequence of the former lemma, we deduce the following
result, which is the main point in this section. The proof is now
straightforward.

Proposition 6.4. Fix ε > 0. Then, given P = (Q,λ,W) as
above, such that q ≥ δ2 and p > δ, one can do the following in an
expected s2 δ1+ε log(q) plogε(log(q)) bit operations:

◦ decide whether there exists a triangular set T for the order
Y1 < · · · < Ys that generates I;

◦ if so, compute Ms, . . . ,M1, with Mi = (Pi, �i,Vi), such that

– Ms = P,

– for i = s−1, . . . , 1, Mi is obtained from Mi+1 by means
of Lemma 6.3,

– T = P1.

Further, one can do the following in s δ1+ε log(q) plogε(log(q)) bit
operations:

◦ given M1, . . . ,Ms and A in Fq[Y ]/Q, compute its image in
RT;

◦ given M1, . . . ,Ms andA inRT compute its image in Fq[Y ]/Q.

6.4. Proof of Theorem 1.2. Finally, we prove Theorem 1.2.
On input, we are given a triangular set T for the order Y1 < · · · <
Ys, with multidegree d, and a target order Yσ(1) < · · · < Yσ(s) on
the variables. We assume that the characteristic p of the base field
satisfies p > δd.

We want to decide whether the ideal 〈T〉 is radical, and if so,
whether there exists a triangular set T′ for the order Yσ(1) < · · · <
Yσ(s) that generates the same ideal as T. We also wish to do the
change of bases RT → RT′ and back.
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First, if needed, we extend the base field, to ensure that the
assumption q ≥ δ2

d holds. This is done as in Section 5.4; since all
the costs incurred by this field extension will fit in our target time
complexity, for simplicity, we will still denote our base field by Fq.

Applying Proposition 5.3, we can decide whether T is square-
free, and if so compute a primitive representation P = (P,V, �),
with 
σ(s) = 1, giving us inverse isomorphisms

ΨP : RT → Fq[Y ]/〈P 〉 and ΦP : Fq[Y ]/〈P 〉 → RT.

Let W1 = Vσ(1), . . . ,Ws = Vσ(s) be the images of Yσ(1), . . . , Yσ(s)

through ΨP , and let λ = (λ1, . . . , λs), with λi = 
σ(i). Finally,
let Z1, . . . , Zs = Yσ(1), . . . , Yσ(s). As a result, Q = (P,W,λ) is a
primitive representation for the ideal I = 〈T〉 in Fq[Z], with λs = 1.

We are thus in a position to apply Proposition 6.4: this pro-
vides us with the triangular set T′ (or proves it does not exist).
The total time reported in Propositions 5.3 and 6.4 is an expected
s2 δ1+ε log(q) plogε(log(q)) bit operations.

To perform the change of basis RT → RT′ , we first convert
from RT to Fq[Y ]/〈P 〉 by means of Proposition 5.3; this takes
s δ1+ε log(q) plogε(log(q)) bit operations. Then, mapping Fq[Y ]/〈P 〉
to RT′ is done by means of the second part of Proposition 6.4, for
a similar amount of time. The inverse change of basis RT′ → RT is
done by first converting from RT′ to Fq[Y ]/〈P 〉, then to RT, using
again Propositions 5.3 and 6.4. The time estimate is the same.

7. An illustration from
elliptic curve point counting

In this section, we describe a situation similar to the example given
in the introduction, where change of order was used to simplify
factorization.

The following construction originates from point-counting algo-
rithms for elliptic curves over finite fields. The objective is to count
the number of points of an elliptic curve E : Y 2 = X3 + AX + B
over Fp; this is a fundamental operation in elliptic curve cryptol-
ogy, see for instance Blake et al. (1999). In large characteristic, the
best algorithms are based on the landmark contribution of Schoof
(1985) and its improvements by Elkies (1992) and Atkin (1992).
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These algorithms operate by Chinese Remaindering, by deter-
mining |E| modulo various primes 
. For a given 
, Schoof’s algo-
rithm finds |E| mod 
 by doing a search modulo the division poly-
nomial ψ�. This polynomial has degree (
2− 1)/2; its roots are the
(pairwise distinct) X-coordinates of the 
-torsion points on |E|.

Elkies proposed to improve this phase, by working only modulo
a factor f� of ψ� of degree (
 − 1)/2. This factor is obtained as
follows:

◦ let Φ� ∈ Z[J, J ′] be the 
th modular polynomial and let ϕ� =
Φ� mod p;

◦ compute a root α of ϕ�(J, j(E)), where j(E) is the j-invariant
of E (or determine that no such root exists);

◦ if such a root exists, deduce f� from α.

We will not give more details here. It is enough to note that Φ�

is a bivariate polynomial of degree 
2, with coefficients of bit size
about 
, so the cost of Elkies’ construction is Ω(
3) bit operations.
The primes 
 for which the root α exists are called Elkies primes;
conjecturally, for a given E, about half of the primes are Elkies
primes. As a consequence, one may make the assumption that

 ≤ log(p); then, the cost for a given 
 is an expected 
 log(p)2 bit
operations, up to logarithmic factors, see Lercier & Sirvent (2008).

We will discuss here an alternative to Elkies’ construction, due
to Charlap et al. (1991). A cost analysis is given in Peters (2006),
with a result of the form 
4 + 
 log(p) operations in Fp for a given

, which is 
4 log(p)+
 log(p)2 bit operations (omitting logarithmic
factors in both cases). We will show that our results allow us
to reduce the cost and make it comparable to the one of Elkies’
algorithm.

Again, the purpose is to find a suitable factor f� of ψ�; now,
this is done by purely “algebraic” means, whereas Elkies’ approach
relies on transcendental arguments. Let [m] denote the multiplica-
tion-by-m map on E; then, there exist rational functions γm, ηm in
Fp(X) such that for all (x, y) in E, we have

[m](x, y) = (γm(x), yηm(x));
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γm has a pole at x if and only if [m](x, y) is a zero on E. Let
R = Fp[X]/ψ�, and for m < 
, let gm ∈ R be the image of γm in R;
γm mod ψ� is well defined, as one easily sees that its denominator
has no common root with ψ�. Finally, define A =

∑(�−1)/2
i=1 gi.

Lemma 7.1. Let mA be the minimal polynomial of A modulo ψ�.

◦ mA has degree at most 
+ 1.

◦ If deg(mA) = 
+ 1, then χA = m
(�−1)/2
A .

Proof. Let x be a root of ψ�, and let P = (x, y) be a correspond-
ing 
-torsion point on E. Then, A(x) is the sum of the abscissas
of the points P, . . . , [(
−1)/2]P . In particular, A(x) = A(g2(x)) =
· · · = A(g(�−1)/2(x)); thus, the roots of ψ� can be partitioned into

 + 1 subsets over each of which A takes a constant value. The
conclusion follows from Equation (4.1) of Section 4. �

Let us suppose that we are in the case where deg(mA) = 
+ 1
(this is true “in general,” see Charlap et al. 1991). Then, the
former lemma implies that the ideal 〈ψ�(Y ), Z−A(Y )〉 is generated
by the triangular set (P (Z), Q(Z, Y )), with P = mA, deg(P ) =

 + 1 and deg(Q, Y ) = (
 − 1)/2. Furthermore, Charlap, Coley,
and Robbins prove that 
 is an Elkies prime if and only if P has a
root α in Fp; in this case, Q(α, Y ) is the factor f� we are looking
for.

The following theorem gives a cost estimate on the compu-
tation of this factor, which shows it to be roughly as costly as
Elkies’ approach: if one could take ε= 0 below, the second term
would become dominant, and the overall cost would be 
 log(p)2

plog(log(p)), as for Elkies’ algorithm.

Theorem 7.2. Fix ε > 0. If 
 ≤ log(p), one can compute an
Elkies factor, or one can determine that none exists, in an expected
(


2+ε log(p) + 
 log(p)2
)

plogε(
 log(p)) bit operations.

Proof. First, we compute ψ�, by the standard binary powering
scheme, see for instance Blake et al. (1999); this can be done using

2 log(p) plog(
 log(p)) bit operations.



512 Poteaux & Schost cc 22 (2013)

Next, we show how to compute A for the cost of O(log(
)) mod-
ular compositions modulo ψ�, using binary powering techniques
inspired by the trace computation of Gathen & Shoup (1992) (see
also Morain et al. 2007 for a previous instance of the following com-
putation). Let τ be a generator of F

∗
� ; then A =

∑(�−1)/2−1
i=0 gτ i . For

g ≥ 0, let

Gk = g
τ2k and Ak =

2k−1∑

i=0

gτ i .

For simplicity, we show here how to compute Ak. Since we have
ga(gb) mod ψ� = gab, it is sufficient to compute

◦ G0, G1, . . . , Gk by means of Gj+1 = Gj(Gj) mod ψ�,

◦ A0, A1, . . . , Ak by means of Aj+1 = Aj(Gj) + Aj mod ψ�.

The slightly more general question of computing A (which involves
summation bounds that are not powers of 2) is handled similarly.
In any case, this requires O(log(
)) modular compositions modulo
ψ�; the cost is an expected 
2+ε log(p) plogε(log(p)) bit operations,
by Theorem 1.1.

Once A is known, we apply the change of order algorithm
of Theorem 1.2 to the system (ψ�(Y ), Z − A(Y )); this is valid,
since ψ� is squarefree, and p ≥ 
2. This gives us the triangular
set (P (Z), Q(Z, Y )) for the same expected 
2+ε log(p) plogε(log(p))
bit operations. Finally, we find a root α of the minimal polyno-
mial P (if any) in an expected 
 log(p)2 plog(
 log(p)) bit operations
(Gathen & Gerhard 1999, Corollary 14.16). We deduce the factor
Q(α, Y ) by evaluation, for a cost linear in 
2 log(p), up to logarith-
mic factors. �

Acknowledgements

Adrien Poteaux was supported by the EXACTA grant of the
National Science Foundation of China (NSFC 60911130369), the
French National Research Agency (ANR-09-BLAN-0371-01), and
the European union (PITN-GA-2008-214584 SAGA). Éric Schost
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