
comput. complex. 20 (2011), 21 – 50

c© Springer Basel AG 2011

1016-3328/11/010021-30

published online April 19, 2011

DOI 10.1007/s00037-011-0005-5 computational complexity

GENERIC COMPLEXITY

OF FINITELY PRESENTED

MONOIDS AND SEMIGROUPS

Mark Kambites

Abstract. We study the generic properties of finitely presented monoids
and semigroups, and the generic-case complexity of decision problems for
them. We show that for a finite alphabet A of size at least 2 and positive
integers k and m, the generic A-generated k-relation monoid and semi-
group (defined using any of several stratifications) satisfies the small
overlap condition C(m). It follows that the generic finitely presented
monoid has a number of interesting semigroup-theoretic properties and,
by a recent result of the author, admits a linear time solution to its word
problem and a regular language of unique normal forms for its elements.
Moreover, the uniform word problem for finitely presented monoids is
generically solvable in polynomial time.

Keywords. Generic-case complexity, monoids, semigroups,
finite presentations.

Subject classification. 68Q25, 20M05.

1. Introduction

Traditional complexity theory studies the time taken to solve a
problem or execute an algorithm in the “worst case”, but for many
problems the “worst case” arises very infrequently. Probably the
best known example is Dantzig’s simplex method for linear pro-
gramming (Dantzig 1951), which has exponential worst-case time
complexity but in practice almost invariably terminates in linear
time (see for example Klee & Minty 1972). Now over 60 years old, it
remains the preferred choice for practical applications, even though

22 Kambites cc 20 (2011)

there are now alternative algorithms with worst-case polynomial
time complexity. Phenomena such as this motivated the develop-
ment of average-case complexity (Gurevich 1991), which measures,
roughly speaking, the mean difficulty of a problem across instances,
with respect to some measure. Average-case complexity has proved
extremely helpful for obtaining a theoretic understanding of the
practical difficulty of problems, especially within the class NP of
problems admitting non-deterministic worst-case polynomial time
solution.

Average-case analysis can also be applied outside NP, but here
it is less clear whether it serves the intended purpose. For most
applications, what matters is not so much the mean difficulty of
a problem of across instances, but rather the typical difficulty of
instances encountered in practice. As is well known to statisticians,
the mean value of a data set is not necessarily a guide to the typi-
cal values, since the former can be heavily skewed in one direction
by a very small number of very extreme outliers. Likewise, the
average-case complexity of a problem can be skewed upwards by a
very small proportion of very difficult instances. Within NP, one at
least has an exponential upper bound on worst cases; this imposes
a limit on the “extremeness” of outlying instances and hence their
ability to distort the mean. Outside NP, however, the distortion
can be much more dramatic, with a tiny minority of extremely dif-
ficult instances potentially inflating the average-case complexity
well beyond the complexity of the typical instance encountered in
practice. This culminates in the extreme case of recursively unsolv-
able problems, whose average-case complexity is not defined at all,
even though algorithms may exist to solve such problems efficiently
for an overwhelming majority of cases (Gilman et al. 2007).

The aim of generic-case complexity is directly to analyse the
complexity of typical problem instances, as distinct from the aver-
age difficulty of problem instances. Rather than introducing a mea-
sure on the instance space, the key idea is the stratification of an
instance space (or indeed any other set) into an infinite sequence of
finite subsets. A subset X of the space is called generic if the pro-
portion of elements in each finite set which belong to X approaches
1 as one moves along the sequence. The generic complexity is (very
roughly speaking) the minimum complexity attainable on a generic

cc 20 (2011) Generic Finitely Presented Monoids 23

set. Compared with the average-case approach, the key feature is
that no single instance (indeed no finite set of instances) makes any
contribution at all to the generic properties of the space. Generic-
case complexity was introduced by group theorists (Kapovich et al.
2003), investigating the large stock of hard algorithmic problems
which occur in the study of finitely generated infinite groups. It
has proved especially useful in view of recent interest in the use of
non-commutative algebraic structures as a basis for cryptographic
systems (see for example, Shpilrain & Zapata 2006), permitting for
example a theoretical understanding of the success of the length-
based attack (Ruinskiy et al. 2007) on the Shpilrain–Ushakov key
establishment protocol based on the Thompson group (Shpilrain
& Ushakov 2005).

The main aim of this paper is to study generic properties of
finitely presented monoids and semigroups and hence to under-
stand the generic-case complexity of uniform decision problems for
monoids and semigroups. Our main results show that, with respect
to a number of very natural stratifications, the generic1 finite
monoid presentation (over a given alphabet and with a given num-
ber of generators) satisfies small overlap conditions in the sense
introduced by Remmers (1971, 1980) (see also Higgins 1992). Small
overlap conditions are natural semigroup-theoretic analogues of
the small cancellation conditions extensively used by combinato-
rial group theorists (see Lyndon & Schupp 1977), and so, our main
result can be viewed as loosely analogous (although our objec-
tives and hence our formalism are rather different) to the well-
known fact, first asserted by Gromov (1987) and proved in detail
by Ol′shanskĭı (1992), that the generic finitely presented group is
word hyperbolic.

These results immediately tell us a great deal about the
algebraic structure of the generic finitely presented monoid. For
example, we learn that it is J -trivial (that is, every element

1For brevity, we use statements such as “the generic X has property Y ”
as shorthand for “there is a generic subset of the set of X’s, every member
of which has property Y ”. Of course the generic X truly “exists” only in the
case that a single isomorphism type forms a generic subset of X’s; in this case
the isomorphism type has all the ascribed properties, so the terminology is
unambiguous!

24 Kambites cc 20 (2011)

generates a distinct principal ideal) and hence torsion-free with
no non-trivial subgroups. Even more important, by recent results
of the author (Kambites 2009a), the uniform word problem for
such presentations is solvable in (worst-case RAM) time linear in
the word lengths and quadratic in the presentation size. Since it
can be checked in (worst-case RAM) polynomial time whether a
presentation satisfies a small overlap condition, it follows that the
uniform word problem for finitely presented monoids is generically
solvable in polynomial time (in the RAM model, linear in the word
lengths and quadratic in the presentation size). All of these results
apply equally to semigroups without identity elements.

As already remarked, generic-case complexity has been
developed by combinatorial and geometric group theorists, and
the literature is largely concerned with applications to advanced
group theory; as a result, much of it is not readily accessible to
non-algebraists. An additional objective of this article is to pro-
vide a relatively gentle exposition of generic sets, generic proper-
ties and generic-case complexity, in a form fully intelligible to the
reader without a specialist algebraic background. Monoid presen-
tations are combinatorially simpler objects than group presenta-
tions; the relatively straightforward combinatorial nature of many
of our proofs should allow them to double as detailed worked exam-
ples to give the reader a feel for generic-case complexity.

In addition to this introduction, this article comprises four sec-
tions. Section 2 provides a gentle introduction to generic sets
and generic-case complexity. In Section 3, we prove our main
results about generic finitely presented monoids and semigroups
with respect to certain stratifications. In Section 4, we prove
some technical results regarding the relationships between differ-
ent stratifications; these may be of some independent interest and
are applied to show that our results about generic finitely pre-
sented monoids apply regardless of which of several natural strat-
ifications are chosen. Finally, Section 5 explores the consequences
of our characterisations of generic finitely presented monoids and
semigroups, including the fact that the uniform word problems for
finitely presented monoids and semigroups are generically solvable
in time quadratic in the presentation lengths and linear in the word
lengths.

cc 20 (2011) Generic Finitely Presented Monoids 25

2. Generic Properties and Generic-case
Complexity

In this section, we provide a brief introduction to generic sets and
generic complexity. A more comprehensive treatment can be found
in Gilman et al. (2007). Our aim is to make the paper accessible
to as wide an audience as possible, and so, we endeavour to keep
mathematical prerequisites to a minimum. However, we cannot
avoid assuming some elementary familiarity with the theory of sets
and sequences.

Let S be a countably infinite set. A stratification of S is an
infinite sequence S1, S2, . . . , Sn, . . . of finite, non-empty subsets of
S whose union is S. The computationally orientated reader may
like to bear in mind the example where S is the instance space for
some problem, and Sn is the set of instances of size n for some suit-
able notion of size; however, we caution that in general the subsets
Sn need not be disjoint. We call the stratification spherical if the
sets Sn are pairwise disjoint (Si ∩ Sj = ∅ for all i �= j) and at the
other extreme ascending if they form an ascending sequence under
containment (Si ⊆ Sj for all i < j).

Now let X be a subset of S. We say that X is generic (with
respect to the given stratification) if

lim
n→∞

|X ∩ Sn|
|Sn|(2.1)

is defined and equal to 1. The subset X is called negligible if S\X
is generic, or equivalently, if above limit is defined and equal to 0.
Intuitively, X is generic if the probability that an instance of size
n, chosen uniformly at random, lies in X can be made arbitrarily
high by choosing large enough n.

Note that, for any given set X, the limit in (2.1) may not be
defined, and indeed for almost any stratification, it is easy to con-
struct a set X for which it is not. The function

X �→ lim
n→∞

|X ∩ Sn|
|Sn|

is a finitely additive probability measure defined on those subsets of
X for which the limit converges, but it is typically not a measure in

26 Kambites cc 20 (2011)

the usual sense, since it lacks countable additivity. This fact is no
accident: a countably additive probability measure on a countable
set clearly cannot assign measure 0 to all the singletons, but as we
noted in the introduction, a key feature of the generic approach is
that single instances are regarded as negligible. Nonetheless, the
intuition that the generic sets are those of “full measure” can be
helpful, and they satisfy many of the elementary properties of such
sets. In particular, the reader can easily verify that if X is generic
and X ⊆ Y then Y is generic, while if X and Y are both generic
then X ∩Y is generic. Obvious dual statements hold for negligible
sets.

Notice that, in our initial definition of generic sets, we have
placed no requirements on the rate of convergence of the limit in
(2.1). Genericity is an asymptotic property, and if convergence
is very slow, then the asymptotic behaviour may not be reflected
in “practical sized” instances. We call a set X superpolynomially
generic/negligible if the appropriate limit converges faster than
1/np for every p ∈ N, and exponentially generic/negligible if it con-
verges faster than pn for some p ∈ (0, 1]. (In the literature, some
authors use the term “strongly generic” for what we have called
exponentially generic sets, while some use “strongly generic” to
mean superpolynomially generic and “supergeneric” to mean expo-
nentially generic. To avoid confusion, we shall avoid these terms
in favour of less concise but more descriptive ones.)

We now turn our attention to the application of generic sets in
computational complexity. This requires us to consider explicitly
not just abstract algorithmic problems, but also stratifications of
instance spaces. We define a stratified problem to be an algorith-
mic decision problem equipped with a stratification on its instance
space. (We shall restrict our attention here to decision problems,
but analogous definitions can be made for more general computa-
tional problems.)

Of course traditional complexity theory is implicitly concerned
with stratified problems: to study the asymptotic complexity of a
problem, one requires a notion of the size of each member of the
instance space S. As we have already remarked, this automati-
cally induces a stratification given by setting Sn to be the set of
all instances of size n. We call this the input size stratification for

cc 20 (2011) Generic Finitely Presented Monoids 27

the problem. However, the dependence on stratification is much
tighter in generic complexity theory than it is in traditional com-
plexity theory—many authors discussing traditional complexity of
algorithmic problems prefer to avoid detailed discussion of data
encoding and hence of exact instance sizes; this is entirely rea-
sonable since traditional complexity classes are largely insensitive
to minor encoding issues. But for generic-case complexity, these
issues can make a very big difference.

Note also that, while the input size stratification is a natural,
canonical one to associate to any algorithmic problem, it is only
one of many possible stratifications and may not be the appro-
priate one for any given application. The ideal is rather to find
a stratification that reflects the empirical distribution of problem
instances, that is, the frequency with which they arise in practice
in a particular application, and there is often no reason to suppose
that this is strongly correlated with size.

Now let C be any class of decision problems (typically a com-
plexity class of some kind). We say that a stratified problem P is
generically in C if there exists a generic subset Y of the instance
space such that

(i) the membership problem for Y lies in C; and

(ii) the problem P restricted to Y lies in C.

Intuitively, a stratified decision problem is generically in C if the
decision problem admits a partial algorithm (that is, an algorithm
which outputs “yes”, “no” or “don’t know”, and which in the for-
mer two cases is always correct) in C, such that the probability of
a “don’t know” is negligible. We write GenC for the class of all
stratified problems generically in C.

Obvious examples are the class GenP of generically polyno-
mial-time stratified problems and GenNP of generically non-deter-
ministic polynomial-time stratified problems. Another interesting
example is the class GenBPP, which consists of stratified prob-
lems admitting a randomised polynomial-time algorithm with
probability of error uniformly bounded away from 1/2 for every
instance in some generic subset whose membership problem also
lies in BPP.

28 Kambites cc 20 (2011)

3. Generic Monoid Presentations

In this section, we study the generic properties of finite monoid
presentations. We begin with some basic definitions.

Recall that a semigroup is a set S equipped with an associa-
tive binary operation (that is, a rule for multiplication satisfying
(xy)z = x(yz) for all elements x, y, z ∈ S). A monoid is a semi-
group containing an identity element (that is, an element 1 ∈ S
satisfying 1x = x1 = x for all elements x ∈ S).

Let A be a finite alphabet (set of symbols). A word over A is
a finite sequence of zero or more elements from A. The set of all
words over A is denoted A∗; under the operation of concatenation
it forms a monoid, called the free monoid on A. The length of a
word w ∈ A∗ is denoted |w|. The unique empty word of length 0 is
denoted ε; it forms the identity element of the monoid A∗. The set
A+\{ε} of non-empty words forms a subsemigroup of A∗, called
the free semigroup on A.

A finite monoid presentation 〈A | R〉 consists of a finite alpha-
bet A, together with a finite sequence R ⊆ A∗×A∗ of ordered pairs
of words.2 We say that u, v ∈ A∗ are one-step equivalent if u = axb
and v = ayb for some possibly empty words a, b ∈ A∗ and relation
(x, y) ∈ R or (y, x) ∈ R. We say that u and v are equivalent and
write u ≡R v or just u ≡ v, if there is a finite sequence of words
beginning with u and ending with v, each term of which but the
last is one-step equivalent to its successor. Equivalence is clearly
an equivalence relation; in fact, it is the least equivalence relation
containing R and compatible with the multiplication in A∗. The
equivalence classes form a monoid with multiplication well defined
by [u]≡[v]≡ = [uv]≡; this is called the monoid presented by the
presentation.

The word problem for a (fixed) monoid presentation 〈A | R〉 is
the algorithmic problem of, given as input two words u, v ∈ A∗,
deciding whether u ≡R v. The uniform word problem for finitely
presented monoids is the algorithmic problem of, given as input a
monoid presentation 〈A | R〉 and two words u, v ∈ A∗, deciding

2The reader may think it more natural to consider a set of unordered pairs,
but the definition we use simplifies the combinatorics in our analysis, and
Theorem 4.10 below will show that it makes no difference to the end results.

cc 20 (2011) Generic Finitely Presented Monoids 29

whether u ≡R v. It is well known that there exist finite monoid pre-
sentations for which the word problem is undecidable and hence
that the uniform word problem for finitely presented monoids is
undecidable (Markov 1947; Post 1947). More generally, if C is
some class of finite monoid presentations, then the uniform word
problem for C monoids is the algorithmic problem of, given as
input a monoid presentation 〈A | R〉 in C and two words u, v ∈ A∗,
deciding whether u ≡R v.

Now suppose we have a fixed monoid presentation 〈A | R〉.
A relation word is a word which appears as one side of a relation
in R. A piece is a word which appears more than once as a factor
in the relations, either as a factor of two different relation words or
as a factor of the same relation word in two different (but possibly
overlapping) places. Let m ∈ N be a positive integer. The pre-
sentation is said to satisfy the small overlap condition C(m) if no
relation word can be written as a product of strictly fewer than m
pieces. Thus, C(1) says that no relation word is empty; C(2) says
that no relation word is a factor of another. Small overlap condi-
tions were introduced by Remmers (1971); an accessible introduc-
tion is given in the book of Higgins (1992), while more recent devel-
opments can be found in papers of the author (Kambites 2009a,b).

Definitions corresponding to all of those above can also be made
for semigroups (without necessarily an identity element), by taking
A+ in place of A∗ (in all places except the definition of one-step
equivalence, where a and b must still be allowed to be empty).

Now fix an alphabet A. To study generic properties of k-rela-
tion presentations over A, we need a stratification on the (count-
able) set of all such. There are two obvious ways to define the
size of a presentation and hence two natural stratifications of the
A-generated k-relation presentations. First, one can take the size
of the presentation to be the sum length of the relation words;
this gives rise to the sum length stratification of presentations.
Alternatively, one can define the size to be the length of the lon-
gest relation word; this leads to the maximum length stratification.
Which choice is most appropriate depends on the application. For
example, the sum length of a presentation is a good approxima-
tion to the space required to encode the presentation in the obvious
way and hence for computational applications seems quite natural.

30 Kambites cc 20 (2011)

Intuitively, the sum length stratification lends greater weight to
uneven distributions of the relation word lengths within a presen-
tation; in particular, it results in a greater frequency of relatively
short words, which makes it seem less likely that small overlap con-
ditions will hold. Nevertheless, it transpires that our main results
hold for both stratifications, which may be regarded as some evi-
dence of their “robustness”.

We emphasise that we are attempting here to stratify only the
set of A-generated, k-relation semigroup presentations, where the
alphabet A and set of relations k are fixed. There are, of course,
also natural stratifications across all A-generated semigroup pre-
sentations, allowing the number of relations to vary. These typ-
ically lead to a high frequency of “short” relation words, which
means that small overlap-type conditions do not hold generically.
However, it seems likely that, for at least some natural stratifica-
tions of this type, the word problem remains generically solvable
for other reasons. This interesting issue deserves further study.

We shall need a couple of elementary definitions from combi-
natorics. Let n and k be non-negative integers. Recall that a
composition of n into k is an ordered k-tuple of positive integers
which sum to n, while a weak composition of n into k is an ordered
k-tuple of non-negative integers which sum to n.

Having fixed the alphabet A, a k-relation monoid presentation
of sum length n is uniquely determined by its sequence of relation
words; this in turn is uniquely determined by the concatenation
in order of those words (a word in An) and the lengths of those
words (a weak composition of n into 2k, called the shape of the
presentation). Thus, k-relation monoid presentations of sum rela-
tion length n are in a natural bijective correspondence with ordered
pairs whose first component is a word of length n and whose second
component is a weak composition of n into 2k. This fact makes
the sum length stratification particularly easy to analyse.

We shall need the following simple combinatorial lemma.

Lemma 3.1. Let A be a finite alphabet and c and p be positive
integers. The number of distinct words of length c which admit
factorisations as x1vy1 and as x2vy2 for some x1, x2, y1, y2, v ∈ A∗

with |v| ≥ p and x1 �= x2 is bounded above by c2|A|c−p.

cc 20 (2011) Generic Finitely Presented Monoids 31

Proof. Clearly if a word admits such factorisations at all, then
it admits such a factorisation with |v| = p, so we need count only
those words which admit such factorisations with |v| = p.

We claim that, once A, c and p are fixed, any such word is
uniquely determined by x1, y1 and the length of x2. Clearly, there
are fewer than c2 ways to choose the lengths of x1 and x2; doing
so also fixes the length of y1, since we must have

|x1| + |v| + |y1| = |x1| + p + |y1| = c.

Now, there are at most

|A||x1|+|y1| = |A|c−|v| = |A|c−p

ways to choose the words x1 and y1 with the given lengths, so
proving the claim will suffice to prove the lemma.

Since x1 and x2 are distinct prefixes of the same word, their
lengths cannot be equal. Suppose first that x1 is longer than x2

and write v = v(1) . . . v(|v|) and x1 = x
(1)
1 . . . x

(|x1|)
1 with each v(i)

and x
(i)
1 in A. Then since x1vy1 = x2vy2, we have

v(i) =

{
x

(|x2|+i)
1 for 1 ≤ i ≤ |x1| − |x2|

v(i−|x1|+|x2|) for |x1| − |x2| < i ≤ |v|
from which the claim follows.

If, on the other hand, x1 is shorter than x2, then we use the
lengths of v and x2 to deduce the length of y2, whereupon a sym-
metric argument suffices to complete the proof. �

Proposition 3.2. Let A be a finite alphabet, and n and r be
positive integers, and fix a weak composition σ of n (into any num-
ber). Then, the proportion of presentations of shape σ which have
a piece of length r or more is bounded above by n2|A|−r.

Proof. The set of presentations over A of shape σ is in 1:1
correspondence with the set An via the map which takes each pre-
sentation to the concatenation, in the obvious order, of its relation
words. If the presentation has a piece of length r or more then the
corresponding word will feature that piece as a factor in at least

32 Kambites cc 20 (2011)

two different places. By Lemma 3.1, it follows that the number of
presentations with a piece of length r or more is bounded above by
n2|A|n−r. The total number of such presentations is |A|n, so the
proportion of presentations with the desired property is bounded
above by n2|A|−r as required. �

Corollary 3.3. Let A be a finite alphabet and k, n, m and K
be positive integers with m ≥ 2, and fix a weak composition σ
of n into 2k such that no block has size less than K. Then, the
proportion of presentations with alphabet A and shape σ which do
not satisfy C(m) is bounded above by

n2

|A|K/(m−1)
.

Proof. If a presentation fails to satisfy C(m), then some rela-
tion word can be written as a product of m−1 pieces. By assump-
tion, this relation word must have length at least K, so one of the
pieces must have length at least K/(m−1). The result now follows
immediately from Proposition 3.2. �

Before proving the first of our main theorems, we will need
an elementary combinatorial result concerning weak compositions;
this will serve to bound the proportion of presentations which fea-
ture a “short” relation word.

Lemma 3.4. Let k be a positive integer, and f : N → N be a func-
tion such that f(n)/n tends to zero as n tends to infinity. Then,
the proportion of weak compositions of n into k which feature a
block of size f(n) or less tends to zero as n tends to infinity.

Proof. It is well known and easy to prove (see for example Bóna
2002, Theorem 5.2) that the number of weak compositions of n into
k is given by

C ′
k(n) =

(n + k − 1)!

n!(k − 1)!

Clearly, every partition of n into k featuring a block of size f(n)
or less can be obtained by refining a partition of n into k − 1, with

cc 20 (2011) Generic Finitely Presented Monoids 33

the extra decomposition in one of k(f(n) + 1) places. Thus, the
number of such partitions is bounded above by

k(f(n) + 1)C ′
k−1(n) = k(f(n) + 1)

(n + k − 2)!

n! (k − 2)!

Hence, the proportion of such partitions amongst all weak compo-
sitions of n into k is bounded above by

k (f(n) + 1) C ′
k−1(n)

C ′
k(n)

=
k (f(n) + 1) (n + k − 2)! n! (k − 1)!

(n + k − 1)! n! (k − 2)!

=
k(k − 1) (f(n) + 1)

n + k − 1

= k(k − 1)

(
f(n)

n + k − 1
+

1

n + k − 1

)

≤ k(k − 1)

(
f(n)

n
+

1

n

)

which clearly tends to zero as n tends to infinity. �

We are now ready to prove our main theorem for the sum rela-
tion length stratification.

Theorem 3.5. Let A be an alphabet of size at least 2, and k and
m be positive integers. Then, the set of A-generated, k-relation
monoid presentations which satisfy the condition C(m) is generic
with respect to the sum length stratification.

Proof. Since C(2) implies C(1), we may clearly assume without
loss of generality that m ≥ 2. We need to show that the proportion
of A-generated k-relation monoid presentations of length n which
fail to satisfy C(m) tends to zero as n tends to infinity.

For each n, let Pn be the set of all weak compositions of n into
k, let Qn be the set of weak compositions of n into k featuring
a block of size 3(m − 1) log|A| n or less and let Rn = Pn\Qn. By
an application of Lemma 3.4, with the function f : N → N given
by f(n) = 3(m − 1) log|A| n, we see that the proportion |Qn|/|Pn|
tends to 0 as n tends to infinity.

34 Kambites cc 20 (2011)

For each weak composition σ, let xσ be the proportion of pre-
sentations of shape σ which fail to satisfy C(m). Note that by
Corollary 3.3 we have

xσ ≤ n2

|A|Kσ/(m−1)

where Kσ denotes the smallest block size in σ. For each fixed n,
there are clearly equally many (|A|n to be precise) presentations of
each shape, so the proportion of presentations of length n failing
to satisfy C(m) is just the average over shapes σ of xσ, that is:

1

|Pn|

(∑
σ∈Pn

xσ

)
=

1

|Pn|

(∑
σ∈Qn

xσ

)
+

1

|Pn|

(∑
σ∈Rn

xσ

)

≤ 1

|Pn|

(∑
σ∈Qn

1

)
+

1

|Pn|

(∑
σ∈Rn

n2

|A|Kσ/(m−1)

)

=
|Qn|
|Pn| +

1

|Pn|

(∑
σ∈Rn

n2

|A|Kσ/(m−1)

)
.

We have already observed that |Qn|/|Pn| tends to zero as n
tends to infinity. Moreover, by the definition of Rn we have
Kσ >3(m−1) log|A| n for all σ ∈ Rn so that

1

|Pn|
∑
σ∈Rn

n2

|A|Kσ/(m−1)
≤ 1

|Pn|
∑
σ∈Rn

n2

|A|(3(m−1) log|A| n)/(m−1)

=
|Rn|
|Pn|

n2

|A|(3(m−1) log|A| n)/(m−1)

=
|Rn|
|Pn|

n2

|A|log|A|(n3)

≤ n2

n3

which tends to zero as required. �

An analysis of the proof shows, approximately speaking, that
the proportion of presentations failing to satisfy any given small

cc 20 (2011) Generic Finitely Presented Monoids 35

overlap condition goes to zero like (log|A| n)/n, which for practical
purposes may be rather slow. The barrier to showing a faster
convergence is the proportion of presentations featuring a “short”
relation word (|Qn|/|Pn| in the notation of the proof); this pro-
portion really does seem to decrease very slowly, suggesting that
for the sum length stratification, fast convergence to small over-
lap conditions is not possible. To obtain statements about the
“superpolynomially generic finitely presented monoid” or “expo-
nentially generic finitely presented monoid” with respect to the
sum length stratification, one would require arguments that take
detailed account of the “short” relation words.

Our next task is to prove that an equivalent result holds for
the maximum length stratification. We begin with an analogue of
Lemma 3.4, which will show that the frequency of presentations
featuring a “small” relation word is again negligible. This time,
because the number of presentations of each shape of maximum
length k is not fixed, we must reason directly with presentations
rather than just shapes. Having taken account of this, the result
is easier and, as one might expect given our remarks above on the
relative frequency of “short” relation words in this stratification,
stronger.

Lemma 3.6. Let A be an alphabet of size at least 2, k be a positive
integer, and f : N → N be a function such that n − f(n) tends to
infinity as n tends to infinity. Then, the proportion of A-generated
k-relation presentations of maximum relation word length n which
feature a relation word of length f(n) or less tends to zero as n
tends to infinity. Moreover, if there exists a constant p > 0 such
that n−f(n) > pn for sufficiently large n then the given proportion
tends to zero exponentially fast.

Proof. Let Xn be the set of all presentations over A of max-
imum relation length n, let Yn be the presentations in Xn which
have a relation word of length f(n) or less and let Zn = Xn\Yn.
The quantity we seek is thus the limit as n tends to infinity of
|Yn|/|Xn|. Let I = {1, . . . , 2k} and define a map σ from I × Xn to
the set of all k-relation presentations over A, which takes (i, P) to
the presentation obtained from P by removing n−f(n) characters

36 Kambites cc 20 (2011)

from the end of the ith relation word, or replacing this relation
word with the empty word if its length is less than n − f(n).

We claim that under the map σ, every presentation in Yn has
at least |A|n−f(n) pre-images in I × Xn. Indeed, if Q ∈ Yn, then
Q has some relation word (say the jth) of length less than f(n),
say length p. Now for each of |A|n−f(n) words w ∈ An−f(n), we can
obtain from Q a presentation Pw ∈ Xn by appending w to the end
of the jth relation word, and it is easily seen σ(j, Pw) = Q for all
such w.

Thus, we have 2k|Xn| = |I × Xn| ≥ |A|n−f(n)|Yn|, and so

|Yn|
|Xn| ≤ 2k

|A|n−f(n)
.

Since n − f(n) tends to infinity with n, this clearly tends to zero.
If moreover p > 0 is such that n − f(n) ≥ pn for n sufficiently
large, then we have

|Yn|
|Xn| ≤ 2k

|A|pn

so that the given quantity tends to zero exponentially fast. �

Corollary 3.7. Let A be an alphabet of size at least 2, k be
a positive integer, and c a constant with 0 < c < 1. Then, the
proportion of A-generated, k-relation presentations of maximum
relation word length n which feature a relation word of length cn
tends to zero exponentially fast as n tends to infinity.

Proof. Define f : N → N by f(n) = cn, and choose p with
0 < p < 1 − c. Then, n − f(n) = (1 − c)n > pn for all n, so the
result follows from Lemma 3.6. �

We are now ready to prove our main result for the maximum
length stratification.

Theorem 3.8. Let A be an alphabet of size at least 2, and let
k and m be positive integers. Then, the set of A-generated,
k-relation monoid presentations which satisfy C(m) is exponen-
tially generic with respect to the maximum length stratification.

cc 20 (2011) Generic Finitely Presented Monoids 37

Proof. The structure of the proof is essentially the same as that
for Theorem 3.8, but it is slightly complicated by the fact that the
number of presentations of each shape for a given maximum rela-
tion word n is not fixed. In addition, we must show that the rate
of convergence is exponential. Once again, we assume without loss
of generality that m ≥ 2.

Let Cn be the total number of presentations over A of maximum
relation word length n. Let Pn be the set of all weak compositions
of any integer into 2k with largest block size n. Choose d with
0 < d < 1 and let Qn be the set of all shapes in Pn with a word of
length dn or less. Let Rn = Pn \ Qn. For each weak composition
σ ∈ Pn, let cσ be the total number of presentations of shape σ and
let xσ be the proportion of presentations of shape σ which fail to
satisfy C(m). For each shape σ, by Corollary 3.3 we have

xσ ≤ (nσ)2

|A|Kσ/(m−1)

where nσ is the total size of σ (that is, the sum of the block sizes of
σ, or the sum relation word length of a presentation of shape σ),
and Kσ is the smallest block size in σ. But σ has 2k blocks, none
of which is larger than n, so we must have nσ ≤ 2kn and hence

xσ ≤ (2kn)2

|A|Kσ/(m−1)
=

4 k2 n2

|A|Kσ/(m−1)
.

Now the proportion we seek is given by

1

Cn

(∑
σ∈Pn

cσxσ

)
=

1

Cn

(∑
σ∈Qn

cσxσ

)
+

1

Cn

(∑
σ∈Rn

cσxσ

)

≤ 1

Cn

(∑
σ∈Qn

cσ

)
+

1

Cn

(∑
σ∈Rn

cσ
4k2n2

|A|Kσ/(m−1)

)
.

The first term in the last line is the proportion of presentations of
maximum relation word length n which feature a relation word of
length dn or less; by Corollary 3.7, this tends to zero exponentially
fast. Considering now the second term, by the definition of Rn we

38 Kambites cc 20 (2011)

have that Kσ > dn for all σ ∈ Rn so that

1

Cn

∑
σ∈Rn

cσ
4k2n2

|A|Kσ/(m−1)
≤ 1

Cn

∑
σ∈Rn

cσ
4k2n2

|A|dn/(m−1)

=

(
4k2n2

|A|dn/(m−1)

) (∑
σ∈Rn

cσ

Cn

)

≤ 4k2n2

(|A|d/(m−1))n

which since |A| ≥ 2 and d > 0 clearly tends to zero exponentially
fast. �

4. Equivalence of Stratifications

It often happens that two stratifications (on the same set, or on
related sets) are closely related, so that knowledge of the generic
sets with respect to one yields corresponding information about the
generic sets with respect to the other. In this section, we establish
some technical conditions under which this holds and use this to
extend many of our earlier results to additional natural stratifica-
tions.

First, we consider the relationship between spherical and
ascending stratifications. So far, we have seen examples only of
spherical stratifications of instance spaces, but to each such strat-
ification is associated an equally natural ascending stratification,
the sets in the latter being unions of the sets in the former. The fol-
lowing proposition, which was first observed by Gilman et al. (2007)
to be an easy consequence of the Stolz–Cesaro Theorem, says that
the generic sets are independent of which of these stratifications
are used (see Gilman et al. 2007 for a more detailed explanation).

Proposition 4.1. (Gilman et al. 2007, Lemma 3.2) Let Sn be a
spherical stratification of a set S. Define a new stratification on S
by

Bn =
n⋃

j=1

Sj.

cc 20 (2011) Generic Finitely Presented Monoids 39

Then, any set X ⊆ S is generic with respect to the stratification
Sn if and only if it is generic with respect to the stratification Bn.

We shall need the following elementary proposition, which
essentially says that the restriction of a stratification to a generic
set preserves generic sets.

Lemma 4.2. Let X be a stratified set, and X ′ a generic subset of
X. Then for any P ⊆ X, we have

lim
n→∞

|P ∩ Xn|
|Xn| = lim

n→∞
|P ∩ Xn ∩ X ′|

|Xn ∩ X ′|
and one limit is defined if and only if the other is.

Proof. First notice that, since X ′ is generic, we have

lim
n→∞

|P ∩ Xn ∩ (X\X ′)|
|Xn| = lim

n→∞
|(X\X ′) ∩ Xn|

|Xn| = 0(4.3)

Now

lim
n→∞

|P ∩ Xn ∩ X ′|
|Xn ∩ X ′| = lim

n→∞
|P ∩ Xn ∩ X ′|

|Xn|
|Xn|

|Xn ∩ X ′|

=

(
lim

n→∞
|P ∩ Xn ∩ X ′|

|Xn|
)(

lim
n→∞

|Xn ∩ X ′|
|Xn|

)−1

Now since X ′ is generic, the right-hand factor in the above expres-
sion is equal to 1. Using also Eq. (4.3) to tell us that the right-hand
term in the next but one line is 0, we obtain

lim
n→∞

|P ∩ Xn ∩ X ′|
|Xn ∩ X ′|

=

(
lim

n→∞
|P ∩ Xn ∩ X ′|

|Xn|
)

+

(
lim

n→∞
|P ∩ Xn ∩ (X \ X ′)

|Xn|
)

= lim
n→∞

|P ∩ Xn ∩ X ′|
|Xn| +

|P ∩ Xn ∩ (X\X ′)
|Xn|

= lim
n→∞

|P ∩ Xn|
|Xn|

as required. �

40 Kambites cc 20 (2011)

Next, we introduce a very useful sufficient condition for a map
between stratified sets to preserve generic sets. To do so, we need
some terminology. Let X and Y be stratified sets, X ′ ⊆ X and
Y ′ ⊆ Y , and f : X ′ → Y ′ a map. Then, f is called stratification-
preserving if for every x ∈ X ′ and n ∈ N we have x ∈ Xn if and
only if f(x) ∈ Yn. If P ⊆ X, then f is said to respect P if f(P ∩X ′)
and f((X\P)∩X ′) are disjoint, that is, if whenever x1, x2 ∈ X ′ are
such that f(x1) = f(x2) we have either x1, x2 ∈ P or x1, x2 /∈ P .
Recall that the fibre size of f at a point y ∈ Y ′ is the cardinality
of the set of elements x ∈ X ′ such that f(x) = y. The map f is
called bounded-to-one if there is a finite upper bound on its fibre
sizes.

Lemma 4.4. Let X and Y be stratified sets, X ′ ⊆ X and Y ′ ⊆ Y
be generic subsets of X and Y , respectively, d ∈ N and f : X ′ →
Y ′ a surjective, stratification-preserving map, such that for every
positive integer n there exists a positive integer kn such that the
fibre sizes of f at points in Yn∩Y ′ all lie between kn and dkn. Then
for any set P ⊆ X, we have

(i)

1

d
lim

n→∞
|f(P ∩ X ′) ∩ Yn|

|Yn| ≤ lim
n→∞

|P ∩ Xn|
|Xn|

≤ d lim
n→∞

|f(P ∩ X ′) ∩ Yn|
|Yn|

wherever both limits are defined;

(ii)

1

d
lim

n→∞
|P ∩ Xn|

|Xn| ≤ lim
n→∞

|f(P ∩ X ′) ∩ Yn|
|Yn| ≤ d lim

n→∞
|P ∩ Xn|

|Xn|
wherever both limits are defined;

(iii) P is negligible in X if and only if f(P ∩X ′) is negligible in Y ;

(iv) If P is generic in X then f(P ∩ X ′) is generic in Y ;

cc 20 (2011) Generic Finitely Presented Monoids 41

(v) If d = 1 and f(P ∩ X ′) is generic in Y then P is generic in
X; and

(vi) If f respects P and f(P ∩X ′) is generic in Y then P is generic
in X.

Before proving Lemma 4.4, we emphasise that parts (i) and (ii)
do not guarantee that one of the limits involved is defined exactly
if the other is defined. If one of the sequences converges to some
value c, then only in the case c = 0 can we be certain that the
other will converge. If c �= 0, then the other may fail to converge,
although it will eventually be constrained to vary within the range
[d−1c, dc]. We now turn to proving Lemma 4.4.

Proof. By the bounds on the fibre sizes of f , we clearly have

|f(P ∩ X ′ ∩ Xn)| ≤ |P ∩ X ′ ∩ Xn| ≤ d|f(P ∩ X ′ ∩ Xn)| and

|f(X ′ ∩ Xn)| ≤ |X ′ ∩ Xn| ≤ d|f(X ′ ∩ Xn)|

for all n ∈ N. It follows from the fact that f is surjective and strat-
ification-preserving that f(X ′∩Xn) = Y ′∩Yn and f(P ∩X ′∩Xn) =
f(P ∩ X ′) ∩ Yn, so the above inequalities become

|f(P ∩ X ′) ∩ Yn| ≤ |P ∩ X ′ ∩ Xn| ≤ d|f(P ∩ X ′) ∩ Yn| and

|Y ′ ∩ Yn| ≤ |X ′ ∩ Xn| ≤ d|Y ′ ∩ Yn|

respectively. Now combining these yields

1

d

|f(P ∩ X ′) ∩ Yn|
|Y ′ ∩ Yn| ≤ |P ∩ Xn ∩ X ′|

|Xn ∩ X ′|
≤ d

|f(P ∩ X ′) ∩ Yn|
|Y ′ ∩ Yn| .(4.5)

It follows also that

1

d

|P ∩ Xn ∩ X ′|
|Xn ∩ X ′| ≤ |f(P ∩ X ′) ∩ Yn|

|Yn ∩ Y ′|
≤ d

|P ∩ Xn ∩ X ′|
|Xn ∩ X ′|(4.6)

42 Kambites cc 20 (2011)

where the left-hand [respectively, right-hand] inequality is obtained
by dividing [multiplying] both sides of the right-hand [left-hand]
inequality in (4.5) by d.

Now since X ′ and Y ′ are generic in X and Y , respectively,
Lemma 4.2 gives

lim
n→∞

|P ∩ Xn|
|Xn| = lim

n→∞
|P ∩ X ′ ∩ Xn|

|Xn ∩ X ′|
and

lim
n→∞

|f(P ∩ X ′) ∩ Yn|
|Yn| = lim

n→∞
|f(P ∩ X ′) ∩ Yn ∩ Y ′|

|Yn ∩ Y ′|
= lim

n→∞
|f(P ∩ X ′) ∩ Yn|

|Yn ∩ Y ′|
where the second equality on the second line holds because
f(P ∩ X ′) ⊆ Y ′. It is now clear that parts (i) and (ii) follow
from (4.5) and (4.6), respectively.

If f(P ∩ X ′) is negligible in Y , then the left- and right-hand
sides of (i) converge to 0, from which it follows that the middle
expression converges to 0, and so P is negligible. Conversely, if P
is negligible, then exactly the same argument applies with (ii) in
place of (i) to show that f(P ∩ X ′) is negligible. This proves part
(iii).

If P is generic in X, then X\P is negligible in X, so by part
(iii), f((X\P)∩X ′) is negligible in Y . But by surjectivity, we must
have

Y ′\f(P ∩ X ′) ⊆ f((X\P) ∩ X ′)

so that Y ′\f(P ∩ X ′) is negligible in Y . Since Y \ Y ′ is negligible
in Y and negligible sets are closed under union, it follows that

Y \f(P ∩ X ′) = (Y ′\f(P ∩ X ′)) ∪ (Y \ Y ′)

is negligible in Y , so that f(P ∩ X ′) is generic in Y as required to
prove part (iv).

If d = 1 and f(P ∩ X ′) is generic in Y then it is immediate
from part (i) that P is generic in X, so that part (v) holds.

cc 20 (2011) Generic Finitely Presented Monoids 43

Finally, suppose that f respects P and that f(P ∩X ′) is generic
in Y . Since f is surjective, we have

Y ′ = f(X ′) = f((X\P) ∩ X ′) ∪ f(P ∩ X ′).

Now since f respects P , we know that f((X\P)∩X ′) and f(P ∩X ′)
are disjoint, and since Y ′ is generic in Y is follows that

f((X\P) ∩ X ′) = Y ′\f(P ∩ X ′)

is negligible in Y . But now by part (iii), we deduce that X\P is
negligible in X, and hence that P is generic in X, as required to
prove part (vi). �

A particularly useful special case is the following immediate
corollary.

Corollary 4.7. Let X and Y be stratified sets, X ′ ⊆ X and
Y ′ ⊆ Y generic subsets of X and Y , respectively, and f : X ′ → Y ′

a surjective, stratification-preserving, bounded-to-one map. Then
for any P ⊆ X such that f respects P , we have that P is generic
[respectively, negligible] in X if and only if f(P ∩ X ′) is generic
[respectively, negligible] in Y .

Next, we apply Lemma 4.4 to show that generic properties of
finitely presented semigroups are essentially governed by those of
finitely presented monoids. Recall that if S is a semigroup then S1

denotes the monoid with set of elements S ∪ {1} where 1 is a new
symbol not in S, and multiplication defined by

st =

⎧⎨
⎩

the S − product st if s, t ∈ S;
s if t = 1;
t if s = 1.

Theorem 4.8. Let C be a class of monoids, A a finite alphabet
and k a positive integer. Then, the generic A-generated k-relation
monoid (with respect to either the sum length stratification or
the maximum length stratification) belongs to C if and only if the
generic A-generated k-relation semigroup S (with respect to the
corresponding stratification) is such that S1 belongs to C .

Proof. Let X and Y be the sets of k-relation monoid and semi-
group presentations, respectively, over A. Suppose X and Y are

44 Kambites cc 20 (2011)

equipped with either the sum length or the maximum length strat-
ification. Let P be the set of presentations in X such that the
monoid presented lies in C , and let Q be the set of presentations
in Y such that the semigroup S presented is such that S1 lies in C .

Let Y ′ = Y and let X ′ = Y ⊆ X be the set of semigroup presen-
tations viewed as a subset of the set of monoid presentations, that
is, those monoid presentations in which no relation word is empty.
By Lemma 3.4 (for the sum length stratification) or Lemma 3.6
(for the maximum length stratification), X ′ is generic in X, and
obviously, Y ′ = Y is generic in Y .

Define f : X ′ = Y → Y ′ = Y to be the identity function; then
f preserves the sum length and maximum length stratifications.
Letting d = 1 and kn = 1 for all n, we see that the conditions
of Lemma 4.4 are satisfied, so P is generic in X if and only if
f(P ∩ X ′) is generic in Y . Since f is the identity function on X ′,
a semigroup presentation P lies in f(P ∩ X ′) exactly if P inter-
preted as a monoid presentation lies in P . Since P has no empty
relation words, it is easy to see that the monoid presented by P
is isomorphic to S1, where S is the semigroup presented by P.
Thus, P ∈ f(P ∩ X ′) if and only if S1 ∈ C , that is, if and only if
P ∈ Q. Hence, f(P ∩ X ′) = Q, and so P is generic in X if and
only if Q is generic in Y , as required. �

Corollary 4.9. For every integer m ≥ 1, positive integer k and
alphabet A of size at least 2, the generic A-generated k-relation
semigroup (with respect to either the sum length stratification or
the maximum length stratification) satisfies the small overlap con-
dition C(m).

An unordered monoid presentation consists of a set A of gen-
erators and an (unordered) set R of relations, each of which is an
unordered pair of words from A∗. Equivalence of words is defined
exactly as for ordered presentations (see Section 3), as are the
sum length and maximum length stratifications on the sets of A-
generated presentations with some fixed number k of relations.
There is an obvious map from the ordered to the unordered pre-
sentations over a given alphabet A, which simply “forgets” the
ordering of the relations and the ordering of the pair of words

cc 20 (2011) Generic Finitely Presented Monoids 45

in each relation, and discards any duplicate relations. Unordered
semigroup presentations can of course be defined analogously.

Theorem 4.10. Let C be a class of monoids, A an alphabet and
k a positive integer. Then, the generic [negligible] A-generated
k-relation monoid (with respect to either the sum length stratifi-
cation or the maximum length stratification) belongs to C if and
only if the generic [respectively, negligible] a-generator k-relation
unordered monoid (with respect to the corresponding stratifica-
tion) belongs to C . The corresponding statement for semigroups
also holds.

Proof. We prove the result for monoids; that for semigroups
can be proved in exactly the same way. Let X be the set of ordered
k-relation monoid presentations over A and Y the set of unordered
k-relation monoid presentations over A. Let P ⊆ X and Q ⊆ Y be
the sets of presentations in X and Y , respectively, such that the
monoid presented belongs to C .

Let X ′ ⊆ X be the set of ordered presentations which do not
feature the same relation twice, or two relations of the form (u, v)
and (v, u) for some distinct words u and v. We have seen that C(2)
presentations do not feature the same relation word twice, so X ′

certainly contains all the C(2) presentations. It follows by Theo-
rem 3.5 (for the sum relation length stratification) or Theorem 3.8
(for the maximum relation length stratification) that X ′ is generic
in X. Let Y ′ = Y ; then certainly Y ′ is generic in Y .

Define f : X ′ → Y ′ = Y to be the obvious map from ordered
to unordered presentations which forgets the ordering of the rela-
tions and of the pair of words in each relation. By definition, an
ordered presentation in X ′ has no duplicate relations (even up to
reordering the pairs), so this really does define a map to Y . Since
every unordered presentation can be written in some order, this
map is surjective. And since f takes each ordered presentation
to an unordered presentation of the same monoid, it is clear that
f respects P and maps P ∩ X ′ onto Q. It is easily seen that f
preserves both the sum length and the maximum length stratifica-
tions. Moreover, f clearly has fibre size bounded above by k! 2k.

46 Kambites cc 20 (2011)

It follows that the conditions of Corollary 4.7 are satisfied, so that
P is generic in X if and only if f(P) = Q is generic in Y . �

We thus allow ourselves to speak of a generic finitely presented
monoid or semigroup, without worrying about whether the pre-
sentation is defined to have a set or a sequence of relations.

5. Properties of Generic Finitely Presented
Monoids and Semigroups

In this section, we explore some of the consequences of our results
for generic finitely presented monoids and semigroups. Recall that
a monoid or semigroup is called J -trivial if distinct elements
always generate distinct principal ideals.

Proposition 5.1. Any C(3) semigroup or monoid is torsion free
and J -trivial.

Proof. Let S be a semigroup or monoid with a C(3) presenta-
tion 〈A | R〉. It follows from a result of (Remmers 1971, Corollary
4.14) (see also Higgins 1992, Corollary 5.2.16) that only finitely
many words over the alphabet A represent the same element of S.

Suppose first that S it is not J -trivial, and choose a, b ∈ S be
distinct elements generating the same ideal. Then in particular, a
is in the ideal generated by b, so we have a = pbq for some p, q ∈ S.
But also b is in the ideal generated by a, so that and b = ras =
rpbqs for some r, s ∈ S. Now choose words b̂, p̂, q̂, r̂, ŝ ∈ A∗ repre-
senting b, p, q, r, s ∈ S, respectively. Certainly at least one of r̂ and
ŝ is non-empty, since otherwise we would have r = s = 1 so that
b = ras = a. But now it is easily seen that (r̂p̂)ib̂(q̂ŝ)i represents b
for every i > 0, contradicting Remmers’ result.

Similarly, suppose a ∈ S is non-identity torsion element. Then,
there is a non-empty word â ∈ A representing a. But now it is easy
to see that infinitely many powers of â must represent the same
element, again contradicting Remmers’ result. �

cc 20 (2011) Generic Finitely Presented Monoids 47

Combining with our theorem we have the following.

Theorem 5.2. Let A be an alphabet of size at least 2 and let
k be a positive integer. Then, the monoid defined by the generic
A-generated k-relation presentation (with respect to either the sum
length stratification or the maximum length stratification) is non-
trivial, torsion-free and J -trivial. In particular, it is not a group,
an inverse monoid or a regular monoid. The corresponding state-
ments for semigroups also hold.

Proof. By Theorem 3.5 (respectively, Theorem 3.8 for the other
stratification) the generic A-generated k-relation presentation sat-
isfies C(3), and so by Proposition 5.1 the semigroup presented is
torsion-free and J -trivial. If it were trivial then every word over
the alphabet would have to represent the identity, contradicting
once more Remmers’ result mentioned in the proof of the previous
proposition. �

By a recent result of the author (Kambites 2009a, Theorem 2),
the uniform word problem for C(4) semigroups is solvable in time
linear in the word lengths and polynomial in the presentation size.
Hence, we obtain

Theorem 5.3. Let A be an alphabet of size at least 2 and let
k be a positive integer. Then, the generic A-generated k-relation
presentation (with respect to either the sum length stratification
or the maximum length stratification) has word problem solvable
in linear time. The corresponding statement for semigroups also
holds.

Since there is also an algorithm to decide, in (worst-case) poly-
nomial time whether a given presentation satisfies the condition
C(4) (Kambites 2009a, Corollary 5) we also obtain

Theorem 5.4. Let A be an alphabet of size at least 2 and k be a
positive integer. Then, the uniform word problem for A-generated,
k-relation monoid presentations is in GenP. The corresponding
statement for semigroups also holds.

48 Kambites cc 20 (2011)

Further work of the author (Kambites 2009b) has established a
number of automata-theoretic properties of monoids which admit
finite presentations satisfying the condition C(4). It follows from
Theorem 3.5 and Theorem 3.8 that the “generic” monoid and
semigroup will enjoy all these properties. The following theorem
summarises these properties; for brevity, we omit definitions of
terms which can be found in Kambites (2009b).

Theorem 5.5. Let A be an alphabet of size at least 2 and let
k be a positive integer. Then, the monoid defined by the generic
A-generated k-relation presentation (with respect to either the sum
length stratification or the maximum length stratification) is ratio-
nal in the sense of Sakarovitch (1987), asynchronous automatic and
word hyperbolic in the sense of Duncan & Gilman (2004). It also
has the property that its rational subsets form a boolean algebra,
coincide with its recognisable subsets and have uniformly decidable
membership problem.

Acknowledgements

This research was supported by an RCUK Academic Fellowship.
The author would like to thank A. V. Borovik and V. N. Remeslen-
nikov for their many suggestions; he also thanks the organisers and
participants of the AIM Workshop on Generic Complexity, held in
Palo Alto in August 2007, where he had many helpful conversa-
tions, and the American Institute of Mathematics for funding his
attendance there.

References

M. Bóna (2002). A walk through combinatorics. World Scientific
Publishing Co. Inc., River Edge, NJ. ISBN 981-02-4900-4, xviii+406.

G. B. Dantzig (1951). Maximization of a linear function of vari-
ables subject to linear inequalities. In Activity Analysis of Produc-
tion and Allocation, Cowles Commission Monograph No. 13, 339–347.
John Wiley & Sons Inc., New York, N.Y.

A. Duncan & R. H. Gilman (2004). Word hyperbolic semigroups.
Math. Proc. Cambridge Philos. Soc. 136(3), 513–524. ISSN 0305-0041.

cc 20 (2011) Generic Finitely Presented Monoids 49

R. Gilman, A. G. Miasnikov, A. D. Myasnikov & A. Ushakov

(2007). Report on Generic Case Complexity. Herald of Omsk University
103–110. Available online at http://www.acc.stevens.edu/Files/GC/gc
survey.pdf.

M. Gromov (1987). Hyperbolic groups. In Essays in Group Theory,
volume 8 of Math. Sci. Res. Inst. Publ., 75–263. Springer, New York.

Y. Gurevich (1991). Average case complexity. In Automata, languages
and programming (Madrid, 1991), volume 510 of Lecture Notes in
Comput. Sci., 615–628. Springer, Berlin.

P. M. Higgins (1992). Techniques of semigroup theory. Oxford Science
Publications. The Clarendon Press Oxford University Press, New York.
ISBN 0-19-853577-5, x+258. With a foreword by G. B. Preston.

M. Kambites (2009a). Small overlap monoids I: the word problem.
J. Algebra 321, 2187–2205.

M. Kambites (2009b). Small overlap monoids II: automatic structures
and normal forms. J. Algebra 321, 2302–2316.

I. Kapovich, A. Myasnikov, P. Schupp & V. Shpilrain (2003).
Generic-case complexity, decision problems in group theory, and random
walks. J. Algebra 264(2), 665–694. ISSN 0021-8693.

V. Klee & G. J. Minty (1972). How good is the simplex algorithm? In
Inequalities, III (Proc. Third Sympos., Univ. California, Los Angeles,
Calif., 1969; dedicated to the memory of Theodore S. Motzkin), 159–
175. Academic Press, New York.

R. C. Lyndon & P. E. Schupp (1977). Combinatorial Group Theory.
Springer-Verlag.

A. Markov (1947). On the impossibility of certain algorithms in the
theory of associative systems. C. R. (Doklady) Acad. Sci. URSS (N.S.)
55, 583–586.

A. Yu. Ol
′
shanskĭı (1992). Almost every group is hyperbolic. Internat.

J. Algebra Comput. 2(1), 1–17. ISSN 0218-1967.

E. L. Post (1947). Recursive unsolvability of a problem of Thue.
J. Symbolic Logic 12, 1–11. ISSN 0022-4812.

http://www.acc.stevens.edu/Files/GC/gc_survey.pdf
http://www.acc.stevens.edu/Files/GC/gc_survey.pdf

50 Kambites cc 20 (2011)

J. H. Remmers (1971). Some algorithmic problems for semigroups:
a geometric approach. Ph.D. thesis, University of Michigan.

J. H. Remmers (1980). On the geometry of semigroup presentations.
Adv. in Math. 36(3), 283–296. ISSN 0001-8708.

D. Ruinskiy, A. Shamir & B. Tsaban (2007). Length-based
cryptanalysis: the case of Thompson’s group. J. Math. Cryptol. 1, 359–
372.

J. Sakarovitch (1987). Easy Multiplications I. The Realm of Kleene’s
Theorem. Inform. and Comput. 74, 173–197.

V. Shpilrain & A. Ushakov (2005). Thompson’s group and public
key cryptography. Lecture Notes in Computer Science 3531.

V. Shpilrain & G. Zapata (2006). Combinatorial group theory
and public key cryptography. Appl. Algebra Engrg. Comm. Comput.
17(3–4), 291–302. ISSN 0938-1279.

Manuscript received 4 November 2008

Mark Kambites

School of Mathematics,
University of Manchester,
Manchester M13 9PL,
England, UK.
Mark.Kambites@manchester.ac.uk

	Generic Complexity of Finitely Presented Monoids and Semigroups
	Abstract
	Introduction
	Generic Properties and Generic-case Complexity
	Generic Monoid Presentations
	Equivalence of Stratifications
	Properties of Generic Finitely Presented Monoids and Semigroups
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

