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LOWER BOUNDS FOR AGNOSTIC

LEARNING VIA APPROXIMATE RANK
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Abstract. We prove that the concept class of disjunctions cannot be
pointwise approximated by linear combinations of any small set of arbi-
trary real-valued functions. That is, suppose that there exist functions
φ1, . . . , φr : {−1, 1}n → R with the property that every disjunction f
on n variables has ‖f −

∑r
i=1 αiφi‖∞ ≤ 1/3 for some reals α1, . . . , αr.

We prove that then r ≥ exp{Ω(√n)}, which is tight. We prove an in-
comparable lower bound for the concept class of decision lists. For the
concept class of majority functions, we obtain a lower bound of Ω(2n/n),
which almost meets the trivial upper bound of 2n for any concept class.
These lower bounds substantially strengthen and generalize the polyno-
mial approximation lower bounds of Paturi (1992) and show that the
regression-based agnostic learning algorithm of Kalai et al. (2005) is
optimal.
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1. Introduction

Approximating Boolean functions by linear combinations of small sets of fea-
tures is a fundamental area of study in machine learning. Well-known algo-
rithms such as linear regression, support vector machines, and boosting at-
tempt to learn concepts as linear functions or thresholds over a fixed set of
real-valued features. In particular, much work in learning theory has centered
around approximating various concept classes, with respect to a variety of dis-
tributions and metrics, by low-degree polynomials (Bshouty & Tamon 1996;
Jackson 1995; Klivans et al. 2004; Klivans & Servedio 2004; Kushilevitz &
Mansour 1993; Linial et al. 1993; Mansour 1995; O’Donnell & Servedio 2008).
In this case, the features mentioned above are simply monomials. For exam-
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ple, Linial et al. (1993) gave a celebrated uniform-distribution algorithm for
learning constant-depth circuits by proving that any such circuit can be ap-
proximated by a low-degree Fourier polynomial, with respect to the uniform
distribution and �2 norm.

A more recent application of the polynomial paradigm is due to Kalai
et al. (2008), who considered the well-studied problem of agnostically learn-
ing disjunctions (Decatur 1993; Kearns & Li 1993; Mansour & Parnas 1996;
Valiant 1985). Kalai et al. recalled that a disjunction on n variables can
be approximated pointwise by a degree-O(

√
n) polynomial (Nisan & Szegedy

1994; Paturi 1992). They then used linear regression to obtain the first subex-

ponential (2Õ(
√
n)-time) algorithm for agnostically learning disjunctions with

respect to any distribution (Kalai et al. 2008, Thm. 2). More generally, Kalai
et al. used �∞-norm approximation to give subexponential-time algorithms for
distribution-free agnostic learning.

Before stating our results formally, we briefly describe our notation. A Bool-
ean function is a mapping f : {−1, 1}n → {−1, 1}, where −1 corresponds to
“true.” A feature is any function φ : {−1, 1}n → R. We say that φ approxi-
mates f pointwise within ε, denoted

‖f − φ‖∞ ≤ ε ,

if |f(x) − φ(x)| ≤ ε for all x. We say that a linear combination of features
φ1, . . . , φr approximates f pointwise within ε if ‖f −

∑r
i=1 αiφi‖∞ ≤ ε for some

reals α1, . . . , αr.

Our results. Let C be a concept class. Suppose that φ1, . . . , φr are features
whose linear combinations can pointwise approximate every function in C. We
first observe that the algorithm of Kalai et al. – assuming that φ1, . . . , φr can
be evaluated efficiently – learns C agnostically under any distribution in time
polynomial in r and n.

To put our lower bounds in context, we note that current methods for agnos-
tically learning a concept class C involve solving an empirical risk minimization
problem using polynomials. That is, all algorithms for agnostic learning that
we are aware of work by finding the best fitting polynomial (with respect to
some metric) to a training set of labeled examples and taking a threshold. Kalai
et al. (2008) proved that if polynomials can pointwise approximate the concept
class, this method is guaranteed to solve the empirical risk minimization prob-
lem (and hence the agnostic learning problem) for C. We will give scenarios
where linear combinations of any small number of features fail to approxi-
mate an unknown concept, thus giving us no guarantee that we are solving the
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empirical risk minimization problem. We believe that these scenarios demon-
strate the limits of the polynomial-minimization approach for distribution-free
agnostic learning.

We begin with the concept class of disjunctions:

Theorem 1.1 (Disjunctions). Let C = {
∨

i∈S xi : S ⊆ [n]} be the concept
class of disjunctions. Let φ1, . . . , φr : {−1, 1}n → R be arbitrary functions
whose linear combinations can pointwise approximate every f ∈ C within ε =
1/3. Then r ≥ 2Ω(

√
n).

Theorem Theorem 1.1 shows the optimality of using monomials as features
for approximating disjunctions. In particular, it rules out the possibility of
using the algorithm of Kalai et al. with other, cleverly constructed features to
obtain an improved agnostic learning result for disjunctions. The same result
of course holds for the concept class of conjunctions.

We obtain an incomparable result against decision lists (and hence linear-
size DNF formulas).

Theorem 1.2 (Decision lists). Let C be the concept class of decision lists. Let
φ1, . . . , φr : {−1, 1}n → R be arbitrary functions whose linear combinations can

pointwise approximate every f ∈ C within ε = 1 − 2−cn1/3
, where c > 0 is a

sufficiently small absolute constant. Then r ≥ 2Ω(n1/3).

Theorems Theorem 1.1 and Theorem 1.2 both give exponential lower bounds on
r. Comparing the two, we see that Theorem Theorem 1.1 gives a better bound
on r against a simpler concept class. On the other hand, Theorem Theorem 1.2
remains valid for a particularly weak success criterion: when the approximation
quality is exponentially close to trivial (ε = 1).

The last concept class that we study is that of majority functions. Here
we prove our best lower bound, r = Ω(2n/n), that essentially meets the trivial
upper bound of 2n for any concept class. Put differently, we show that the
concept class of majorities is essentially as hard to approximate as any con-
cept class at all. In particular, this shows that the polynomial-minimization
paradigm cannot yield any nontrivial (2o(n)-time) distribution-free algorithm
for agnostically learning majority functions.

Theorem 1.3 (Majority functions). Let C = {MAJn(±x1, . . . ,±xn)} be the
concept class of majority functions. Let φ1, . . . , φr : {−1, 1}n → R be arbitrary
functions whose linear combinations can pointwise approximate every f ∈ C
within ε = c/

√
n, where c is a sufficiently small absolute constant. Then

r ≥ Ω(2n/n). For approximation to within ε = 1/3, we obtain r ≥ 2Ω(n/ logn).
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We also relate our inapproximability results to the notions of dimension
complexity and statistical query dimension (Sections Section 5–Section 7). Among
other things, we show that the types of approximation lower bounds that we
study are prerequisites for lower bounds on dimension complexity and the SQ
dimension.

Additional applications. The preceding discussion has emphasized the im-
plications of Theorems Theorem 1.1–Theorem 1.3 in learning theory. Our re-
sults also have consequences in approximation theory. In a classic result, Paturi
(1992) constructed polynomials of degree Θ(

√
n) and Θ(n) that pointwise ap-

proximate disjunctions and majority functions, respectively. He also showed
that these degree results are optimal for polynomials. This, of course, does
not exclude polynomials that are sparse, i.e., contain few monomials. Our
lower bounds strengthen Paturi’s result by showing that the approximating
polynomials cannot be sparse. In addition, our analysis remains valid when
monomials are replaced by arbitrary features. As anticipated, our techniques
differ significantly from Paturi’s.

It is also useful to examine our work from the standpoint of matrix anal-
ysis. As will become apparent in later sections, the quantity of interest to us
is the ε-approximate rank of a Boolean matrix M. This quantity is defined as
the least rank of a real matrix A that differs from M by at most ε in any en-
try: ‖M − A‖∞ ≤ ε. Apart from being a natural matrix-analytic notion with
applications to learning theory, ε-approximate rank arises in quantum com-
munication complexity (Buhrman & Wolf 2001). While ε-approximate rank
remains difficult to analyze in general, our paper shows several techniques that
prove to be successful in concrete cases.

Our techniques. We obtain our main theorems in two steps. First, we show
how to place a lower bound on the quantity of interest (the size of feature
sets that pointwise approximate a concept class C) using the discrepancy and
the ε-approximate trace norm of the characteristic matrix of C. The latter
two quantities have been extensively studied. In particular, the discrepancy
estimate that we need is a recent result of Buhrman et al. (2007b). For estimates
of the ε-approximate trace norm, we turn to the pioneering work of Razborov
(2003) on quantum communication complexity, as well as classical results on
matrix perturbation and Fourier analysis.
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2. Preliminaries

The notation [n] stands for the set {1, 2, . . . , n}, and
(
[n]
k

)
stands for the family

of all k-element subsets of [n] = {1, 2, . . . , n}. The symbol Rn×m refers to the
family of all n×m matrices with real entries. The (i, j)th entry of a matrix A is
denoted by Aij or A(i, j). We frequently use “generic-entry” notation to specify
a matrix succinctly: we write A = [F (i, j)]i,j to mean that the (i, j)th entry
of A is given by the expression F (i, j).

A concept class C is any set of Boolean functions f : {−1, 1}n → {−1, 1}.
The characteristic matrix of C is the matrix M = [f(x)]f∈C, x∈{−1,1}n . In words,
the rows of M are indexed by functions f ∈ C, the columns are indexed by
inputs x ∈ {−1, 1}n, and the entries are given by Mf,x = f(x).

A decision list is a Boolean function f : {−1, 1}n → {−1, 1} specified by
a fixed permutation σ : [n] → [n], a fixed vector a ∈ {−1, 1}n+1, and a fixed
vector b ∈ {−1, 1}n. The computation of f on input x ∈ {−1, 1}n proceeds as
follows. If xσ(i) 	= bi all i = 1, 2, . . . , n, then one outputs an+1. Otherwise, one
outputs ai, where i ∈ {1, 2, . . . , n} is the least integer with xσ(i) = bi.

2.1. Agnostic learning. The agnostic learning model was defined by Kearns
et al. (1994). It gives the learner access to arbitrary example-label pairs with
the requirement that the learner output a hypothesis competitive with the best
hypothesis from some fixed concept class. Specifically, let D be a distribution
on {−1, 1}n × {−1, 1} and let C be a concept class. For a Boolean function f,
define its error as err(f) = P(x,y)∼D[f(x) 	= y]. Define the optimal error of C
as opt = minf∈C err(f).

A concept class C is agnostically learnable if there exists an algorithm which
takes as input δ, ε, and access to an example oracle EX(D), and outputs with
probability at least 1−δ a hypothesis h : {−1, 1}n → {−1, 1} such that err(h) ≤
opt+ε.We say C is agnostically learnable in time t if the running time, including
calls to the example oracle, is bounded by t(ε, δ, n).

The following proposition relates pointwise approximation by linear combi-
nations of features to efficient agnostic learning. It is a straightforward gener-
alization of the �1 polynomial-regression algorithm of Kalai et al. (2008).

Proposition 2.1. Fix a constant ε ∈ (0, 1) and a concept class C. Assume
that there are functions φ1, . . . , φr : {−1, 1}n → R whose linear combinations
can pointwise approximate every f ∈ C within ε. Assume further that each
φi(x) is computable in polynomial time. Then C is agnostically learnable to
accuracy ε in time polynomial in r and n.
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Proof. Let C ′ stand for the family of functions f : {−1, 1}n → {−1, 1}
representable as f(x) = sgn(a1φ1(x) + · · · + arφr(x) − ar+1) for some reals
a1, . . . , ar+1. Since halfspaces in n dimensions have VC dimension n+1, the VC
dimension of C ′ is at most r+ 1. For m labeled examples (x1, y1), . . . , (xm, ym)
drawn independently from distribution D, one can minimize the quantity
1
m

∑m
j=1 |
∑r

i=1 aiφi(x
j) − yj| over the reals a1, . . . , ar in polynomial time (in

r and n) using an efficient algorithm for linear programming. Since linear com-
binations of φ1, . . . , φr can pointwise approximate every f ∈ C within ε, we
have that for every f ∈ C, there exist a1, . . . , ar such that Ex∼D[(a1φ1(x) +
· · ·+arφr(x)−f(x))2] ≤ ε2. Applying Theorem 5 of Kalai et al. (2008) finishes
the proof. �

2.2. Fourier transform. Consider the vector space of functions {−1, 1}n →
R, equipped with the inner product 〈f, g〉 = 2−n

∑
x∈{−1,1}n f(x)g(x). The par-

ity functions χS(x) =
∏

i∈S xi, where S ⊆ [n], form an orthonormal basis for
this inner product space. As a result, every Boolean function f can be uniquely
written as

f =
∑

S⊆[n]

f̂(S)χS ,

where f̂(S) = 〈f, χS〉. The f -specific reals f̂(S) are called the Fourier coeffi-
cients of f. We denote

‖f̂‖1 =
∑

S⊆[n]

|f̂(S)| .

2.3. Matrix analysis. We draw freely on basic notions from matrix analysis;
a standard reference on the subject is Golub & Loan (1996). This section only
reviews the notation and the more substantial results.

Let A ∈ R
m×n. We let ‖A‖∞ = maxij |Aij|, the largest absolute value

of an entry of A. We denote the singular values of A by σ1(A) ≥ σ2(A) ≥
· · · ≥ σmin{m,n}(A) ≥ 0. Recall that ‖A‖Σ =

∑min{m,n}
i=1 σi(A) and ‖A‖F =

(
∑m

i=1

∑n
j=1A

2
ij)

1/2 are the trace norm and Frobenius norm of A. We will also
need the ε-approximate trace norm, defined as

‖A‖εΣ = min{‖B‖Σ : ‖A− B‖∞ ≤ ε} .

Our analysis requires the Hoffman–Wielandt inequality (see Golub & Loan
1996, Theorem 8.6.4). In words, it states that small perturbations to the entries
of a matrix result in small perturbations to its singular values.
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Theorem 2.2 (Hoffman–Wielandt inequality). Fix matrices A,B ∈ R
m×n.

Then

min{m,n}∑

i=1

(
σi(A)− σi(B)

)2 ≤ ‖A− B‖2F .

In particular, if rank(B) = k then

∑

i≥k+1

σi(A)
2 ≤ ‖A−B‖2F .

The Hoffman–Wielandt inequality is used in the following lemma, which
allows us to easily construct matrices with high approximate trace norm.

Lemma 2.3. Let M = [f(x ⊕ y)]x,y, where f : {0, 1}n → {−1, 1} is a given
function and the indices x, y range over {0, 1}n. Then for all ε ≥ 0,

‖M‖εΣ ≥ 2n(‖f̂‖1 − ε2n/2) .

Proof. Let N = 2n be the order of M. Fix a matrix A with ‖A−M‖∞ ≤ ε.
By the Hoffman–Wielandt inequality,

N2ε2 ≥ ‖A−M‖2F ≥
N∑

i=1

(
σi(A)− σi(M)

)2 ≥ 1

N
(‖A‖Σ − ‖M‖Σ)2 ,

so that ‖A‖Σ ≥ ‖M‖Σ−N3/2ε. Since the choice of A was arbitrary, we conclude
that

(2.4) ‖M‖εΣ ≥ ‖M‖Σ −N3/2ε .

It is well-known (Linial et al. 2007, p. 458) that the singular values of M/N
are precisely the absolute values of the Fourier coefficients of f. Indeed,

M = Q

⎡

⎢
⎣

Nf̂(∅)
. . .

Nf̂([n])

⎤

⎥
⎦Q

T ,

where Q = N−1/2[χS(x)]x,S is an orthogonal matrix. In particular, ‖M‖Σ =

N‖f̂‖1. Together with ((2.4)), this completes the proof. �

A sign matrix is any matrix with ±1 entries.
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2.4. Communication complexity. We consider functions f : X × Y →
{−1, 1}. Typically X = Y = {−1, 1}n, but we also allow X and Y to be
arbitrary sets, possibly of unequal cardinality. A rectangle of X × Y is any set
R = A×B with A ⊆ X and B ⊆ Y. For a fixed distribution μ over X ×Y , the
discrepancy of f is defined as

discμ(f) = max
R

∣
∣
∣
∣
∣
∣

∑

(x,y)∈R

μ(x, y)f(x, y)

∣
∣
∣
∣
∣
∣
,

where the maximum is taken over all rectangles R. We define disc(f) =
minμ{discμ(f)}. We identify the function f with its communication matrix
M = [f(x, y)]x,y and define discμ(M) = discμ(f). A definitive resource for fur-
ther details on communication complexity is the book of Kushilevitz & Nisan
(1997).

2.5. Statistical query dimension. The statistical query (SQ) model of
learning, due to Kearns (1998), is a restriction of Valiant’s PAC model. See
Kearns & Vazirani (1994) for a comprehensive treatment. The SQ dimension
of C under μ, denoted sqdimμ(C), is the largest d for which there are d functions
f1, . . . , fd ∈ C with

∣
∣
∣ E
x∼μ

[
fi(x)fj(x)

]∣∣
∣ ≤ 1

d

for all i 	= j. We denote

sqdim(C) = max
μ

{
sqdimμ(C)

}
.

The SQ dimension is a tight measure (Blum et al. 1994) of the learning com-
plexity of a given concept class C in the SQ model.

3. Approximate rank: definition and properties

For a real matrix A, its ε-approximate rank is defined as

rankε(A) = min
B

{
rank(B) : B real, ‖A−B‖∞ ≤ ε

}
.

This notion is a natural one and has been studied before. In particular,
Buhrman & Wolf (2001) show that the approximate rank of a sign matrix im-
plies lower bounds on its quantum communication complexity (in the bounded-
error model without prior entanglement). In Section Section 6, we survey two
other related concepts: matrix rigidity and dimension complexity.
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We define the ε-approximate rank of a concept class C as

rankε(C) = rankε(M) ,

where M is the characteristic matrix of C. For example, rank0(C) = rank(M)
and rank1(C) = 0. It is thus the behavior of rankε(C) for intermediate values
of ε that is of primary interest. The following proposition follows trivially from
our definitions.

Proposition 3.1 (Approximate rank reinterpreted). Let C be a concept class.
Then rankε(C) is the smallest integer r such that there exist real functions
φ1, . . . , φr : {−1, 1}n → R with the property that each f ∈ C has ‖f −∑r

i=1 αiφi‖∞ ≤ ε for some reals α1, . . . , αr.

3.1. Improving the quality of the approximation. We now take a closer
look at rankε(M) as a function of ε. Suppose that we have an estimate of
rankE(M) for some 0 < E < 1. Can we use this information to obtain a
nontrivial upper bound on rankε(M), where 0 < ε < E? It turns out that we
can. We first recall that the sign function can be approximated well by a real
polynomial:

Fact 3.2 (Buhrman et al. 2007a). Let E be given, 0 < E < 1. Then for each
integer d ≥ 1, there exists a degree-d real univariate polynomial p such that

|p(t)− sgn t| ≤ 2 exp

{

−d

2

(
1− E

1 + E

)2
}

(1− E ≤ |t| ≤ 1 + E) .

Proof (adapted from Buhrman et al. 2007a). Consider the univariate poly-
nomial

q(t) =
d∑

i=	d/2


(
d

i

)

ti(1− t)d−i .

By definition, q(t) is the probability of observing at least d/2 heads in a se-
quence of d independent coin flips, each coming up heads with probability t.
For 0 ≤ γ ≤ 1/2, the Chernoff bound (Chernoff 1952) implies that q sends
[0, 1

2
− γ] → [0, e−2dγ2

] and [1
2
+ γ, 1] → [1− e−2dγ2

, 1]. Letting

γ =
1− E

2(1 + E)
, p(t) = 2q

(
1

2
+

1

2(1 + E)
t

)

− 1 ,

we see that p has the desired behavior. �
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Theorem 3.3. Let M be a sign matrix, and let 0 < ε < E < 1. Then

rankε(M) ≤ rankE(M)d ,

where d is any positive integer with 2 exp
{
− d

2

(
1−E
1+E

)2} ≤ ε.

Proof. Let d be as stated. By Fact Fact 3.2, there is a degree-d polynomial
p(t) with

|p(t)− sgn t| ≤ ε (1− E ≤ |t| ≤ 1 + E) .

Let A be a real matrix with ‖A − M‖∞ ≤ E and rank(A) = rankE(M).
Then the matrix B = [p(Aij)]i,j approximates M to the desired accuracy:
‖B −M‖∞ ≤ ε. Since p is a polynomial of degree d, elementary linear algebra
shows that rank(B) ≤ rank(A)d. �

Note. The key idea in the proof of Theorem Theorem 3.3 is to improve the
quality of the approximating matrix by applying a suitable polynomial to its
entries. This idea is not new. For example, Alon (2003) uses the same method
in the simpler setting of one-sided errors.

We will mainly need the following immediate consequences of Theorem The-
orem 3.3.

Corollary 3.4. Let M be a sign matrix. Let ε, E be constants with 0 < ε <
E < 1. Then

rankε(M) ≤ rankE(M)c ,

where c = c(ε, E) is a constant.

Corollary 3.5. Let M be a sign matrix. Let ε be a constant with 0 < ε < 1.
Then

rank1/nc(M) ≤ rankε(M)O(logn)

for every constant c > 0.

By Corollary Corollary 3.4, the choice of the constant ε affects rankε(M) by at
most a polynomial factor. When such factors are unimportant, we will adopt
ε = 1/3 as a canonical setting.
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3.2. Estimating the approximate rank. We will use two methods to es-
timate the approximate rank. The first uses the ε-approximate trace norm of
the same matrix, and the second uses its discrepancy.

Lemma 3.6 (Lower bound via approximate trace norm). Fix a matrix M ∈
{−1, 1}N×N . Then

rankε(M) ≥
(

‖M‖εΣ
(1 + ε)N

)2

.

Proof. Let A be an arbitrary matrix with ‖M − A‖∞ ≤ ε. We have:

(‖M‖εΣ)2 ≤ (‖A‖Σ)2 =

⎛

⎝
rank(A)∑

i=1

σi(A)

⎞

⎠

2

≤

⎛

⎝
rank(A)∑

i=1

σi(A)
2

⎞

⎠ rank(A)

= (‖A‖F )2 rank(A) ≤ (1 + ε)2N2 rank(A) ,

as claimed. �

Our second method is as follows.

Lemma 3.7 (Lower bound via discrepancy). Let M be a sign matrix and 0 ≤
ε < 1. Then

rankε(M) ≥ 1− ε

1 + ε
· 1

64 disc(M)2
.

The proof of Lemma Lemma 3.7 requires several definitions and facts that we
do not use elsewhere in this paper. For this reason, we defer it to Appendix Ap-
pendix A.

4. Approximate rank of specific concept classes

We proceed to prove our main results (Theorems Theorem 1.1–Theorem 1.3),
restated here as Theorems Theorem 4.2, Theorem 4.6, and Theorem 4.8.

4.1. Disjunctions. We recall a breakthrough result of Razborov (2003) on
the quantum communication complexity of disjointness. The crux of that work
is the following theorem.
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Theorem 4.1 (Razborov 2003, Sec. 5.3). Let n be an integer multiple of 4.
Let M be the

(
n

n/4

)
×
(

n
n/4

)
matrix whose rows and columns are indexed by sets

in
(
[n]
n/4

)
and entries given by

MS,T =

{
1 if S ∩ T = ∅ ,
0 otherwise .

Then

‖M‖1/4Σ = 2Ω(
√
n)

(
n

n/4

)

.

We can now prove an exponential lower bound on the approximate rank of
disjunctions, a particularly simple concept class.

Theorem 4.2 (Approximate rank of disjunctions). Let C = {
∨

i∈S xi : S ⊆
[n]} be the concept class of disjunctions. Then

rank1/3(C) = 2Ω(
√
n) .

Proof. Without loss of generality, we may assume that n is a multiple of 4.
One easily verifies that the characteristic matrix of C is MC = [

∨n
i=1(xi∧yi)]x,y.

We can equivalently viewMC as the 2
n×2n sign matrix whose rows and columns

indexed by sets in [n] and entries given by:

MC(S, T ) =

{
1 if S ∩ T = ∅ ,

−1 otherwise .

Now let A be a real matrix with ‖MC − A‖∞ ≤ 1/3. Let ZC = 1
2
(MC + J),

where J is the all-ones matrix. We immediately have ‖ZC − 1
2
(A+J)‖∞ ≤ 1/6,

and thus

rank1/6(ZC) ≤ rank

(
1

2
(A+ J)

)

≤ rank(A) + 1 .(4.3)

However, ZC contains as a submatrix the matrixM from Theorem Theorem 4.1.
Therefore,

rank1/6(ZC) ≥ rank1/6(M)

≥
(

‖M‖1/4Σ

(1 + 1/4)
(

n
n/4

)

)2

by Lemma Lemma 3.6

≥ 2Ω(
√
n) by Theorem Theorem 4.1 .(4.4)

The theorem follows immediately from ((4.3)) and ((4.4)). �
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4.2. Decision lists. We recall a recent result due to Buhrman et al. (2007b):

Theorem 4.5 (Buhrman et al. 2007b, Sec. 3). There is a Boolean function f :
{−1, 1}n × {−1, 1}n → {−1, 1} computable by an AC0 circuit of depth 3 such
that

disc(f) = 2−Ω(n1/3) .

Moreover, for each fixed y, the function fy(x) = f(x, y) is a decision list.

We can now analyze the approximate rank of decision lists.

Theorem 4.6 (Approximate rank of decision lists). Let C denote the concept
class of functions f : {−1, 1}n → {−1, 1} computable by decision lists. Then

rankε(C) = 2Ω(n1/3)

for 0 ≤ ε ≤ 1− 2−cn1/3
, where c > 0 is a sufficiently small absolute constant.

Proof. Let M be the characteristic matrix of C, and let f(x, y) be the func-
tion from Theorem Theorem 4.5. Since [f(x, y)]y,x is a submatrix ofM, we have
rankε(M) ≥ rankε([f(x, y)]y,x). The claim now follows from Lemma Lemma 3.7.

�

Comparing the results of Theorems Theorem 4.2 and Theorem 4.6 for small
constant ε, we see that Theorem Theorem 4.2 is stronger in that it gives a
better lower bound against a simpler concept class. On the other hand, The-
orem Theorem 4.6 is stronger in that it remains valid for the broad range
0 ≤ ε ≤ 1−2−Θ(n1/3), whereas the ε-approximate rank in Theorem Theorem 4.2
is easily seen to be at most n for all ε ≥ 1− 1

2n
.

4.3. Majority functions. As a final application, we consider the concept
class of majority functions. Here we prove a lower bound of Ω(2n/n) on the
approximate rank, which is the best of our three constructions.

We start by analyzing the �1 norm of the Fourier spectrum of the majority
function.

Theorem 4.7. The majority function MAJn : {−1, 1}n → {−1, 1} satisfies

‖M̂AJn‖1 = Θ

(
2n/2√
n

)

.



594 Klivans & Sherstov cc 19 (2010)

The tight estimate in Theorem Theorem 4.7 is an improvement on an earlier
lower bound of Ω(2n/2/n) due to Linial et al. (2007).

Proof of Theorem Theorem 4.7. Since ‖M̂AJn‖1 ≥ ‖M̂AJn−1‖1, we may
assume without loss of generality that n is odd. Bernasconi (1998) showed that
for an odd integer n = 2m+1, the even-order Fourier coefficients of MAJn are
zero, whereas the Fourier coefficients of MAJn of odd order 2i+1 have absolute
value

4−m

(
2i

i

)(
2m− 2i

m− i

)(
m

i

)−1

.

Summing over all Fourier coefficients of odd order, we obtain

‖M̂AJn‖1 = 4−m

m∑

i=0

(
2i

i

)(
2m− 2i

m− i

)(
m

i

)−1(
2m+ 1

2i+ 1

)

= 4−m

(
2m

m

) m∑

i=0

2m+ 1

2i+ 1

(
m

i

)

= Θ

(
2n/2√
n

)

,

as claimed. �

Theorem 4.8 (Approximate rank of majority functions). Let C denote the
concept class of majority functions, C = {MAJn(±x1, . . . ,±xn)}. Then

rankc/√n(C) ≥ Ω(2n/n)

for a sufficiently small absolute constant c > 0. Also,

rank1/3(C) = 2Ω(n/ log n) .

Proof. The characteristic matrix of C is M = [MAJn(x ⊕ y)]x,y. Taking
ε = c/

√
n for a suitably small constant c > 0, we obtain:

rankc/√n(M) ≥
(

‖M‖c/
√
n

Σ

(1 + c/
√
n)2n

)2

by Lemma Lemma 3.6

≥ 1

4

(

‖M̂AJn‖1 −
c2n/2√

n

)2

by Lemma Lemma 2.3

≥ Ω

(
2n

n

)

by Theorem Theorem 4.7 .
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Finally,

rank1/3(C) ≥
[
rankc/√n(C)

]1/O(log n) ≥ 2Ω(n/ logn)

by Corollary Corollary 3.5. �

5. Approximate rank versus SQ dimension

This section relates the approximate rank of a concept class C to its SQ di-
mension, a fundamental quantity in learning theory. In short, we prove that
the SQ dimension is a lower bound on the approximate rank, and that the gap
between the two quantities can be exponential. A starting point in our analysis
is the relationship between the SQ dimension of C and �2-norm approximation
of C, which might be of some independent interest.

Theorem 5.1 (SQ dimension and �2 approximation).Let C be a concept class,
and let μ be a distribution over {−1, 1}n. Suppose that there exist functions
φ1, . . . , φr : {−1, 1}n → R such that each f ∈ C has

E
x∼μ

⎡

⎣

(

f(x)−
r∑

i=1

αiφi(x)

)2
⎤

⎦ ≤ ε

for some reals α1, . . . , αr. Then

r ≥ (1− ε)d−
√
d ,

where d = sqdimμ(C).

Proof. By definition of the SQ dimension, there exist f1, . . . , fd ∈ C with
|Eμ [fi · fj] | ≤ 1/d for all i 	= j. For simplicity, assume that μ is a distribution
with rational weights (extension to the general case is straightforward). Then
there is an integer k ≥ 1 such that each μ(x) is an integral multiple of 1/k.
Construct the d× k sign matrix

M =
[
fi(x)
]
i,x

,

whose rows are indexed by the functions f1, . . . , fd and whose columns are in-
dexed by inputs x ∈ {−1, 1}n (a given input x indexes exactly kμ(x) columns).
It is easy to verify that MMT = [kEμ [fi · fj]]i,j, and thus

(5.2) ‖MMT − k · I‖F < k .
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The existence of φ1, . . . , φr implies the existence of a rank-r real matrix A with
‖M −A‖2F ≤ εkd. On the other hand, the Hoffman–Wielandt inequality (The-
orem Theorem 2.2) guarantees that ‖M − A‖2F ≥

∑d
i=r+1 σi(M)2. Combining

these two inequalities yields:

εkd ≥
d∑

i=r+1

σi(M)2 =
d∑

i=r+1

σi(MMT)

≥ k(d− r)−
d∑

i=r+1

|σi(MMT)− k|

≥ k(d− r)−

√
√
√
√

d∑

i=r+1

(
σi(MMT)− k

)2 √
d− r by Cauchy–Schwarz

≥ k(d− r)− ‖MMT − k · I‖F
√
d− r by Hoffman–Wielandt

≥ k(d− r)− k
√
d by ((5.2)) .

We have shown that εd ≥ (d − r) −
√
d, which is precisely what the theorem

claims. To extend the proof to irrational distributions μ, one considers a se-
quence of rational distributions that converges to μ. �

We are now in a position to relate the SQ dimension to the approximate
rank.

Theorem 5.3 (SQ dimension vs. approximate rank).Let C be a concept class.
Then for 0 ≤ ε < 1,

(5.4) rankε(C) ≥ (1− ε2) sqdim(C)−
√

sqdim(C) .

Moreover, there exists a concept class A with

sqdim(A) ≤ O(n2) ,

rank1/3(A) ≥ 2Ω(n/ logn) .

Proof. Let r = rankε(C). Then there are functions φ1, . . . , φr such that each
f ∈ C has ‖f −

∑r
i=1 αiφi‖∞ ≤ ε for some reals α1, . . . , αr. As a result,

E
μ

⎡

⎣

(

f −
r∑

i=1

αiφi

)2
⎤

⎦ ≤ ε2
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for every distribution μ. By Theorem Theorem 5.1,

r ≥ (1− ε2) sqdimμ(C)−
√
sqdimμ(C) .

Maximizing over μ establishes ((5.4)).
To prove the second part, let A = {MAJn(±x1, . . . ,±xn)}. Theorem The-

orem 4.8 shows that A has the stated approximate rank. To bound its SQ
dimension, note that each function in A can be pointwise approximated within
error 1 − 1/n by a linear combination of the functions x1, . . . , xn. Therefore,
((5.4)) implies that sqdim(A) ≤ O(n2). �

Remark. It was shown earlier (Sherstov 2008b) that every concept class C
obeys

lim
ε↗1

rankε(C) ≥
√

1

2
sqdim(C) .

This lower bound is stronger than ((5.4)) for all sufficiently large ε < 1. On
the other hand, the proof in this paper gives a quadratically better bound for
constant 0 < ε < 1 and is technically simpler.

6. Related work

Approximate rank and dimension complexity. Dimension complexity
is a fundamental and well-studied notion (Forster 2002; Forster & Simon 2006;
Linial et al. 2007). It is defined for a sign matrix M as

dc(M) = min
A

{
rank(A) : A real, AijMij > 0 for all i, j

}
.

In words, the dimension complexity of M is the smallest rank of a real matrix A
that has the same sign pattern as M. Thus, rankε(M) ≥ dc(M) for each sign
matrix M and 0 ≤ ε < 1. The dimension complexity of a concept class is
defined as the dimension complexity of its characteristic matrix.

Ben-David et al. (2003) showed that almost all concept classes with con-
stant VC dimension have dimension complexity 2Ω(n); recall that dc(C) ≤ 2n

always. No lower bounds were known for any explicit concept class until the
breakthrough work of Forster (2002), who showed that any sign matrix with
small spectral norm has high dimension complexity. Several extensions and re-
finements of Forster’s method were proposed in subsequent work (Forster et al.
2001; Forster & Simon 2006; Linial et al. 2007).
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However, this rich body of work is not readily applicable to our problem.
The three matrices that we study have trivial dimension complexity, and we de-
rive lower bounds on the approximate rank that are exponentially larger. Fur-
thermore, in Theorem Theorem 1.3 we are able to exhibit an explicit concept
class with approximate rank Ω(2n/n), whereas the highest dimension complex-
ity proved for any explicit concept class is Forster’s lower bound of 2n/2. The
key to our results is to bring out, through a variety of techniques, the additional
structure in approximation that is not present in sign-representation.

Approximate rank and rigidity. Approximate rank is also closely related
to ε-rigidity, a variant of matrix rigidity introduced by Lokam (2001). For a
fixed real matrix A, its ε-rigidity function is defined as

RA(r, ε) = min
B

{
weight(A−B) : rank(B) ≤ r, ‖A−B‖∞ ≤ ε

}
,

where weight(A − B) stands for the number of nonzero entries in A − B. In
words, RA(r, ε) is the minimum number of entries of A that must be perturbed
to reduce its rank to r, provided that the perturbation to any single entry is at
most ε. We immediately have:

rankε(A) = min
{
r : RA(r, ε) ≤ mn

}
(A ∈ R

m×n) .

As a result, lower bounds on ε-rigidity translate into lower bounds on ap-
proximate rank. In particular, ε-rigidity is a more complicated and nuanced
quantity. Nontrivial lower bounds on ε-rigidity are known for some special ma-
trix families, most notably the Hadamard matrices (Kashin & Razborov 1998;
Lokam 2001). Unfortunately, these results are not applicable to the matrices
in our work (see Section Section 4). To obtain near-optimal lower bounds on
approximate rank, we use specialized techniques that target approximate rank
without attacking the harder problem of ε-rigidity.

Recent progress. In recent work on communication complexity, a technique
called the pattern matrix method (Sherstov 2010) was developed that converts
lower bounds on the approximate degree of Boolean functions into lower bounds
on the communication complexity of the corresponding Boolean matrices. To
illustrate, fix an arbitrary function f : {−1, 1}n → {−1, 1} and let Af be the
matrix whose columns are each an application of f to some subset of the vari-
ables x1, x2, . . . , x4n. The pattern matrix method shows that Af has bounded-
error communication complexity Ω(d), where d is the approximate degree of f,
i.e., the least degree of a real polynomial p with ‖f − p‖∞ ≤ 1/3. In the same
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way, the pattern matrix method converts lower bounds on the approximate
degree of Boolean functions into lower bounds on the approximate rank of the
corresponding matrices. These new results generalize and strengthen the lower
bounds in Section Section 4.

In another paper (Sherstov 2008a), existence was proved for a concept
class C of functions {−1, 1}n → {−1, 1} such that sqdim(C) = O(1) but
rank1/3(C) ≥ dc(C) ≥ 2(1−ε)n, for any desired constant ε > 0. This separation
is essentially optimal and improves on Theorem Theorem 5.3 of this paper,
although the new concept class is no longer explicitly given.

7. Conclusions and open problems

This paper studies the ε-approximate rank of a concept class C, defined as
the minimum size of a set of features whose linear combinations can pointwise
approximate each f ∈ C within ε. Our main results give exponential lower
bounds on the approximate rank even for the simplest concept classes. These
in turn establish exponential lower bounds on the running time of the known
algorithms for distribution-free agnostic learning. An obvious open problem is
to develop an approach to agnostic learning that does not rely on pointwise
approximation by a small set of features.

Another open problem is to prove strong lower bounds on the dimension
complexity and SQ dimension of natural concept classes. We have shown that

rank1/3(C) ≥
1

2
sqdim(C)−O(1)

for each concept class C, and it is further clear that rankε(C) ≥ dc(C). In
this sense, lower bounds on the approximate rank are prerequisites for lower
bounds on dimension complexity and the SQ dimension. Of particular inter-
est in this respect are polynomial-size DNF formulas and, more broadly, AC0

circuits. While this paper obtains strong lower bounds on their approximate
rank, it remains a hard open problem to prove an exponential lower bound on
their SQ dimension. An exponential lower bound on the dimension complex-
ity of polynomial-size DNF formulas has recently been obtained (Razborov &
Sherstov 2008).
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A. Discrepancy and approximate rank

The purpose of this section is to prove the relationship between the discrepancy
and approximate rank needed in Section Section 4. We start with several defi-
nitions and auxiliary results due to Linial et al. (2007) and Linial & Shraibman
(2009a,b).

For a real matrix A, let ‖A‖1→2 denote the largest Euclidean norm of a
column of A, and let ‖A‖2→∞ denote the largest Euclidean norm of a row of A.
Define

γ2(A) = min
XY=A

‖X‖2→∞‖Y ‖1→2 .

For a sign matrix M, its margin complexity is defined as

mc(M) = min
{
γ2(A) : A real, AijMij ≥ 1 for all i, j

}
.

Lemma A.1 (Linial et al. 2007, Lem. 4.2). Let A be a real matrix. Then

γ2(A) ≤
√
rank(A) · ‖A‖∞ .

Theorem A.2 (Linial & Shraibman 2009a, Thm. 3.1). Let M be a sign ma-
trix. Then

mc(M) ≥ 1

8 disc(M)
.

Putting these pieces together yields the desired result:

Lemma Lemma 3.7 (Restated from Sec. Section 3.2). Let M be a sign ma-
trix and 0 ≤ ε < 1. Then

rankε(M) ≥ 1− ε

1 + ε
· 1

64 disc(M)2
.
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Proof. Let A be any real matrix with ‖A−M‖∞ ≤ ε. Put B = 1
1−ε

A. We
have:

rank(A) = rank(B)

≥ γ2(B)2

‖B‖∞
by Lemma Lemma A.1

≥ mc(M)2

‖B‖∞
≥ 1

‖B‖∞
· 1

64 disc(M)2
by Theorem Theorem A.2

≥ 1− ε

1 + ε
· 1

64 disc(M)2
,

as claimed. �
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