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Abstract. Every Boolean function on n variables can be expressed as a
unique multivariate polynomial modulo p for every prime p. In this work,
we study how the degree of a function in one characteristic affects its
complexity in other characteristics. We establish the following general
principle: functions with low degree modulo p must have high complexity
in every other characteristic q. More precisely, we show the following
results about Boolean functions f : {0, 1}n → {0, 1} which depend on
all n variables, and distinct primes p, q:

◦ If f has degree o(log n) modulo p, then it must have degree
Ω(n1−o(1)) modulo q. Thus a Boolean function has degree o(log n)
in at most one characteristic. This result is essentially tight as
there exist functions that have degree log n in every characteris-
tic.

◦ If f has degree d = o(log n) modulo p, then it cannot be computed
correctly on more than 1 − p−O(d) fraction of the hypercube by
polynomials of degree n

1
2
−ε modulo q.

As a corollary of the above results it follows that if f has degree o(log n)
modulo p, then it requires super-polynomial size AC0[q] circuits. This
gives a lower bound for a broad and natural class of functions.
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bounds.
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1. Introduction

Representations of Boolean functions as polynomials in various characteristics
have been studied intensively in Computer science (Barrington et al. 1994;
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Beigel 1993; Nisan & Szegedy 1992; Paturi 1992). This algebraic view of
Boolean functions has found numerous applications to diverse areas includ-
ing circuit lower bounds (Aspnes et al. 1994; Beigel et al. 1991; Razborov 1987;
Smolensky 1987), computational learning (Klivans & Servedio 2001; Kushile-
vitz & Mansour 1993; Linial et al. 1993; Mossel et al. 2003) and explicit combi-
natorial constructions (Efremenko 2009; Gopalan 2006b; Grolmusz 2000, 2002).
As a purely algebraic model of computation, polynomial representations lead to
some natural complexity measures such as exact degree, approximation degree
and sparsity needed to represent a function. In this work, we are primarily
concerned with the polynomial degree of a function, defined as follows:

Definition 1.1. For a Boolean function f : {0, 1}n → {0, 1}, the degree of
f in characteristic k, denoted degk(f), is the degree of the unique multilinear
polynomial P (X1, . . . , Xn) ∈ R[X1, . . . , Xn] such that P (x) = f(x) for every
x ∈ {0, 1}n, where R = Z/kZ.

We say that the polynomial P represents f over R. The existence and
uniqueness of such a representing polynomial follows from the Möbius inversion
formula (see Section 2). Of particular importance in complexity theory are the
cases k = 0 (R = Z) and k = p (R = Fp) for some prime p; these will also
be our primary focus, though we will also consider the case of composite m.
We denote deg0(f) simply by deg(f); it also equals the degree of the Fourier
polynomial for the function (−1)f(x). Let us note a basic relation between these
various degrees, namely that for every f and k, we have

degk(f) ≤ deg(f) .

This is because the polynomial representing f over Z/kZ can be obtained from
the representation over Z by taking each coefficient modulo k. The gap between
these quantities can be arbitrarily large; consider the function Parity(x) =∑

i xi mod 2. It is easy to show that deg(Parity) = n whereas deg2(Parity) = 1.
Indeed, it is not hard to show that degp(Parity) = n for every prime p �= 2.

In this paper, we show that this is an instance of a more general principle:

A function on all n variables which has low degree in characteristic p is bound
to have high degree in every other prime characteristic q �= p.

Moreover, we prove that any function f where degp(f) = o(log n) is hard to
approximate by low-degree polynomials modulo q, and hence requires large
AC0[q] circuits.
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1.1. Our results. When we refer to Boolean functions on n variables, we
only consider functions where all n variables are influential. This rules out
trivial counterexamples like k-juntas that have low degree in all characteristics.
The following is our main theorem:

Theorem 1.2 (Main). Let f : {0, 1}n → {0, 1} be a Boolean function which
depends on all n variables. Let p �= q be distinct primes. Then

degq(f) ≥
n

�log2 p	 degp(f)p2 degp(f)
.

This gives a lower bound of Ω(n1−o(1)) on degq(f) as long as degp(f) =
o(log n). This bound is close to the best possible, as there exist functions on
all n variables (such as the addressing function Nisan & Szegedy 1992) where
deg(f) ≤ log n and hence degp(f) ≤ log n for all characteristics p. Thus, one
cannot get nontrivial lower bounds on degq(f) once degp(f) exceeds log n.

Nisan and Szegedy showed that any function on n variables must have
degree at least deg(f) ≥ log n − O(log log n) (Nisan & Szegedy 1992). An
interesting consequence of Theorem 1.2 is the following analog of the Nisan–
Szegedy bound for non-prime power moduli.

Corollary 1.3. Let f : {0, 1}n → {0, 1} be a Boolean function which de-
pends on all n variables. Suppose m is not a prime power, and p is its smallest
prime divisor. We have

degm(f) ≥
1

2
logp n− logp logp n− 1

2
logp�log2 p	 .

This corollary is interesting as it illuminates a sharp difference between
degrees over composite numbers and over primes. A simple way to construct
Boolean functions of degree O(1) over Fp is to take any constant degree poly-
nomial P (x1, . . . , xn) ∈ Fp[x1, . . . , xn] and raise it to the power p − 1. This
construction fails for composite m since there is no analog of Fermat’s little
theorem. Corollary 1.3 shows that indeed any polynomial modulom computing
a Boolean function requires degree Ω(log n), as it does over the reals.

While Theorem 1.2 immediately implies a lower bound for deg(f), one can
obtain the following stronger bound by a simple modification of the Nisan–
Szegedy proof:

Lemma 1.4. Let p be a prime and f : {0, 1}n → {0, 1} be a Boolean function
which depends on all n variables. Then

deg(f) ≥ n

2degp(f)
.
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We prove this lemma in Section 2.1.
The results above show a very basic relation between the degrees of Boolean

functions over different characteristics. A natural question to ask is what hap-
pens if we relax the requirement and only consider polynomials over Fq that
approximate a low degree polynomial over Fp. However, similarly to the case
of degree 1 polynomials that was studied in Smolensky (1987), we prove that
low degree polynomials modulo p are hard to even approximate by polynomials
in other characteristics.

Theorem 1.5. Let f : {0, 1}n → {0, 1} be a function depending on all n
variables with degp(f) = d. Then, for any q �= p and any Fq polynomial

Q(x1, . . . , xn) : F
n
q → {0, 1}, satisfying degq(Q) = o(

√
n

dp3d
), it holds that

Pr
x∈{0,1}n

[
f(x) = Q(x)

]
≤ 1− εp−d ,

where ε depends only on p, q.

We note that both the error bound of 1 − p−O(d) and the degree bound
of o(

√
n) are close to optimal; there are polynomials of degree d over Fp that

are 0 on the boolean hypercube with probability 1 − 2−d, hence they have
trivial approximations over Fq. Secondly, the Modp function (and indeed ev-
ery symmetric function) can be 1 − ε approximated by polynomials of degree
c(ε)

√
n over Fq (Bhatnagar et al. 2006), despite being hard to approximate for

polynomials of lower degree.
As a corollary of Theorem 1.5 we get that if a Boolean function has low

degree modulo p, then the function requires large AC0[q] circuits for any prime
q �= p. Several of the known lower bounds for AC0[q] are for functions like
Parity and the Modpk function where p �= q that are easily seen to be low-
degree polynomials in some characteristic. Our result generalizes this to give a
very general class of hard functions for AC0[q], namely all functions that have
degree o(log n) modulo p �= q.

Theorem 1.6. Let p, q be distinct primes. Let f : {0, 1}n → {0, 1} be a
Boolean function which depends on all n variables with degp(f) = o(logp n).
Then any AC0[q] circuit of depth t computing f requires size at least
exp(n(1−o(1))/2t).

It is not hard to see that most known lower bounds for AC0[q] circuits
follow from the theorem above. For example, the lower bound for Modpk of
Smolensky (1987) follows from the observation that degp(Modpk) ≤ pk (see e.g.
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Bhatnagar et al. 2006). Additionally, it gives several new lower bounds, for
instance it shows that every quadratic form on n variables over F2 requires
large AC0[q] circuits, for q �= 2. Though we note that Theorem 1.6 does not
imply Razborov’s lower bound for Majority.

Summarizing, Theorems 1.2 and 1.5 show that for a Boolean function, hav-
ing low degree mod p, or even being close to a low degree polynomial mod p, is a
“singular” event, in the sense it can only occur for at most one characteristic p.

1.2. Polynomial representations in computer science. The study of
polynomial representations of Boolean functions dates at least as far back as the
1960’s, when they arose in various contexts including switching theory (Muroga
1971), voting theory (Chow 1961) and machine learning (Minsky & Papert
1968). Representations of Boolean functions over finite fields, especially over
F2 were studied by coding theorists in the context of Reed–Muller codes, see
MacWilliams & Sloane (1977, Chapters 13-14) and the references therein. The
codewords of the code RM2(d, n) are all Boolean functions f : {0, 1}n → {0, 1}
where deg2(f) ≤ d, while received words are arbitrary functions f .

Polynomial representations have proved especially useful in circuit com-
plexity (Beigel 1993) where a natural lower bound technique is to relate con-
crete complexity measures (such as circuit-size) which we wish to bound, to
purely algebraic complexity measures. Examples of this paradigm include
the Razborov–Smolensky lower bounds for AC0[p] (Razborov 1987; Smolen-
sky 1987), which relates the circuit size to the polynomial degree needed to
approximate f over Fp, and the work of Beigel et al. (1991) and Aspnes et al.
(1994) which relate AC0 circuit size with approximations by real polynomials.

Polynomial representations are among the most powerful tools in computa-
tional learning. The best learning algorithms for many basic concept classes,
including but not limited to decision trees (Kushilevitz & Mansour 1993), DNF
formulae (Klivans & Servedio 2001), AC0 circuits (Jackson et al. 2002; Linial
et al. 1993), juntas (Mossel et al. 2003) and halfspaces (Kalai et al. 2005; Kli-
vans et al. 2002) all proceed by showing that the concept class to be learned has
some nice polynomial representation. In particular, the algorithm for learning
juntas of Mossel et al. (2003) exploits a connection between deg2(f) and the
sparsity of its Fourier polynomial.

Finally, polynomial representations of Boolean functions have found appli-
cations to constructing combinatorial objects such as set systems (Grolmusz
2000, 2002), Ramsey graphs (Gopalan 2006b; Grolmusz 2000) and locally de-
codable codes (Efremenko 2009). These results require low-degree weak repre-
sentations of simple Boolean functions like the Or function but modulo com-
posites.
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Definition 1.7. The polynomial P (x1, . . . , Xn) ∈ Z[X1, . . . , Xn]/mZ weakly
represents f : {0, 1}n → {0, 1} over Z/mZ if f(x) �= f(y) ⇒ P (x) �= P (y)
(P (x) may take values in Z/mZ).

Such representations have been well studied in complexity theory (see Bar-
rington et al. 1994; Bhatnagar et al. 2006 and the references therein), but
embarrassingly simple questions like the degree required to represent the Or
function mod 6 remain open, there is a gap of O(

√
n) (Barrington et al. 1994)

versus Ω(log n) (Tardos & Barrington 1998) between upper and lower bounds.
Better upper bounds would lead to improved constructions of all the above
combinatorial objects. In Gopalan (2006b), Gopalan proposes viewing this as
a question about the degree of two related functions in distinct characteristics:

Problem 1.8 (Gopalan 2006b). If two functions f, g : {0, 1}n → {0, 1} satisfy
f(x) ∨ g(x) = Or(x), how small can max(deg2(f), deg3(g)) be?

Questions like this emphasize the importance of the natural and basic ques-
tion of understanding the behavior of degp for various characteristics p.

1.3. Techniques. Our proofs are conceptually very simple, we reduce the
degree d case to the linear case and then appeal to known lower bounds. This
reduction is carried out via a degree reduction lemma (Lemma 3.1) that shows
that for any degree d polynomial P (x) over Fp on n variables, there exist a
constant t and a linear combination of the form

P ′(x) =
∑

i≤t

λiP (x+ ai) λi ∈ Fp, ai ∈ F
n
p

so that by fixing some variables in P ′ to constants, we get a linear polynomial
in many variables. This lemma is proved using discrete derivatives, a notion
that has proved very useful lately in complexity theory (Bogdanov & Viola
2007; Lovett 2008; Viola 2008).

With this lemma in hand, one would like to proceed as follows: suppose
P (x) and Q(x) represent the same function f over Fp and Fq, and that P (x)
has low degree (say a constant). The polynomial P ′(x) is tightly related to
the Modp function, which is known to require high degree in characteristic q.
We would like to claim that the degree of P ′(x) over Fq is a small multiple
of deg(Q), which would then imply that deg(Q) must be large. Implementing
this scheme runs into an obstacle: P ′ is a function that maps Fn

p → Fp, further
the values ai are from F

n
p , thus while P (x) = Q(x) for x ∈ {0, 1}n, it is unclear

how Q(x) can help us evaluate P (x+ ai).
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Most of the technical work in this paper goes towards circumventing this
obstacle. The special case of p = 2 is easier to handle, as since {0, 1} ⊂ Fq one
can mimic operations modulo 2 in characteristic Fq without a large overhead.
we present the case of characteristic 2 separately in Section 4. For p > 2, we
show that one can still mimic differentiation modulo p in characteristic q with-
out a large blowup in the degree, however the argument is more complicated.
We present the general case in Section 5.

2. Preliminaries

Let f : {0, 1}n → {0, 1} be a Boolean function. We will only consider Boolean
functions that depend on all n variables, meaning that they cannot be written
as f(x1, . . . , xn) = g(xi1 , . . . , xik) for some k < n. We start by establishing the
correspondence between functions and polynomials. We state the correspon-
dence in the general setting of any commutative ring R containing {0, 1}, but we
will only be interested in the cases where R is either Z, Z/mZ for some integer
m or a finite field Fq. We say that a polynomial P (x1, . . . , xn) ∈ R[x1, . . . , xn]
computes the function f if P (x) = f(x) for all x ∈ {0, 1}n. While there could
be many polynomials that satisfy this condition, if we insist that the poly-
nomial be multilinear (every variable occurs with degree at most 1), then the
polynomial is unique. This can be seen via the Möbius inversion formula, which
gives a unique multilinear polynomial P (x1, . . . , xn) ∈ R[x1, . . . , xn] satisfying
P (x) = f(x) for every function f : {0, 1}n → R:

P (x) =
∑

S⊆[n]

cS
∏

i∈S
xi

where cS =
∑

x≤x(S)

(−1)|S|−wt(x)f(x)

where x(S) denotes the indicator vector of the set S, x ≤ x(S) denotes that
xi ≤ x(S)i for every coordinate i and wt(x) denotes the Hamming weight of
the vector x. If f is Boolean, the Möbius inversion shows that the representing
polynomial depends only on the characteristic of R.

We state some basic facts about degk(f), proofs of which can be found in
Gopalan (2006a). The multilinear polynomial computing f over Z/mZ can be
obtained by reducing each coefficient of the polynomial computing f over Z

modulo m, which gives the following:

Fact 2.1. For any f : {0, 1}n → {0, 1}, we have degm(f) ≤ deg(f) for all m.
Similarly if m1|m, then degm1

(f) ≤ degm(f).
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A consequence of this inequality is that degm(f) ≤ degmk(f). The following
folklore lemma shows that they are always within a factor 2k of each other.

Fact 2.2. For any f : {0, 1}n → {0, 1}, and integers m, k:

degm(f) ≤ degmk(f) ≤ (2k − 1) degm(f) .

If m = m1m2 where (m1,m2) = 1, then the multilinear polynomial P (x) ∈
Z[x]/mZ is obtained by combining the coefficients of P1(x) ∈ Z[x]/m1Z and
P2(x) = Z[x]/m2Z by the Chinese Remainder Theorem. Hence

Fact 2.3. Let m = m1m2 where (m1,m2) = 1. Then

degm(f) = max
(
degm1

(f), degm2
(f)

)
.

Thus if we know degp(f) for all primes p that divide m, we can use Fact 2.2
and Fact 2.3 to estimate degm(f) up to a constant factor which is independent
of n but depends on m.

We define the function Modm(x) to be 1 whenever
∑

i xi is divisible by m.
The degree of such functions in any characteristic can be computed using the
following observation:

Fact 2.4. For any integer k, and primes p �= q, we have

degp(Modpk) = pk, degq(Modpk) = Ω(n) .

Finally, we use two lemmas from the work of Razborov and Smolensky
showing that if a Boolean function f can be computed by a small AC0[p]
circuit, then f can be well approximated by low degree polynomials over Fp.
The first is their low-degree approximation lemma for AC0[p] circuits.

Lemma 2.5 (Razborov 1987; Smolensky 1987). For a prime p, let f be a Boolean
function on n variables that is computed by an AC0[p] circuit of size s and
depth t. For every δ > 0, there exists a polynomial P ∈ Fp[x1, . . . , xn] of
degree deg(P ) ≤ (cp log(s/δ))t such that P ({0, 1}n) ⊂ {0, 1} and

Pr
x∈{0,1}n

[
P (x) = f(x)

]
≥ 1− δ

for some absolute constant c.

The second lemma shows that the Modp function does not have such an
approximation over Fq.
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Lemma 2.6 (Razborov 1987; Smolensky 1987). For every two primes p �= q,
there exist constants c, ε > 0 depending only on p, q such that for any polyno-
mial Q(x) over Fq of degree at most c

√
n,

Pr
x∈{0,1}n

[
Q(x) = Modp(x)

]
< 1− ε .

We do not care about exact constants in this paper, unless otherwise spec-
ified. Hence, to simplify notation we denote constants by c, where we specify
whether these are absolute constants or depending on some other parameters
(i.e. ε, p, q). In all cases constants do not depend on the number of variables n.

2.1. Proof of Lemma 1.4. For completeness we give the simple proof of
Lemma 1.4. The proof follows the Nisan–Szegedy argument, which gives upper
and lower bounds on the average sensitivity of the Boolean function in terms
of deg(f). We observe that the lower bound holds in any characteristic (but
the upper bound holds only for characteristic 0).

Proof (Proof of Lemma 1.4). Let us define Infi(f) = Prx∈{0,1}n [f(x) �=
f(x ⊕ ei)] where x ⊕ ei denotes x with the ith bit flipped. A simple appli-
cation of the Schwartz-Zippel lemma shows that

Infi(f) ≥
1

2degp(f)
hence

∑

i≤n

Infi(f) ≥
n

2degp(f)
.

But by Corollary 1 in Nisan & Szegedy (1992),

∑

i≤n

Infi(f) ≤ deg(f)

which gives the required bound. �

3. Degree reduction

A crucial tool in our proofs is the following Degree reduction lemma that reduces
degree d polynomials in n variables to polynomials with many linear terms. For
a polynomial P define the set L(P ) to be those variables xi appearing as linear
terms in P but not in any of its higher degree monomials.
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Lemma 3.1 (Degree Reduction Lemma). Let P (x) be a polynomial of degree
d over Fp, depending on all n variables, such that the individual degree of each

variable is at most p − 1. Then there exist t ≤ p�
d−1
p−1

�, a1, . . . , at ∈ F
n
p , and

λ1, . . . , λt ∈ Fp such that the polynomial

Q(x) =
∑

i≤t

λiP (x+ ai)

satisfies

|L(Q)| ≥ n

dp�
d−1
p−1	

.

The reminder of this section is dedicated to the proof of Lemma 3.1. The
main idea used is that if P (x) is a homogeneous degree d polynomial, then
taking d − 1 directional derivatives of P along random directions will yield
with high probability a polynomial with many linear variables. In the non-
homogenous case, we have to choose how many times to differentiate carefully,
since for example if the polynomial is X1X2 +X3 +X4 · · ·+Xn, then most of
the variables will disappear after differentiating just once. To get a large linear
form from this polynomial however, we can simply set X1 = X2 = 0. Our final
degree reduction procedure combines these two strategies, we first differentiate
and then set some variables to 0 to get a large linear form.

Finally, for technical reasons, we differentiate multiple times along each
direction rather than choosing multiple directions. While this makes the proof
of the degree reduction more involved, it allows us to get a better dependence
on the degree. Roughly speaking, we can show that degq(f) ≥ n

pdegp(f)
, whereas

differentiating once along multiple directions would yield bounds of the form
degq(f) ≥ n

2p degp(f)
with our proof technique.

We define the monomial degree of a variable xi in a polynomial P (x) to
be the maximal degree of a monomial of P containing xi, and denote it by
degi(P ). Note that the monomial degree of xi is different from its individual
degree, which is the highest power of xi that occurs in P . The main tool we
use to prove the lemma is the notion of directional derivatives of a polynomial.
Given a polynomial P , we define the first derivative along y, denoted P(y,1), as

P(y,1)(x) = P (x+ y)− P (x) .

We define the �th derivative along y for � ≥ 1 inductively as

P(y,�)(x) = P(y,�−1)(x+ y)− P(y,�−1)(x)
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when � ≥ 1. It is easy to verify that

P(y,�)(x) =
∑

0≤j≤�

(−1)�−j

(
�

j

)

P (x+ jy) .

We define multiple derivatives in multiple directions, which we denote by
P(y(1),�(1)),...,(y(k),�(k))(x). To derive a formula for those derivatives we define the
following quantity for all �, c:

μ(�, c) =
∑

0≤j≤�

(−1)�−j

(
�

j

)

jc .

The following combinatorial identities are well-known; we prove them for com-
pleteness:

Fact 3.2. Let � ≤ p− 1. Then

μ(�, c) = 0 for c ∈ {0, . . . , �− 1} ,
μ(�, �) �≡ 0 mod p .

Proof. We prove the first identity by induction on c. The case c = 0 is
elementary. To prove it for c ≥ 1, we consider the following identity over Z

(3.3) (X − 1)� =
∑

0≤j≤�

(−1)�−j

(
�

j

)

Xj .

Differentiating both sides c ≤ �− 1 times and then setting X = 1 gives

0 =
∑

0≤j≤�

(−1)�−j

(
�

j

)

j(j − 1) · · · (j − c+ 1)

= μ(�, c) +
∑

1≤i≤c−1

λ(i)μ(�, i) ,

where the λ(i)-s are some integers. Using the induction hypothesis for i ≤ c−1
gives μ(�, c) = 0. To prove μ(�, �) �≡ 0 mod p we differentiate Equation (3.3) �
times to get

�! =
∑

0≤j≤�

(−1)�−j

(
�

j

)

j(j − 1) · · · (j − �+ 1)

= μ(�, �) +
∑

1≤c≤�−1

λ(c)μ(�, c)

= μ(�, �) .

Since we assume that � ≤ p− 1 it follows that μ(�, �) = �! �≡ 0 mod p. �
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We abbreviate the monomial
∏n

i=1 x
di
i by xd where d = (d1, · · · , dn) is the

degree vector. We use |d| =
∑

i di to denote its total degree. Given vectors d, e
we say e ≤ d if ei ≤ di for all i, and use the notation

(
d
e

)
=

∏
i

(
di
ei

)
. We have

xd
(y,�) =

�∑

j=0

(−1)�−j

(
�

j

)

(x+ jy)d

=
�∑

j=0

(−1)�−j

(
�

j

)∑

e≤d

(
d

e

)

xd−e(jy)e

=
∑

e≤d

(
d

e

)

xd−eye
�∑

j=0

(−1)�−j

(
�

j

)

j|e|

=
∑

e≤d

(
d

e

)

xd−eyeμ(�, |e|)

=
∑

e≤d

|e|≥�

(
d

e

)

xd−eyeμ(�, |e|)

where we use μ(�, |e|) = 0 for |e| ≤ �− 1. Thus, differentiating � times along y
reduces the degree in x by at least �, as one would expect.

By repeating this calculation, we can compute an expression for deriva-
tives in multiple directions. Given vectors d, e(1), . . . , e(k) we use the notation(

d
e(1),...,e(k)

)
for the product of multinomials

∏
l∈[n]

( dl

e
(1)
l ,...,e

(k)
l

)
. We have

xd
(y(1),�(1)),...,(y(k),�(k))

=
∑

e(1)+···+e(k)≤d

(
d

e(1), . . . , e(k)

)

xd−(e(1)+···+e(k)) ·
k∏

j=1

μ(�(j), |e(j)|)(y(j))e(j)

=
∑

|e(1)|≥�(1),...,|e(k)|≥�(k)

(
d

e(1), . . . , e(k)

)

xd−(e(1)+···+e(k)) ·
k∏

j=1

μ(�(j), |e(j)|)(y(j))e(j) .

By linearity, we can compute the derivative of any polynomial P (x) =
∑

d cdx
d.

P(y(1),�(1)),...,(y(k),�(k))(x) =
∑

d

cdx
d
(y(1),�(1)),...,(y(k),�(k))

=
∑

d

cd
∑

|e(1)|≥�(1),...,|e(k)|≥�(k)

(
d

e(1), . . . , e(k)

)

xd−(
∑

j e
(j)) ·

k∏

j=1

μ(�(j), |e(j)|)(y(j))e(j)
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=
∑

f

xf

⎛

⎝
∑

|e(1)|≥�(1),...,|e(k)|≥�(k)

cf+∑
j e

(j)

(
f +

∑
j e

(j)

e(1), . . . , e(k)

)

·
k∏

j=1

μ(�(j),|e(j)|)(y(j))e(j)
⎞

⎠

(3.4)

where in the last line we use the change of variable f = d−
∑

j e
(j). Recall that

we define degi(P ) to be the largest degree monomial containing the variable xi.
It follows that the monomial degree of xi drops by at least min(

∑
j �

(j), degi(P ))
(note that the degree cannot drop below zero):

degi(P(y(1),�(1)),...,(y(k),�(k))) ≤ degi(P )−min

(
∑

j

�(j), degi(P )

)

.

Lemma 3.5. Let

degi(P ) = (k − 1)(p− 1) + �+ 1 where �+ 1 ≤ p− 1 ,

�(1) = · · · = �(k−1) = p− 1 and �(k) = � .

Then the coefficient of xi in P(y(1),�(1)),...,(y(k),�(k))(x) is a non-zero polynomial in

y(1), . . . , y(k).

Proof. Observe that
∑

j �
(j) = degi(P )− 1, so

degi(P(y(1),�(1)),...,(y(k),�(k))) ≤ degi(P )−
∑

j

�(j) = 1 .

Our goal is to show that it is in fact 1. Consider the vector f where fi =
1 and fj = 0 for all j �= i. By Equation (3.4), the coefficient of xf in
P(y(1),�(1)),...,(y(k),�(k))(x) is given by
(3.6)

c′f =
∑

|e(1)|≥�(1),...,|e(k)|≥�(k)

cf+∑
j e

(j)

(
f +

∑
j e

(j)

e(1), . . . , e(k)

)

·
k∏

j=1

μ(�(j), |e(j)|)(y(j))e(j) .

We shall now find e(1), . . . , e(k) so that the following conditions hold:

cf+∑
j e

(j) �= 0,

(
f +

∑
j e

(j)

e(1), . . . , e(k)

)

�= 0(3.7)

|e(1)| = · · · = |e(k−1)| = p− 1, |e(k)| = � .(3.8)
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Indeed, Equation (3.8) ensures that μ(�j, |e(j)|) �= 0. By Equation (3.7) each
solution (e(1), · · · , e(k)) will contribute a non-zero multiple of the monomial
∏k

j=1(y
(j))e

(j)
to c′f . Notice that distinct solutions contribute distinct monomi-

als to the right hand side of (3.6). Hence, the claim will follow if we show that
there is at least one choice of e(1), . . . , e(k) satisfying Equations (3.7), (3.8).

Fix a monomial xd, where |d| = degi(P ) and cd �= 0, containing the variable
xi. Now |d− f | = (k − 1)(p− 1) + �. It is easy to define e(1), . . . , e(k) so that

|e(1)| = · · · = |e(k−1)| = p− 1, |e(k)| = �

and

∑

j

(e(j))l + fl = dl ∀ l ∈ [n] .

Note that (
f +

∑
j e

(j)

e(1), . . . , e(k)

)

=
∏

l∈[n]

(
fl +

∑
j(e

(j))l

(e(1))l, . . . , (e(k))l

)

.

As ∑

j

(e(j))l ≤ fl +
∑

j

(e(j))l = dl ≤ p− 1 ,

each binomial coefficient in the product is non-zero mod p. This gives a solution
satisfying both Equations (3.7) and (3.8). �

Let δp(d) denote the minimum probability that a nonzero degree d polyno-
mial over Fp evaluates to zero on a random input. It is well-known (see e.g.
MacWilliams & Sloane 1977) that if d = a(p−1)+b where a ≥ 0 and b ≤ p−1,
then

δp(d) =
1

pa

(

1− b

p

)

≥ p−�
d

p−1	 .

Lemma 3.9. Let P (x) ∈ Fp[x] be a degree d polynomial that depends on all
n variables. Then there exist k ≤ �d−1

p−1
	, directions y(1), . . . , y(k) ∈ F

n
p and

integers �(1), . . . , �(k) ≤ p− 1 such that

|L(P(y(1),�(1)),...,(y(k),�(k)))| ≥
n

dp�
d−1
p−1	

.

Proof. There exists some d′ ≤ d so that degi(P ) = d′ for at least n
d
variables,

call this set of variables G. If d′ = 1, then the claim trivially holds, so assume
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d′ > 1. Let d′− 1 = (k− 1)(p− 1)+ � for � ≤ p− 2 and set �(1) = · · · = �(k−1) =
p − 1, �(k) = �. Lemma 3.5 implies that, for every xi ∈ G, the coefficient
ci(y

(1), . . . , y(k)) of xi in P(y(1),�(1)),...,(y(k),�(k)) is a non-zero polynomial of degree

at most d′−1 ≤ d−1 in y(1), . . . , y(k). Thus, there exists a setting for y1, . . . , yk
where at least

δp(d− 1)|G| ≥ n

dp�
d−1
p−1	

of the cis are non-zero. Since variables in G have degree 1 in P(y(1),�(1)),...,(y(k),�(k)),
there are no higher degree terms which contain them, so these variables all lie
in L(P(y(1),�(1)),...,(y(k),�(k))). �

To complete the proof of Lemma 3.1, we observe that P(y(1),�(1)),...,(y(k),�(k))

can be written as

P(y(1),�(1)),...,(y(k),�(k))(x) =
∑

i≤t

λiP (x+ ai)

where t ≤
k∏

j=1

(�(j) + 1) ≤ p�
d−1
p−1	 .

4. The case of characteristic 2

Let P (x) be a low degree polynomial over F2. We prove in this section that P
must have high degree over characteristics q �= 2. Since we will be working with
operations over different fields, we will use + to denote summation modulo q,
and ⊕ for summation modulo 2. We start with some simple claims:

Claim 4.1. Let f(x) = ⊕n
i=1xi be the parity function on n bits. Then for

q �= 2, degq(f) = n.

Proof. The unique multilinear polynomial over Fq computing f is

H⊕(x) =
1

2

(

1−
n∏

i=1

(1− 2xi)

)

. �

Lemma 4.2. Let a1, . . . , ak ∈ F
n
2 . Define g : {0, 1}n → {0, 1} by g(x) =

⊕k
i=1f(x⊕ ai). Then

degq(g) ≤ k degq(f) .
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Proof. For any a ∈ F
n
2 , consider fa(x) = f(x ⊕ a). Clearly, g(x) =

⊕k
i=1fai(x). We claim that degq(fa) = degq(f). Let Q(x) be a polynomial over

Fq which computes f over {0, 1}n. Define a new polynomial Qa(x) = Q(x⊕ a)
by replacing xi with 1 − xi whenever ai = 1, and keeping xi whenever ai = 0.
Clearly Qa computes fa(x) over {0, 1}n, and degq(Qa) = degq(Q).

Composing the polynomial H⊕ over Fq that computes ⊕ on {0, 1}k with
the Qa-s, we get a polynomial of degree at most k degq(f) that represents g
over Fq. Hence, degq(g) ≤ k degq(f). �

We now restate and prove Theorem 1.2 in the p = 2 case, showing that any
Boolean function with small degree over F2 must have high degree over Fq for
a prime q �= 2.

Theorem 4.3 (Theorem 1.2, p = 2 case). For any f : {0, 1}n → {0, 1}, and
prime q �= 2:

degq(f) ≥
n

deg2(f)4
deg2(f)

.

Proof. Let f : {0, 1}n → {0, 1} be a Boolean function such that deg2(f) =
d. Let P (x) be the degree d polynomial over F2 computing f . We will prove
that the multilinear polynomial Q(x) over Fq computing f has high degree.

By Lemma 3.1, there exist a1, . . . , ak ∈ F
n
2 , for k ≤ 2d, such that if P̃ (x) =

⊕k
i=1P (x ⊕ ai), then |L(P̃ )| ≥ n

d2d
. Let us denote the set L(P̃ ) by S. Let P̃S

be the restriction of P̃ to the variables in S obtained by fixing the remaining
variables to zero. Clearly, P̃S(x) is either Parity on the set S or its negation.
Assume w.l.o.g it is the former.

Now consider the polynomial Q. Since Q(x) = f(x) for all x ∈ {0, 1}n, then
the polynomial Q̃ defined as Q̃(x) = H⊕(Q(x⊕a1), . . . , Q(x⊕ak)) satisfies that
Q̃(x) = P̃ (x) for all x ∈ {0, 1}n. So if we let Q̃S be the restriction of Q̃ to the
variables in S, then Q̃S(x) = P̃S(x) for all x ∈ {0, 1}n.

Now, since P̃S is the parity function over |S| bits, Claim 4.1 implies that
deg(Q̃S) = |S| ≥ n

d2d
. On the other hand, by Lemma 4.2 we have that

deg(Q̃S) ≤ deg(Q̃) ≤ k degq(f). Therefore we conclude that

degq(f) ≥
n

kd2d
≥ n

d4d
. �

We now generalize this result and show that f cannot be approximated by
low degree polynomials over Fq. We need the following claim, which is proven
using the union bound.
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Claim 4.4. Let f ′ : {0, 1}n → {0, 1} be such that Prx∈{0,1}n [f
′(x) = f(x)] ≥

1− ε. Let a1, . . . , ak ∈ F
n
2 . Then

Pr
x∈{0,1}n

[
⊕k

i=1 f
′(x⊕ ai) = ⊕k

i=1f(x⊕ ai)
]
≥ 1− kε .

We now restate and prove Theorem 1.5 in the p = 2 case.

Theorem 4.5 (Theorem 1.5, p = 2 case). For a prime q �= 2 let c, ε > 0 be
given by Lemma 2.6. Let f : {0, 1}n → {0, 1} be of degree deg2(f) = d. If
h : Fn

q → Fq satisfies

Pr
x∈{0,1}n

[
h(x) = f(x)

]
≥ 1− 2−dε ,

then

degq(h) ≥ c

√
n

d8d
.

Proof. Using Lemma 3.1, choose k ≤ 2d and a1, . . . , ak ∈ F
n
2 so that there

exists a set of variables S of size |S| ≥ n
d2d

such that the function f̃(x) =
⊕k

i=1f(x⊕ ai) is either Parity or its negation when restricted to the variables in
S. Similarly, define h̃(x) = ⊕k

i=1h(x⊕ ak). By Claim 4.4 we get that

Pr
x∈{0,1}n

[
f̃(x) = h̃(x)

]
≥ 1− k2−dε ≥ 1− ε .

For every assignment b ∈ {0, 1}[n]\S to the variables outside S, define f̃S,b(x) as
the restriction of f̃ to the variables in S, obtained by assigning values to the
variables outside S according to b. Let h̃S,b. We claim there exists some b such
that

Pr
x∈{0,1}S

[
f̃S,b(x) = h̃S,b(x)

]
≥ 1− ε .

Indeed, this is true as for a randomly chosen b,

Eb∈{0,1}[n]\S

[

Pr
x∈{0,1}S

[
f̃S,b(x) = h̃S,b(x)

]
]

= Pr
x∈{0,1}n

[
f̃(x) = h̃(x)

]
≥ 1− ε .

We also have degq(h̃S,b) ≤ degq(h̃) ≤ 2d degq(h), where the last inequality uses

Lemma 4.2. Now, f̃S,b(x) is either Parity or its negation (assume w.l.o.g the
former) over |S| variables. Since h̃S,b approximates Parity over |S| variables
with probability at least 1− ε, Lemma 2.6 implies degq(h̃S,b) ≥ c

√
|S|. Thus

2d degq(h) ≥ deg(h̃S,b) ≥ c

√
n

d2d

which proves the theorem. �
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Combining Theorem 4.5 with the Razborov–Smolensky bound, we conclude
that any AC0[q] circuit that computes a low F2-degree Boolean function on n
variables must be of exponential size.

Theorem 4.6 (Theorem 1.6, p = 2 case). For any prime q �= 2, there ex-
ist constants c1, c2 so that any AC0[q] circuit of depth t computing a func-
tion f : {0, 1}n → {0, 1} on n variables with deg2(f) = d requires size

c12
−d exp((c2

n
d8d

)
1
2t ).

Proof. Assume there is an AC0[q] circuit of size s and depth t computing
f . Let ε be the constant in Lemma 2.6. Applying Lemma 2.5 with δ = 2−dε,
there is some absolute constant c′ and an Fq polynomial Q of degree deg(Q) ≤
(c′ log s

2−dε
)t such that

Pr
x∈{0,1}n

[
Q(x) = f(x)

]
≥ 1− 2−dε .

By Theorem 4.5 we get that deg(Q) ≥ c
√

n
d8d

for some constant c. Hence,

s ≥ c12
−d exp

((
c2

n

d8d

) 1
2t

)

,

for absolute constants c1, c2. �

5. The case of general characteristic

Since we will be working with operations over different fields, we will denote
by +p,+q summation modulo p, q respectively, and by + summation where the
context is clear.

In this section we work with polynomials that represent a Boolean function
over different characteristics. Suppose f is a Boolean function with low degree
over Fp. Our goal is to show that some suitable derivative of f is a linear
function. We will then try to relate the degree of this derivative over Fq to
degq(f). This scheme becomes harder to implement, since in differentiating a
polynomial over F

n
p , we need to take linear combinations of various points in

F
n
p . There is no natural way to associate F

n
p with a subset of Fn

q for p > 2. To
overcome this difficulty, we define a suitable embedding of Fn

p to F
n
q . While the

proof is now technically harder, the basic idea stays the same.
Let f(x) be a Boolean function. We start by defining a polynomial ex-

tending f to a function F : F
n
p → {0, 1}. Given a vector x ∈ F

n
p , we de-

fine xp−1 = (xp−1
1 , . . . , xp−1

n ) ∈ {0, 1}n, which is the indicator of whether x
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is non-zero on each coordinate. Define the function F : F
n
p → {0, 1} by

F (x) = f(xp−1). F (x) can be expressed as a polynomial of degree (p−1) degp(f)
by considering the multilinear representation of f over Fp and replacing each
variable xi with xp−1

i ; henceforth we shall think of F as this polynomial. Our
goal will be to show that if f has low degree over Fq, then so does F and any
function of the form F (x+pa1)+p . . .+pF (x+pak). Since these are functions on
F
n
p , we need to define the notion of computing functions on F

n
p by polynomials

over Fq. Set b = �log2 p	. We identify the lexicographically first p bit strings in
{0, 1}b with the set {0, . . . , p− 1}. We then identify F

n
p with a subset of Fnb

q by
identifying x = (x1, . . . , xn) ∈ F

n
p with (x1,1, . . . , x1,b, . . . , xn,1, . . . , xn,b) ∈ F

nb
q ,

where the value of xi determines the values of (xi,1, . . . , xi,b). Notice that in
fact we map F

n
p into {0, 1}nb ⊂ F

nb
q . Given x ∈ F

n
p , we use x̄ ∈ {0, 1}nb

to denote the vector in {0, 1}nb ⊂ F
nb
q that represents it. We use x̄i to

denote the vector (xi,1, . . . , xi,b) representing xi. We say that a polynomial
G(x) ∈ Fq[x1,1, . . . , xn,b] computes F : Fn

p → {0, 1} if F (x) = G(x̄) for every
x ∈ F

n
p . We now show that if f has low degree in Fq, then F (x +p a) can also

be computed by a low degree polynomial over Fq.

Lemma 5.1. Let f : {0, 1}n → {0, 1} be a Boolean function. Let F (x) be a
polynomial over Fp defined by F (x) = f(xp−1). Then, for every a ∈ F

n
p there

is a polynomial Ga(x) ∈ Fq[x1,1, . . . , xn,b] over Fq of degree at most b · degq(f)
computing F (x+p a).

Proof. For a = (a1, . . . , an) ∈ F
n
p and i ∈ [n] let Ai(x̄i) ∈ Fq[x̄i] be such

that deg(Ai) ≤ b and

Ai(x̄i) =

{
0 if xi +p ai = 0 mod p

1 otherwise .

Recall that x̄i is a 0/1 vector of length b, therefore we can define Ai to be
a multilinear polynomial by only considering its values on {0, 1}b. When the
input to Ai is not a vector of the form x̄i we allow it to output an arbitrary
value in Fq. As Ai is multilinear its degree is clearly at most b. By definition
it follows that (A1(x̄1), . . . , An(x̄n)) = (x +p a)p−1. Let g : F

n
q → Fq be a

polynomial of degree degq(f) representing f over Fq. Define the polynomial
Ga(x̄) : F

bn
q → Fq as

Ga(x̄) = g
(
A1(x̄1), . . . , An(x̄n)

)
.

We have:

Ga(x̄) = g
(
A1(x̄1), . . . , An(x̄n)

)
= g

(
(x+p a)

p−1
)
= f

(
(x+p a)

p−1
)
= F (x+p a)

as required, and deg(Ga) ≤ b deg(g) = b degq(f). �



254 Gopalan, Lovett & Shpilka cc 19 (2010)

As in the proof of Lemma 4.2 we shall need to compute Boolean predicates,
on expressions of the form F (x +p a1) +p · · · +p F (x +p ak), by low degree
polynomials over Fq.

Corollary 5.2. Let f : {0, 1}n → {0, 1} be a Boolean function and F (x)
be a polynomial over Fp defined by F (x) = f(xp−1). Let a1, . . . , ak ∈ F

n
p ,

λ1, . . . , λn ∈ Fp and t : Fp → {0, 1} be any Boolean valued predicate on Fp.
Define the function T : Fn

p → {0, 1} as

T (x) = t

(
∑

i≤k

λiF (x+p ai)

)

.

Then, T can be computed by a polynomial over Fq of degree at most kb degq(f).

Proof. By Lemma 5.1, each function F (x +p ai) = f((x +p ai)
p−1) can be

computed by a polynomial Gi(x̄) over Fq of degree at most b degq(f). The func-
tion T (x) is a function of G1(x̄), . . . , Gk(x̄) ∈ {0, 1}, and thus can be computed
by H(G1(x̄), . . . , Gk(x̄)), where H(z1, . . . , zk) is a multilinear polynomial over
Fq computing the function t(λ1z1 +p · · · +p λkzk) : {0, 1}k → {0, 1}. Thus, T
can be computed by a polynomial over Fq of degree at most kb degq(f). �

We now prove Theorem 1.2 in the case of general p.

Proof of Theorem 1.2 for general p. Let d = degp(f), and consider
F (x) = f(xp−1) which has degree (p−1)d. Invoking Lemma 3.1 for F (x) which
has degree (p− 1)d, we conclude that there exist k ≤ pd points a1, . . . , ak ∈ F

n
p

such that G(x) =
∑k

i=1 λiF (x+p ai) satisfies |L(G)| ≥ n/(dpd). Let S = L(G)
and rename the variables in S as x1, . . . , xs, where s = |S|. Let GS be the
restriction of G to the variables in S (by setting the other variables to zero).
We get that for some α1, . . . , αs ∈ Fp \ {0} and α0 ∈ Fp,

GS(x) =
s∑

i=1

αixi + α0 .

Let ω be a pth root of unity in the appropriate extension field F = Fqr of Fq. We
consider the function h : {0, 1}s → F, which, by abuse of notations, is given by
h(x) = ω

∑
1≤i≤s αixi+pα0 . Indeed, we think of the expression

∑
1≤i≤s αixi +p α0

as taking values in {0, 1, . . . , p− 1} and then raise ω to the appropriate power.
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The unique multilinear polynomial H(x) over F computing h on {0, 1}s has
degree deg

F
(H) = s ≥ n

dpd
and is given by

H(x) = ωα0

s∏

i=1

(
1 + (ωαi − 1)xi

)
.

We now upper-bound deg(H) in terms of degq(f). First, for i ∈ {0, . . . , p−1} let
ti : Fp → {0, 1} be the predicate indicating whether x ≡ i mod p. Consider the
polynomial Ti : F

n
p → {0, 1} defined by Ti = ti(GS(x)). Since GS(x) is obtained

by setting some of the variables in
∑

i λiF (x+p ai) to zero, Corollary 5.2 gives
degq(Ti) = degq(ti(GS(x))) ≤ kb degq(f). Notice that as H(x) is unique, it also
equal to the multlinearization of the polynomial

H̃(x) =

p−1∑

i=0

ωiTi(x) .

It follows that

s = deg
F
(H) ≤ max

i
degq

(
Ti(x)

)
= max

i
degq

(
ti
(
GS(x)

))
≤ kb degq(f) .

Therefore,

degq(f) ≥
s

bk
≥ n

�log2 p	dp2d
. �

We use Theorem 1.2 to prove Corollary 1.3.

Proof of Corollary 1.3. Let p be the smallest prime divisor of m and
let q �= p be another prime divisor. Note that by Fact 2.3, we have degm(f) ≥
max(degp(f), degq(f)) so it suffices to show that one of degp(f) or degq(f)
exceeds the claimed bound.

So assume that degp(f) ≤ 1
2
logp n − logp logp n − 1

2
logp�log2 p	. By Theo-

rem 1.2, we get

degq(f) ≥
n

�log2 p	 degp(f)p2 degp(f)
≥ logp n

where the last inequality is a simple calculation. This proves the desired bound.
�

Next we prove Theorem 1.5 showing that functions with low degree over Fp

are hard to approximate over Fq. First we state the theorem precisely.
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Theorem 5.3 (Theorem 1.5 for general p). For any primes p �= q there exist
constants c, ε > 0 depending only on p, q such that the following holds. Let
f : {0, 1}n → {0, 1} be a Boolean function depending on all n variables with
degp(f) = d. Let h : Fn

q → {0, 1} be any function satisfying

Pr
x∈{0,1}n

[
h(x) = f(x)

]
≥ 1− p−dε .

Then

degq(h) ≥ c

√
n

dp3d
.

We start with some technical claims.

Claim 5.4. Let f : {0, 1}n → {0, 1} be a Boolean function, such that
degp(f) = d. For v ∈ {0, 1}n define Fv : F

n
p → {0, 1} as

Fv(x) = f(xp−1 ⊕ v)

where for y, v ∈ {0, 1}n, y⊕v ∈ {0, 1}n denotes their coordinatewise-Xor. Then
Fv is a polynomial over Fp of degree at most (p− 1)d.

To prove this claim, we construct the polynomial for Fv from the multilinear
polynomial for f by replacing xi with xp−1 or 1 − xp−1 depending on whether
or not vi = 0. As this argument appeared several times before we omit the
details.

Claim 5.5. Let f(x) and g(x) be two Boolean functions such that

Pr
x∈{0,1}n

[
f(x) = g(x)

]
≥ 1− ε .

Then there exists v ∈ {0, 1}n such that if we define Fv(x) = f(xp−1 ⊕ v) and
Gv = g(xp−1 ⊕ v) then

Pr
x∈Fn

p

[
Fv(x) = Gv(x)

]
≥ 1− ε .

Proof. Consider the following expression over a uniform choice of v ∈
{0, 1}n

Ev

[
Pr
x∈Fn

p

[
Fv(x) = Gv(x)

]]
= Pr

x∈{0,1}n

[
f(x) = g(x)

]
≥ 1− ε .

Thus the inequality holds for some v ∈ {0, 1}n, �
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We also need the following analogue of Claim 4.4:

Claim 5.6. Let F (x) and H(x) be functions such that Prx∈Fn
p
[F (x) = H(x)] ≥

1− ε. Let a1, . . . , ak ∈ F
n
p and λ1, . . . , λk ∈ Fp. Then:

Pr
x∈Fn

p

[
∑

i

λiF (x+p ai) =
∑

i

λiH(x+p ai)

]

≥ 1− kε .

We now prove Theorem 5.3.

Proof of Theorem 1.5 in the case of general p. Let f(x) be a
Boolean function of small degree d over Fp. Let h(x) : F

n
q → {0, 1} be such that

Prx∈{0,1}n [f(x) = h(x)] ≥ 1 − p−dε, for a small enough ε > 0. We will prove
that degq(h) is large. The proof will proceed by a series of transformations on
the pair of functions, such that the pairs generated will remain close, f will
be transformed into the Modp function, whereas h will be transformed into a
function whose degree over Fq is bounded in terms of degq(h). By Lemma 2.6,
it must then follow that degq(h) is large. From this point on we shall ‘forget’
that h is defined over Fn

q and only consider its values on {0, 1}n ⊂ F
n
q . In other

words, we shall think of h as a Boolean function.
The first step is to extend f, h to functions mapping F

n
p to {0, 1}. Let

Fv(x) = f(xp−1 ⊕ v) and Hv(x) = h(xp−1 ⊕ v) be mappings from F
n
p to {0, 1}.

By Claim 5.5, there exists v ∈ {0, 1}n such that

Pr
x∈Fn

p

[
Fv(x) = Hv(x)

]
≥ Pr

x∈{0,1}n

[
f(x) = h(x)

]
≥ 1− p−dε .

In addition, the degree of Fv over Fp is at most (p − 1)d. The next step is to
apply the degree reduction lemma to Fv. By Lemma 3.1, there is some k where

k ≤ p�
deg(Fv)−1

p−1
� ≤ pd

vectors a1, . . . , ak ∈ F
n
p and λ1, . . . , λn ∈ Fp, such that for Gf (x) =∑

i≤k λiFv(x +p ai) (the sum is addition modulo p) it holds that the set
S = L(Gf ) has size s ≥ n

dpd
. Let Gh : Fn

p → Fp be defined as

Gh(x) =
∑

i≤k

λiHv(x+p ai) .(5.7)
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Claim 5.6 implies that

Pr
x∈Fn

p

[
Gf (x) = Gh(x)

]
≥ 1− kp−dε ≥ 1− ε .

As in the proof of Theorem 4.5, there exists an assignment u ∈ F
[n]\S
p to the

variables outside S so that the agreement between Gf and Gh is at least as
large. To ease notation, we denote these restrictions also as Gf (x) and Gh(x)
(instead of GfS,u(x) and GhS,u(x)). Note that Gf (x) =

∑
i≤k αixi +p α0 where

for 1 ≤ i ≤ s αi ∈ Fp \ {0}, α0 ∈ Fp and the summation is modulo p. By
replacing each xi inGf andGh by α

−1
i xi, we get new functionsG′

f , G
′
h : Fs

p → Fp

such that G′
f (x) =

∑
i xi +p α0 and

Pr
x∈Fs

p

[

G′
h(x) =

∑

i

xi +p α0

]

= Pr
x∈Fs

p

[
G′

h(x) = G′
f (x)

]
≥ 1− ε .

The final step is to convert G′
h to a Boolean function approximating the Modp

function on s variables. Towards this, for each w ∈ F
s
p, we define hw : {0, 1}s →

Fp by hw(y) = G′
h(y +p w). Note that since y +p w is distributed uniformly at

random over Fs
p we have that

Pr
w∈Fs

p

[

Pr
y∈{0,1}s

[

hw(y) =
∑

i

yi +p

∑

i

wi +p α0

]]

= Pr
x∈Fs

p

[

G′
h(x) =

∑

i

xi +p α0

]

≥ 1− ε .

Thus there exists w so that

Pr
y∈{0,1}s

[

hw(y) =
∑

i≤s

yi +p α

]

≥ 1− ε

where α = α0 +p

∑

i

wi ∈ Fp .

Define t : Fp → {0, 1} by t(z) = 1 iff z ≡ α mod p and t(z) = 0 otherwise.
Finally, let h̃(y) = t(hw(y)). Notice that t(

∑
i≤s yi +p α) = 1 iff

∑
i≤s yi ≡

0 mod p. In other words, t(
∑

i≤s yi +p α) = Modp(y). We thus have

Pr
y∈{0,1}s

[
h̃(y) = Modp(y)

]
≥ Pr

y∈{0,1}s

[

hw(y) =
∑

i≤s

yi +p α

]

≥ 1− ε .
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Set ε > 0 to be the constant guaranteed by Lemma 2.5. By Lemma 2.5,
there exist a constant c′ > 0 (where both c′, ε depend only on p, q) such that
degq(h̃) ≥ c′

√
s. Our goal now is to relate degq(h) to degq(h̃). We make the

following observations:

1. We have hw(y) = G′
h(y +p w).

2. G′
h(x) is obtained from Gh(x) by setting variables outside S to constants

and replacing each xi ∈ S by α−1xi.

3. By Equation (5.7), Gh(x) is a linear combination over Fp of values of the
form Hv(x+p ai).

4. Each Hv(x +p ai) can be computed by a polynomial Qi(x̄) over Fq of
degree at most �logq p	 · degq(h) by an argument similar to Lemma 5.1.

Thus, we can write h̃(y) as some predicate t′ : {0, 1}k → {0, 1} applied to a
tuple of polynomial Q1, . . . , Qk with degq(Qi) ≤ �logq p	 degq(h), and hence

degq(h̃) ≤ kb degq(h). We conclude that

degq(h) ≥
c′
√
s

k�logq p	
=

c′

�logq p	

√
n

dp3d
.

Hence we proved the theorem with the constant c = c′

�logq p�
. �

As a corollary we obtain a lower bound for the size of AC0[q] circuits com-
puting functions with low degree over Fp.

Theorem 5.8 (Theorem 1.6, restated). Let p, q be distinct primes. Let f :
{0, 1}n → {0, 1} be a Boolean function depending on all n variables with
degp(f) = d. Then any AC0[q] circuit of depth t computing f requires size
at least

c1p
−d exp

(

c2

(

c3
n

dp3d

) 1
2t

)

,

where c1, c2, c3 are constants depending only on p, q. In particular, for d =
o(logp n), the lower bound is exp(n1/2t−o(1)).

Proof. Assume there is an AC0[q] circuit of size s and depth t computing f .
Let ε be the constant in Lemma 2.6. Applying Lemma 2.5 with δ = p−dε we get
that there is some absolute constant c′ and an Fq polynomial Q : Fn

q → {0, 1}
of degree deg(Q) ≤ (c′p log s

p−dε
)t such that Prx∈{0,1}n [Q(x) = f(x)] ≥ 1− p−dε.
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By Theorem 5.3 deg(Q) ≥ c′′
√

n
dp3d

for some constant c′′ depending only on

p, q. Hence, for c1 = ε, c2 = c′p, c3 = c′′ we get that

s ≥ c1p
−d exp

(

c2

(

c3
n

dp3d

) 1
2t

)

,

as claimed. �

6. Open problems

Our work raises some natural questions regarding the relations between
degm(f) for various characteristics, some of which we list below:

1. For any integer m, we have deg(f) ≥ degm(f). What is the largest sep-
aration possible between these quantities when m is not a prime power?
For such m, is deg(f) polynomial in degm(f)? We can restate these ques-
tions as follows: Can deg(f) be bounded as a function of degp(f) and
degq(f) for distinct primes p and q?

Note that the gap between deg(f) and degm(f) can be unbounded when
m is a prime-power. If m is not a prime power, Corollary 1.3 gives an
analog of the Ω(log n) Nisan–Szegedy lower bound for composite moduli.
Thus trivially, deg(f) is at most exponential in degm(f).

2. The following question was posed by Troy Lee: Given a set S of vectors
in {0, 1}n, define Rankp(S) to be the rank of the set S over Fp and
Rank(S) to be the rank over R. Are there non-trivial relations between
these ranks? For example, assume that both Rank2(S) and Rank3(S) are
small, say poly(log n). What can be said about Rank(S)? Note that if
we consider only Rank2(S) then the Hadamard matrix is an example of
a full rank matrix over R that has rank log n over F2.

References

J. Aspnes, R. Beigel, M.L. Furst & S. Rudich (1994). The expressive power
of voting polynomials. Combinatorica 14(2), 1–14.

D.A. Barrington, R. Beigel & S. Rudich (1994). Representing boolean func-
tions as polynomials modulo composite numbers. Computational Complexity 4, 367–
382.



cc 19 (2010) Boolean functions in different characteristics 261

R. Beigel (1993). The Polynomial Method in Circuit Complexity. Structures in
Complexity Theory: 8th Annual Conference 82–95.

R. Beigel, N. Reingold & D.A. Spielman (1991). The perceptron strikes back.
In Proceedings of the Sixth Conference on Structure in Complexity Theory, 286–291.

N. Bhatnagar, P. Gopalan & R. J. Lipton (2006). Symmetric polynomials over
Zm and simultaneous communication protocols. Journal of Computer and System
Sciences 72, 252–285.

A. Bogdanov & E. Viola (2007). Pseudorandom bits for polynomials. In 48th

Annual Symposium on Foundations of Computer Science (FOCS’07), 41–51. IEEE.

C.K. Chow (1961). On the characterization of threshold functions. In Proceedings
of the Symposium on Switching Circuit Theory and Logical Design (FOCS), 34–38.

K. Efremenko (2009). 3-Query locally decodable codes of exponential codes. In
Accepted to the 41st Annual Symposium on the Theory of Computing (STOC’09).
ACM.

P. Gopalan (2006a). Computing with Polynomials over Composites. Ph.D. thesis,
Georgia Institute of Technology.

P. Gopalan (2006b). Constructing Ramsey Graphs from Boolean function represen-
tations. In Proceedings of the 21st IEEE Conference on Computational Complexity
(CCC’06).

V. Grolmusz (2000). Superpolynomial Size Set-systems with Restricted Intersec-
tions mod 6 and Explicit Ramsey Graphs. Combinatorica 20(1), 71–86.

V. Grolmusz (2002). Constructing set systems with prescribed intersection sizes.
Journal of Algorithms 44(2), 321–337.

J. C. Jackson, A.R. Klivans & R.A. Servedio (2002). Learnability beyond
AC0. In Proceedings of the 34th ACM Symposium on Theory of Computing.

A.T. Kalai, A.R. Klivans, Y. Mansour & R.A. Servedio (2005). Agnostically
Learning Halfspaces. In Proc. 46th IEEE Symp. on Foundations of Computer Science
(FOCS’05).

A.R. Klivans, R. O’Donnell & R.A. Servedio (2002). Learning intersections
and thresholds of halfspaces. In Proceedings of the 43rd Annual Symposium on Foun-
dations of Computer Science (FOCS’02), 177–186.



262 Gopalan, Lovett & Shpilka cc 19 (2010)

A.R. Klivans & R.A. Servedio (2001). Learning DNF in time 2Õ(n1/3). In
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