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Abstract. The “direct product problem” is a fundamental question in
complexity theory which seeks to understand how the difficulty in com-
puting a function on each of k independent inputs scales with k. We
prove the following direct product theorem (DPT) for query complexity:
if every T -query algorithm has success probability at most 1− ε in com-
puting the Boolean function f on input distribution μ, then for α ≤ 1,
every αεTk-query algorithm has success probability at most (2αε(1−ε))k

in computing the k-fold direct product f⊗k correctly on k independent
inputs from μ. In light of examples due to Shaltiel, this statement gives
an essentially optimal trade-off between the query bound and the error
probability. Using this DPT, we show that for an absolute constant
α > 0, the worst-case success probability of any αR2(f)k-query ran-
domized algorithm for f⊗k falls exponentially with k. The best previous
statement of this type, due to Klauck, Špalek, and de Wolf, required a
query bound of O(bs(f)k).
Our proof technique involves defining and analyzing a collection of mar-
tingales associated with an algorithm attempting to solve f⊗k. Our
method is quite general and yields a new XOR lemma and threshold
DPT for the query model, as well as DPTs for the query complexity
of learning tasks, search problems, and tasks involving interaction with
dynamic entities. We also give a version of our DPT in which decision
tree size is the resource of interest.

Keywords. Direct product theorems, query complexity, decision trees,
average-case complexity, hardness amplification.
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1. Introduction

1.1. Direct product theorems. Suppose some Boolean func-
tion f(x) on n input bits is “hard to compute” for a certain
computational model. It seems that computing the k-tuple
f⊗k(x1, . . . , xk) := (f(x1), . . . , f(xk)) on independent inputs x1, . . . ,
xk should be “even harder.” The intuition is that the k tasks to
be performed appear separate and unrelated and that with more
tasks one is more likely to make a mistake. One way to make this
idea more precise is to study the direct product problem, in which
we try to prove statements of the following form:

Suppose every algorithm using resources at most T has success
probability at most p in computing f . Then, every algorithm using
resources at most T ′ has success probability at most p′ in computing
f⊗k on k independent inputs to f .

Such a result is called a direct product theorem (DPT). The
direct product problem can be contrasted with a second, related
question, the direct sum problem, which studies how the complex-
ity of solving k instances of a problem scales with k, when we are
only interested in algorithms that succeed with high probability (or
probability 1). For a recent overview of the direct sum problem in
query complexity, and proofs of some new results, see Jain et al.
(2010).

Depending on the computational model and our interests, T
and T ′ might measure time, communication, or any other resource.
The success probability could be with respect to some input dis-
tribution μ, in which case it is natural to assume in the k-fold
setting that the inputs are drawn independently from μ; we call
this the average-case setting. However, one can also consider the
case where p is a bound on the worst-case success probability of
a randomized algorithm, ranging over all inputs to f ; we then try
to establish an upper-bound p′ on the worst-case success probabil-
ity of query-bounded algorithms for f⊗k. The strength of a direct
product theorem can be measured in terms of the dependence of
the parameters T ′, p′ on T, p, k, and, possibly, on the function f
itself. We want T ′ to be large and p′ to be small to establish that
the k-fold problem is indeed “very hard.”
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There is also an important variant of the direct product prob-
lem, in which we are interested in computing the “k-fold XOR”
f⊕k(x1, . . . , xk) := f(x1) ⊕ · · · ⊕ f(xk) of k independent inputs to
f . An XOR lemma is a result that upper-bounds the success proba-
bility p′ achievable by algorithms for f⊕k using T ′ resources, under
the assumption that any algorithm using T resources has success
probability at most p.1 An obvious difference from DPTs is that in
an XOR lemma, p′ must always be at least 1/2, since f⊕k is Bool-
ean and the algorithm could simply guess a random bit. The hope
is that (p′ − 1/2) decays exponentially with k. Research on XOR
lemmas has proceeded in parallel with research on direct product
theorems; the known results are of similar strength (with some
exceptions), and in some cases, there are reductions known from
XOR lemmas to DPTs or vice versa; see Unger (2009); Impagliazzo
& Kabanets (2010) for an overview and recent results of this type.

The direct product problem has been studied extensively in
models such as Boolean circuits, for example, in Goldreich et al.
(1995); Impagliazzo & Wigderson (1997); Impagliazzo et al. (2010);
communication protocols (Impagliazzo et al. 1994; Shaltiel 2003;
Klauck et al. 2007; Lee et al. 2008; Viola & Wigderson 2008);
and query algorithms (Impagliazzo et al. 1994; Nisan et al. 1999;
Shaltiel 2003; Klauck et al. 2007). In all of these models, an optimal
T -bounded algorithm that attempts to compute f can always be
applied independently to each of k inputs, using at most T ′ = Tk
resources and succeeding with probability p′ = pk, so these are the
“ideal,” strongest parameters one might hope for in a DPT. How-
ever, direct product statements of such strength are generally false,
as was shown by Shaltiel (2003), who gave a family of counterex-
amples which applies to all “reasonable” computational models.
We will describe these examples (specialized to the query model)
in Section 4.2

1Terminology varies somewhat in the literature. For instance, what we call
XOR lemmas are called “direct product theorems” in Shaltiel (2003), and what
we refer to as direct product problems are called the “concatenation variant”
by Shaltiel.

2Shaltiel calls a DPT “strong” if it applies to all p and T and its parame-
ters satisfy p′ ≤ pΩ(k) and T ′ ≥ Ω(Tk). His counterexamples rule out strong
DPTs for most computational models. In later works, the modifier “strong”
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Thus, all DPTs shown have necessarily been weaker in one of
several ways. First, researchers have restricted attention to algo-
rithms of a special form. Shaltiel (2003) showed a DPT with the
“ideal” parameters above holds for the query model, if the algo-
rithm is required to query each of the k inputs exactly T times. He
called such algorithms “fair.”3 A similar result for a special class
of query algorithms called “decision forests” was shown earlier in
Nisan et al. (1999).

Second, DPTs have been shown for unrestricted algorithms, but
using resource bounds whose strength depends on properties of the
function f . These results require the resource bound T ′ to scale as
D(f)k, where D(f) is some complexity measure that can be sig-
nificantly smaller than the resources needed to compute a single
instance of f . For example, Klauck et al. (2007) showed that for
any f and any γ > 0, a DPT holds for f in which the achievable
worst-case success probability p′ is at most (1/2 + γ)k, provided
T ′ ≤ α · bs(f)k for some constant α = α(γ) > 0. Here, bs(f) is
the block sensitivity of f (Nisan 1991; Buhrman & de Wolf 2002), a
complexity measure known to be related to the randomized query
complexity by the inequalities R2(f)1/3 ≤ bs(f) ≤ R2(f) (sup-
pressing constant factors). Now, one can always compute f cor-
rectly on k instances with high probability using O(R2(f)k log k)
queries. For many functions, including random functions, bs(f) =
Θ(R2(f)), so in these cases the DPT of Klauck et al. (2007) gives
a fairly tight result. However, examples are known (Buhrman &
de Wolf 2002) where bs(f) = O(

√
R2(f)), so the number of queries

allowed by this DPT can be significantly less than one might hope.
Klauck, Špalek, and de Wolf also proved DPTs for quantum

query algorithms computing f , in which the worst-case success
probability p′ drops exponentially in k if the number of allowed
quantum queries is O(

√
bs(f)k). For symmetric functions, direct

Footnote 2 continued
has been used in a somewhat broader way. We will not use this terminology
in the present paper.

3Actually, Shaltiel proved, in our terms, an optimal XOR lemma for fair
algorithms, but as he noted, this implies an optimal DPT, and his proof
method can also be modified to directly prove an optimal DPT for fair algo-
rithms.
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product theorems of a strong form were proved for quantum query
complexity by Ambainis et al. (2009). Špalek (2008) proved a DPT
for quantum query algorithms where the resource bound T ′ scales
in terms of a complexity measure called the multiplicative quantum
adversary. Quite recently (after a preprint of our paper appeared),
a sequence of works (Sherstov 2011; Ambainis et al. 2011; Lee
& Roland 2011) dramatically advanced our understanding of the
direct product problem in the quantum query model. This cul-
minated in a DPT for quantum queries (Lee & Roland 2011) in
which the success probability decays exponentially even as the
query bound scales as Ω(Q2(f)k). Here, Q2(f) is the bounded-error
quantum query complexity of a (possibly non-Boolean) function f .

In the model of communication protocols, several types of
results have been shown. DPTs have been given for specific func-
tions: For example, in Klauck et al. (2007) a DPT was proved for
the quantum communication complexity of the Disjointness func-
tion, and a classical analogue was proved by Klauck (2010). On the
other hand, general DPTs have been given, whose resource bound
scales in terms of complexity measures that may be significantly
smaller than the communication complexity of f . For example, in
communication complexity, DPTs have been shown whose strength
is related to the so-called discrepancy of f (Shaltiel 2003; Lee et al.
2008).

Since the present work, there has been significant progress in
the communication model. In the public-coin randomized setting,
Jain (2011) showed a strong general-purpose DPT for one-way
communication, and new DPTs were shown for two-way communi-
cation in (Jain 2011; Jain et al. 2012). Sherstov (2011) gave a new
DPT for quantum communication, whose resource bound scales
as Ω(GDM(f)k), where GDM(f) is the lower bound on quantum
communication complexity obtained by the generalized discrepancy
method—the strongest lower-bound technique known in the quan-
tum setting.

In the Boolean circuit model, despite intensive study, the known
results are quantitatively much weaker and in particular require T ′

to shrink as k grows in order to make the success probability p′

decay as k grows. It is at least known that, under this limitation,
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a DPT with p′ = pk can be shown using (Impagliazzo 1995; Holen-
stein 2005), as remarked in Impagliazzo & Kabanets (2010).

1.2. Our results. Our first result is the following direct product
theorem in the average-case setting:

Theorem 1.1. Suppose f is a Boolean function and μ is a distri-
bution over inputs to f , such that any T -query randomized algo-
rithm has success probability at most (1−ε) in computing f on an
input from μ. Then for 0 < α ≤ 1, any randomized algorithm mak-
ing αεTk queries has success probability at most (2αε(1− ε))k <
(1 − ε + .84αε)k in computing f⊗k correctly on k inputs drawn
independently from μ.

We use Shaltiel’s examples to show that the trade-off in
Theorem 1.1 between the query bound and the error probability
is essentially best-possible, at least for general functions f and for
small values α < .01. (For specific functions, the success probabil-
ity will in some cases decay exponentially even when the number of
queries allowed scales as Tk rather than εTk.) Theorem 1.1 reveals
that small values of ε, as used in Shaltiel’s examples, are the only
major “obstruction” to strong, general direct product statements
in the query model.

Using Theorem 1.1, we obtain the following DPT for worst-
case error, which strengthens the worst-case DPT of Klauck et al.
(2007) mentioned earlier:

Theorem 1.2. For any Boolean function f and 0 < γ < 1/4, any
randomized algorithm making at most γ3R2(f)k/11 queries has
worst-case success probability less than (1/2 + γ)k in computing
f⊗k correctly.

It seems intuitive that some statement like Theorem 1.2 should
hold, and proving such a DPT was arguably one of the major open
problems in classical query complexity.4

4While classical query algorithms can be viewed as a subclass of quantum
query algorithms, we note that Theorem 1.2 is incomparable to the more-recent
quantum DPT proved in Lee & Roland (2011): Our result shows exponentially
decaying success probability for a more restricted class of algorithms, but under
a potentially larger query bound.
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We also prove a new XOR lemma. Let Bk,p denote the binomial
distribution on k trials with success probability p.

Theorem 1.3. Suppose that any T -query randomized algorithm
has success probability at most (1− ε) in computing the Boolean
function f on an input from μ. Then for 0 < α ≤ 1, any random-
ized algorithm making αεTk queries and attempting to compute
f⊕k on k inputs drawn independently from μ has success probabil-
ity at most

1

2

(
1 + Pr

Y∼Bk,1−2ε

[Y > (1− αε)k]

)
,

which is less than 1
2

(
1 + [1− 2ε + 6α ln(2/α)ε]k

)
.

Compare the probability bound above with the success prob-
ability 1

2
(1 + (1 − 2ε)k), which can be attained using Tk queries

by attempting to solve each instance independently and output-
ting the parity of the guessed bits. The concrete estimate given in
Theorem 1.3 is meant to illustrate how our bound approaches this
value as α → 0. By a more careful use of Chernoff inequalities,
one can get somewhat tighter bounds for specific ranges of α, ε. An
XOR lemma for the worst-case setting can also be derived from our
result.

In addition to our “ordinary” DPT (Theorem 1.1), we also
prove a “threshold” DPT, which bounds the probability that a
query-bounded algorithm for f⊗k solves “many” of the k instances
correctly. As one special case, we prove:

Theorem 1.4. Let f be a (not necessarily Boolean) function such
that any T -query algorithm has success probability at most 1− ε
in computing f on an input from μ. Fix η, α ∈ (0, 1]. Consider
any randomized algorithm R making at most αεTk queries on k
independent inputs from μ. The probability that R computes f
correctly on at least ηk of the inputs is at most

Pr
Y∼Bk,1−ε

[Y ≥ (η − αε)k].
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Using Chernoff inequalities, Theorem 1.4 gives success bounds
that decay exponentially in k for any fixed α, ε, η, provided η >
1− ε + αε. As we will explain, Shaltiel’s examples show that this
cutoff is nearly best-possible. By setting η := 1 in Theorem 1.4,
we also get an ordinary DPT for non-Boolean functions, which for
typical parameter settings is stronger than the DPT we’d obtain by
a straightforward generalization of our techniques for Theorem 1.1.
This is the simplest way we know to get such a DPT.

Threshold DPTs have been proved for a variety of models,
including, recently, for arbitrary Boolean functions in the quan-
tum query model (Lee & Roland 2011). Unger (2009) showed how
to derive threshold DPTs from XOR lemmas, and recent work of
Impagliazzo & Kabanets (2010) gave a way to derive threshold
DPTs from sufficiently strong DPTs; see also the earlier works cited
in Unger (2009); Impagliazzo & Kabanets (2010). However, the
results of Impagliazzo & Kabanets (2010) do not apply for our pur-
poses, and the threshold DPT we prove is more general than we’d
get by applying the results of Unger (2009) to our XOR lemma. In
any case, the proof of our threshold DPT is, we feel, quite natu-
ral and actually forms the basis for the proof of our XOR lemma.
Our method for proving threshold DPTs applies to very general
threshold events: We give bounds on the probability that the set
S ⊆ [k] of instances solved correctly by a query-bounded algorithm
is “large,” in a sense specified by an arbitrary monotone collection
A of subsets of [k]. Generalized threshold DPTs of this form were
shown recently by Holenstein & Schoenebeck (2011) in the circuit
model, for a rich class of computational tasks called “weakly veri-
fiable puzzles”; as usual in the circuit model, these DPTs require
T ′ to shrink with k. Our techniques appear unrelated to theirs.

We also prove new DPTs for relations (for which direct sum the-
orems were proved recently by Jain et al. (2010)), learning tasks,
search problems, and errorless heuristics. Deterministic query algo-
rithms can be equivalently viewed as decision trees, and we also
prove a DPT for decision trees in which decision tree size, rather
than depth (i.e., number of queries), is the resource of interest.
Impagliazzo et al. (1994) gave a DPT for decision tree size with
“ideal” success probability decay p′ = pk, but in the case where
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the size is not allowed to scale with k, that is, the setting T ′ = T .
By contrast, in our DPT, the success probability decays as pΩ(k) =
(1− ε)Ω(k), while the size bound T ′ scales as TΩ(εk).

Finally, we give a further generalization of our DPTs, in which
the k objects being queried are dynamic entities rather than static
strings—that is, the answers to current queries may depend on past
queries. DPTs for dynamic interaction have been proved before
(Maurer et al. 2007), but only for the case in which the number
of queries to each entity is fixed in advance. (This is analogous
to Shaltiel’s result for “fair” algorithms.) We further discuss the
relation to past work on dynamic interaction in Section 10.

In order to ease notation, in this paper we discuss only DPTs for
total functions, but our results apply to partial functions, that is,
functions with a restricted domain; the proofs are the same. Simi-
larly, our theorems and proofs carry over without change to handle
non-Boolean input alphabets, as well as heterogeneous query costs.
Taken as a whole, our results provide a fairly complete picture of
the “direct product phenomenon” for randomized query complex-
ity, although there may still be room for improvement in some
of our bounds. We hope this work may also help lead to a bet-
ter understanding of the direct product problem in other, richer
computational models.

1.3. Our methods. We first explain our method to prove our
“basic” direct product theorem, Theorem 1.1. As mentioned ear-
lier, Shaltiel (2003) proved an optimal DPT for “fair” decision
trees, in which each of the k inputs receives T queries. Our proof
method for Theorem 1.1 also yields an alternate proof of Shaltiel’s
result, and it is helpful to sketch how this works first. (Really,
this “alternate proof” is little more than a rephrasing of Shalt-
iel’s proof technique, but the rephrasing gives a useful perspective
which helps us to prove our new results.)

Suppose that every T -query algorithm for computing f succeeds
with probability at most 1 − ε on an input from the distribution
μ. Consider a fair Tk-query algorithm D for f⊗k, running on k
independent inputs from μ. We think of the algorithm as a “gam-
bler” who bets at k “tables,” and we define a random variable
Xj,t ∈ [1/2, 1] that represents the gambler’s “fortune” at the jth
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table after D has made t queries overall to the k inputs. Roughly
speaking, Xj,t measures how well the algorithm is doing in deter-
mining the value of f on the jth input. When D queries the jth
input, the jth fortune may rise or fall, according to the bit seen; we
regard each bit revealed to be generated sequentially at random,
conditioned on the bits queried so far. The fortunes are defined so
that Xj,0 ≤ 1− ε for each j (reflecting the assumed hardness of f
on μ), and so that no action by the algorithm leads to an expected
gain in fortune.5 It follows that E[

∏
j∈[k] Xj,Tk] ≤ (1 − ε)k. But

the fortunes are defined, so that E[
∏

j∈[k] Xj,Tk] upper-bounds the

success probability of D in computing f⊗k. This gives the DPT
for fair algorithms. A key fact underlying the success of this proof
strategy is that after conditioning on any initial sequence of out-
comes to the first t ≤ T queries by the algorithm, the k inputs
remain independent.

If D is no longer required to be fair, but instead makes at most
αεTk queries, then the individual fortune Xj,t we define no longer
has the same intuitive meaning after the jth input has been queried
more than T times. (In this event, we simply set Xj,t to 1/2, so
that the gambler cannot hope to increase the jth fortune.) How-
ever, the success probability of D can still be upper-bounded by
E[

∏
j∈S Xj,αεTk], where S is the (random) set of inputs that receive

at most T queries. Counting tells us that fewer than αεk of the
inputs can lie outside of S, and each fortune is always at least
1/2, so the success probability is at most 2αεk

E[
∏

j∈[k] Xj,αεTk] ≤
2αεk(1− ε)k, giving the statement of Theorem 1.1.

Our worst-case DPT for Boolean functions follows straightfor-
wardly from Theorem 1.1, by an application of Yao’s minimax
principle. Our DPT for decision tree size requires a somewhat dif-
ferent analysis, in which we track the “size-usage” of each of the k
inputs rather than their number of queries, but the basic approach
is the same as in Theorem 1.1. In generalizing our method to
prove our other results, however, we face a new wrinkle: The natu-
ral definitions of the “fortunes” Xj,t in these settings are no longer
bounded from below by 1/2. For example, if f : {0, 1}n → B, then

5In standard probabilistic terms, each individual sequence Xj,0,Xj,1, . . . is
a supermartingale. We will not use this terminology in the paper.
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we have Xj,t ≥ |B|−1, and a straightforward modification of the
method described above gives a DPT whose strength degrades as
|B| grows. In other settings (e.g., the k-fold XOR setting), we will
only have Xj,t ≥ 0, and the method fails completely.6

To overcome this difficulty, we adopt a more general perspec-
tive. Our previous proof hinged on the fact that if a gambler plays
neutral or unfavorable games at k tables with an initial (nontrans-
ferable) endowment of 1− ε at each table, then the probability he
reaches a fortune of 1 at every table is at most (1− ε)k. Note that
this is just the success probability he would achieve if he followed an
independent “all-or-nothing bet” strategy at each table. It is natu-
ral to wonder whether this strategy remains optimal if the gambler
wants merely to reach a fortune of 1 at “sufficiently many” tables.
Indeed, we prove (by an induction on the number of rounds of gam-
bling) that this is true, where the meaning of “sufficiently many”
can be specified by any monotone collection of subsets of [k]. Most
of our generalizations of Theorem 1.1, as well as our XOR lemma,
follow readily from this handy “gambling lemma,” although care
is required to define the correct fortunes in each case.

1.4. Organization of the paper. In Section 2, we review pre-
liminaries that are used throughout the paper and that are needed
to state and prove our “basic” DPTs, Theorems 1.1 and 1.2. We
will introduce other definitions as needed in later sections. In
Section 3 we prove Theorem 1.1, and in Section 4 we use Shalt-
iel’s examples to analyze the tightness of this result. We prove
Theorem 1.2 in Section 5.

In Section 6 we prove our “gambling lemma” (Lemma 6.1)
and use it to prove a generalized threshold DPT for relations.
Theorem 1.4 will follow as a special case. We also explain how
our threshold DPT implies a DPT for the query complexity of cer-
tain learning tasks. We prove Theorem 1.3, our XOR lemma, in
Section 7 (also using Lemma 6.1). We define search problems and
errorless heuristics in Section 8 and give DPTs for these settings.

6One way to work around the problem is to simply add a small “buffer
term” to the fortunes Xj,t. However, this leads to poorer bounds and does not
yield our generalized threshold DPTs.
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We prove our DPT for decision tree size in Section 9. In
Section 10, we describe generalizations of our DPTs to settings
involving interaction with dynamic entities. We end with some
questions for future work.

2. Preliminaries

All of our random variables will be defined over finite probability
spaces. Let supp(X) denote the support of a random variable X,
that is, the set of values with nonzero probability. Let μ⊗k denote
k independent copies of distribution μ.

2.1. Randomized decision trees and query complexity. A
decision tree D over {0, 1}n is a rooted, full binary tree (i.e., each
node has either 0 or 2 children), in which interior vertices v are
labeled by indices ind(v) ∈ [n] and leaf vertices are labeled by val-
ues �(v) in some finite set B (often B = {0, 1}). The height of D is
the length of the longest descending path in D. D defines a func-
tion fD : {0, 1}n → B in the following way. On input x we start
at the root and follow a descending path through D; at interior
node v, we pass to the left subchild of v if xind(v) = 0, otherwise we
pass to the right subchild of v. When we reach a leaf vertex v, we
output the value �(v). Any deterministic algorithm to compute f
which queries at most t bits of x on any input can be modeled as
a height-t decision tree, and we will freely refer to such a tree as a
“t-query deterministic algorithm.”

A randomized decision tree is a probability distribution R over
deterministic decision trees. Upon receiving the input x, the algo-
rithm samples D ∼ R, then outputs D(x). (Every randomized
query algorithm can be modeled in this fashion.) We write R(x)
to denote the random variable giving the output of R on input
x. We say that R is a t-query randomized decision tree if every
decision tree in the support of R has height at most t.

For ε ∈ [0, 1] and a function f (not necessarily Boolean), we say
that R ε-computes f if for all inputs x, Pr[R(x) = f(x)] ≥ 1− ε.
Similarly, if μ is a distribution over inputs x ∈ {0, 1}n, we say that
R ε-computes f with respect to μ if Prx∼μ[R(x) = f(x)] ≥ 1 − ε,
where the probability is taken over the random sample x ∼ μ and
the randomness used by R.
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For a function f : {0, 1}n → B, we define R2(f), the two-
sided-error randomized query complexity of f , as the minimum t
for which there exists a t-query randomized decision tree which
1/3-computes f . We define

SucT,μ(f) := 1− ε,

where ε ≥ 0 is the minimum value for which some T -query-bounded
randomized algorithm Rε-computes f with respect to μ. By stan-
dard arguments, this minimum exists and is attained by a deter-
ministic height-T decision tree.

For f : {0, 1}n → B and k ≥ 1, define f⊗k : {0, 1}kn → Bk, the
k-fold direct product of f , as f⊗k(x1, . . . , xk) := (f(x1), . . . , f(xk)).
If f is Boolean, define the k-fold XOR of f as f⊕k(x1, . . . , xk) :=
f(x1)⊕ · · · ⊕ f(xk), where ⊕ denotes addition mod 2.

2.2. Binomial distributions and Chernoff bounds. Let Bk,p

denote the binomial distribution on k trials with bias p. That is,
Bk,p is distributed as Y =

∑k
i=1 Yi, where the Yi are independent

and 0/1-valued with Pr[Yi = 1] = p. For s ∈ {0, 1, . . . , k}, we have
the explicit formula Pr[Y = s] =

(
k
s

)
ps(1− p)k−s.

The following is a general form of Chernoff’s inequality:

Lemma 2.1. (Dubhashi & Panconesi 2009, §1.3) Suppose Y∼Bk,p,
with q := 1− p. Then for t ∈ [0, q),

Pr [Y > (p + t)k] ≤
((

p

p + t

)p+t (
q

q − t

)q−t
)k

.

The following form of Chernoff’s inequality will be more con-
venient for us.

Lemma 2.2. Let δ ∈ (0, 1), and let Y ∼ Bk,1−δ. If β ∈ (0, 1/2],
then

Pr[Y > (1− βδ)k] < [1− δ + 6β ln(1/β)δ]k .
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Proof. We apply Lemma 2.1 with t := (1− β)δ; we find

Pr [Y > (1− βδ)k] = Pr[Y > ((1− δ) + (1− β)δ)k]

≤
((

1− δ

1− βδ

)1−βδ (
δ

δ − (1− β)δ

)δ−(1−β)δ
)k

=

((
1− δ

1− βδ

)1−βδ

β−βδ

)k

≤
(
(1− δ + 2βδ)1−βδ β−βδ

)k

,(2.3)

using βδ ≤ 1/2.
It is easy to verify that (1− δ + 2βδ) ≥ β, so that

(1− δ + 2βδ)−βδ · β−βδ ≤ β−2βδ = e2β ln(1/β)δ.

Now 2β ln(1/β)δ ≤ 2/e < .74. By convexity of ex, we have ex ≤
1 + ((e.74 − 1)/.74) · x ≤ 1 + 1.49x for all x ∈ [0, .74]. Thus,
e2β ln(1/β)δ ≤ 1+3β ln(1/β)δ. Combining these facts with Eq. (2.3),
we get

Pr [Y > (1− βδ)k] ≤ [(1− δ + 2βδ)(1 + 3β ln(1/β)δ)]k

< [1− δ + 6β ln(1/β)δ]k . �

The constant 6 in Lemma 2.2 is not best-possible. To apply
the lemma, it is helpful to understand the behavior of the function
h(x) := x ln(1/x). This function is increasing on (0, e−1], and as
x → 0, h(x) approaches 0 only slightly more slowly than x itself:
for an integer n > 1 we have

h

(
1

2n ln n

)
=

1

2n ln n
· ln(2n ln n) =

1

n
· ln(2n ln n)

ln(n2)
<

1

n
.

3. Proof of Theorem 1.1

In this section, we prove our “basic” direct product theorem:
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Theorem 1.1 (restated). Let f be a Boolean function for which
SucT,μ(f) ≤ 1 − ε. Then for 0 < α ≤ 1, SucαεTk,μ⊗k(f⊗k) ≤
(2αε(1− ε))k < (1− ε + .84αε)k.

There is no requirement that T be an integer; this will be use-
ful later in proving Theorem 1.2. The success bound (2αε(1− ε))k

above is actually valid for any α > 0, but the bound is trivial
whenever α ≥ 2, so we focus attention on a range where the bound
is always meaningful.

Proof. The statement is trivial if T = 0 or ε = 0, so assume
both are positive. By convexity, it is sufficient to show the state-
ment for deterministic algorithms. Also, by a standard limiting
argument, it is enough to prove this result under the assump-
tion that supp(μ) = {0, 1}n; this ensures that conditioning on any
sequence of query outcomes will be well-defined.

Next, we set up some notation and concepts relating to the
computation of f on a single input; afterward, we will apply our
work to the direct product setting.

For a string u ∈ {0, 1, ∗}n, let the distribution μ(u) be defined
as a sample from μ, conditioned on the event [xi = ui, ∀i such
that ui ∈ {0, 1}]. Let |u| denote the number of 0/1 entries in u.
Let u[xi ← b] denote the string u with the ith coordinate set to
b. In our proof, we consider the bits of an input y ∼ μ to be
generated sequentially at random as they are queried. Thus, if an
input is drawn according to μ, and u describes the outcomes of
queries made so far (with ∗ in the coordinates that have not been
queried), we consider the input to be in the “state” μ(u). If some
index i ∈ [n] is queried next, then the algorithm sees a 0 with
probability Pry∼μ(u) [yi = 0], in which case the input enters state

μ(u[xi←0]); with the remaining probability, the algorithm sees a 1
and the input enters state μ(u[xi←1]). Clearly, this interpretation
is statistically equivalent regarding the input as being drawn from
μ before the algorithm begins (this is the “principle of deferred
decisions” of probability theory).

For each u ∈ {0, 1, ∗}n with |u| ≤ T , let

W (u) := SucT−|u|,μ(u)(f).
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In words, W (u) measures our “winning prospects” of computing
f on μ, if we begin with a budget of T queries and our first |u|
queries reveal the bits described by u, and if we follow an optimal
strategy thereafter. Clearly, W (u) ∈ [1/2, 1], since an algorithm
may simply guess a random bit. We make two more simple claims
about this function.

Lemma 3.1. 1. W (∗n) ≤ 1− ε.

2. For any u ∈ {0, 1, ∗}n with |u| < T , and any i ∈ [n],
Ey∼μ(u) [W (u[xi ← yi])] ≤ W (u).

Proof. 1. This is immediate from our initial assumption
SucT,μ(f) ≤ 1− ε.

2. If the ith coordinate has already been queried (i.e., ui ∈
{0, 1}), then yi = ui with probability 1, so u[xi ← yi] = u
and the statement is trivial. So assume ui = ∗. LetR0, R1 be
algorithms making at most T−(|u|+1) queries and maximiz-
ing the success probabilities on μ(u[xi←0]), μ(u[xi←1]), respec-
tively. Thus, the success probability of Rb is W (u[xi ← b]).
Consider an algorithm R that queries xi, then runs Rb if the
bit seen is b. R makes at most T − |u| queries, and the suc-
cess probability of R is Ey∼μ(u) [W (u[xi ← yi])]. Thus, W (u)
is at least this value. �

Now we prove the Theorem. Let D be any deterministic algo-
rithm making at most M := �αεTk
 queries, and attempting to
compute f⊗k on input strings (x1, . . . ,xk) ∼ μ⊗k. For j ∈ [k]
and 0 ≤ t ≤ M , let uj

t ∈ {0, 1, ∗}n be the random string giving
the outcomes of all queries made to xj after D has made t queries
(to the entire input). We need the following simple but important
observation:

Lemma 3.2. Condition on any execution of D for the first t ≥ 0
steps, with query outcomes given by u1

t , . . . , u
k
t . Then the input is

in the state μ(u1
t )×· · ·×μ(uk

t ). That is, the k inputs are independent,

with xj distributed as μ(uj
t ).



cc 21 (2012) Improved direct product theorems 213

Proof. Fix any j ∈ [k] and consider any assignment (xj′
)j′∈[k]\{j}

of values xj′ ∈ {0, 1}n to the inputs other than the jth input, where

xj′
extends uj′

t for each j′ �= j. We show that after conditioning on
the query outcomes u1

t , . . . , u
k
t and on the event [xj′

= xj′∀j′ �= j],

the jth input xj is distributed according to μ(uj
t ). This will prove

the Lemma.
Consider each y ∈ {0, 1}n that extends uj

t . Now u1
t , . . . , u

k
t

are, by assumption, a possible description of the first t queries
made by D under some input. Since D is deterministic, and
(x1, . . . , xj−1, y, xj+1, . . . , xk) are consistent with (u1

t , . . . , u
k
t ), we

conclude that (u1
t , . . . , u

k
t ) also describe the first t queries made by

D on (x1, . . . , xj−1, y, xj+1, . . . , xk). Thus, the conditional proba-
bility that xj = y is

μ⊗k(x1, . . . , xj−1, y, xj+1, . . . , xk)
∑

z extends uj
t
μ⊗k(x1, . . . , xj−1, z, xj+1, . . . , xk)

=
μ(y) ·∏j′ �=j μ(xj′

)
∑

z extends uj
t
μ(z) ·∏j′ �=j μ(xj′)

=
μ(y)

∑
z extends uj

t
μ(z)

= μ(uj
t )(y),

by definition of μ(uj
t ). This proves Lemma 3.2. �

Next, define collections

X = {Xj,t}j∈[k],0≤t≤M , P = {Pt}0≤t≤M

of random variables, as follows. All the random variables are deter-
mined by the execution of D on an input drawn from μ⊗k. Let
Xj,t := W (ut

j) if |ut
j| ≤ T ; otherwise let Xj,t := 1/2. Let Pt :=∏

j∈[k] Xj,t.

We claim that for each 0 ≤ t < M, E[Pt+1] ≤ E[Pt]. To see
this, condition on any outcomes to the first t queries, described by
u1

t , . . . , u
k
t . Now suppose that for the (t+1)st query, D queries the

ith bit of the jth input (i, j are determined by u1
t , . . . , u

k
t , since

D is deterministic). We note that Xj′,t+1 = Xj′,t for all j′ �= j.
If |ut

j| ≥ T then also Xj,t+1 ≤ Xj,t, which implies Pt+1 ≤ Pt. So
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assume |ut
j| < T . Then we have

E[Pt+1|u1
t , . . . , u

k
t ] = E[Xj,t+1 ·

∏

j′ �=j

Xj′,t+1|u1
t , . . . , u

k
t ]

= E[Xj,t+1|u1
t , . . . , u

k
t ] ·

∏

j′ �=j

Xj′,t

≤ Xj,t ·
∏

j′ �=j

Xj′,t = Pt,

where we used Lemma 3.2 and part 2 of Lemma 3.1. We conclude

E[Pt+1] = E[E[Pt+1|u1
t , . . . , u

k
t ]] ≤ E[Pt],

as claimed. It follows that E[PM ] ≤ E[P0]. But we can bound
P0 directly: P0 = W (∗n)k ≤ (1 − ε)k (Lemma 3.1, part 1). Thus
E[PM ] ≤ (1− ε)k.

Now we argue that this implies an upper bound on the suc-
cess probability of D. Condition on the bits u1

M , . . . , uk
M seen by

D during a complete execution; these determine the k output bits
of D. For each j ∈ [k], at least one of two possibilities holds:

Either |uj
M | > T , or the jth input is in a final state μ(uj

M ) for which
Pr

y∼μ
(u

j
M

)
[f(y) = 1] ∈ [1−Xj,M , Xj,M ]. Since the k inputs remain

independent under our conditioning, the conditional probability
that D computes f⊗k correctly is at most

∏
j:|uj

M |≤T Xj,M .

D makes at most αεTk queries, so simple counting tells us that
there are fewer than αεk indices j for which |uj

M | > T . Thus,

∏

j:|uj
M |≤T

Xj,M ≤
∏

j∈[k] Xj

(minj∈[k] Xj,M)αεk
≤ 2αεkPM

(since Xj,M ≥ 1/2 for all j). Taking expectations, we find that
the overall success probability of D is at most E[2αεkPM ] ≤
(2αε(1− ε))k.

Finally, we simplify our bound. We claim 2x < 1 + .84x on
(0, 1/2]. To see this, just note that 20 = 1, that 21/2 < 1.42 =
1 + .84(1/2), and that 2x is a convex function on R. Then, since
0 < αε ≤ 1/2, we have 2αε(1−ε) < (1+.84αε)(1−ε) < 1−ε+.84αε.
The proof is complete. �
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We remark that, as claimed in the Introduction, the proof above
can be easily adapted to give an alternate proof of Shaltiel’s opti-
mal direct product theorem for “fair” algorithms making Tk que-
ries: We define the random variables Xj,t exactly as before and
note that |uj

t | ≤ T for all j, t.

4. Tightness of the bounds in Theorem 1.1

In this section, we describe a family of functions and input distri-
butions, due to Shaltiel (2003), and explain why they show that
the query/success trade-off in Theorem 1.1 is nearly best-possible,
at least when α < .01 and when (1 − ε)k is also at most a small
constant.

Fixing an integer T > 0, define fT : {0, 1}T+2 → {0, 1} as fol-
lows: let fT (x) := x2 if x1 = 1, otherwise fT (x) := x2⊕ · · ·⊕xT+2.
Given ε ∈ (0, 1/2), let με be the distribution over {0, 1}T+2 in
which all bits are independent, Pr[x1 = 1] = 1 − 2ε, and Pr[xi =
1] = 1/2 for all i ∈ {2, . . . , T + 2}. Note that if y ∼ με, a T -query-
bounded algorithm can gain no information about the value of f
when x1 = 0, so any such algorithm succeeds with probability at
most (1− 2ε)1 + (2ε)1

2
= 1− ε in computing f(y).

Now consider the following algorithm D attempting to compute
f⊗k on inputs (x1, . . . ,xk) ∼ μ⊗k

ε . First, D queries the first two
bits of each input. Call an input xk “bad” if its first bit is 0, and
“good” if its first bit is 1. Let B ⊆ [k] denote the set of bad inputs.
Note that D learns the value of f on each good input. Next, D
chooses arbitrarily a set S ⊆ B of �αεk
 bad inputs and spends T
additional queries on each input in S to determine the value of f on
these inputs (if there are fewer than �αεk
 bad inputs, D queries
them all and determines the value of f⊗k with certainty). Finally,
D outputs the answer bits it has learned and makes random guesses
for the remaining values.

Observe that D uses at most 2k + αεTk queries overall. To
analyze the success probability of D, first consider an algorithm D′
which uses only 2k queries to look at the two bits of each input;
D′ outputs the correct value on good inputs and guesses randomly
on bad inputs. It is easy to see that D′ succeeds with probability
(1 − ε)k in computing f⊗k. Also, if both D and D′ are run on a
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common k-tuple of inputs drawn from μ⊗k
ε , and we condition on

the event that |B| ≥ �αεk
, then the success probability of D is
2
αεk� times the success probability of D′, since the inputs are inde-
pendent and D has �αεk
 fewer random guesses to make. Thus,
Pr [D succeeds] is at least

Pr [|B| ≥ αεk] · 2
αεk� Pr

[
D′ succeeds

∣∣∣∣|B| ≥ αεk

]

= 2
αεk� Pr [D′ succeeds ∧ |B| ≥ αεk]

≥ 2
αεk� · (Pr [D′ succeeds]− Pr [|B| < αεk])

= 2
αεk� · ((1− ε)k − Pr [|B| < αεk]
)
.(4.1)

Define the indicator variable Yj := 1[j /∈B]; then the Yj’s are indepen-
dent, with p = Pr[Yj = 1] = 1−2ε. Let Y := Y1+· · ·+Yk. We apply
Lemma 2.2 to Y , with the settings δ := 2ε and β := α/2 ≤ 1/2, to
obtain

Pr[|B| < αεk] = Pr[Y > (1− αε)k]

= Pr[Y > (1− (2ε)(α/2))k]

< [1− 2ε + 6(α/2) ln(2/α)(2ε)]k .

This can be made less than (1 − 1.5ε)k if α is a small enough
positive constant (α < .01 will work).

Now if (1 − ε)k is also at most a sufficiently small constant,
then (1− 1.5ε)k < .1(1− ε)k so that, by Eq. (4.1),

Pr [D succeeds] > .9 · 2
αεk�(1− ε)k,

which is close to the maximum success probability allowed by
Theorem 1.1 if D used αεTk queries. (Recall, though, that D
uses 2k + αεTk queries.)

5. Proof of Theorem 1.2

We now prove Theorem 1.2 from the Introduction, our DPT for
worst-case error, by combining Theorem 1.1 with a version of Yao’s
minimax principle (Yao 1977), which allows us to convert worst-
case hardness assumptions in query complexity into average-case
assumptions.
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Define R2,δ(f) as the minimum T for which there exists a ran-
domized T -query algorithm which computes f(x) correctly with
probability at least 1 − δ for every x. The following is a common
version of Yao’s principle and can be proved directly using the
minimax theorem of game theory.

Lemma 5.1. Fix 0 < δ < 1/2 and a Boolean function f . There
exists a distribution μδ over inputs to f , such that every random-
ized algorithm making fewer than R2,δ(f) queries succeeds in com-
puting f on μδ with probability less than 1− δ.

Proof of Theorem 1.2 Let f be given. Let δ := 1/2− γ/2, and let
μ := μδ be as provided by Lemma 5.1. Now fix a tiny constant
c ∈ (0, 1), and let T := R2,δ(f)− c; we have

SucT,μ(f) ≤ 1− ε,

for some value ε > δ > 3/8 (independent of c). Now set α := γ,
and apply Theorem 1.1 to find

SucγεTk,μ(f) < (1− (1− .84γ)ε)k < (1− (1− .84γ)δ)k .

Note that γεTk > γδR2,δ(f)k, if c is chosen sufficiently small. We
conclude that any algorithm making at most γδR2,δ(f)k queries
succeeds with probability less than

(1− (1− .84γ)δ)k = (1− (1− .84γ)(1/2− γ/2))k

< (1/2 + .42γ + γ/2)k < (1/2 + γ)k

in computing f⊗k on inputs x1, . . . ,xk ∼ μ⊗k. So, the worst-case
success probability is also less than this amount.

Now we relate R2,δ(f) to R2(f) by standard sampling ideas. Say
Rδ is an algorithm making R2,δ(f) queries, which computes f(x)
with probability at least 1− δ = 1/2 + γ/2 on each input. Let R
be the algorithm that given an input x runs Rδ(x) for m := �3/γ2�
trials, outputting the majority value. For i ∈ [m], define the indi-
cator variable Yi for the event [Rδ succeeds on the ith trial], and
let Y := Y1 + · · ·+Ym. Then the probability that R(x) outputs an
incorrect value is at most the probability that Y ≤ E[Y ]− γm/2,
which by Hoeffding’s inequality is at most e−2γ2m/4 ≤ e−3/2 < 1/3.
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Thus, R2(f) ≤ R2,δ(f) · �3/γ2� < 4R2,δ(f)/γ2 (using γ < 1/4).
Then, we have

γ3R2(f)k/11 < γ(3/8)(γ2R2(f)/4)k < γδR2,δ(f)k,

from which Theorem 1.2 follows.

6. Threshold direct product theorems

In this section, we prove our “gambling lemma,” Lemma 6.1, and
use it to prove generalized threshold DPTs for relations (relation
problems are formally defined in Section 6.2). This will yield DPTs
for non-Boolean functions as well as for the query complexity of
learning tasks. Further applications of Lemma 6.1 will appear in
later sections.

Let P([k]) denote the collection of subsets of [k]. Say that a
subcollection A ⊆ P([k]) is monotone if [A ∈ A, A ⊆ A′] implies
A′ ∈ A. Monotone collections play an important role in what
follows.

6.1. A gambling lemma. Like the proof of Theorem 1.1, the
statement of our next lemma is best explained by a gambling met-
aphor. Suppose that a gambler gambles at k tables, bringing an
initial endowment of pj ∈ [0, 1] to the jth table. He cannot trans-
fer funds between tables or go into debt at any table; he can only
play games for which his expected winnings are nonpositive; and
the different tables’ games use independent randomness. However,
the gambler can choose which game to play next at each table.

The gambler wants to reach a fortune of 1 at “sufficiently many”
of the tables, where the meaning of “sufficiently many” is speci-
fied by a monotone subset A ⊆ P([k]). One way the gambler may
attempt to reach this goal is to simply place an “all-or-nothing” bet
independently at each table; that is, at the jth table, the gambler
wins a fortune of 1 with probability pj and loses his jth endowment
with the remaining probability. The following lemma states that
this is in fact the gambler’s best strategy.

Lemma 6.1. Suppose k,N ≥ 1 are given, along with a col-
lection {X ,U} of random variables (over a finite probability



cc 21 (2012) Improved direct product theorems 219

space). Here X = {X1, . . . ,Xk}, where for each j ∈ [k], Xj =
{Xj,0, Xj,1, . . . , Xj,N} is a sequence of variables in the range [0, 1]
(think of Xj,t as the gambler’s fortune at the jth table after the first
t steps). U = {U0, U1, . . . , UN−1} is a sequence of random variables
taking values over some finite set (think of Ut as describing the
form and outcomes of all gambles in the first t steps). Assume
that for all 0 ≤ t < N, Ut determines {X1,t, . . . , Xk,t}, and also
determines Ut′ for all t′ < t. Also assume that {X1,t+1, . . . , Xk,t+1}
are independent conditioned on Ut. Then, if Xj,0 ≤ pj ∈ [0, 1] for
all j ∈ [k], and A is a monotone subset of P([k]), we have

Pr[{j ∈ [k] : Xj,N = 1} ∈ A] ≤ Pr[D ∈ A],

where D ⊆ [k] is generated by independently including each j ∈ [k]
in D with probability pj.

Note that we assume the gambler never attains a fortune
greater than 1 at any table; this restriction is easily removed, but
it holds naturally in the settings where we will apply the Lemma.

Proof. We use the term “A-success” to refer to the event [{j ∈
[k] : Xj,N = 1} ∈ A] whose probability we are bounding.

We first make a simplifying observation: We claim that it is
without loss of generality to assume that between each consecu-
tive times (t, t + 1), at most one of the fortunes changes and that
the fortune subject to change is determined by t. Call a fam-
ily of sequences with this property “nice.” To see this, consider
any family X obeying Lemma 6.1’s assumptions, and modify it by
“splitting” each transition (t, t+1) into a sequence of k transitions,
in the jth of which the jth fortune changes (according to the same
distribution governing its transition in the original sequence).

More formally, we define X ′j = {X ′j,0, . . . , X ′j,Nk} by letting
X ′j,� := Xj,
(�+k−j)/k�, and we define U ′ = {U ′0, U ′1, . . . , U ′Nk−1} by

U ′� :=
(
U
�/k�,

(
X ′j,�′

)
j∈[k],�′≤�

)
.

(We add extra information into U ′� to ensure that it determines
the random variables it is supposed to.) Lemma 6.1’s assumptions
continue to hold for this modified, nice family of random variables;
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here we are using our original assumption that {X1,t+1, . . . , Xk,t+1}
are independent conditioned on Ut. Also, the probability of A-suc-
cess is unchanged. So let us assume from now on that (X ,U) is
nice, and for 0 ≤ t < N , let jt ∈ [k] be the index of the fortune
subject to change between times t and t + 1.

Fix any k ≥ 1; we prove the statement by induction on N ≥ 1.
First suppose N = 1, and let j0 be as defined above. Let S ⊆
[k] \ {j0} be the set of indices j �= j0 for which pj = 1. First sup-
pose S ∈ A; then Pr[D ∈ A] = 1, since each j ∈ S is included
in D with probability 1. In this case, the conclusion is trivially
satisfied. Next suppose S ∪ {j0} /∈ A. In this case, Pr[A-suc-
cess] = 0, and again the conclusion is trivially satisfied. So suppose
S /∈ A, S ∪ {j0} ∈ A, and condition on any value U0 = u. Then
A-success occurs if Xj0,1 = 1. By Markov’s inequality, Pr[Xj0,1 =
1|U0 = u] ≤ E[Xj0,1|U0 = u] ≤ Xj0,0 ≤ pj0 = Pr[D ∈ A]. This
proves the statement for N = 1.

So let N > 1 and assume the statement proved for {1, . . . , N −
1}; we prove it for N . Condition on any value U0 = u, and con-
dition further on the value Xj0,1 = a ∈ [0, 1]. The equalities
Xj,1 = Xj,0 ≤ pj are forced for all j �= j0; the residual collection of
random variables {Xj,t : j ∈ [k], 1 ≤ t ≤ N}∪{Ut : 1 ≤ t < N} un-
der our conditioning obeys Lemma 6.1’s assumptions, along with
our added assumption; and these sequences are shorter by a step
than our initial sequences. Thus, our induction hypothesis implies
that

Pr[A-success|U0 = u,Xj0,1 = a] ≤ Pr[D(a) ∈ A],(6.2)

where D(a) is generated just like D except that j0 is now included
in D(a) with probability a.

Let q0 := Pr[D \ {j0} ∈ A] and q1 := Pr[D ∪ {j0} ∈ A]. Note
that q0 ≤ q1, since A is monotone. We have

Pr[D(a) ∈ A] = (1− a)q0 + aq1.

Taking expectations over a in Eq. (6.2), Pr[A-success|U0 = u] is at
most

(1− E[Xj0,1|U0 = u])q0 + E[Xj0,1|U0 = u] · q1

≤ (1− pj0)q0 + pj0q1
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(since q0 ≤ q1 and E[Xj0,1|U0 = u] ≤ Xj0,0 ≤ pj0)

= Pr[D ∈ A].

As u was arbitrary, this extends the induction to N and completes
the proof. �

6.2. Application to threshold DPTs. Now we prove our gen-
eralized threshold direct product theorem. Our theorem will be
within the framework of solving relation problems, a more general
task than computing functions. A relation (with Boolean domain)
is a subset P ⊆ {0, 1}n × B, for some finite set B. The relation is
total if for all x ∈ {0, 1}n, there exists b ∈ B such that (x, b) ∈ P .
For each total relation P , there is a natural computational prob-
lem: Given an input x, try to output a b for which (x, b) ∈ P .
Computing a function f : {0, 1}n → B is equivalent to solving the
relation problem for the total relation Pf := {(x, b) : f(x) = b}.

If R is a (possibly randomized) query algorithm producing out-
puts in B, P is a total relation, and μ a distribution, say that R
ε-solves P with respect to μ if Prx∼μ[(x,R(x)) ∈ P ] ≥ 1−ε. Define
Sucrel

T,μ(P ) := 1 − ε, where ε ≥ 0 is the minimum value for which
some T -query randomized algorithm Rε-solves P with respect to
μ. As usual, this minimum exists and is attained by a determinis-
tic height-T decision tree. For a randomized algorithm R making
queries to k ≥ 1 inputs x = (x1, . . . , xk) to P and producing an
output in Bk, let Rj(x) ∈ B be the jth value outputted by R.

Given A,A′ ⊆ [k], define the distance d(A,A′) := |(A \ A′) ∪
(A′ \A)|. Given a set family A ⊆ P([k]), and a real number r > 0,
define the strict r-neighborhood of A, denoted Nr(A), as

Nr(A) := {A′ : d(A,A′) < r for some A ∈ A}.
We have A ⊆ Nr(A). Note also that if A is monotone then so is
Nr(A). We can now state our generalized threshold DPT:

Theorem 6.3. Fix a finite set B, and let P ⊆ {0, 1}n × B be a
total relation for which Sucrel

T,μ(P ) ≤ 1− ε. Fixing any randomized
algorithm R making queries to inputs x = (x1, . . . ,xk) ∼ μ⊗k and
producing output in Bk, define the (random) set

S[x] := {j ∈ [k] : (xj,Rj(x)) ∈ P}.
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Suppose R is αεTk-query-bounded for some α ∈ (0, 1], and A is
any monotone subset of P([k]). Then:

1. Pr[S[x] ∈ A] ≤ |B|αεk·Pr[D ∈ A], where D ⊆ [k] is generated
by independently including each j ∈ [k] in D with probability
1− ε.

2. Also, for D as above, Pr[S[x] ∈ A] ≤ Pr[D ∈ Nαεk(A)].

Proof. As in Theorem 1.1, we may assume ε, T > 0, supp(μ) =
{0, 1}n. We have ε ≤ 1− |B|−1 < 1, since P is total and an algo-
rithm may output a random element of B.

For u ∈ {0, 1, ∗}n with |u| ≤ T , let

WP (u) := Sucrel
T−|u|,μ(u)(P ).

Then WP (u) ∈ [|B|−1, 1]. We have the following claim, whose proof
follows that of Lemma 3.1:

Lemma 6.4. 1. WP (∗n) ≤ 1− ε.

2. For any u ∈ {0, 1, ∗}n with |u| < T , and any i ∈
[n], Ey∼μ(u) [WP (u[xi ← yi])] ≤ WP (u).

Let R be αεTk-query-bounded; as in Theorem 1.1, we may
assume R is deterministic, so call it D instead. Let M := �αεTk

as before, and recall the random strings uj

t defined in Theorem 1.1.
Define random variables {Xj,t}j∈[k],0≤t≤M , determined by an

execution of D on inputs (x1, . . . ,xk) ∼ μ⊗k, by letting Xj,t :=
WP (uj

t) if |uj
t | ≤ T , otherwise Xj,t := |B|−1. Next, the natural

idea is to apply Lemma 6.1. First, however, we need to extend
the sequences for one additional (nonquery) step. That is, we will
define random variables Xj,M+1 for each j ∈ [k]. We will use X to
denote the collection of enlarged sequences.

Our definition of Xj,M+1 depends on whether |uj
M | ≤ T , that

is, on whether D made at most T queries to xj on the current exe-
cution. If |uj

M | ≤ T , let Xj,M+1 := 1[(xj ,Dj(x))∈P ] be the indicator

variable for the event thatD solves P on the jth input. If |uj
M | > T ,

let Xj,M+1 := 1 with probability |B|−1, and let Xj,M+1 := 0 with
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the remaining probability. We let each such “coin-flip” be inde-
pendent of the others and of (x1, . . . ,xk).

Define the collection U = {U0, . . . , UM} by Ut := (u1
t , . . . , u

k
t ).

We argue that the conditions of Lemma 6.1 are satisfied by (X ,U),
with N := M + 1. First, for 0 ≤ t′ ≤ t ≤M , the stated conditions
follow from Lemma 3.2 and part 2 of Lemma 6.4. Now consider the
final, added step. Condition on any value of UM = (u1

M , . . . , uk
M).

Lemma 3.2 tells us that x1, . . . ,xk are independent under this con-
ditioning, and D’s outputs are determined by UM , so the variables
{Xj,M+1} are independent conditioned on UM . If |uj

M | ≤ T then
E[Xj,M+1|UM ] ≤ Xj,M by part 2 of Lemma 6.4. If |uj

M | > T then
E[Xj,M+1] = |B|−1 = Xj,M .

Thus, the assumptions of Lemma 6.1 are satisfied, with pj =
Xj,0 ≤ 1− ε. We conclude that for any monotone C ⊆ P([k]),

Pr[{j ∈ [k] : Xj,N = 1} ∈ C] ≤ Pr[D ∈ C],(6.5)

where each j ∈ [k] is independently included in D with probability
1− ε.

To prove statement 1 of Theorem 6.3, let C := A. Note that
S[x] and u1

M , . . . , uk
M are determined by x, since D is determin-

istic. Condition on any value of x for which S[x] ∈ A. Under
this conditioning, if j ∈ [k] satisfies |uj

M | ≤ T and j ∈ S[x], then
Xj,N = 1. On the other hand, if |uj

M | > T , then [Xj,N = 1] holds
with probability |B|−1, and these events are independent for each
such j. By the query bound on D, there are fewer than αεk indices
j in our conditioning for which |uj

M | > T . Thus,

Pr[{j ∈ [k] : Xj,N = 1} ∈ A|S[x] ∈ A] ≥ |B|−αεk,

which in combination with Eq. (6.5) implies

Pr[S[x] ∈ A] ≤ |B|αεk · Pr[D ∈ A],

as needed. To prove statement 2 of Theorem 6.3, let C := Nαεk(A)
in Eq. (6.5): we find

Pr[{j ∈ [k] : Xj,N = 1} ∈ Nαεk(A)] ≤ Pr[D ∈ Nαεk(A)].

Arguing as above, S[x] \ {j ∈ [k] : Xj,N = 1} is always a set of
size less than αεk, so [S[x] ∈ A] implies [{j ∈ [k] : Xj,N = 1} ∈
Nαεk(A)]. Thus, we have Pr[S[x] ∈ A] ≤ Pr[D ∈ Nαεk(A)]. �
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Part 1 of Theorem 6.3 is a proper generalization of Theorem 1.1.
To see this, just set A := {[k]}, P := Pf , and note that in this case,
Pr[D ∈ A] = (1− ε)k. As another dividend, we obtain the follow-
ing threshold DPT for relations, which specializes to an ordinary
DPT for this setting (statement 3 in the Theorem below).

Theorem 6.6. Let P ⊆ {0, 1}n ×B be a total relation for which
Sucrel

T,μ(P ) ≤ 1 − ε. Fix any η ∈ (0, 1]. For any randomized algo-
rithm R making queries to inputs x = (x1, . . . ,xk) ∼ μ⊗k, define
the (random) set S[x] as in Theorem 6.3. Then if R is αεTk-
query-bounded for α ∈ (0, 1], we have:

1. Pr[|S[x]| ≥ ηk] ≤ |B|αεk · PrY∼Bk,1−ε
[Y ≥ ηk], and also

2. Pr[|S[x]| ≥ ηk] ≤ PrY∼Bk,1−ε
[Y ≥ (η − αε)k].

3. Pr[|S[x]| = [k]] is at most the minimum of |B|αεk(1−ε)k and
PrY∼Bk,1−ε

[Y ≥ (1 − αε)k]. If α ≤ 1/2 the second bound in

the min is at most [1− ε + 6α ln(1/α)ε]k.

Proof. Apply parts 1 and 2 of Theorem 6.3, with the choice
A := {A ⊆ [k] : |A| ≥ ηk}. We have Pr[D ∈ A] = Pr[D1 +
· · · + Dk ≥ ηk], where we define Dj := 1[j∈D]. These 0/1-valued
variables are independent with bias 1 − ε, which gives statement
1. Similarly, Pr[D ∈ Nαεk(A)] = Pr[D1 + · · · + Dk ≥ (η − αε)k],
which gives statement 2. Statement 3 simply combines statements
1 and 2, under the setting η = 1. For the final bound in statement
3, we apply Lemma 2.2 with β := α, δ := ε. �

Theorem 1.4 in the Introduction follows from the special case
of Theorem 6.6 in which P := Pf .

The success bound |B|αεk(1− ε)k appearing above can also be
derived by an easy modification of the proof of Theorem 1.1, in
which the condition Xj,t ≥ 1/2 we exploit becomes Xj,t ≥ |B|−1.
When |B| is large, however, the alternative bound provided in
Theorem 6.6 will tend to give better results.

Note that part 2 of Theorem 6.6, in conjunction with Chernoff
inequalities, gives success bounds which decay exponentially in k
for any fixed α, ε, η for which η > 1 − ε + αε. Shaltiel’s exam-
ples, described in Section 4, show that this cutoff is nearly tight:
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On those functions, the algorithm D described in Section 4 makes
2k + αεTk queries and (it is easily checked) typically solves about
(1− ε + .5αε)k of the instances correctly.

Threshold DPTs for the worst-case setting can also be derived
from Theorems 6.3 and 6.6, by the same reduction to the average-
case setting used to prove Theorem 1.2.

6.3. Direct product theorems for learning tasks. Theo-
rems 6.3 and 6.6 readily imply direct product theorems for the
query complexity of certain learning tasks, as we explain next.
Consider the scenario in which a randomized algorithm R is given
query access to an unknown function h : {0, 1}n → {0, 1} drawn
from some distribution μ over a hypothesis class H. That is, for
any string x, R can query the value h(x). The algorithm R at-
tempts to output a hypothesis h̃ which is “close” to h. That is, we
fix some symmetric relation close ⊆ H × H (assume close(h, h)
always holds), and we wish to find some h̃ such that close(h, h̃)
holds.

This task can be equivalently modeled as the relation problem
associated with the total relation

PH := {(h, h′) : h, h′ ∈ H ∧ close(h, h′)},

where h is given in truth-table form as a Boolean string, under the
input distribution h ∼ μ. (We do not give a membership criterion
for PH when h /∈ H; this is unimportant since supp(μ) ⊆ H.)

In the k-fold learning problem associated with H, μ, the algo-
rithm has query access to each of k functions (h1, . . . , hk) ∼ μ⊗k,
and the goal is to output guesses h̃1, . . . , h̃k such that close(hj, h̃j)
holds for all (or at least “many”) indices j ∈ [k]. This task is
equivalent to the k-fold relation problem associated with PH, and
Theorems 6.3 and 6.6 apply.

7. Proof of the XOR lemma

The proof of our XOR Lemma, Theorem 1.3 from the Introduc-
tion, is modeled on the proof of our threshold DPTs and reuses
Lemma 6.1.
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Proof of Theorem 1.3. As usual we first set up some preliminaries.
For a deterministic algorithm D over n input bits, define

W⊕(u) := 2 · SucT−|u|,μ(u)(f)− 1.

Lemma 7.1. 1. W⊕(∗n) ≤ 1− 2ε.

2. For any u ∈ {0, 1, ∗}n with |u| < T , and any i ∈ [n],
Ey∼μ(u) [W⊕(u[xi ← yi])] ≤ W⊕(u).

Lemma 7.1 follows immediately from Lemma 3.1, since W⊕(u)
= 2W (u)− 1.

Now we prove the Theorem. As in the proof of Theorem 1.1, we
may assume ε, T > 0, supp(μ) = {0, 1}n, and it is enough to prove
the success bound for each deterministic αεTk-query algorithm D
attempting to solve f⊕k(x1, . . . ,xk) on inputs x1, . . . ,xk ∼ μ⊗k.
Recall the definitions of uj

t (for j ∈ [k], 0 ≤ t ≤ M := �αεTk
)
from Theorem 1.1. For a deterministic algorithm D, define
{Xj,t}j∈[k],0≤t≤M as follows: if |uj

t | ≤ T , set Xj,t := W⊕(ut
j); other-

wise, set Xj,t := 0.
We will extend the random sequences {Xj,t} for one additional

(nonquery) step and will let X denote our enlarged collection. To
set up our extension, we first define random variables bj, rj, aj for
j ∈ [k], determined by uj

M , as follows. Let bj ∈ {0, 1} be defined

as the likeliest value of f(y), where y ∼ μ(uj
M ) (break ties arbi-

trarily). Let rj := Pr[f(y) = bj] ∈ [1/2, 1], where again y ∼ μ(uj
M ).

Let aj := 2rj − 1 ∈ [0, 1].
If |uj

M | > T , set Xj,M+1 := 0. If instead |uj
M | ≤ T , our random

process “inspects” the actual value of the bit f(xj) to help deter-
mine Xj,M+1. If f(xj) �= bj, let Xj,M+1 := 0. If f(xj) = bj, let
Xj,M+1 := 1 with probability aj/rj, and Xj,M+1 := 0 with the
remaining probability, where this random decision is independent
of all others. Thus in this case,

E[Xj,M+1|u1
M , . . . , uk

M ] = rj · (aj/rj) = aj ≤ Xj,M ,

where the last inequality holds by the definition of W⊕(uj
M) since

|uj
M | ≤ T .
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Let U=(U0, . . . , UM), where Ut :=(u1
t , . . . , u

k
t ). By an argument

analogous to that in the proof of Theorem 6.3, we verify that (X ,U)
obey the assumptions of Lemma 6.1, this time with pj := 1−2ε.
Applying Lemma 6.1 to A :={A⊆ [k] : |A|>(1−αε)k}, we find

Pr[|{j : Xj,M+1 = 1}| > (1− αε)k] ≤ Pr[D ∈ A],(7.2)

where each j ∈ [k] is independently included in D with probability
(1− 2ε). We have Pr[D ∈ A] = PrY∼Bk,1−2ε

[Y > (1− αε)k].
We analyze events F of form F := [UM = (u1

M , . . . , uk
M),

X1,M+1 = z1, . . . , Xk,M+1 = zk]. Note that conditioning on F does
not condition on the particular values f(xj) that helped determine
the values zj. Focus attention on any such event F for which
|{j : Xj,M+1 = 1}| ≤ (1 − αε)k. Since D makes at most αεTk
queries, there are fewer than αεk indices j for which |uj

M | > T .

In particular, there exists a j� ∈ [k] for which |uj�

M | ≤ T and
Xj�,M+1 < 1 (so, by our definitions, Xj�,M+1 = 0).

Now let the event F ′ be defined just like F , except that F ′

makes no conditioning on Xj�,M+1 (so, F = F ′ ∧ [Xj�,M+1 = 0]).
Then,

Pr[f(xj�
) = bj� |F ] = Pr[f(xj�

) = bj� |F ′ ∧Xj�,M+1 = 0]

=
Pr[f(xj�

) = bj� ∧Xj�,M+1 = 0|F ′]
Pr[Xj�,M+1 = 0|F ′]

=
Pr[f(xj�

)=bj� |F ′] · Pr[Xj�,M+1 =0|F ′, f(xj�
)=bj� ]

∑
b∈{0,1} Pr[f(xj�)=b|F ′] · Pr[Xj�,M+1 =0|F ′, f(xj�)=b]

=
rj�(1− aj�/rj�)

rj�(1− aj�/rj�) + (1− rj�) · 1

(using the fact that x1, . . . ,xk are independent conditioned on UM ,
by Lemma 3.2, and the additional fact that {Xj,M+1}j∈[k] are inde-
pendent conditioned on UM)

=
rj� − aj�

1− aj�

=
1
2
(1 + aj�)− aj�

1− aj�

= 1/2.

Thus, f(xj�
) is an unbiased random bit conditioned on F . Con-

sequently, f⊕k(x1, . . . ,xk) = f(xj�
) ⊕ f⊕k−1(x1, . . . ,xj�−1,xj�+1,
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. . . ,xk) is an unbiased random bit conditioned on F . Thus,
under this conditioning, D’s output bit equals the k-fold XOR
with probability exactly 1/2. Now F was an arbitrary outcome of
UM , X1,M+1, . . . , Xk,M+1 for which |{j : Xj,M+1 = 1}| ≤ (1− αε)k.
It follows that

Pr
x∼μ⊗k

[D(x) = f⊕k(x)] ≤ Pr [|{j : Xj,M+1 = 1}| > (1− αε)k]

+
1

2
Pr [|{j : Xj,M+1 = 1}| ≤ (1− αε)k]

=
1

2
(1 + Pr [|{j : Xj,M+1 = 1}| > (1− αε)k])

≤ 1

2

(
1 + Pr

Y∼Bk,1−2ε

[Y > (1− αε)k]

)
,

using Eq. (7.2).
Finally, to get the concrete bound claimed in statement of

Theorem 1.3, first suppose ε = 1/2; in this case, the bound fol-
lows easily since Y = 0 with certainty. If ε < 1/2, note that
(1−αε)k = (1−(α/2)(2ε)), and apply Lemma 2.2 with δ := 2ε < 1
and β := α/2 ≤ 1/2.

8. Direct product theorems for search
problems and errorless heuristics

We define a fairly general notion of search problems in the query
model for which a direct product theorem can be proved. We will
also obtain a DPT for errorless heuristics, defined in Section 8.2.

8.1. Search problems. We need some preliminary definitions.
Given u, v ∈ {0, 1, ∗}n, say that u and v agree if ui ∈ {0, 1} implies
vi ∈ {∗, ui}. Note that this definition is symmetric in u and v. If
u, v agree, define their overlay u ◦ v ∈ {0, 1, ∗}n by (u ◦ v)i := b ∈
{0, 1} if either ui = b or vi = b, otherwise (u ◦ v)i := ∗. Say that u
extends v if vi ∈ {0, 1} implies ui = vi.

Say we are given a distribution μ on {0, 1}n, and a (possibly
randomized) query algorithm R; if R runs on an input distributed
according to μ, we denote by UR,μ ∈ {0, 1, ∗}n the random string
describing the input bits seen by R.
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A search problem is defined by a subset V ⊆ {0, 1, ∗}n. We say
that R ε-solves the search problem V with respect to an input dis-
tribution μ over {0, 1}n if, with probability ≥ 1− ε, UR,μ extends
some v ∈ V . (We allow the possibility that some x ∈ supp(μ) do
not extend any v ∈ V .) Define SucT,μ(V ) := 1 − ε, where ε is
the minimal value such that some T -query randomized algorithm
ε-solves search problem V on inputs from μ.

Define the k-fold search problem V ⊗k := {(v1, . . . , vk) : vj ∈
V,∀j ∈ [k]} ⊆ {0, 1, ∗}kn. Thus to solve V ⊗k, an algorithm must
solve each of the k constituent search problems. We generalize this
notion in order to state a threshold DPT, which will imply our
ordinary DPT. For a monotone subset A ⊆ P([k]), define

V k,A := {(v1, . . . , vk) : {j ∈ [k] : vj ∈ V } ∈ A}.

Thus to solve V k,A, an algorithm must solve “sufficiently many” of
the k search problems, as specified by A.

Recall the notation Nr(·) from Section 6. Our generalized
threshold DPT for search problems is as follows:

Theorem 8.1. Suppose the search problem V satisfies SucT,μ

(V ) ≤ 1−ε. Then for any α ∈ (0, 1] and any monotoneA ⊆ P([k]),

SucαεTk,μ⊗k(V k,A) ≤ Pr[D ∈ Nαεk(A)],

where each j ∈ [k] is independently included in D with probability
1− ε.

Proof. In the search setting, ε can potentially be any value in
[0, 1]. The boundary cases are trivial, so assume 0 < ε < 1. As
usual, we can assume that T > 0 and supp(μ) = {0, 1}n, and it
is enough to bound the success probability of any deterministic
αεTk-query algorithm.

Following Theorem 1.1, we first develop some concepts related
to a computation on a single input to the search problem V . For
each u ∈ {0, 1, ∗}n for which |u| ≤ T , let ValV (u) := 1 if u extends
some v ∈ V , otherwise ValV (u) := 0. For a deterministic query
algorithm D, let WV (u,D) := E[Val(u◦UD,μ(u))]. (Note that u and
UD,μ(u) always agree.)
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If |u| ≤ T , let WV (u) := maxD(WV (u,D)), where the maximum
ranges over all deterministic algorithms making at most T−|u| que-
ries. In other words, WV (u) is the maximum success probability of
any (T − |u|)-query algorithm in solving V on an input y ∼ μ(u),
where we reveal the bits described by u “for free” to the algorithm.
Then we have:

Lemma 8.2. 1. WV (∗n) ≤ 1− ε.

1. For any u ∈ {0, 1, ∗}n with |u| < T , and any i ∈ [n], Ey∼μ(u) [WV

(u[xi ← yi])] ≤ WV (u).

We omit the proof that is essentially the same as that of
Lemma 3.1.

Let D be any deterministic algorithm making at most M :=
�αεTk
 queries and attempting to compute V k,A on inputs drawn
as (x1, . . . ,xk) ∼ μ⊗k. For 0 ≤ t ≤ M , and for j ∈ [k], let uj

t be
defined as in the previous proofs. Let X = {Xj,t}j∈[k],0≤t≤M , where

Xj,t := WV (uj
t) if |uj

t | ≤ T , otherwise Xj,t := 0.
Unlike in Theorem 6.3, we have no need to add any additional

steps to our random sequences. For 0 ≤ t < M , we let Ut :=
(u1

t , . . . , u
k
t ) just as before. Setting N := M and reasoning as in

Theorem 6.3, we verify that the assumptions of Lemma 6.1 are
satisfied, with pj = Xj,0 ≤ 1− ε (Lemma 8.2, part 1).

Applying Lemma 6.1 to the monotone set Nαεk(A), we conclude
that

Pr[{j ∈ [k] : Xj,M = 1} ∈ Nαεk(A)] ≤ Pr[D ∈ Nαεk(A)],(8.3)

where each j ∈ [k] is independently included in D with probability
1− ε.

Now condition on any execution of D, and consider any j ∈ [k]
such that Xj,M < 1. By our definitions, at least one of two pos-
sibilities holds: Either |uj

M | > T (there are fewer than αεk such
indices j) or uj

M does not extend any v ∈ V . Thus, if D solves the
search problem V k,A on the present execution, we have {j ∈ [k] :
Xj,M = 1} ∈ Nαεk(A). Combining this with Eq. (8.3) yields the
Theorem. �
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From Theorem 8.1, we will directly obtain a standard thresh-
old DPT and an ordinary DPT for search problems. First, given a
search problem V ⊆ {0, 1, ∗}n and a real number s ∈ [0, k], define
C[≥ s] := {A ⊆ [k] : |A| ≥ s}.

Theorem 8.4. Suppose SucT,μ(V ) ≤ 1 − ε. Then for any α ∈
(0, 1] and any η ∈ (0, 1],

SucαεTk,μ⊗k(V k,C[≥ηk]) ≤ Pr
Y∼Bk,1−ε

[Y > (η − αε)k] .

Proof. Apply Theorem 8.1 with C := C[≥ ηk], and note that
D ∈ Nαεk (C[≥ ηk]) iff |D| > ηk − αεk, which is equivalent to
[D1 + · · ·+ Dk > (η − αε)k], where Dj := 1[j∈D]. These indicator
variables are independent with expectation 1− ε. �

Theorem 8.5. Suppose SucT,μ(V ) ≤ 1 − ε. Then for any α ∈
(0, 1],

SucαεTk,μ⊗k(V ⊗k) ≤ Pr
Y∼Bk,1−ε

[Y > (1− αε)k] .

Proof. Note that V ⊗k = V k,C[≥k], so the result follows from
Theorem 8.4 with η := 1. �

8.2. Errorless heuristics. An errorless heuristic for a (not nec-
essarily Boolean) function f is a randomized query algorithm R
outputting values in {0, 1, ?} such that for all x, R(x) ∈ {f(x), ?}
with probability 1. We say that an errorless heuristic R ε-solves f
with zero error with respect to input distribution μ if Prx∼μ[R(x) =
f(x)] ≥ 1−ε. Let Suc0-err

T,μ (f) := 1−ε, where ε is the minimal value
such that some T -query errorless heuristic ε-solves f with zero error
with respect to μ. Note that Suc0-err

T,μ (f) is exactly SucT,μ(Vf ), where
the search problem Vf is defined as

Vf := {u ∈ {0, 1, ∗}n : u forces the value of f}.

Also, note that Vf⊗k = V ⊗k
f . Thus, the following result is immedi-

ately implied by Theorem 8.5:
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Theorem 8.6. Suppose Suc0-err
T,μ (f) ≤ 1− ε. Then for α ∈ (0, 1],

Suc0-err
αεTk,μ⊗k(f

⊗k) ≤ Pr
Y∼Bk,1−ε

[Y > (1− αε)k] .

Let us revisit the XOR problem in the current setting. It is
easy to see that an errorless heuristic to compute the k-fold XOR
f⊕k, on inputs drawn from a product distribution, cannot produce
any output other than “ ? ” unless its queries allow it to determine
the value of f⊗k. Thus, Theorem 8.6 also implies an XOR lemma
with the same success bound for errorless heuristics.

Next, we prove a worst-case analogue of Theorem 8.6. Define
R0(f), the zero-error randomized query complexity of f , as the
minimum T for which some algorithm R outputs f(x) with prob-
ability 1 for each x, and for which the expected number of queries
made by R to any input is at most T . The following is another
variant of Yao’s minimax principle (Yao 1977); we include a proof
for completeness.

Lemma 8.7. Let η ∈ (0, 1]. There exists a distribution μη over
inputs to f , such that Suc0-err

ηR0(f),μη
(f) ≤ η.

Proof. Consider the following 2-player game: Player 1 chooses
a (possibly randomized) errorless heuristic R for f which makes
at most ηR0(f) queries, and player 2 chooses (simultaneously) an
input x to f . Player 1 wins if R(x) = f(x). We claim that there
exists a randomized strategy for player 2, that is, a distribution
μ =: μη over inputs to x, that beats any strategy of player 1 with
probability at least 1− η. This will prove the Lemma.

To prove the claim, suppose for contradiction’s sake that no
such strategy for player 2 exists. Then, by the minimax theorem,
there exists a randomized strategy for player 1 which wins with
probability greater than η against all choices of x. This strategy
is itself a randomized algorithm making at most ηR0(f) queries;
let us call this algorithm R. Consider the algorithm R′ for f that
on input x, repeatedly applies R to x until R produces an output,
which R′ then outputs. We have R′(x) = f(x) on every input.
Also, the expected number of queries of R′ on any input is strictly
less than
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∑

m≥1

(1− η)m−1η (m · ηR0(f)) =

(
∑

m≥1

(1− η)m−1m

)

· η2R0(f)

=
1

η2
· η2R0(f)

= R0(f),

contradicting the definition of R0(f). �

Theorem 8.8. For any (not necessarily Boolean) function f ,
and α ∈ (0, 1/2], any errorless heuristic for f⊗k using at most
α2R0(f)k/4 queries has worst-case success probability less than
(7α ln(1/α))k.

Proof. Set γ := α/2. Let μγ be the distribution given by
Lemma 8.7, so that Suc0-err

γR0(f),μγ
(f) ≤ γ. By Theorem 8.6 applied

to α, with T := γR0(f) and ε := 1− γ,

Suc0-err
α(1−γ)γR0(f)k,μ⊗k

δ
(f⊗k) ≤ Pr

Y∼Bk,γ

[Y > (1− α(1− γ))k] .

We have α2R0(f)k/4 ≤ α(1− γ)γR0(f)k (using γ ≤ 1/2), so that

Suc0-err
α2R0(f)k/4,μ⊗k

γ
(f⊗k) ≤ Pr

Y∼Bk,γ

[Y > (1− α(1− γ))k]

< [1− (1− γ) + 6α ln(1/α)(1− γ))]k

(applying Lemma 2.2, with β := α ≤ 1/2 and δ := (1− γ))

< (α/2 + 6α ln(1/α))k

< (7α ln(1/α))k . �

9. A direct product theorem for decision tree
size

We measure the size of a decision tree D, denoted size(D), as the
number of leaf (output) vertices. Note that this is at least 1/2 the
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total number of vertices. Define Sucsize
T,μ(f) as the maximum success

probability of any size-T decision tree attempting to compute f on
an input drawn from distribution μ. We have the following DPT
for size-bounded query algorithms:

Theorem 9.1. Let f be a Boolean function. Suppose Sucsize
T,μ(f) ≤

1− ε. Then for 0 < α ≤ 1, Sucsize
T αεk,μ⊗k(f⊗k) ≤ 2αεk(1− ε)k.

Note how the size bound grows exponentially, rather than lin-
early, in k in the above statement. It is natural to expect such a
statement, since the k-fold application of a size-T decision tree is
described by a size-T k decision tree. Also note that, by convexity,
Theorem 9.1 also bounds the success probability of any “random-
ized size-Tαεk algorithm”R, that is, of any probability distribution
over size-Tαεk decision trees.

Proof. The proof follows that of Theorem 1.1, except that we
need a new way to quantify the resources used by each of the k
inputs. First, we develop some definitions pertaining to a single
input to f . Given u ∈ {0, 1, ∗}n and a real number Z ∈ [1, T ], let

Wsize(u, Z) := Sucsize
Z,μ(u)(f).

Lemma 9.2. 1. Wsize(∗n, T ) ≤ 1− ε.

2. Take any real numbers S(0), S(1) ≥ 1 and let S := S(0) +S(1).
Then for any u ∈ {0, 1, ∗}n and any i ∈ [n],

Ey∼μ(u) [Wsize(u[xi ← yi], S
(yi))] ≤ Wsize(u, S).

The proof is very similar to that of Lemma 3.1 and is omitted.
Now let D be any deterministic algorithm of size at most T αεk

attempting to compute f⊗k on input strings x = (x1, . . . ,xk) ∼
μ⊗k. Let M := �Tαεk
; D always makes at most M queries.

As in previous proofs, for j ∈ [k] and 0 ≤ t ≤ M , let uj
t ∈

{0, 1, ∗}n describe the outcomes of all queries made to xj after D
has taken t steps (here a “step” consists of a query, unless D has
halted, in which case a step has no effect).
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Let St be defined as the size (number of leaf vertices) of the
subtree of D reached after t steps have been taken. Thus, we have
S0 ≤ Tαεk, and St = 1 if D has halted after at most t queries.
For each j ∈ [k], we define a sequence Zj,0, . . . , Zj,M , as follows.
Let Zj,0 := T . For 0 ≤ t < M , if D has halted after t steps, let
Zj,t+1 := Zj,t. Otherwise, if the (t + 1)st query made by D is not
to xj, we again let Zj,t+1 := Zj,t. If the (t + 1)st query is to xj, let

Zj,t+1 :=
St+1

St

· Zj,t.

Let Xj,t := Wsize(u
t
j, Zj,t) if Zj,t ≥ 1; otherwise let Xj,t :=

1/2. Let Pt :=
∏

j∈[k] Xj,t. Arguing as in Theorem 1.1, for each

0 ≤ t < M, E[Pt+1] ≤ E[Pt]. It follows that E[PM ] ≤ E[P0] =
Wsize(∗n, T )k ≤ (1− ε)k.

Condition on any complete execution of D, as described by
u1

M , . . . , uk
M . Notice that if Zj,M ≥ 1, then (by the definitions)

Xj,M is an upper bound on the conditional success probability of
guessing f(xj) correctly. Also, Xj,t ≥ 1/2 for all j, t, and all inputs
are independent after our conditioning. Thus, the conditional suc-
cess probability of computing f⊗k(x) is at most 2|B| · PM , where
we define the (random) set B := {j ∈ [k] : Zj,M < 1}.

Observe that SM = 1, since the algorithm halts after at most
M steps. Then,

1 = SM =

(
S1

S0

)
· · · · ·

(
SM

SM−1

)
· S0

≤
(∏

j∈[k] Zj,M

T k

)

· Tαεk

≤ T−|B| · Tαεk.

Thus, |B| ≤ αεk always. So the overall success probability is at
most E[2|B|PM ] ≤ 2αεk

E[PM ] ≤ (2αε(1− ε))k. �

One can also prove variants of our XOR lemma and other results
in which we impose bounds on decision tree size rather than num-
ber of queries. We omit the details.
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10. DPTs for dynamic interaction

So far, all of the computational tasks we have studied have involved
algorithms querying a collection of fixed input strings. However,
in many situations in computer science, it is natural to consider
more general problems of interaction with dynamic, stateful enti-
ties. An algorithm can still “query” these entities, but these actions
may influence the outcomes of future queries. In this section, we
describe how our proof methods can yield DPTs for these more
general problems. The methods involved are essentially the same
as in previous sections, and the theorem we give is just one exam-
ple of the kind of DPT we can prove for dynamic interaction, so
we will only sketch the proofs here, indicating the novel elements.

We will propose a self-contained model of dynamic interaction.
We make no claims of conceptual novelty for this model, however.
Dynamic interaction has been an important concept for cryptog-
raphy; in this context, Maurer (2002) proposed a model of random
systems that generalizes our model. All of our work in this section
could in principle be carried out in the random systems framework;
we choose to use a different model that is somewhat simpler and
adequate to our needs and that preserves a clear resemblance to
our work in previous sections.

Much of the work in the random systems framework studies
various kinds of composition of random systems; this work aims
to understand how cryptographic primitives can be combined into
more complex protocols. In this vein, Maurer et al. (2007) proved
a result (see their Lemma 6) that can be informally described as
follows: If an agent is playing games with two or more indepen-
dent, noncommunicating entities, then the maximum joint-success
probability is achieved by following independent strategies on the
different games. This result establishes an “ideal” direct product
property for interaction tasks with k independent entities, in which
the number of queries to each entity is fixed in advance. By con-
trast, our focus will be on proving DPTs for query algorithms that
can adaptively reallocate queries between the k entities.

Now we formally define the type of entity with which our query
algorithms interact. Define an interactive automaton (IA) as a
5-tuple
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M = (seeds, states,queries, R, Δ), where:

◦ seeds, states,queries are each finite sets, and states contains
a distinguished start-state s0;

◦ R : seeds× states×queries→ {0, 1} is a response mapping;

◦ Δ : seeds× states×queries → states is a transition map-
ping.

These automata are deterministic, but we can incorporate ran-
domness by providing random bits as part of seeds.

We consider the scenario in whichM is initialized to some seed
z ∈ seeds according to a distribution μ, along with the start-state
s0. The automaton retains the value z throughout an interaction
with a query algorithm R (which does not know the value z), but
changes its state-value. If R selects the query q ∈ Q whileM has
internal state (z, s) ∈ seeds× states, then M returns the value
R(z, s, q) to R and transitions to the state (z, Δ(z, s, q)).7

There are several kinds of tasks one can associate with an IA.
One such task for the query algorithm R is to try to output a
value b ∈ B that satisfies some predicate P (z, b), where z is the
seed to M and P ⊆ seeds×B is a total relation over seeds and
a finite set B. This, of course, is a generalization of the relation
problems we studied in Section 6, and it is natural to study the
k-fold setting, in which R interacts with k IAs, querying one of
them at each step. We assume that each IA only updates its state
or sends a response to R when it is queried. In particular, the IAs
do not communicate with each other.

We can transform the IA interaction scenario into an equiva-
lent one, which highlights the similarity with the standard query
model and makes it easy to apply our previous work to obtain
a DPT. For simplicity assume | seeds | = 2m. Given an IA M
and an integer N > 0, for each z ∈ seeds, we define a string

7We can now sketch the modeling differences between our work and Maurer
(2002). Maurer’s “random systems” are modeled as inherently randomized;
they may or may not be finite-state machines; and they are specified “behav-
iorally” by their conditional distributions over query responses, conditioned
on all possible conversation transcripts.
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ξ(z) ∈ {0, 1}m+(|queries |+1)N
. There are two types of entries in

this string. First there are m “ID” entries, which simply con-
tain a binary encoding of z. Next, there are (|queries | + 1)N

“response” entries, with each such entry indexed by an N -tuple
q = (q1, . . . , qN) ∈ (queries∪ {∗})N . We are only interested
in response-entries of form q = (q1, . . . , qr, ∗, ∗, . . . , ∗), where
q1, . . . , qr ∈ queries. For such an entry, we define ξ(z)q ∈ {0, 1} as
the result of the following experiment: initializeM to state (z, s0),
and perform the interaction in which a query algorithm asks que-
ries q1, . . . , qr in that order. Let ξ(z)q be the final, rth response
made byM.

Define a total relation Pξ ⊆ {0, 1}m+(|queries |+1)N ×B by

Pξ := {(ξ(z), b) : z ∈ seeds∧ P (z, b)}.

Also, given a distribution μ over seeds, define μξ ∼ ξ(z), where
z ∼ μ. In this way, we map an IA interaction task onto a relation
problem of the type studied in Section 6, with a corresponding map
from initialization distributions to input distributions.

A standard query algorithm R (as studied in all previous sec-
tions) can faithfully simulate an interaction with M initialized to
an unknown z ∈ seeds, if given query access to ξ(z). This works
in the natural way: If its simulated queries up to the rth step
are q1, . . . , qr, then for its rth query to ξ(z), R looks at the entry
(q1, . . . , qr, ∗, ∗, . . . , ∗) to learn M’s rth response. Call an algo-
rithm “interaction-faithful” if its sequence of queries to any input
string always obeys this format.

Of course, not all algorithms are interaction-faithful. For exam-
ple, an unfaithful algorithm could simply look at the ID-entries to
learn z. Thus, the relation problem (Pξ, μξ) can be much easier
than the IA interaction problem defined by (M, P, μ). However, if
we restrict attention to the class of interaction-faithful algorithms
R, then it is not hard to see that there is an exact correspon-
dence between the “difficulty” of the two problems, at least for
interactions lasting at most N steps. That is, for T ≤ N , there
is a T -query IA interaction algorithm for (M, P, μ) with success
probability p, if and only if there is a T -query interaction-faithful
standard algorithm for (Pξ, μξ) with success probability p.
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The good news is that we can prove a DPT for interaction-
faithful query algorithms in almost exactly the same way as for
unrestricted query algorithms. In fact, it is most natural to prove
a DPT for a more general notion of faithfulness, which we define
next. Say we are given n > 0 and a map τ : {0, 1, ∗}n → {0, 1}n,
called a query-restriction map. Say that a (standard) query algo-
rithm R on n input bits is τ -faithful if for every execution of R
on any input, whenever the input bits seen by R seen so far are
given by u ∈ {0, 1, ∗}n, then R either halts or chooses a next input
bit xi to query whose index satisfies τ(u)i = 1. In other words,
a restriction map τ restricts the possible next queries that can be
made by a τ -faithful algorithm, in a way that depends only on the
description u of the bits seen so far. Note that interaction-faith-
fulness as defined earlier is indeed equivalent to τ -faithfulness for
an appropriately defined τ = τint.

For k > 1, define the k-fold product of restriction map
τ , denoted τ⊗k : {0, 1}kn → {0, 1}kn, by τ⊗k(u1, . . . , uk) :=
(τ(u1), . . . , τ(uk)). The map τ⊗k can be interpreted as a restric-
tion map for algorithms making queries to a collection x1, . . . , xk

of n-bit strings. Note that R is τ⊗k-faithful exactly if for each
j ∈ [k], R’s queries to the jth input (considered alone) are
always τ -faithful. Thus, the k-fold IA interaction problem defined
by (M, P, μ) has “difficulty” equivalent to the k-fold relation prob-
lem defined by (Pξ, μξ) for τ⊗k

int -faithful algorithms, provided N is
chosen large enough in the definition of ξ(·) (relative to the query
bounds we are interested in).

In light of these observations, a DPT for IA interaction algo-
rithms follows by straightforward translation from the following
DPT (generalizing Theorem 6.3) for standard query algorithms
obeying a restriction map:

Theorem 10.1. Let P ⊆ {0, 1}n×B be a total relation such that
any T -query, τ -faithful algorithm solves P with probability at most
1− ε under input distribution μ.

For any algorithm R making queries to inputs x = (x1, . . . ,xk)
∼ μ⊗k and producing output in Bk, define the random set S[x] as
in Theorem 6.3.
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Suppose R is τ⊗k-faithful and αεTk-query-bounded for some
α ∈ (0, 1], and A is any monotone subset of P([k]). Then, conclu-
sions 1 and 2 in Theorem 6.3 also hold for R.

Proof. (Sketch) The proof follows that of Theorem 6.3; we only
describe the differences. For u ∈ {0, 1, ∗}n, and for a deterministic
algorithm D on n input bits, let

WP (u,D) := Pr
y∼μ(u)

[(y,D(y)) ∈ P ].

Let us say that D is u-inducing if, on any input x ∈ {0, 1}n which
extends8 u, the outcome of D’s first |u| queries to x are described
by u.

If |u| ≤ T , define WP,τ (u) := maxDWP (u,D), where the max
ranges over all deterministic, u-inducing, τ -faithful algorithms D
making at most T queries. We have:

Lemma 10.2. 1. WP,τ (∗n) ≤ 1− ε.

2. For any u ∈ {0, 1, ∗}n with |u| < T , and any i ∈ [n] satisfying
τ(u)i = 1, we have

Ey∼μ(u) [WP,τ (u[xi ← yi])] ≤ WP,τ (u).

The proof of Lemma 10.2 follows that of Lemma 3.1. The rest
of the proof of Theorem 10.1 follows that of Theorem 6.3, with
WP,τ (u) taking the place of WP (u). �

One can also prove a DPT for search problems for τ -faithful
query algorithms, along the lines of Theorem 8.1. When applied
to interactive automata via the translation described earlier, search
problems correspond to tasks whose success conditions are defined
in terms of the interaction itself (rather than the hidden seed of
the IA, or any output produced by the query algorithm).

11. Questions for future work

1. Can the bounds in our threshold DPTs and XOR lemma be
improved? For example, in Theorem 1.3, can one improve

the success probability bound to 1
2

(
1 + [1− 2ε + O (αε)]k

)
?

8(As defined in Section 8.1).
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2. It is still unknown what worst-case success probability in
computing f⊗k can be achieved in general, when the number
of queries allowed is αR2(f)k for α � 1. The corre-
sponding question in the quantum query model was set-
tled by Buhrman et al. (2007). As mentioned earlier,
O(R2(f)k log k) queries always suffice to compute f⊗k with
high success probability; the work of Feige et al. (1994) im-
plies that we cannot do better than this by using a bounded-
error randomized algorithm for f in a black-box fashion.

3. Can ideas from our work be helpful in obtaining new results
in other computational models? For example, Lee & Roland
(2011) prove a threshold DPT for quantum query algorithms
computing Boolean functions, where the query bound scales
as Ω(Q2(f)k). Can we extend this to a generalized threshold
DPT, analogous to our Theorem 6.3?
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