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LOWER BOUNDS ON THE RANDOMIZED

COMMUNICATION COMPLEXITY OF

READ-ONCE FUNCTIONS
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Abstract. We prove lower bounds on the randomized two-party com-
munication complexity of functions that arise from read-once boolean
formulae. A read-once boolean formula is a formula in propositional
logic with the property that every variable appears exactly once. Such
a formula can be represented by a tree, where the leaves correspond to
variables, and the internal nodes are labeled by binary connectives. Un-
der certain assumptions, this representation is unique. Thus, one can
define the depth of a formula as the depth of the tree that represents it.
The complexity of the evaluation of general read-once formulae has at-
tracted interest mainly in the decision tree model. In the communication
complexity model many interesting results deal with specific read-once
formulae, such as DISJOINTNESS and TRIBES. In this paper we use
information theory methods to prove lower bounds that hold for any
read-once formula. Our lower bounds are of the form n(f)/cd(f), where
n(f) is the number of variables and d(f) is the depth of the formula,
and they are optimal up to the constant in the base of the denominator.
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1. Introduction

A landmark result in the theory of two-party communication complexity is
the linear lower bound on the randomized communication complexity of set-
disjointness proved by Kalyanasundaram & Schnitger (1992). Razborov (1992)
gave a simplified proof, and Bar-Yossef, Jayram, Kumar & Sivakumar (2004)
gave an elegant information theory proof, building on the informational com-
plexity framework of Chakrabarti, Shi, Wirth & Yao (2001). The first appli-
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cation of information-theoretic methods in communication complexity lower
bounds can be traced to Ablayev (1996).

Let us define a two-party boolean function to be a boolean function f to-
gether with a partition of its variables into two parts. We usually refer to
the variables in the two classes as x and y and write f(x, y) for the function.
A two-party function is associated with the following communication problem:
Given that Alice gets x and Bob gets y, compute f(x, y).

If f is any n-variate boolean function and g is a 2-variate boolean func-
tion, we define f g to be the two-party function taking two n bit strings x
and y and defined to be f g(x, y) = f(g(x1, y1), . . . , g(xn, yn)). The disjointness
communication problem can be reformulated as a boolean function computa-
tion problem: Alice gets x ∈ {0, 1}n, Bob gets y ∈ {0, 1}n and they want to
compute (ORn)

∧(x, y), where ORn is the n-wise OR function.

Jayram, Kumar & Sivakumar (2003), extended the techniques for disjoint-
ness in order to prove a linear lower bound for the randomized complexity
on the function (TRIBESs,t)

∧ where TRIBESs,t is the function taking input
(zi,j : 1 ≤ i ≤ s, 1 ≤ j ≤ t) and equal to TRIBESs,t(z) =

∧s
i=1

∨t
j=1 zi,j.

The functions ORn and TRIBESs,t are both examples of read-once boolean
functions. These are functions that can be represented by boolean formulae
involving ∨ and ∧, in which each variable appears (possibly negated) at most
once. Such a formula can be represented by a rooted ordered tree, with nodes
labeled by ∨ and ∧, and the leaves labeled by variables. It is well known (see
e.g. Heiman, Newman & Wigderson 1993) that for any read-once function f ,
f has a unique representation (which we call the canonical representation of
f) as a tree in which the labels of nodes on each root-to-leaf path alternate
between ∧ and ∨. The depth of f , d(f), is defined to be the maximum depth
of a leaf in the canonical representation, and n(f) is the number of variables.

We want to consider communication problems derived from arbitrary read-
once formulae. Based on the examples of ORn and TRIBESs,t mentioned above
it seems natural to consider the function f∧, but in the case that f is the n-wise
AND, f∧ trivializes (and can be computed with a two-bit protocol), and the
more interesting function to consider is f∨.

Denote by Rδ(f) the δ-error randomized communication complexity of f
(see the paragraph on “communication complexity” in Section 2 for more de-
tails). We prove that for any read-once function f , at least one of the functions
f∨ and f∧ has high δ-error communication complexity.
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Theorem 1.1. For any read-once function f with d(f) ≥ 1,

max
{
Rδ(f

∧), Rδ(f
∨)
}
≥ (1− 2

√
δ) · n(f)

8d(f)
.

This result is, in some sense, best possible (up to the constant 8 in the
base of d(f)). That is, there is a constant c > 1, such that if f is given by
a t-uniform tree of depth d (in which each non-leaf node has t children and
all leaves are at the same depth, and so n = td), then f∧ and f∨ both have
randomized communication protocols using O(n(f)/cd(f)) bits. This follows
from the fact (see Saks & Wigderson 1986) that f has a randomized decision
tree algorithm using an expected number O(n(f)/cd(f)) of queries, and any
decision tree algorithm for f is easily converted to a communication protocol
for f∨ or f∧ having comparable complexity. In fact, for t-uniform trees, we can
improve the lower bound.

Theorem 1.2. For any read-once function f that can be represented by a
t-uniform AND/OR tree of depth d ≥ 1,

max
{
Rδ(f

∧), Rδ(f
∨)
}
≥ (1− 2

√
δ) · t(t− 1)d−1

4d
.

Independently, Jayram, Kopparty & Raghavendra (2009), also using the
informational complexity approach, obtained the weaker bound (1− 2

√
δ) ·

n(f)/(d(f)!16d(f)).
As a simple corollary of Theorem 1.1 we obtain a similar lower bound for

the more general class of read-once threshold functions. Recall that a t-out-of-k
threshold gate is the boolean function with k inputs that is one if the sum of the
inputs is at least t. A threshold tree is a rooted tree whose internal nodes are
labeled by threshold gates and whose leaves are labeled by distinct variables
(or their negations). A read-once threshold function is a function representable
by a threshold tree. We prove the following bound.

Theorem 1.3. For any read-once threshold function f with d(f) ≥ 1,

max
{
Rδ(f

∧), Rδ(f
∨)
}
≥ (1− 2

√
δ) · n(f)

16d(f)
.

This result should be compared with the result of Heiman, Newman &
Wigderson (1993) that every read-once threshold function f has randomized
decision tree complexity at least n(f)/2d(f). A lower bound on communication
complexity of f∨ or f∧ gives the same lower bound on decision tree complexity
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for f , however, the implication goes only one way, since communication proto-
cols for f∨ and f∧ do not have to come from a decision tree algorithm for f ,
and can be much faster. (For example, (ANDn)

n is equal to AND2n that has
randomized decision tree complexity Θ(n) but communication complexity 2.)
Thus, up to the constant in the base of the denominator, our result can be
viewed as a strengthening of the decision tree lower bound.

Our results are interesting only for formulae of small depth. For example,
for f that is represented by a binary uniform tree n(f)/8d(f) < 1, while there is
a simple

√
n(f) lower bound that follows by embedding either a

√
n(f)-wise

OR or a
√

n(f)-wise AND. Binary uniform trees require Ω(
√
n(f)) communi-

cation even for quantum protocols. This is because
√

n(f)-wise PARITY can
be embedded in such a tree (see Farhi, Goldstone & Gutmann 2008), and then
the bound follows from the lower bound for the generalized inner product func-
tion (see Cleve, Dam, Nielsen & Tapp 1998 and Kremer 1995). This can also
be shown by methods of Lee, Shraibman & Zhang (2009), which seem more
promising towards a lower bound on the quantum communication complexity
of arbitrary AND/OR trees.

Finally, we consider the more general setting, where f(x, y) is a two-party
read-once formula with its variables partitioned arbitrarily between Alice and
Bob. This situation includes the case where the function is of the form f∨ or
f∧ and the variable partition is the natural one indicated earlier. As the case
f = ANDn shows, we don’t have a lower bound on Rδ(f) of the form n(f)/cd(f).
However we can get an interesting general lower bound.

Consider the deterministic simultaneous message model, which is perhaps
the weakest non-trivial communication complexity model. In this model Alice
and Bob are trying to communicate f(x, y) to a third party, the referee. Alice
announces some function value mA(x) and simultaneously Bob announces a
function value mB(y), and together mA(x) and mB(y) are enough for the ref-
eree to determine f(x, y). The deterministic simultaneous message complexity,
denoted D||(f), is the minimum number of bits (in worst case) that must be
sent by Alice and Bob so that the referee can evaluate f . As a consequence of
Theorem 2.4 we prove the following.

Theorem 1.4. For any two-party read-once function f with d(f) ≥ 1,

Rδ(f) ≥ (1− 2
√
δ) · D||(f)

d(f) · 8d(f)−1
.
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2. Notation, terminology, and preliminaries

In this section we establish notation and terms that we will use to describe the
basic objects that we will be dealing with. We list standard definitions and
state some basic inequalities in information theory. We discuss communication
complexity and set up its connection with information theory.

Definitions pertaining to rooted trees. All trees in this paper are rooted.
For a tree T we write VT for the set of vertices, LT for the set of leaves,
NT = |LT | for the number of leaves, and dT for the depth of T . For a vertex u,
path(u) is the set of vertices on a path from u to the root (including both the
root and u).

We write T = T1 ◦ · · · ◦ Tk when, for each j ∈ {1, . . . , k}, Tj is the subtree
rooted at the j-th child of the root of T .

A tree is called t-uniform if all its leaves are at the same depth d, and every
non-leaf node has exactly t children.

A tree is in standard form if there are no nodes with exactly one child. For
example, a standard binary tree is one where every internal node has exactly
two children.

A full binary subtree of a tree T is a binary tree in standard form that is
contained in T , contains the root of T , and whose leaf-set is a subset of the
leaf-set of T . Denote by FBST the set of full binary subtrees of T .

Definitions pertaining to boolean functions. We denote by [n] the set
{1, . . . , n} of integers. Let f : S1 × · · · × Sn → R be a function and suppose
that, for i ∈ [n], hi : Zi → Si. For H = 〈h1, . . . , hn〉, let fH : Z1×· · ·×Zn → R

denote the function defined by fH(z1, . . . , zn) = f(h1(z1), . . . , hn(zn)). When
hj = h for all j ∈ [n], we write fh = fH.

A tree circuit is a rooted tree in which every leaf corresponds to an input
variable (or its negation), and each gate comes from the set {AND,OR,NAND,
NOR}. We write fC for the function represented by a tree circuit C. An
AND/OR tree is a tree circuit with gates AND and OR. The tree circuit is
read-once if the variables occurring at leaves are distinct; all tree circuits in this
paper are assumed to be read-once. A Boolean function f is read-once if it can
be represented by a read-once tree circuit. The depth of a read-once function f ,
denoted d(f), is the minimum depth of a read-once tree circuit that computes
it. As mentioned in the introduction, it is well-known that every read-once
function f has a unique representation, called the canonical representation of
f , whose tree is in standard form and such that the gates along any root to
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leaf path alternate between ∧ and ∨. It is easy to show that the depth of
the canonical representation is d(f), that is, the canonical representation has
minimum depth over all read-once tree circuits that represent f .

If T is any rooted tree, we write fT for the boolean function obtained by
associating a distinct variable xj to each leaf j and labeling each gate by a
NAND gate. We use symbol ‘�’ for NAND.

Random variables and distributions. We consider discrete probability
spaces (Ω, ζ), where Ω is a finite set and ζ is a nonnegative valued function on
Ω summing to 1. If (Ω1, ζ1), . . . , (Ωn, ζn) are such spaces, their product is the
space (Λ, ν), where Λ = Ω1 × · · · ×Ωn is the Cartesian product of sets, and for
ω = (ω1, . . . , ωn) ∈ Λ, ν(ω) =

∏n
j=1 ζj(ωj). In the case that all of the (Ωi, ζi)

are equal to a common space (Ω, ζ) we write Λ = Ωn and ν = ζn.
We use uppercase for random variables, as in X, Y,D, and write in bold

those that represent vectors of random variables. For a variable X with range
X that is distributed according to a probability distribution μ, i.e. Pr[X = x] =
μ(x), we write X ∼ μ. If X is uniformly distributed in X , we write X ∈R X .

Unless otherwise stated, all random variables take on values from finite sets.

Information theory. Let X, Y, Z be random variables on a common proba-
bility space, taking on values, respectively, from finite sets X ,Y ,Z. Let A be
any event. The entropy of X, the conditional entropy of X given A, and the
conditional entropy of X given Y are respectively (we use log for log2)

H(X) = −
∑

x∈X
Pr[X = x] · log Pr[X = x] ,

H(X |A) = −
∑

x∈X
Pr[X = x |A] · log Pr[X = x |A] ,

H(X |Y ) =
∑

y∈X
Pr[Y = y] · H(X |Y = y) .

The mutual information between X and Y is

I(X ; Y ) = H(X)− H(X |Y ) = H(Y )− H(Y |X)

and the conditional mutual information of X and Y given Z is

I(X ; Y |Z) = H(X |Z)− H(X |Y, Z)
= H(Y |Z)− H(Y |X,Z)

=
∑

z∈Z
Pr[Z = z] · I(X ; Y |Z = z) .
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We will need the following facts about the entropy. (See Cover & Thomas
2006, Chapter 2, for proofs and more details.)

Proposition 2.1. Let X, Y, Z be random variables.

(i) H(X) ≥ H(X |Y ) ≥ 0.

(ii) If X is the range of X, then H(X) ≤ log |X |.

(iii) H(X, Y ) ≤ H(X) + H(Y ) with equality if and only if X and Y are in-
dependent. This holds for conditional entropy as well. H(X, Y |Z) ≤
H(X |Z)+H(Y |Z) with equality if and only if X and Y are independent
given Z.

The following proposition makes mutual information useful in proving direct-
sum theorems.

Proposition 2.2 (Bar-Yossef, Jayram, Kumar & Sivakumar 2004). Let Z =
〈Z1, . . . ,Zn〉,Π,D be random variables. If the Zj’s are independent given D,
then I(Z ; Π |D) ≥

∑n
j=1 I(Zj ; Π |D).

Proof. By definition I(Z ; Π |D) = H(Z |D) − H(Z |Π,D). By Proposi-
tion 2.1(iii), H(Z |D) =

∑
j H(Zj |D) and H(Z |Π,D) ≤

∑
j H(Zj |Π,D). The

result follows. �

Communication complexity. In this work we will be dealing with the
two-party private-coin randomized communication model, introduced by Yao
(1979). Alice is given x ∈ X and Bob y ∈ Y . They wish to compute a function
f : X × Y → {0, 1} by exchanging messages according to a protocol Π. Let the
random variable Π(x, y) denote the transcript of the communication on input
〈x, y〉 (where the probability is over the random coins of Alice and Bob) and
Πout(x, y) the outcome of the protocol. We call Π a δ-error protocol for f if,
for all 〈x, y〉, Pr[Πout(x, y) = f(x, y)] ≥ 1− δ. The communication cost of Π is
max |Π(x, y)|, where the maximum is over all input pairs 〈x, y〉 and over all coin
tosses of Alice and Bob. The δ-error randomized communication complexity of
f , denoted Rδ(f), is the cost of the best δ-error protocol for f . (See Kushilevitz
& Nisan 2006 for more details.)
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Communication complexity lower bounds via information theory.
The informational complexity paradigm, introduced by Chakrabarti et al.
(2001), and used in Bar-Yossef et al. (2002, 2004); Chakrabarti et al. (2003);
Jayram et al. (2003); Saks & Sun (2002), provides a way to prove lower bounds
on communication complexity via information theory. We are given a two-party
function f and we want to show that any δ-error randomized communication
protocol Π for f requires high communication. We introduce a probability dis-
tribution over the inputs to Alice and Bob. We then analyze the behavior of Π
when run on inputs chosen randomly according to the distribution. The infor-
mational complexity is the mutual information of the string of communicated
bits (the transcript of Π) with Alice and Bob’s inputs, and provides a lower
bound on the amount of communication.

More precisely, let Ω = (Ω, ζ) be a probability space over which are defined
random variables X = 〈X1, . . . , Xn〉 and Y = 〈Y1, . . . , Yn〉 representing Alice
and Bob’s inputs. The information cost of a protocol Π with respect to ζ is
defined to be I(X,Y ; Π(X,Y)), where Π(X,Y) is a random variable following
the distribution of the communication transcripts when the protocol Π runs on
input 〈X,Y〉 ∼ ζ. The δ-error informational complexity of f with respect to
ζ, denoted ICζ,δ(f), is minΠ I(X,Y ; Π(X,Y)), where the minimum is over all
δ-error randomized protocols for f .

Mutual information may be easier to handle if one conditions on the ap-
propriate random variables. To that end, Bar-Yossef et al. (2004) introduced
the notion of conditional information cost of a protocol Π with respect to an
auxiliary random variable. Let (Ω, ζ) be as above, and let D be an additional
random variable defined on Ω. The conditional information cost of Π condi-
tioned on D with respect to ζ is defined to be I(X,Y ; Π(X,Y) |D), where
Π(X,Y) is as above and (〈X,Y〉,D) ∼ ζ. The δ-error conditional informa-
tional complexity of f conditioned on D with respect to ζ, denoted ICζ,δ(f |D),
is minΠ I(X,Y ; Π(X,Y) |D), where the minimum is over all δ-error random-
ized protocols for f .

Conditional informational complexity provides a lower bound on random-
ized communication complexity, as shown by the following calculation. By
definition of mutual information I(X,Y ; Π(X,Y) |D) = H(Π(X,Y) |D) −
H(Π(X,Y) |X,Y,D). Applying in turn parts (i) and (ii) of Proposition 2.1
gives that, for any δ-error protocol Π, I(X,Y ; Π(X,Y) |D) ≤ H(Π(X,Y)) ≤
Rδ(f).

Communication problems associated with boolean functions. If f is
an arbitrary n-variate boolean function, and g is a 2-variate boolean func-
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tion, we denote by f g the two-party boolean function given by f g(x, y) =
f(g(x1, y1), . . . , g(xn, yn)). Our goal is to prove Theorems 1.1 and 1.2, which
say that for any read-once boolean function f , either f∨ or f∧ has high ran-
domized communication cost. To do this it will be more convenient to consider
f� for functions f that come from trees using only NAND gates. We first prove
the following lemma.

For f1, f2 : {0, 1}n → {0, 1}, we write f1 ≡ f2 when (∃σ ∈ {0, 1}n)(∀x ∈
{0, 1}n)(f1(x) = f2(σ ⊕ x)), where σ ⊕ x is the bitwise XOR of σ and x.

Lemma 2.3. Let C be an AND/OR tree in canonical form and let T be the
underlying tree. Then, fC ≡ fT when the root of C is labeled by an OR gate,
and fC ≡ ¬fT when the root of C is labeled by an AND gate.

Proof. We proceed by induction on dT . When dT = 1, the case with
an AND at the root is trivial. For OR we observe that fC(x) =

∨
j xj =

¬
∧n

j ¬xj = fT (¬x). Now suppose dT > 1. Let C = C1 ∧ · · · ∧ Ck and recall
that C is in canonical form; thus, each Cj has an OR at the root. It follows by
induction that fC(x) ≡

∧
j fTj

= ¬fT (x). If C = C1 ∨ · · · ∨ Ck, then we have
fC =

∨
j fCj

= ¬
∧

j ¬fCj
≡ ¬

∧
j fTj

= fT . �

Our lower bounds follow from the following main theorem.

Theorem 2.4.

(i) Let T be a tree in standard form with dT ≥ 1.

Rδ(f
�
T ) ≥ (2− 4

√
δ) · NT

8dT
.

(ii) If T is, in addition, a t-uniform tree of depth dT ≥ 1, then

Rδ(f
�
T ) ≥ (1− 2

√
δ) · t(t− 1)dT−1

4dT
.

To deduce Theorems 1.1 and 1.2 we use the following proposition.

Proposition 2.5. Let f be a read-once formula. Then there is a tree T in
standard form such that (1) Rδ(f

�
T ) ≤ max{Rδ(f

∧), Rδ(f
∨)}, (2) NT ≥ n(f)/2,

(3) dT ≤ d(f). Moreover, if the canonical representation of f is a uniform tree,
NT = n(f).
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Proof. Let C be the representation of f in canonical form. Define tree
circuits C1 and C2 as follows. To obtain C1 delete all leaves that feed into ∧
gates, and introduce a new variable for any node that becomes a leaf. Let C1

be the canonical form of the resulting tree. Let C2 be obtained similarly by
deleting all leaves that feed into ∨ gates. Let f1 and f2, respectively, be the
functions computed by C1 and C2. Let T1 and T2 be the trees underlying C1

and C2 respectively. We take T to be whichever of T1 and T2 has more leaves.
Clearly conditions (2) and (3) above will hold. If the underlying tree of C is
uniform, then one of C1, C2 will have n(f) leaves; so in the uniform case we
have NT = n(f). Condition (1) follows immediately from the following claim.

Claim 2.6. (1) Rδ(f
∧) ≥ Rδ(f

∧
1 ). (2) Rδ(f

∧
1 ) = Rδ(f

�
T1
). (3) Rδ(f

∨) ≥
Rδ(f

∨
2 ). (4) Rδ(f

∨
2 ) = Rδ(f

�
T2
).

To prove the first part of the claim, it suffices to observe that any communica-
tion protocol for f∧ can be used as a protocol for f∧

1 . In particular, given an
input (x, y) to f∧

1 Alice and Bob can – without any communication – construct
input (x′, y′) to f∧ such that f∧(x′, y′) = f∧

1 (x, y). This is done as follows. If
j is a leaf of C that is also a leaf of C1, then Alice sets x′

j = xj and Bob sets
y′j = yj. Suppose j is a leaf of C that is not a leaf of C1. If the parent p(j) of j
is a leaf of C1, then Alice sets x′

j = xp(j) and Bob sets y′j = yp(j). If p(j) is not a
leaf of C1, then Alice sets x′

j = 1 and Bob sets y′j = 1. It is easy to verify that
f∧(x′, y′) = f∧

1 (x, y). The second part of the claim follows from Lemma 2.3.
The proofs of parts 3 and 4 follow similarly. �

3. The methods of Bar-Yossef, Jayram, Kumar &
Sivakumar (2004)

Bar-Yossef, Jayram, Kumar & Sivakumar introduced new techniques for prov-
ing lower bounds on information cost. In this section we summarize their
method and list the results and definitions from Bar-Yossef et al. (2004) that
we will use.

Their methodology has two main parts. In the first part they make use of
Proposition 2.2 to obtain a direct-sum theorem for the informational complex-
ity of the function. This works particularly well with functions of the form
fh(x,y) = f(h(x1, y1), . . . , h(xn, yn)). Before stating the direct-sum theorem,
we need some definitions.

Definition 3.1 (Sensitive input). Consider f : S1 × · · · × Sn → R, a family
of functions H = 〈hj : Zj → Sj〉j∈[n], and z = 〈z1, . . . , zn〉 ∈ Z1 × · · · ×Zn. For
j ∈ [n], u ∈ Zj, let z[j, u] = 〈z1, . . . , zj−1, u, zj+1, . . . , zn〉. We say that z is
sensitive for fH if (∀j ∈ [n])(∀u ∈ Zj)(f

H(z[j, u]) = hj(u)).
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For an example, consider the function DISJn(x,y) =
∨n

j=1(xj ∧ yj). Any
input 〈x,y〉 such that, for all j ∈ [n], xj ∧ yj = 0, is sensitive.

Definition 3.2 (Collapsing distribution, Bar-Yossef et al. 2004). Let f,H be
as in Definition 3.1. Call a distribution μ over Z1 × · · · ×Zn collapsing for fH,
if every z in the support of μ is sensitive.

Theorem 3.3 (Bar-Yossef et al. 2004). Let f : Sn → {0, 1}, and h : X ×Y →
S. Consider random variables X = 〈X1, . . . , Xn〉 ∈ X n,Y = 〈Y1, . . . , Yn〉 ∈
Yn,D = 〈D1, . . . , Dn〉, and Z = 〈Z1, . . . , Zn〉, where Zj = 〈Xj, Yj, Dj〉 for
j ∈ [n].

Assume that {Zj}j∈[n] is a set of mutually independent variables, and Zj ∼ ζ
for all j ∈ [n] (thus, Z ∼ ζn). If, for all j ∈ [n], Xj and Yj are independent
given Dj, and the marginal distribution of (X,Y) is a collapsing distribution
for fh, then ICζn,δ(f

h |D) ≥ n · ICζ,δ(h |D).

Defining a distribution ζ satisfying the two requirements asked in The-
orem 3.3, moves the attention from ICζn,δ(f

h |D) to ICζ,δ(h |D). For ex-
ample, in Bar-Yossef et al. (2004) it is shown how to define ζ when fh is
DISJn(x,y) =

∨n
j=1(xj ∧ yj). Then one only has to deal with ICζ,δ(h |D),

where h(x, y) = x ∧ y.
The second part of the method is a framework for proving lower bounds on

information cost. The first step consists of a passage from mutual information
to Hellinger distance.

Definition 3.4 (Hellinger distance). The Hellinger distance between proba-
bility distributions P and Q on a domain Ω is defined by

h(P,Q) =
√

1
2

∑
ω∈Ω(

√
Pω −

√
Qω)

2 .

We write h2(P,Q) for (h(P,Q))2.

Lemma 3.5 (Bar-Yossef et al. 2004). Let Φ(z1), Φ(z2), and Z ∈R {z1, z2} be
random variables. If Φ(z) is independent of Z for each z ∈ {z1, z2}, then
I(Z ; Φ(Z)) ≥ h2(Φ(z1),Φ(z2)).

The following proposition states useful properties of Hellinger distance.
They reveal why Hellinger distance is better to work with than mutual in-
formation.
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Proposition 3.6 (Properties of Hellinger distance, Bar-Yossef et al. 2004).

(i) (Triangle inequality.) Let P,Q, and R be probability distributions over
domain Ω; then h(P,Q) + h(Q,R) ≥ h(P,R). It follows that the square
of the Hellinger distance satisfies a weak triangle inequality:

h2(P,Q) + h2(Q,R) ≥ 1
2
h2(P,R) .

(ii) (Cut-and-paste property.) For any randomized protocol Π and for any
x, x′ ∈ X and y, y′ ∈ Y ,

h
(
Π(x, y),Π(x′, y′)

)
= h

(
Π(x, y′),Π(x′, y)

)
.

(iii) (Pythagorean property.) For any randomized protocol Π and for any
x, x′ ∈ X and y, y′ ∈ Y ,

h2
(
Π(x, y),Π(x′, y)

)
+ h2

(
Π(x, y′),Π(x′, y′)

)
≤ 2 h2

(
Π(x, y),Π(x′, y′)

)
.

(iv) For any δ-error randomized protocol Π for a function f , and for any two
input pairs (x, y) and (x′, y′) for which f(x, y) �= f(x′, y′),

h2
(
Π(x, y),Π(x′, y′)

)
≥ 1− 2

√
δ.

After an application of Lemma 3.5 we are left with a sum of Hellinger
distance terms, which we need to lower bound. Applying properties (i)–(iii)
several times we can arrive at a sum of terms different than the ones we started
with. To obtain a lower bound we would like the final terms to include terms
to which Property 4 can be applied.

4. Read-once boolean formulae

Let T = T1◦· · ·◦Tn be a tree in standard form computing a function fT . A first
step towards simplifying the informational complexity of f�

T would be to apply
the following straightforward generalization of Theorem 3.3.

Theorem 4.1. Consider a function f : S1 × · · · × Sn → {0, 1}, a family of
functions H = 〈hj : Xj × Yj → Sj〉j∈[n], random variables X = 〈X1, . . . , Xn〉 ∈
X1 × · · · × Xn,Y = 〈Y1, . . . , Yn〉 ∈ Y1 × · · · × Yn,D = 〈D1, . . . , Dn〉, and
Z = 〈Z1, . . . , Zn〉, where Zj = 〈Xj, Yj, Dj〉 for j ∈ [n].

Assume that {Zj}j∈[n] is a set of mutually independent variables, and Zj ∼
ζj for all j ∈ [n] (thus, Z ∼ ζ1 · · · ζn). If, for all j ∈ [n], Xj and Yj are
independent given Dj, and the marginal distribution of (X,Y) is a collapsing
distribution for fH, then ICζ1···ζn,δ(f

H |D) ≥
∑n

j=1 ICζj ,δ(hj |Dj).
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One can apply Theorem 4.1 to the function f�
T , with f the n-bit NAND

and hj = fTj
, for j ∈ [n]. However, this won’t take us very far. The problem is

that if μ—the marginal distribution of 〈X,Y〉—is collapsing for fT , then the
support of μ is a subset of (fH)−1(0). Therefore, we will inherit for each subtree
a distribution μj with a support inside h−1

j (1). But the support of a collaps-

ing distribution should lie inside h−1
j (0). This means that we cannot apply

Theorem 4.1 repeatedly. This problem arose in Jayram, Kumar & Sivakumar
(2003) when studying the function TRIBESm,n(x,y) =

∧m
k=1 DISJn(xk,yk) =∧m

k=1

∨n
j=1(xkj∧ykj). Jayram et al. managed to overcome this problem by prov-

ing a more complicated direct-sum theorem for a non-collapsing distribution
for DISJ. Inspired by their idea, we show how to do the same for arbitrary
read-once boolean functions.

The information cost of a protocol Π that we will employ for our proof will
have the form I(X,Y ; Π(X,Y) |Γ,D), where random variables Γ and D are
auxiliary variables that will be used to define the distribution over the inputs.

4.1. Further definitions on trees. We proceed with definitions of objects
that will be needed to finally define a distribution ζ for (〈X,Y〉, 〈Γ,D〉), which
will give meaning to ICζ,δ(f

�
T |Γ,D) = minΠ I(X,Y ; Π(X,Y) |Γ,D).

Definition 4.2 (Valid coloring). For our purposes, a coloring of a tree T is a
partition of VT into two sets γ = 〈Wγ,Rγ〉. The vertices of Wγ are said to be
white and the vertices of Rγ are said to be red. A coloring is valid if it satisfies
the following conditions.

(i) The root is white.

(ii) A white node is either a leaf or exactly one of its children is red.

(iii) A red node is either a leaf or exactly two of its children are red.

Example. For a standard binary tree, a valid coloring paints all nodes on
some root-to-leaf path white and all the rest red. Thus, the number of valid
colorings equals the number of leaves.

Consider now a t-uniform tree T , colored properly by γ. Each white node
has exactly one red child that is the root of a red binary subtree. For t > 2 there
will be two kinds of white leaves: those that have no red nodes on the path that
connects them to the root, and those that have at least one red node on that
path. Notice that the union of a white leaf of the first kind, the corresponding
root-to-leaf path, and the red binary subtrees that are “hanging” from the



166 Leonardos & Saks cc 19 (2010)

white nodes on the path, form a full binary subtree S of T . Furthermore, the
restriction of γ on S, denoted γS, is a valid coloring for S.

Definitions related to colorings. We note some properties of valid color-
ings and give further definitions of related objects. Consider a tree T and a
valid coloring γ = 〈Wγ,Rγ〉.

(1) The red nodes induce a forest of binary trees in standard form called the
red forest.

(2) We can define a one-to-one correspondence between the trees in the red
forest and internal white nodes of T as follows. For each white node
w, its unique red child is the root of one of the full binary trees. We
let RT(w) = RTγ,T (w) denote the set of vertices in the red binary tree
rooted at the red child of w. (For convenience, if w is a leaf, RT(w) is
empty.)

(3) The principal component of γ is the set of white nodes whose path to the
root consists only of white nodes. A principal leaf of γ is a leaf belonging
to the principal component. Let PLT (γ) denote the set of principal leaves
of γ.

(4) A full binary subtree S of T (i.e. S ∈ FBST ) is said to be compatible with
γ, written S ∝ γ, if S has exactly one white leaf. (Notice that, since
γ is valid, this leaf would have to be a principal leaf. Thus, S ∝ γ is
equivalent to saying that the restriction of γ on VS is a valid coloring for
S.)

(5) Define FBST (γ) = {S ∈ FBST |S ∝ γ}. This set is in one-to-one cor-
respondence with the set PLT (γ) of principal leaves. If u is a principal
leaf, then the set path(u) ∪

⋃
w∈path(u)RT(w) induces a tree Fγ(u) that

belongs to FBST (γ), and conversely if S is in FBST (γ), then its unique
white leaf u is principal and S = Fγ(u).

(6) Define the positive integers mγ,T = |FBST (γ)| = |PLT (γ)|, mT =∑
γ mγ,T , and ρT = minγ mγ,T , where the min is over all valid colorings

γ. (Notice that, if T = T1 ◦ · · · ◦ Tn, then ρT =
∑

j ρTj
−maxj ρTj

.)

On notation. Consider a tree T , u ∈ VT , and a coloring γ of T . We write
Tu for the subtree of T rooted at u. Consider a vector z ∈ ΣNT , where each
coordinate corresponds to a leaf. We write zu for the part of z that corresponds
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to the leaves of Tu. For S ∈ FBST we write zS for the part of z that corresponds
to the leaves of S. We treat colorings similarly. For example, γS stands for
〈Wγ ∩VS,Rγ ∩VS〉.

4.2. The input distribution. Our proof will have two main components,
analogous to the ones in Jayram et al. (2003). The distribution over the inputs
that we shall define is carefully chosen so that each component of the proof can
be carried out.

In the first part (Section 4.3) we prove a direct-sum theorem for arbitrary
trees. Given an arbitrary tree T in standard form, we show how the information
cost of a protocol for f�

T can be decomposed into a sum of information costs
that correspond to full binary subtrees of T . In the second part of the proof
(Section 4.4) we provide a lower bound on the informational complexity of f�

S ,
where S is an arbitrary binary tree in standard form.

For a uniform binary tree with NS leaves, there is a natural distribution for
which one can prove an Ω(

√
NS) lower bound on information cost. However,

this distribution is not useful for us because it does not seem to be compatible
with the first part of the proof. It turns out that for our purposes it is sufficient
to prove a much weaker lower bound on the information cost for binary trees,
of the form Ω(1/cd) for some fixed c > 0, which will be enough to give a lower
bound of Ω(n/cd) on the communication complexity for general trees. The
distribution for binary trees that we choose gives such a bound and is also
compatible with the first part of the proof. This allows us to show that the
information cost of a tree of depth d is at least n

2d
B(d), where B(d) is a lower

bound on the information cost of (a communication protocol on) a depth-d
binary tree.

Given an arbitrary tree T in standard form, we now define a distribution
over inputs to Alice and Bob for f�

T .
First, we associate to each standard binary tree S a special input 〈αS, βS〉.

We will be interested in the value f�
S (αS, βS). These inputs, which now seem

arbitrary, introduce structure in the final distribution. This structure is crucial
for the effectiveness of the second part of our proof.

Definition 4.3. We define input 〈αS, βS〉 to f�
S for a standard binary tree S.

The definition is recursive on the depth dS of the tree.

〈αS, βS〉 =
{
〈1, 1〉 if dS = 0,

〈αS1αS2 , βS1
βS2〉 if S = S1 ◦ S2 .

We will need the following property of 〈αS, βS〉.
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Proposition 4.4. For a standard binary tree S with dS > 0, f�
S (αS, βS) =

f�
S (αS, βS) = 0 and f�

S (αS, βS) = f�
S (αS, βS) = 1.

Proof. The proof is by induction on dS.
For dS = 1 the (unique) tree results in the function f�

S (x1x2, y1y2) = (x1 �
y1) � (x2 � y2). Clearly,

f�
S (αS, βS) = f�

S (10, 01) = 0 , f�
S (αS, βS) = f�

S (01, 10) = 0 ;

f�
S (αS, βS) = f�

S (10, 10) = 1 , f�
S (αS, βS) = f�

S (01, 01) = 1 .

Suppose dS > 1 and let S = S1 ◦ S2. We have fS(αS, βS) = f�
S1
(αS1 , βS1

) �
f�
S2
(αS2 , βS2) = 1� 1 = 0 (where we applied the inductive hypothesis on S1 and

S2). The other cases can be verified in a similar manner. �

An input will be determined by three independent random variables Γ,D,R,
which are defined as follows.

(i) Γ ranges over valid colorings γ for T , according to a distribution that
weights each γ by the number of principal leaves it has. More precisely

Pr[Γ = γ] = mγ,T/mT .

(ii) D = 〈D1, . . . , DN〉 ∈R {Alice,Bob}N . So, for any d ∈ {Alice,Bob}N ,
Pr[D = d] = 2−N .

(iii) R = 〈R1, . . . , RN〉 ∈R {0, 1}N . So, for any r ∈ {0, 1}N , Pr[R = r] = 2−N .

The inputs X = 〈X1, . . . , XN〉 and Y = 〈Y1, . . . , YN〉 are determined by
values γ, d = 〈d1, . . . , dN〉, and r = 〈r1, . . . , rN〉 for Γ, D, and R as follows.

(i) Let F1, . . . , Fk be the trees in the red forest determined by γ. The input
to Fj, for j ∈ [k], is 〈αFj

, βFj
〉.

(ii) For a white leaf j, the corresponding input 〈Xj, Yj〉 is determined as
follows. If dj = Alice, set 〈Xj, Yj〉 = 〈0, rj〉. If dj = Bob, set 〈Xj, Yj〉 =
〈rj, 0〉.

The reader may think of the random variables D and R as labeling the
leaves of the tree T . For a leaf j ∈ [N ], the corresponding variable Dj chooses
the player whose j-th bit will be fixed to 0. The j-th bit of the other player is
then set to be equal to the random bit Rj.
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Example. At this point it might be useful for the reader to see how the input
for a binary tree S is distributed. As remarked earlier, a coloring γ for S paints
a root-to-leaf path white and all the other nodes red. For any such γ we have
Pr[Γ = γ] = 1/NS. All the other input bits, besides the ones that correspond
to the single white leaf, are fixed according to Definition 4.3 and the red forest
determined by γ. Thus, the only entropy in the input (given a coloring γ)
comes from the single white leaf. The mutual information of the transcript and
this leaf is what we lower bound in Section 4.4.

Let ζT be the resulting distribution on (〈X,Y〉, 〈Γ,D〉). Let μT (resp. νT ) be
the marginal distribution of 〈X,Y〉 (resp. 〈Γ,D〉). We often drop subscript T
and write ζ, μ, and ν.

Proposition 4.5. Consider a tree T and let 〈x,y, γ,d〉 be in the support of
ζ. If u is a red node with a white parent, then f�

Tu
(xu,yu) = 0. If u is a white

node, then f�
Tu
(xu,yu) = 1.

Proof. The proof is by induction on dTu .
When dTu = 0, u is a leaf. If u is red and its parent is white, then Tu is a

(one-vertex) tree in the red forest determined by γ. Definition 4.3 then implies
that 〈xu,yu〉 = 〈1, 1〉 and so f�

Tu
(xu,yu) = 0. If u is white, notice that either

xu = 0 or yu = 0 (see item (ii) above).
When dTu > 0 and u is white, then u has a red child v. By induction

f�
Tv
(xv,yv) = 0, and it follows that f�

Tu
(xu,yu) = 1. If u is red and its parent

is white, then there is a tree F rooted at u in the red forest. We claim that
f�
Tu
(xu,yu) = f�

F (xF ,yF ). The statement then follows by Proposition 4.4,
because, according to the definition of ζT , 〈xF ,yF 〉 = 〈αF , βF 〉. The claim
holds because every v ∈ VF has only white children outside F , and—by the
induction hypothesis—their values do not affect the value of v (since the inputs
to a �-gate that are equal to ‘1’ are, in some sense, irrelevant to the output).�

4.3. A direct-sum theorem for read-once boolean formulae. Let T
be an arbitrary tree in standard form and S ∈ FBST . Suppose we have a
communication protocol Π for f�

T and we want a protocol for f�
S . One natural

way to do this is to have Alice extend her input xS for S to an input x for T
and Bob extend his input yS for S to an input y for T , in such a way that
f�
T (x,y) = f�

S (xS,yS). Then by running Π on 〈x,y〉 they obtain the desired
output.

Let Π be any protocol for f�
T . For any S ∈ FBST we will construct a

family of protocols for f�
S . Each protocol in the family will be specified by
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a pair 〈γ,d〉 where γ is a valid coloring of T that is compatible with S, and
d ∈ {Alice,Bob}NT

Alice and Bob plug their inputs in T , exactly where S is embedded. To
generate the rest of the input bits for T , they first use γ to paint the nodes
of T not in S. For a red leaf j, the values of Xj and Yj are determined
by the coloring γ, so Alice and Bob can each determine xj and yj without
communication. For a white leaf j outside S, they have to look at the value of
dj. If dj = Alice, Alice sets xj = 0, and Bob uses a random bit of his own to
(independently) set his input bit yj. If dj = Bob, Bob sets yj = 0, and Alice
uses a random bit to set xj. After this preprocessing, they simulate Π. Denote
this protocol by ΠS[γ,d].

To argue the correctness of ΠS[γ,d] for any S, γ, and d, notice that any
node in S has only white children outside S (this follows from the conditions
that a coloring satisfies). From Proposition 4.5 we know that a white node
does not affect the value of its parent.

We now define a distribution over the triples 〈S, γ,d〉 so that the average
of the information cost of ΠS[γ,d] will be related to the information cost of Π.
Recall that NT is the number of leaves, and that mT and ρT are integers related
to the tree T defined in part (6) of the paragraph on “definitions related to
colorings” in Section 4.1. The distribution ξT for triples 〈S, γ,d〉 is as follows,

ξT (S, γ,d) =

{
1

mT 2NT
if S ∝ γ ,

0 otherwise .

This is indeed a distribution since

∑

S,γ,d

ξT (S, γ,d) =
∑

S∝γ

∑

d

1
mT 2NT

=
∑

S∝γ

1
mT

= 1 .

Lemma 4.6. Consider any protocol Π for a tree T . Let (〈X,Y〉, 〈Γ,D〉) ∼ ζT
and (〈X′,Y′〉, 〈Γ′,D′〉) ∼ ζS; then

I(X,Y ; Π |Γ,D) ≥ ρT · E〈S,γ,d〉∼ξT

[
I
(
X′,Y′ ; ΠS[γ,d] |Γ′,D′)

]
.
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Proof. We start by evaluating the right-hand side. (Recall that for γ and
d we write γS and dS for their restrictions in S ∈ FBST .)

E〈S,γ,d〉∼ξT

[
I
(
X′,Y′ ; ΠS[γ,d] |Γ′,D′)

]

=
∑

S,γ,d

ξT (S, γ,d)
∑

γ′,d′

νS(γ
′,d′) · I

(
X′,Y′ ; ΠS[γ,d] |Γ′ = γ′,D′ = d′)

=
∑

S,γ′,d′

∑

γ:S∝γ

∑

d

1
mT 2NT

· 1
NS2

NS
· I

(
X′,Y′ ; ΠS[γ,d] |Γ′ = γ′,D′ = d′)(4.7)

=
∑

S,γ:
S∝γ

∑

d

1
mγ,T

· mγ,T

mT 2NT
· I

(
X′,Y′ ; ΠS[γ,d] |Γ′ = γS,D

′ = dS

)
.(4.8)

The transition from (4.7) to (4.8) needs to be justified. Look first at equa-

tion (4.8). Fix values Ŝ, γ̂, and d̂ for the summation indices S, γ, and d

respectively. Consider the corresponding term A = I(X′,Y′ ; Π
̂S[γ̂, d̂] |Γ′ =

γ̂S,D
′ = d̂S) in the sum. Now look at (4.7). Fix indices S, γ′, and d′ to Ŝ,

γ̂S, and d̂S respectively. We claim that there are NS2
NS values 〈γ,d〉, such

that I(X′,Y′ ; Π
̂S[γ,d] |Γ′ = γ̂S,D

′ = d̂S) = A. Indeed, any 〈γ,d〉 such that γ

agrees with γ̂ outside S, and d agrees with d̂ outside S, contributes A to the
sum in equation (4.7). There are NS such γ and 2NS such d.

Let us define j(γ, S) to be the white leaf of S which is colored white by γ.
Recalling the definition of ρT (Section 4.1), the last equation gives

E〈S,γ,d〉∼ξT

[
I
(
X′,Y′ ; ΠS[γ,d] |Γ′,D′)

]

≤ 1
ρT

∑

S,γ:
S∝γ

∑

d

mγ,T

mT 2NT
· I
(
X ′

j(γ,S), Y
′
j(γ,S) ; ΠS[γ,d] |Γ′ = γS,D

′ = dS

)
.(4.9)

For the left-hand side we have

I(X,Y ; Π |Γ,D)

=
∑

γ,d

νT (γ,d) · I(X,Y ; Π |Γ = γ,D = d)

≥
∑

γ,d

mγ,T

mT 2NT

∑

j∈PLT (γ)

I(Xj , Yj ; Π |Γ = γ,D = d)

=
∑

S,γ:
S∝γ

∑

d

mγ,T

mT 2NT
· I(Xj(γ,S), Yj(γ,S) ; Π |Γ = γ,D = d) .(4.10)
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The inequality follows from Proposition 2.2, ignoring terms that correspond
to nonprincipal leaves. The last equality follows from the bijection between
FBST (γ) and PLT (γ) as discussed in Section 4.1.

In view of (4.9) and (4.10), to finish the proof one only needs to verify
that the two distributions (X ′

j(γ,S), Y
′
j(γ,S),ΠS[γ,d] |Γ′ = γS,D

′ = dS) and

(Xj(γ,S), Yj(γ,S),Π |Γ = γ,D = d) are identical. To see this, notice first that
Pr[X ′

j(γ,S) = bx |Γ′ = γS,D
′ = dS] = Pr[Xj(γ,S) = bx |Γ = γ,D = d], because S

is colored the same in both cases and j(γ, S) is the white leaf of S. Similarly
for Y ′

j(γ,S) and Yj(γ,S). Finally, it follows immediately from the definition of

ΠS[γ,d], that Pr[ΠS[γ,d](X
′,Y′) = τ |X ′

j(γ,S) = bx, Y
′
j(γ,S) = by,Γ

′ = γS,D
′ =

dS] = Pr[Π(X,Y) = τ |Xj(γ,S) = bx, Yj(γ,S) = by,Γ = γ,D = d]. �

To obtain a lower bound from this lemma, we want to lower bound ρT and
the informational complexity of standard binary trees. The later is done in the
next section. The following lemma shows that we can assume ρT ≥ NT/2

dT .

Lemma 4.11. For any tree T with N leaves and depth d, there is a tree T̂
with the following properties. (1) T̂ is in standard form, (2) Rδ(f

�
T ) ≥ Rδ(f

�
̂T
),

(3) ρ
̂T ≥ N/2d.

Proof. First, we describe the procedure which applied on T produces T̂ . If
T is a single node we set T̂ = T . Otherwise, assume T = T1 ◦ · · · ◦ Tn and
denote Nj the number of leaves in each Tj. We consider two cases.

A. If there is a j such that Nj ≥ N/2, then we apply the procedure to Tj to

obtain T̂j , set T̂ = T̂j , and remove the remaining subtrees.

B. Otherwise, for each j ∈ [n] apply the procedure on Tj to get T̂j, and set

T̂ = T̂1 ◦ · · · ◦ T̂n.

Now we prove by induction on d that T̂ has properties (1) and (3). When
d = 0 and T is a single node, ρT = 1 and all properties are easily seen to be
true. Otherwise, if T̂ is created as in case A, then clearly property (1) holds.

For property (3) assume T̂ = T̂j. By induction, ρ
̂Tj

≥ Nj/2
d−1. It follows

that ρ
̂T = ρ

̂Tj
≥ N/2d (since Nj ≥ N/2). Now suppose case B applies and

T̂ is created from T̂1, . . . , T̂n. The restructuring described in case B preserves
property (1). For property (3) assume—without loss of generality—that ρ

̂T1
≤

· · · ≤ ρ
̂Tn
. By the definition of ρT (Section 4.1, part (6) in “definitions related
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to colorings”),

ρ
̂T =

n−1∑

j=1

ρ
̂Tj
≥

n−1∑

j=1

Nj/2
d−1 = (N −Nn)/2

d−1 > (N −N/2)/2d−1 = N/2d .

Finally, property (2) is true because Alice and Bob can simulate the protocol
for fT after they set their bits below a truncated tree to ‘1’. �

4.4. Bounding the informational complexity of binary trees. In this
section we concentrate on standard binary trees. Our goal is to prove a lower
bound of the form I(X,Y ; Π |Γ,D) ≥ 2−Θ(dT ). We prove such an inequality
using induction on dT . The following statement provides the needed strength-
ening for the inductive hypothesis.

Proposition 4.12. Let T be a standard binary tree, and let Tu be a subtree
rooted at an internal node u of T . Assume that (〈Xu,Yu〉, 〈Γu,Du〉) ∼ ζTu

and 〈X,Y〉 = 〈aXub, cYud〉, where a, b, c, d are fixed bit-strings. Then, for any
protocol Π, we have

I
(
Xu,Yu ; Π(X,Y) |Γu,Du

)
≥ h2(Π(aαTub, cβTu

d),Π(aαTub, cβTud))

2NTu2
dTu+1

.

Proof. The proof is by induction on the depth dTu of Tu.
When dTu = 0 we have fTu(x, y) = x�y. This case was shown in Bar-Yossef

et al. (2004, Section 6), but we redo it here for completeness. First, notice that
Γu is constant and thus the left-hand side simplifies to I(Xu, Yu ; Π(X, Y ) |Du).
Expanding on values of Du this is equal to

1

2

(
I
(
Yu ; Π(a0b, cYud) |Du = Alice

)
+ I

(
Xu ; Π(aXub, c0d) |Du = Bob

))
,

because given Du = Alice we have Xu = 0 and given Du = Bob we have Yu =
0. Also, given Du = Alice we have Yu ∈R {0, 1} and thus the first term in the
expression above can be written as I(Z ; Π(a0b, cZd)), where Z ∈R {0, 1}. Now
we apply Lemma 3.5 to bound this from below by h2(Π(a0b, c0d),Π(a0b, c1d)).
Bounding the other term similarly and putting it all together we get

I
(
Xu, Yu ; Π(X, Y ) |Du

)

≥ 1

2

(
h2

(
Π(a0b, c0d),Π(a0b, c1d)

)
+ h2

(
Π(a0b, c0d),Π(a1b, c0d)

))

≥ 1

4
· h2

(
Π(a0b, c1d),Π(a1b, c0d)

)
.
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For the last inequality we used the triangle inequality of Hellinger distance
(Proposition 3.6). Since 〈αTu , βTu〉 = 〈1, 1〉 this is the desired result.

Now suppose dTu > 0 and let Tu = Tu1 ◦ Tu2 . Either u1 ∈ WΓu (i.e. u1 is
white), or u2 ∈ WΓu . Thus, expanding on Γu, the left-hand side can be written
as follows.

NTu1

NTu

· I
(
Xu,Yu ; Π(aXub, cYud) |Γu, u1 ∈ WΓu ,Du

)

+
NTu2

NTu

· I
(
Xu,Yu ; Π(aXub, cYud) |Γu, u2 ∈ WΓu ,Du

)
.

When u1 is white, 〈Xu2 ,Yu2〉 = 〈αTu2
, βTu2

〉, and (〈Xu1 ,Yu1〉, 〈Γu1 ,Du1〉) is
distributed according to ζTu1

. Similarly, given that u2 is white, 〈Xu1 ,Yu1〉 =
〈αTu1

, βTu1
〉, and (〈Xu2 ,Yu2〉, 〈Γu2 ,Du2〉) is distributed according to ζTu2

. Thus,
the above sum simplifies to

NTu1

NTu

· I
(
Xu1 ,Yu1 ; Π(aXu1αTu2

b, cYu1βTu2
d) |Γu1 ,Du1

)

+
NTu2

NTu

· I
(
Xu2 ,Yu2 ; Π(aαTu1

Xu2b, cβTu1
Yu2d) |Γu2 ,Du2

)
.

By induction, this is bounded from below by

NTu1

NTu · 2NTu1
2dTu

· h2
(
Π(aαTu1

αTu2
b, cβTu1

βTu2
d),Π(aαTu1

αTu2
b, cβTu1

βTu2
d)
)

+
NTu2

NTu · 2NTu2
2dTu

· h2
(
Π(aαTu1

αTu2
b, cβTu1

βTu2
d),Π(aαTu1

αTu2
b, cβTu1

βTu2
d)
)
.

Applying the cut-and-paste property (Proposition 3.6) of Hellinger distance
this becomes

NTu1

NTu · 2NTu1
2dTu

· h2
(
Π(aαTu1

αTu2
b, cβTu1

βTu2
d),Π(aαTu1

αTu2
b, cβTu1

βTu2
d)
)

+
NTu2

NTu · 2NTu2
2dTu

· h2
(
Π(aαTu1

αTu2
b, cβTu1

βTu2
d),Π(aαTu1

αTu2
b, cβTu1

βTu2
d)
)
.

Now, since the square of Hellinger distance satisfies the (weak) triangle inequal-
ity (see Proposition 3.6), we have

≥ 1

2NTu2
dTu+1

· h2
(
Π(aαTu1

αTu2
b, cβTu1

βTu2
d),Π(aαTu1

αTu2
b, cβTu1

βTu2
d)
)
.
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Recalling the Definition 4.3 of 〈αT , βT 〉 we get

=
1

2NTu2
dTu+1

· h2
(
Π(aαT b, cβTd),Π(aαT b, cβTd)

)
.

This completes the inductive proof. �

Corollary 4.13. For any binary tree T in standard form

ICζT ,δ(f
�
T |Γ,D) ≥ (1− 2

√
δ) · 1

4dT+1
.

Proof. First apply Proposition 4.12 with the root of T as u and empty
a, b, c, d.

ICζT ,δ(f
�
T |Γ,D) ≥ 1

4dT+1
· h2

(
Π(αT , βT ),Π(αT , βT )

)

≥ 1

4dT+1
·
(
1

2
h2

(
Π(αT , βT ),Π(αT , βT )

)
+

1

2
h2

(
Π(αT , βT ),Π(αT , βT )

)
)

≥ 1

4dT+1
· (1− 2

√
δ) .

The second inequality is an application of the Pythagorean property of Hellinger
distance – Proposition 3.6(iii). The last inequality follows from Proposition 4.4
and Proposition 3.6(iv). �

4.5. Lower bounds for read-once boolean functions. In this section we
use the main lemmas we have proved to obtain bounds for read-once boolean
functions.

Corollary 4.14.

(i) For any tree T in standard form,

ICζT ,δ(f
�
T |Γ,D) ≥ (1− 2

√
δ) · ρT

4dT+1
.

(ii) If, in addition, T is t-uniform,

ICζT ,δ(f
�
T |Γ,D) ≥ (1− 2

√
δ) · (t− 1)dT

4dT+1
.

Proof. Let Π be a δ-error protocol for f�
T . Lemma 4.6 holds for any Π,

therefore
ICζT ,δ(f

�
T |Γ,D) ≥ ρT · min

S∈FBST
ICζS ,δ(f

�
S |Γ,D) .

We now use the bound from Corollary 4.13 to obtain (i). For (ii), we can
compute ρT exactly to be (t− 1)dT . �
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Corollary 4.15.

(i) For any tree T in standard form,

Rδ(f
�
T ) ≥ (2− 4

√
δ) · NT

8dT+1
.

(ii) If, in addition, T is t-uniform,

Rδ(f
�
T ) ≥ (1− 2

√
δ) · (t− 1)dT

4dT+1
.

Proof. Recalling that informational complexity is a lower bound for ran-
domized complexity, (ii) is immediate from Corollary 4.14(ii). For (i), we apply

Corollary 4.14(i) to f
̂T , where T̂ is as in Lemma 4.11. �

The constants do not match the ones in Theorem 2.4. Let T = T1 ◦ · · · ◦Tt.
The slight improvements can be obtained by applying Theorem 4.1 with f
being the t-variate NAND, and, for each j ∈ [t], hj and ζj being fTj

and ζTj
,

respectively. Applying (i) to each of the trees Tj gives Theorem 2.4(i); similarly
for Theorem 2.4(ii).

5. Lower bound for read-once threshold functions

In this section we prove Theorem 1.3, stated in the introduction.
A threshold gate, denoted T n

k for n > 1 and 1 ≤ k ≤ n, receives n boolean
inputs and outputs ‘1’ if and only if at least k of them are ‘1’. A threshold tree
is a rooted tree in which every leaf corresponds to a distinct input variable and
every gate is a threshold gate. A read-once threshold function fE is a function
that can be represented by a threshold tree E. As before, we define f∧

E and f∨
E

and we want to lower bound max{Rδ(f
∧
E), Rδ(f

∨
E)}. The following proposition

shows that Alice and Bob can reduce a problem defined by an AND/OR tree
to one defined by a threshold tree. Theorem 1.3 will then follow as a corollary
of Theorem 1.1.

Proposition 5.1. For any threshold tree E, there is an AND/OR tree T such
that, for g ∈ {∧,∨}, (1) Rδ(f

g
T ) ≤ Rδ(f

g
E), (2) NT ≥ NE/2

dE , and (3) dT = dE.

Proof. We define T by recursion on dE. When dE = 0 we set T = E.
Otherwise, let E = E1 ◦ · · · ◦ En, and assume NE1 ≥ · · · ≥ NEn . Suppose the
gate on the root is T n

k . We consider cases on k. (1) If 1 < k ≤ n/2, build
T1, . . . , Tn−k+1 recursively, set T = T1 ◦ · · · ◦ Tn−k+1, and put an ∨-gate on the
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root. (2) If n/2 < k < n, build T1, . . . , Tk recursively, set T = T1 ◦ · · · ◦ Tk, and
put an ∧-gate on the root. (3) Otherwise, if k = 1 or k = n, the threshold gate
is equivalent to an ∨ or ∧-gate respectively. We build T1, . . . , Tn recursively
and we set T = T1 ◦ · · · ◦ Tn. The gate on the root remains as is.

Properties (2) and (3) are easily seen to hold. For (1), it is not hard to
show that a protocol for f g

E can be used to compute f g
T . Alice and Bob need

only to fix appropriately their inputs in the subtrees that where cut of from E.
If an input bit belongs to a subtree Tj that was cut of in case (1), then Alice
and Bob set their inputs in Tj to ‘0’. If Tj was cut of in case (2), then Alice
and Bob set their inputs in Tj to ‘1’. Afterwards, they simulate the protocol
for f g

E. �

The tree T in the above proposition may not be a canonical representation
of some function. However, transforming to the canonical representation will
only decrease its depth, and thus strengthen our lower bound. Thus, by this
Proposition and Theorem 1.1 we obtain Theorem 1.3 as a corollary.

6. General form of main theorem

The lower bounds we obtained apply to functions of the (restricted) form f∧

and f∨. In this section we consider arbitrary two-party read-once functions,
and prove Theorem 1.4, stated in the introduction. Theorems 1.1 and 1.2 are
deduced from our main result Theorem 2.4. We also use Theorem 2.4 to deduce
communication complexity lower bounds for two-party read-once functions.

Consider an AND/OR tree-circuit C in canonical form, and suppose that
its leaf-set is partitioned into two sets XC = {x1, . . . , xs} and YC = {y1, . . . , yt}
(thus, fC is a two-party read-once function). We show that C can be trans-
formed to a tree T in standard form, such that Alice and Bob can decide the
value of fT using any protocol for fC . (The reader may have expected f�

T in
the place of fT . To avoid confusion we note that fT will already be a two-party
read-once function. In particular, for some tree T ′ with dT ′ = dT − 1 and
NT ′ = NT/2, fT = f�

T ′ .)

Lemma 6.1. For any two-party read-once function f , there is a tree T in stan-
dard form, such that (1) Rδ(fT ) ≤ Rδ(f), (2) NT ≥ D||(f)/d(f), and (3)
dT ≤ d(f).

Proof. We use notation from the paragraph before the statement of the
lemma. The transformation of C proceeds in three stages.
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In the first stage we collapse subtrees to single variables. For a node w let
Aw = {u ∈ VC | u is a child of w and LCu ⊆ XC}. Define Bw with Y in the
place of X . LetWX = {w ∈ VC | LCw � XC and Aw �= ∅}. DefineWY similarly.
For each w ∈ WX , collapse {Cu | u ∈ Aw} to a single variable xw. That is, we
remove all Cu with u ∈ Aw from the tree, and add a new leaf xw as a child of
w. Similarly with Y in the place of X and Bw in the place of Aw. Name the
resulting tree C1. We claim that Rδ(fC) = Rδ(fC1) and D||(fC) = D||(fC1).
It is easy to see that Rδ(fC) ≥ Rδ(fC1) and D||(fC) ≥ D||(fC1). Alice, for
each w ∈ WX , can set each x ∈ XAw equal to xw. Bob, for each w ∈ WY ,
can set each y ∈ YBw equal to yw. After this preprocessing that requires no
communication, they run a protocol for fC . For the other direction, suppose
w ∈ WX is labeled by an AND gate. Alice sets xw equal to

∧
u∈Aw

fCu(xu) (for
an OR gate, replace

∧
with

∨
). Bob acts similarly and afterwords they run a

protocol for fC1 . Clearly, NC ≥ NC1 and dC ≥ dC1 . Notice also that in C1 each
node has at most one leaf in XC1 and at most one in YC1 (where the partition
for LC1 is the obvious one).

In the second stage, we remove every leaf of C1 that has a non-leaf sibling.
If after these two stages some nodes are left with only one child, we collapse
them with their unique child and label the new node with the gate of the
child. Name the resulting tree C2. We have Rδ(fC1) ≥ Rδ(fC2) and D||(fC1) ≥
D||(fC2), since Alice and Bob can generate values (‘1’/‘0’) for the truncated
leaves according to the gate of the parent (AND/OR). Clearly, dC1 ≥ dC2 .
Observe also that NC2 ≥ NC1/dC1 . This is because for every pair of leaves
in C1 that remain in C2, there can be at most 2(dC1 − 1) leaves that will be
removed—one pair for each of the dC1 −1 nodes along the path to the root (see
last sentence of previous paragraph).

For the final stage, let T be the tree-circuit that is otherwise identical to
C2, but every gate of C2 has been replaced by a NAND gate. It follows from
Lemma 2.3 that fT ≡ fC2 or fT ≡ ¬fC2 . Thus, for the models of interest, the
complexity of fC2 is equal to that of fT . Also, NT = NC2 and dT = dC2 .

For part (2), observe that D||(fC1) ≤ NC1 . Tracing the inequalities from
each stage,

NT = NC2 ≥ NC1/dC1 ≥ D||(fC1)/dC1 = D||(f)/dC1 ≥ D||(f)/d(f) .

Parts (1) and (3) are immediate. �

The tree-circuit T is in standard form, and Theorem 2.4 can be applied,
yielding Rδ(fT ) ≥ 4(2− 4

√
δ) ·NT/8

dT . (For the constants involved, recall the
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parenthetic remark before the statement of the lemma.) Then, Theorem 1.4,

Rδ(f) ≥ (8− 16
√
δ) · D||(f)

d(f) · 8d(f) ,

follows from the lemma.
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