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EXTRACTORS AND RANK EXTRACTORS

FOR POLYNOMIAL SOURCES

Zeev Dvir, Ariel Gabizon, and Avi Wigderson

Abstract. In this paper we construct explicit deterministic extrac-
tors from polynomial sources, which are distributions sampled by low
degree multivariate polynomials over finite fields. This naturally gen-
eralizes previous work on extraction from affine sources (which are de-
gree 1 polynomials). A direct consequence is a deterministic extractor
for distributions sampled by polynomial size arithmetic circuits over ex-
ponentially large fields. The steps in our extractor construction, and
the tools (mainly from algebraic geometry) that we use for them, are of
independent interest:
The first step is a construction of rank extractors, which are polynomial
mappings which ‘extract’ the algebraic rank from any system of low
degree polynomials. More precisely, for any n polynomials, k of which
are algebraically independent, a rank extractor outputs k algebraically
independent polynomials of slightly higher degree. The rank extractors
we construct are applicable not only over finite fields but also over fields
of characteristic zero.
The next step is relating algebraic independence to min-entropy. We
use a theorem of Wooley to show that these parameters are tightly con-
nected. This allows replacing the algebraic assumption on the source
(above) by the natural information theoretic one. It also shows that a
rank extractor is already a high quality condenser for polynomial sources
over polynomially large fields.
Finally, to turn the condensers into extractors, we employ a theorem of
Bombieri, giving a character sum estimate for polynomials defined over
curves. It allows extracting all the randomness (up to a multiplicative
constant) from polynomial sources over exponentially large prime fields.
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1. Introduction

Randomness extraction has been a major research area for nearly two decades.
The functions studied and constructed in this theory: extractors, dispersers,
condensers, samplers, etc., turn out to have numerous applications. While they
are designed to convert weak sources of randomness into ‘high quality’ random
bits, they end up being essential in applications where randomness is not even
an issue, such as expander constructions (Wigderson & Zuckerman 1999), error
correction (Ta-Shma & Zucherman 2001) and metric embedding (Indyk 2007),
to name but a few examples.

Most of the aforementioned research has concentrated on the so-called
‘seeded’ extractors, which allow the use of an auxiliary short truly random
seed, and enables handling extremely general classes of weak sources. An ex-
cellent survey of this broad field is Shaltiel (2002). More recently there has
been a burst of activity on ‘seedless’ or ‘deterministic’ extractors, which use no
additional random ‘seed’. The general question is for which classes of distribu-
tions deterministic extraction is possible. The main types of sources for which
progress has been made include the following (somewhat overlapping) classes.

◦ Few independent sources: the given distribution is of several, independent
weak sources, as in e.g. Barak et al. (2004, 2005, 2006); Chor & Goldreich
(1988); Rao (2006); Raz (2005); Vazirani (1987).

◦ Computational sources: the given distribution is the output of some
(space- or time-) efficient algorithm on a uniformly random input, as
in e.g. Blum (1986); Kamp et al. (2006); von Neumann (1951); Trevisan
& Vadhan (2000).

◦ Bit-fixing sources: the given distribution is fixed in some coordinates, and
independent in others, as in e.g. Chor et al. (1985); Gabizon et al. (2004);
Kamp & Zuckerman (2003)

◦ Affine sources: the given distribution is the output of some affine map,
applied to a random input as in e.g. Barak et al. (2005); Bourgain (2007);
Gabizon & Raz (2005)

Since our work is best viewed as extending the last class of sources, let us
describe these results in some more detail. An affine source over a finite field F

is a random variable that is uniformly distributed on some k-dimensional affine
subspace of F

n. Such a distribution is usually described by a non-degenerate
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affine mapping x(t) : F
k → F

n defined by n linear functions

x(t) =
(
x1(t1, . . . , tk), . . . , xn(t1, . . . , tk)

)
,

in k variables. The affine source is thought of as the output of x(t) on a
uniformly chosen input t ∈ F

k. Clearly, the entropy (and more importantly,
min-entropy) of such sources is k · log |F|, where all logarithms in this paper
are base two. We refer to k as the rank of the source and make all asymptotic
statements with respect to n.

The works of Barak et al. (2005) and of Bourgain (2007) deal with the case
of the binary field F2. The first gives an explicit disperser, and the second an
extractor, for the case where k = Ω(n). In particular, Bourgain (2007) extracts
a constant fraction the entropy with exponentially small error for such k. No
explicit construction is known for smaller rank (over F2) despite the fact that,
non explicitly, extractors exist even for logarithmic rank.

Gabizon & Raz (2005) show that if the field F is polynomially large, then
one can even handle the case of 1-dimensional affine sources (distributions on
affine lines). They show how to construct a deterministic extractor that extracts
almost all the entropy (with polynomial error) for any given k, for fields F of
size polynomial in n.

1.1. Low degree polynomial sources. A natural generalization of affine
sources is allowing sources that arise from low-degree multivariate polynomials.
We note that while low-degree polynomials play an essential role in complexity
theory, extraction from sources defined by such polynomials has apparently not
been studied before.

Let F be a field (finite or infinite). For integers k ≤ n and d we consider
the family of all mappings x : F

k → F
n that are defined by polynomials of total

degree at most d (we denote our mapping by x since this will represent our
source). That is,

x(t) =
(
x1(t1, . . . , tk), . . . , xn(t1, . . . , tk)

)
,

where, for each 1 ≤ i ≤ n, the coordinate xi of the mapping is a k-variate
polynomial of total degree at most d. We denote this set of mappings by
M(Fk → F

n, d). We will focus on the case where the field F is much larger
than d and will specify in each result how large the field has to be.

For affine sources we have the requirement that the affine mapping defining
the source is non-degenerate. This ensures that the source sampled by this
mapping has ‘enough’ entropy. We would like to extend this requirement also
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to the case of low degree mappings in M(Fk → F
n, d). The way to generalize

this notion is via the partial derivative matrix (sometimes called the Jacobian)
of a mapping x ∈ M(Fk → F

n, d). This is an n× k matrix denoted ∂x
∂t

defined
as follows:

∂x

∂t
�

⎛

⎜
⎝

∂x1

∂t1
. . . ∂x1

∂tk
...

. . .
...

∂xn

∂t1
. . . ∂xn

∂tk

⎞

⎟
⎠ ,

where the partial derivatives are defined in the standard way, as formal deriva-
tives of polynomials. Let us define the rank of x ∈ M(Fk → F

n, d) to be the
rank of the matrix ∂x

∂t
when considered as a matrix over the field of rational func-

tions in variables t1, . . . , tk. We say that x ∈ M(Fk → F
n, d) is non-degenerate

if its rank is k (since x cannot have rank larger than k).

Definition 1.1 (Polynomial source). Let F be a finite field. A distribution X
over F

n is an (n, k, d)-polynomial source over F, if there exists a non-degenerate
mapping x ∈ M(Fk → F

n, d) such that X is sampled by choosing t uniformly
at random in F

k and outputting x(t).

It is easy to see that the above definition of a polynomial source is indeed a
generalization of the affine case, since the partial derivative matrix of an affine
mapping is simply its coefficient matrix (in some basis). It is important to note
that any weak source can be represented as the image of some polynomial map-
ping over a finite field F. However, in general, the polynomials representing the
source will have very high degrees (this can be seen by a simple counting argu-
ment). Since it is known (Chor & Goldreich 1988) that deterministic extraction
from arbitrary sources is impossible, we see that restricting our attention to
low degree mappings is essential.

Rank and min-entropy. One reason for using the rank of the partial deriva-
tive matrix is that, over sufficiently large prime fields, it allows us to prove a
lower-bound on the entropy of an (n, k, d)-polynomial source. This lower bound
follows from a theorem of Wooley (1996) (see Theorem 2.8). Roughly speak-
ing, Wooley’s theorem implies that a distribution sampled by a non-degenerate
mapping x ∈ M(Fk → F

n, d) is close (in statistical distance) to a distribution

with min-entropy at least k · log
( |F|

2d

)
. Rewriting this quantity as

(
1 − log(2d)

log(|F|)

)
· k · log(|F|) ,
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we see that, as |F| grows, this bound ‘approaches’ the entropy bound of k ·
log(|F|) we have for affine sources of the same rank.

Rank and algebraic independence. Over fields of exponential character-
istic (or of characteristic zero) we will see that the above notion of the rank of
a mapping coincides with the more intuitive notion of algebraic independence
(see Section 2 for the relevant definitions). Roughly speaking, over such fields,
a mapping x = (x1, . . . , xn) ∈ M(Fk → F

n, d) has rank k iff the set of polyno-
mials {x1(t), . . . , xn(t)} contains k algebraically independent polynomials (we
should note that the direction ‘rank k → algebraic independence’ is true over
any field, regardless of its characteristic). Since we want some of our results
to hold also over fields of polynomial size we opt to use the rank of the partial
derivative matrix in our definition of a polynomial source. In Section 3 we give
a detailed discussion of the connection between algebraic independence and
rank. Our proofs are direct extensions of the treatment appearing in Ehren-
borg & Rota (1993) and in L’vov (1984) where the equivalence between the
two notions is shown over the complex numbers.

1.2. Rank extractors. The above discussion of polynomial sources raises
the following natural question: Can we ‘extract’ the rank of these sources
without destroying their structure? In other words, can we construct a fixed
polynomial mapping y : F

n → F
k such that for any non-degenerate x ∈

M(Fk → F
n, d) the composition of y with x is a non-degenerate mapping from

F
k to F

k ? We call a non-degenerate mapping z : F
k → F

k a full rank mapping
and a mapping y satisfying the above condition a rank extractor.

Definition 1.2 (Rank extractor). Let F be some field. Let y : F
n → F

k be a
polynomial mapping defined by

y(x) =
(
y1(x1, . . . , xn), . . . , yk(x1, . . . , xn)

)
,

where each yi is a multivariate polynomial over F. We say that y is an (n, k, d)-
rank extractor over F if for every non-degenerate mapping x ∈ M(Fk → F

n, d)
the composition y ◦ x : F

k → F
k has rank k. We will call such a mapping y

explicit if it can be computed in polynomial time. (More precisely, if it has a
polynomial size arithmetic circuit that can be generated in polynomial time,
given n,k and d.)

Clearly, a construction of a rank extractor will bring us closer to construct-
ing an extractor for low degree polynomial sources. Using an explicit rank
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extractor reduces the problem of constructing an extractor for arbitrary poly-
nomial sources into the problem of constructing an extractor for polynomial
sources of full rank. Surprisingly enough, the problem of extraction from full
rank sources is not so easy and seems to require the use of deep results from
algebraic geometry.

Our first main result is a construction of an explicit (n, k, d)-rank extractor
over F, where F can be any field of characteristic zero or of characteristic at
least poly(n, d). It is natural to require that the degree of the rank extractor
will be as small as possible. Clearly the degree has to be larger than 1 since
an affine mapping cannot be a rank extractor (because we can always ‘hide’
a polynomial source in the kernel of such a mapping). The rank extractors
we construct have degree that is bounded by a polynomial in n and in d. In
Section 4 we prove the following theorem:

Theorem 1.3. Let k ≤ n and d be integers. Let F be a field of characteristic
zero or of characteristic larger than 8k2d3n. Then there exists an explicit
(n, k, d)-rank extractor over F whose degree is bounded by 8k2d2n. Moreover,
this rank extractor can be computed in time poly(n, log(d)).

We note that our construction of rank extractors does not depend on the
underlying field. We give a single construction, defined using integers, that is a
rank extractor over any field satisfying the conditions of Theorem 1.3. We note
that even if we do not restrict the degree of the rank extractor to be polynomial
there does not seem to be a ‘trivial’ construction.

1.3. Extractors and condensers for polynomial sources. As was men-
tioned in the previous section, applying the rank extractor given by Theo-
rem 1.3 reduces the problem of constructing an extractor for (n, k, d)-poly-
nomials sources into the problem of constructing an extractor for (k, k, d′)-
polynomial sources, where d′ is the degree of the source obtained after applying
the rank extractor. (Note that Theorem 1.3 implies that d′ is polynomial in n
and d). Our second main result is a construction of such an extractor. Before
stating our result we give a formal definition of an extractor for polynomial
sources.

Definition 1.4 (Extractor). Let k ≤ n and d be integers. Let F be a finite
field. A function E : F

n → {0, 1}m is a (k, d, ε)-extractor for polynomial sources
if for every (n, k, d)-polynomial source X over F

n, the random variable E(X)
is ε-close to the uniform distribution on {0, 1}m. We say that E is explicit if
it can be computed in poly(n, log(d)) time.
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The following theorem, proved in Section 5, asserts the existence of an
explicit extractor for full rank polynomial sources over sufficiently large prime
fields. The output length of this extractor is Ω(k · log(|F|)), which is within
a multiplicative constant of the maximal length possible. The main tool in
the proof of our theorem is a result of Bombieri (1966) giving exponential sum
estimates for polynomials defined over low degree curves.

Theorem 1.5. There exists absolute constants C and c such that the following
holds: Let k and d > 1 be integers and let F be a field of prime cardinality
p > dCk. Then, there exists an explicit (k, d, ε)-extractor E : F

k → {0, 1}m for
polynomial sources over F

k with m = �c · k · log(p)� and ε = p−Ω(1).

Combining Theorem 1.5 with Theorem 1.3 gives an extractor for general
polynomial sources. This extractor, whose existence is stated in the following
corollary, also has output length which is within a multiplicative constant of
optimal.

Corollary 1.6. There exists absolute constants C and c such that the follow-
ing holds: Let k ≤ n and d > 1 be integers and let d′ = 8k2d3n. Let F be a field
of prime cardinality p > (d′)Ck. Then, there exists an explicit (k, d, ε)-extractor
E : F

n → {0, 1}m for polynomial sources over F
n with m = �c · k · log(p)� and

ε = p−Ω(1).

It is possible to improve the output length of our extractors so that it is
equal to a (1 − α)-fraction of the source min entropy, for any constant α > 0.
This improvement, which was suggested to us by Salil Vadhan is described in
Section 6.

We note that both in Corollary 1.6 and in Theorem 1.5, the bound on the
field size does not pose a computational problem. Over a finite field F, arith-
metic operations can be performed in time polynomial in log(|F|), and hence all
computations required by the extractor can be performed in polynomial time.
However, it remains an interesting open problem whether extraction can be
performed over smaller fields, say of size polynomial in n and in d.

Condensers over polynomially large fields. We note that over polynomi-
ally large fields, our techniques give a deterministic condenser for polynomial
sources. A condenser is a relaxation of an extractor and is required to out-
put a distribution with ‘high’ min-entropy rather than a uniform distribution.
The word ‘condenser’ implies that the length of the output should be smaller
then the length of the input. That is, the aim of a condenser is to ‘compress’
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the source while keeping as much of the entropy as possible. For convenience,
we define condensers as mappings over alphabet F rather than the standard
definition using binary alphabet.

Definition 1.7 (Condenser). Let D be a family of distributions over F
n.

A function C : F
n → F

m is an (ε, k′)-condenser for D if for every X in D the
distribution C(X) is ε-close to having min-entropy at least k′. A condenser is
explicit if it can be computed in polynomial time.

From Wooley’s theorem (Wooley 1996), mentioned earlier, it follows that if
we apply a rank extractor to a polynomial source then we get a source which
is close to having high min-entropy. The next theorem follows immediately
from Wooley’s theorem (Corollary 2.9) and, in view of Theorem 1.3, shows the
existence of explicit condensers for polynomial sources over polynomially large
fields.

Theorem 1.8. Let k ≤ n and d, d′ be integers. Let F be a field of prime
cardinality larger than d · d′. Let y : F

n → F
k an (n, k, d)-rank extractor such

that deg(y) ≤ d′. Then y is an (ε, k′)-condenser for the family of (n, k, d)-
polynomial sources over F, where ε = d·d′·k

|F| and k′ = k · log(|F|/2dd′).

It should be noted that this condenser is ‘almost’ the best one could hope for
(without building an extractor, of course). To see this, suppose that |F| ≈ (2d′)c

for some constant c > 1, where d′ is the degree of the rank extractor. We get
that the output of the condenser is close to having min-entropy

k′ = k · log(|F|/2d′) ≈
(

1 − 1

c

)
· k · log(|F|) ,

and so the ratio between the length of the output (in bits) and its min-entropy
can be made arbitrarily close to one by choosing c to be large enough.

Dispersers over the complex field. A disperser is a relaxation of an ex-
tractor in which the output is only required to have large support (instead of
being close to uniform). Dispersers are usually considered only for distributions
over finite sets. However, for polynomial sources we can extend our view also
for infinite sets (namely infinite fields). It is shown in Ehrenborg & Rota (1993)
that the image of a full rank mapping x ∈ M(Ck → C

k, d) contains all of C
k

except for the zero set of some polynomial. This shows that our rank extractors
can be viewed as deterministic dispersers for polynomial sources over C. That
is, a rank extractor is a fixed polynomial transformation mapping any polyno-
mial source into almost all of C

k. We discuss this observation in Section 8.
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1.4. Rank versus entropy – Weak polynomial sources. So far we fo-
cused on extraction from sources which were defined algebraically – we were
given a bound on the algebraic rank of the set of polynomials we extract from.
We now switch to the more standard definition (from the extractor litera-
ture standpoint) of extraction from sources with given min-entropy (see Defi-
nition 2.2). These will be called Weak Polynomial Sources.

Definition 1.9 (Weak polynomial source). A distribution X over F
n is an

(n, k, d)-weak polynomial source (WPS) if

◦ There exists a polynomial mapping x ∈ M(Fn → F
n, d) (of arbitrary

rank) such that X is sampled by choosing t uniformly in F
n and out-

putting x(t).

◦ X has min entropy at least k · log(|F|).

Notice in the definition that the min-entropy threshold is k ·log(|F|) (instead
of just k). This is to hint to the connection (which we prove later) between
the rank of the source and its entropy. Intuitively, a distribution sampled by
a rank r mapping x : F

n → F
n “should” have entropy roughly r · log(|F|) and

indeed, for affine sources, this is exactly the case.
The following theorem, whose proof can be found in Section 7, shows the

existence of an explicit deterministic extractor for the class of weak polynomial
sources (an extractor for weak polynomial sources is defined in an analogous
fashion to Definition 1.4)

Theorem 1.10. There exists absolute constants C and c such that the follow-
ing holds: Let k ≤ n and d > 1 be integers and let d′ = 8k2d3n. Let F be a field
of prime cardinality p > (d′)Ck. Then, there exists an explicit (k, d, ε)-extractor
E : F

n → {0, 1}m for weak polynomial sources over F
n with m = �c · k · log(p)�

and ε = p−Ω(1).

The parameters of the extractor given by the theorem can be seen to be
roughly the same as those of the extractor for regular polynomial sources
(Corollary 1.6). In fact, the extractor we use for weak polynomial sources
is the same one we used for polynomial sources. The proof of Theorem 1.10
will follow by showing that any (n, k, d)-WPS is close (in statistical distance)
to a convex combination of (n, k, d)-polynomial sources. This implies that any
extractor that works for polynomial sources will work also for weak polynomial
sources.
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The entropy of a polynomial mapping. We can use the methods em-
ployed in the proof of Theorem 1.10 to show that over sufficiently large fields,
the output of a low degree polynomial mapping x ∈ M(Fn → F

n, d) is always
close to having entropy approximately rank(x) · log(|F|). This can be viewed
as a generalization of the simple fact that for an affine mapping x, the entropy
is always equal to rank(x) · log(|F|). (See Section 7.2 for the formal statement
of this result.)

Extractors for poly-size arithmetic circuits. An interesting corollary of
Theorem 1.10 is the existence of deterministic extractors for the class of dis-
tributions sampled by polynomial sized arithmetic circuits over exponentially
large fields. This follows from the fact that the degrees of the polynomials
computed by poly-size circuits are exponential, and the construction of an
(n, k, d)-rank extractor is efficient even when d is exponential.

We say that a distribution X on F
n is sampled by a size s arithmetic circuit

if there exists an arithmetic circuit A of size s with n inputs and n outputs such
that the fan-in of each gate is at most two and such that X is the distribution
of the output of A on a random input, chosen uniformly from F

n. We say that
X is an (n, k, s)-arithmetic source if X is sampled by a size s arithmetic circuit
and its min-entropy is at least k · log(|F|).

Corollary 1.11. There exists absolute constants C and c such that the fol-
lowing holds: Let k ≤ n and s > 1 be integers. Let d = 2s and let d′ = 8k2d3n.
Let F be a field of prime cardinality p > (d′)Ck. Then, there exists an explicit
function E : F

n → {0, 1}m such that for every (n, k, s)-arithmetic source X
over F, the distribution of E(X) is ε-close to uniform, where m = �c ·k · log(p)�
and ε = p−Ω(1). That is, E is an extractor for the class of (n, k, s)-arithmetic
sources.

It is interesting to contrast this result to the extractors of Trevisan & Vad-
han (2000) from polynomial size boolean circuits. Their extractors rely on
complexity assumptions, and they prove that such assumptions are necessary.
It is interesting that over large fields no such assumptions, nor lower bounds,
are necessary.

1.5. Organization. Section 2 contains general preliminaries on probability
distributions and finite field algebra. Section 3 contains a detailed discussion
on the connection between algebraic independence and rank. In Section 4
we describe our construction of a rank extractor and prove Theorem 1.3. In
Section 5 we construct and analyze an extractor for full rank polynomial sources
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and prove Theorem 1.5. In Section 6 we show how to increase the output
length of our extractors. In Section 7 we discuss extractors for weak polynomial
sources and prove Theorem 1.10. In Setion 8 we discuss rank extractors over the
complex numbers. Appendix A contains background from Algebraic Geometry
required for the proof of Theorem 1.5.

2. General preliminaries

2.1. Probability distributions. Let Ω be some finite set. Let P be a dis-
tribution on Ω. For B ⊆ Ω, we denote the probability of B according to P , by
PrP (B) or Pr(P ⊆ B); When B ∈ Ω, we will also use the notation Pr(P = B).

Given a function A : Ω → U , we denote by A(P ) the distribution induced on
U when sampling t by P and calculating A(t). When we write t1, . . . , tk ← P ,
we mean that t1, . . . , tk are chosen independently according to P . We denote
by UΩ the uniform distribution on Ω. Given a function x : F

m → F, we denote
by x(Um) the distribution x(UFm) . For a distribution P on Ωd and j ∈ [d], we
denote by Pj the marginal distribution of P on the j’th coordinate.

The statistical distance between two distributions P and Q on Ω, denoted
by |P − Q|, is defined as

|P − Q| � max
S⊆Ω

∣
∣
∣
∣Pr

P
(S) − Pr

Q
(S)

∣
∣
∣
∣ =

1

2

∑

w∈Ω

∣
∣
∣
∣Pr

P
(w) − Pr

Q
(w)

∣
∣
∣
∣ .

We say that P is ε-close to Q, denoted P
ε
∼ Q, if |P − Q| ≤ ε. We denote

the fact that P and Q are identically distributed by P ∼ Q. The following
lemma is trivial:

Lemma 2.1. Let P, V be distributions on a set Ω. Suppose, P = δ · R + (1 −
δ) · V , for two distributions R and V and 0 < δ < 1. Then P

δ
∼ V .

We use min-entropy to measure the amount of randomness in a given dis-
tribution:

Definition 2.2 (Min-entropy). Let X be a distribution over a finite set Γ.
The min-entropy of X is defined as

H∞ (X) � min
x∈supp(X)

log

(
1

Pr[X = x]

)
.

Another useful measure of entropy is collision probability.
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Definition 2.3 (Collision probability). Let X be a distribution over a finite
set Γ. The collision probability of X is defined as

cp(X) �
∑

x∈supp(X)

Pr[X = x]2 = Prx1,x2←X [x1 = x2] .

The following lemma gives us a quantitative translation between the two
quantities of min entropy and collision probability.

Lemma 2.4 (Lemma 3.6 in Barak et al. 2004). Let X be a distribution over a
finite set Γ. Suppose that cp(X) ≤ 1

a·b . Then X is 1√
a
-close to a distribution

with min entropy at least log(b).

2.2. Polynomials over finite fields. We review some basic notions regard-
ing polynomials defined over finite fields. Readers not familiar with the subject
can find a more comprehensive treatment in Lidl & Niederreiter (1997). For a
field F we denote by F[t1, . . . , tk] the ring of polynomials in k-variables t1, . . . , tk
with coefficients in F. We denote by F(t1, . . . , tk) the field of rational functions
in variables t1, . . . , tk. We denote by deg(f) the total degree of f and by degtj

(f)
the degree of f as a polynomial in tj. We write f ≡ 0 or f(t) ≡ 0 if f is the
zero polynomial (all coefficients of f are zero). Note that over the finite field F

of prime cardinality p, the polynomial f(t) = tp − t is not the zero polynomial,
even though f(a) = 0 for all a ∈ F.

We say that the polynomials f1, . . . , fm ∈ F[t1, . . . , tk] are algebraically
dependent if there exists a non-zero polynomial h ∈ F[z1, . . . , zm] such that
h(f1(t), . . . , fm(t)) ≡ 0. We sometimes refer to this polynomial h as the an-
nihilating polynomial of f1, . . . , fm. We say that f1, . . . , fm are algebraically
independent if such a polynomial h does not exist.

For a polynomial f ∈ F[t1, . . . , tk] we denote by ∂f
∂tj

∈ F[t1, . . . , tk] the formal

partial derivative of f with respect to the variable tj. When using derivatives
over a finite field we should be careful of ‘strange’ behavior of the derivative.
For example, the derivative of tp over a field of characteristic p is equal to zero.
This is ‘strange’ since tp is not a constant function (in fact, it is a permutation).
The following claim, which we use implicitly in many of our proofs, describes
the exact conditions under which this ‘strange’ behavior happens.

Claim 2.5. Let F be a field of characteristic p and let f ∈ F[t1, . . . , tk] and
j ∈ [k] be such that ∂f

∂tj
≡ 0. Then all degrees of tj appearing in f are multiples

of p. In particular, if degtj
(f) < p. Then ∂f

∂tj
≡ 0 iff degtj

(f) = 0.
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For a vector of polynomials f̄ = (f1, . . . , fm) ∈ (F[t1, . . . , tk])
m we can define

the partial derivative matrix of f̄ as

∂f̄

∂t
�

⎛

⎜
⎝

∂f1

∂t1
. . . ∂f1

∂tk
...

. . .
...

∂fm

∂t1
. . . ∂fm

∂tk

⎞

⎟
⎠ .

We denote by rank(f̄) the rank, over F(t1, . . . , tk), of the matrix ∂f̄
∂t

.
Another useful property of polynomials, which we will use often, is the

bound on the number of roots they can have. This generalization of the fun-
damental theorem of algebra is due to Schwartz (1980); Zippel (1979).

Lemma 2.6 (Schwartz–Zippel). Let F be a field and let f ∈ F[t1, . . . , tk] be a
non zero polynomial with deg(f) ≤ d. Then, for any finite subset S ⊂ F we
have ∣

∣{c ∈ Sk : f(c) = 0
}∣
∣ ≤ d · |S|k−1 .

A simple corollary of the Schwartz–Zippel Lemma is the following Claim:

Claim 2.7. Let F be a finite field and let f ∈ F[t1, . . . , tk] be a polynomial of
total degree at most d. Fix any 1 < i ≤ k. For c = (ci, . . . , ck) ∈ F

k−i+1 define

fc(t1, . . . , ti−1) � f(t1, . . . , ti−1, ci, . . . , ck) .

Then

Pr
c←Fk−i+1

(fc ≡ 0) ≤ d

|F| .

2.3. The number of solutions to a system of polynomial equations.
We will use a version of Bezout’s Theorem proved by Wooley (1996). This
theorem, mentioned informally in the introduction, will give us a connection
between algebraic rank and min entropy. We note that the formulation of
Wooley’s theorem stated here is weaker then the original formulation appear-
ing in Wooley (1996) (the original form of the theorem speaks of congruences
modulo ps for any s).

Theorem 2.8 (Rephrased from Theorem 1 in Wooley 1996). Let F be a field
of prime cardinality p. Let k and d be integers. Let x = (x1, . . . , xk) ∈ M(Fk →
F

k, d) be such that rank(x) = k and denote by J(t) � det
(

∂x
∂t

)
(t). For a ∈ F

k

let
Na �

∣
∣{c ∈ F

k : x(c) = a and J(c) �= 0
}∣
∣ .

Then for every a ∈ F
k , Na ≤ dk.
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We can interpret this theorem as saying that a distribution X sampled by
a non-degenerate mapping x ∈ M(Fk → F

k, d) is close to a distribution with
high min-entropy, where the closeness is related to the number of zeros of the
determinant of ∂x

∂t
. Since this determinant is a non-zero low-degree polynomial,

we get that the distance from the high min-entropy distribution is small. This
is stated more precisely by the following Corollary, which also extends our view
to mappings in M(Fk → F

n, d) for k ≤ n.

Corollary 2.9. Let F be a field of prime cardinality. Let k ≤ n and d be
integers such that |F| > 2dk. Let X be an (n, k, d)-polynomial source over F.

Then X is ε-close to a distribution with min-entropy at least k · log
( |F|

2d

)
, where

ε = d·k
|F| .

Proof. X is the distribution x(Uk) for a non-degenerate mapping x ∈
M(Fk → F

n, d). Since x has rank k the matrix ∂x
∂t

has a non-singular square
sub-matrix. W.l.o.g assume that this matrix is composed of the first k rows of
∂x
∂t

. Let us also denote the determinant of this sub-matrix as J(t).
Denote by C the event that J(t) = 0 and let δ = Prt←Fk(C). Write X as a

convex combination of conditional distributions as follows

X = δ · (X|C) + (1 − δ) · (X|¬C) .

Note that, since J(t) is a non-zero polynomial of degree at most d · k, by
Lemma 2.6 we have that δ ≤ d·k

|F| .

We claim that the distribution (X|¬C) has min-entropy at least k ·
log(|F|/2d): For any a ∈ F

n, using Theorem 2.8

Pr(X = a|¬C) =
Pr(X = a ∧ ¬C)

1 − δ
≤ dk

|F|k · (1 − δ)

≤ dk

|F|k · (1 − dk/|F|) ≤ 2dk

|F|k ≤
(

2d

|F|

)k

,

(here we use the bound on |F|). Thus, (X|¬C) has min-entropy at least k ·
log(|F|/2d) and using Lemma 2.1 we are done. �

3. Algebraic independence and rank

In Ehrenborg & Rota (1993) it is shown that, over the complex numbers, the
two notions of rank and algebraic independence are equivalent. That is, the
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polynomials x1, . . . , xr ∈ F[t1, . . . , tk] are algebraically independent iff the ma-
trix ∂x

∂t
has maximal rank. In this section we prove two theorems showing that

this connection is also valid over finite fields, provided the characteristic of the
field is sufficiently large. We start by showing that maximal rank implies alge-
braic independence. This direction does not require the field characteristic to
be large.

Theorem 3.1. Let F be a field of characteristic p. Let x = (x1, . . . , xr) ∈
M(Fk → F

r, d) for some d, where r ≤ k. If x has rank r then x1, . . . , xr are
algebraically independent.

Proof. Assume for contradiction, that x1, . . . , xr are algebraically depen-
dent. Let g(z1, . . . , zr) be a non zero polynomial of minimal degree such that
g(x1(t), . . . , xr(t)) ≡ 0. Denote gi = ∂g

∂zi
.

Claim 3.2. For some 1 ≤ i ≤ k, gi is non-zero.

Proof. Fix some 1 ≤ i ≤ k. Assume that gi ≡ 0. Then, by Claim 2.5, all
non-zero powers of zi in g are multiples of p. Assume for contradiction that for
all i, gi ≡ 0. Then g = hp for some h(z1, . . . , zr), and

(
h
(
x1(t), . . . , xr(t)

))p

≡ 0 ⇒ h
(
x1(t), . . . , xr(t)

)
≡ 0 ,

and this is a contradiction to the minimality of g. �

We will go on to show that the derivatives of g form a non trivial vector
which is orthogonal to all the columns of ∂x

∂t
, contradicting our assumption that

∂x
∂t

has maximal rank. Using the above claim, fix an i such that gi is non-zero.
By the minimality of the degree of g we know that gi(x1(t), . . . , xr(t)) is non-
zero as a polynomial in t (the degree of the derivative is always smaller than
that of the original polynomial). Define g(t) � g(x1(t), . . . xr(t)). Note that
g(t) ≡ 0. Using the chain rule, for 1 ≤ j ≤ k we have

0 =
∂g

∂tj
=

r∑

l=1

gl

(
x(t)

)
· ∂xl

∂tj
.

Note that the rightmost expression is the inner product of the non-zero
vector

u =
(
g1

(
x(t)

)
, . . . , gr

(
x(t)

))
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and the j’th column of the matrix ∂x
∂t

. Thus, we have

u · ∂x

∂t
= 0

for u �= 0 and so the rank of ∂x
∂t

is at most r − 1, a contradiction. �
We now turn to prove the other direction, which states that algebraic inde-

pendence implies maximal rank. In order to prove this direction we require the
field characteristic to be larger than (k + 1)dk where k is the number of vari-
ables and d is the total degree of the polynomials. This requirement stems from
the degree of the annihilating polynomial we find in the proof. Our proof is
based on the same ideas appearing in Ehrenborg & Rota (1993); L’vov (1984);
Wooley (1996). We are not aware how tight is the degree bound we get in the
proof. Another approach is to use Grobner Bases, which often leads to double
exponential degrees.

Theorem 3.3. Let F be a field of characteristic p. Let d, k and n be integers
such that p > D, where D = (k + 1) · dk. Let x ∈ M(Fk → F

n, d) have rank
smaller than n. Then, there exists a non zero polynomial h ∈ F[z1, . . . , zn] of
total degree at most D such that

h
(
x1(t), . . . , xn(t)

)
≡ 0 .

Proof. Fix any d and k. We first prove the theorem for n ≥ k + 1. Assume
w.l.g. that n = k + 1 (if n > k + 1 we can use this case to find an h that uses
only the first k+1 variables). In this case, the coefficients of the required h can
be found by showing that a certain system of linear equations has more degrees
of freedom than constraints. More precisely, we want a non-zero polynomial h
of degree at most D such that h(t) � h(x1(t), . . . , xn(t)) ≡ 0. The number of
constraints is the number of coefficients of h. Since deg(h) ≤ d · D, this is at
most

(
d·D+k

k

)
. The number of variables is the number of coefficients of h which

is
(

D+n
n

)
=

(
D+k+1

k+1

)
. We show that the number of variables is larger than the

number of constraints:(
D + k + 1

k + 1

)/(
d · D + k

k

)
=

(D + k + 1)!

D!(k + 1)!
· k!(d · D)!

(d · D + k)!

=
(D + 1) · · · (D + k + 1)

(k + 1) · (d · D + 1) · · · (d · D + k)

≥
(

D

d · D

)k

· D + k + 1

k + 1

=
D + k + 1

dk · (k + 1)
> 1 .
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We now prove the claim for n ≤ k by backwards induction on n. We as-
sume the claim for n + 1 and prove it for n. Assume for contradiction, that
there is no non-zero polynomial h(z1, . . . , zn) of degree at most D such that
h(x1(t), . . . , xn(t)) ≡ 0. Using the induction hypothesis, for each 1 ≤ i ≤ k we
have a non-zero polynomial hi(z1, . . . , zn, w) of degree at most D with

(3.4) hi

(
x1(t), . . . , xn(t), ti

)
≡ 0 .

We will go on to show that the partial derivatives of the polynomials hi form a
matrix which is the ‘inverse’ of ∂x

∂t
, contradicting our assumption about the rank

of ∂x
∂t

. W.l.o.g assume that hi is a minimal degree polynomial satisfying (3.4).

For 1 ≤ j ≤ n denote hi,j =∂hi

∂zj
and denote hi,0 =∂hi

∂w
. By our contradiction

assumption, hi must contain non-zero powers of w, and since deg(hi) < p this
implies that hi,0 is non-zero. By the minimality of the degree of hi, we have that
hi,0(x1(t), . . . , xn(t), ti) is a non-zero polynomial in t. Taking the derivative of
(3.4) for each 1 ≤ l ≤ k, we have

0 =
n∑

j=1

hi,j ·
∂xj

∂tl
+ δi,l · hi,0 .

Since we can divide by the non-zero hi,0 we get

−1

hi,0

n∑

j=1

hi,j ·
∂xj

∂tl
= δi,l

for every 1 ≤ i ≤ k and 1 ≤ l ≤ k. Therefore, we have H · ∂x
∂t

= I, where H is

the k × n matrix with Hi,j =
−hi,j

hi,0
, contradicting the assumption that ∂x

∂t
has

rank smaller than n. �

4. An explicit rank extractor

In this section we describe our construction of a rank extractor and prove
Theorem 1.3.

Construction 1. Let k ≤ n and d be integers. Let s2 = dk + 1 and s1 =
(2dn + 1) · s2. Let lij = i · (s1 + j · s2). Define for each 1 ≤ i ≤ k

yi(x) = yi(x1, . . . , xn) �
n∑

j=1

1

lij + 1
· xlij+1

j .

Let y = (y1, . . . , yk) be the output of the construction. Notice that y(x) is

defined in such a way that the partial derivative ∂yi

∂xj
is exactly x

lij
j .
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We prove the following theorem, which directly implies Theorem 1.3.

Theorem 4.1. Let F be a field of characteristic zero or of characteristic larger
than d′ = 8k2d3n. Let x ∈ M(Fk → F

n, d) be of rank k. Let y : F
n → F

k be as
in Construction 1. Then the composition (y ◦ x)(t) is in M(Fk → F

k, d′) and
has rank k.

4.1. Preliminaries for the proof of Theorem 4.1.

4.1.1. Sums of powers of polynomials. The following lemma shows how
to pick integers c1, . . . , cn in such a way that for any set of n polynomials
x1(t), . . . , xn(t) of bounded degree, the polynomials x1(t)

c1 , . . . , xn(t)cn will have
degrees that are different by at least some fixed number.

Lemma 4.2. Let x1(t), . . . , xn(t) be k-variate non-constant polynomials over
some field F. Denote by di > 0 the degree of the polynomial xi. Let d ≥
maxi{di}. Let A and B be two positive integers such that A ≥ (2dn + 1) · B
and let ci � A + Bi for i ∈ [n]. Then, for every 1 ≤ i < j ≤ n, we have

∣
∣ deg

(
xi(t)

ci
)
− deg

(
xj(t)

cj
)∣∣ = |di · ci − dj · cj| ≥ B .

Proof. Let 1 ≤ i < j ≤ n. First, suppose that di = dj. In this case we have

dj · cj − di · ci = dj(A + Bj) − di(A + Bi) = dj · B · (j − i) ≥ B .

Next suppose dj �= di. In this case we have

|dj · cj − di · ci| = |dj(A + Bj) − di(A + Bi)|
= |(dj − di)A + djBj − diBi|
≥ |dj − di|A − |djBj| − |diBi|
≥ A − 2dnB ≥ B . �

4.1.2. The Cauchy–Binet formula. The Cauchy–Binet formula gives the
determinant of the product of a k×n matrix with an n×k matrix (for k ≤ n).
Let k ≤ n. Let A be a k×n matrix and B an n×k matrix. For a set I ⊂ [n] of
size k we denote by AI the k × k sub-matrix of A composed of the columns of
A whose indices appear in I. Similarly, we denote by BI the sub-matrix of B
composed of the rows of B whose indices are in I. The proof of the following
formula can be found in Gantmacher (1959).
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Lemma 4.3 (Cauchy–Binet). Let k ≤ n. Let A be a k × n matrix and B an
n × k matrix over a field F. Using the above notations we have

det(A · B) =
∑

I⊂[n]
|I|=k

det(AI) · det(BI) .

4.2. Proof of Theorem 4.1. Let k ≤ n, d be integers. Let F be a field
of characteristic zero or of characteristic larger than d′ = 8k2d3n. Let x =
(x1, . . . , xn) ∈ M(Fk → F

n, d) be such that rank(x) = k . Let y : F
n → F

k be
defined as in Construction 1, that is

(4.4) yi(x) = yi(x1, . . . , xn) �
n∑

j=1

1

lij + 1
· xlij+1

j ,

where

lij = i · (s1 + j · s2)

s1 = (2dn + 1) · s2 , s2 = dk + 1 .

It is easy to verify that the degree of the mapping y is bounded by 8k2d2n.
Therefore, the degree of the composition (y ◦ x)(t) is bounded by d′ = 8k2d3n.
Therefore, since the characteristic of F is larger than d′ (or is zero), for the rest
of the proof we don’t need to worry about non constant polynomials becoming
zero after we take their derivative (see Claim 2.5).

Our goal is to show that the composition y ◦x has rank k. In order to prove
this we need to show that the determinant of the partial derivatives matrix of
the composition is non zero. Write y(t) to denote y(x(t)) and let ∂y

∂t
denote the

k × k partial derivative matrix of the mapping y(t). Using the chain rule we
have that

∂y

∂t
=

∂y

∂x
· ∂x

∂t
,

where ∂y
∂x

is a k×n matrix and ∂x
∂t

is an n×k matrix. All the elements in these

two matrices are polynomials in t, since we evaluate ∂y
∂x

at x = x(t).

Consider the element at position (i, j) in the matrix ∂y
∂x

. Taking the deriva-
tive of (4.4) with respect to xj we get that

∂yi

∂xj

= xj(t)
lij = xj(t)

i·(s1+js2) .

The Vandermonde structure of ∂y
∂x

becomes more apparent by denoting

rj(t) � xj(t)
s1+js2 .
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We now have that the (i, j)’th element of ∂y
∂x

is rj(t)
i. That is

∂y

∂x
=

⎛

⎜
⎜
⎜
⎝

r1(t) r2(t) · · · · · · rn(t)

r1(t)
2 r2(t)

2 . . . rn(t)2

...
...

. . .
...

r1(t)
k r2(t)

k · · · · · · rn(t)k

⎞

⎟
⎟
⎟
⎠

.

To facilitate writing, let us denote by R � ∂y
∂x

and D � ∂x
∂t

. We can also assume
w.l.o.g that

(4.5) deg
(
r1(t)

)
≤ . . . ≤ deg

(
rn(t)

)
,

(we let deg(0) = 0) since applying the same permutation on the rows of R and
on the columns of D will not change the determinant of R · D. Now, from
Lemma 4.3 (Cauchy–Binet) and using the notations of Section 4.1.2 we have
that

(4.6) det

(
∂y

∂t

)
= det(R · D) =

∑

I⊂[n]
|I|=k

det(RI) · det(DI) .

Notice that if ri(t) is constant, then xi(t) is also constant and so the i’th
row of the matrix D is zero. Therefore, det(DI) = 0 for every I that contains
an index i such that ri(t) is constant. In view of (4.6) and this last observation,
we can assume w.l.o.g that for all i ∈ [n], ri(t) is non constant. (Notice that
since D has maximal rank, we have at least k indices in [n] for which xi(t) is
non constant and so the condition n ≥ k is maintained).

The next three claims will show that there exist a unique set I in the above
sum for which the degree of det(RI) · det(DI) is maximal. This will conclude
the proof, since then we will have that det

(
∂y
∂t

)
is non zero, as required.

We start with a simple claim showing that the degrees of the polynomials
ri(t) have large gaps between them.

Claim 4.7. Let r1(t), . . . , rn(t) be the polynomials defined above. Then for
every i ∈ [n − 1] we have

deg
(
ri+1(t)

)
> deg

(
ri(t)

)
+ dk .

Proof. Recall that ri(t) = xi(t)
s1+j·s2 and that s1 ≥ (2dn + 1) · s2. Using

Lemma 4.2 we get that
∣
∣ deg

(
ri+1(t)

)
− deg

(
ri(t)

)∣∣ ≥ s2 > dk .

Using (4.5) the claim follows. �
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Let I ⊂ [n] be such that |I| = k. We denote by

dI � deg
(
det(RI)

)
.

The next claim gives a convenient formula for dI .

Claim 4.8. Let I ⊂ [n], I = {i1 < · · · < ik}. Then

dI =
k∑

j=1

j · deg
(
rij(t)

)
.

Proof. Using the Vandermonde structure of the matrix RI we get that

det(RI) =
k∏

j=1

rij(t)
∏

1≤j1<j2≤k

(
rij1

(t) − rij2
(t)

)
.

In view of (4.5), the degree of the highest monomial in det(RI) is obtained by
multiplying k copies of rik(t) with k − 1 copies of rik−1

(t) and so on. This will

give a monomial with degree
∑k

j=1 j · deg(rj(t)). �

Define
Γ �

{
I ⊂ [n]

∣
∣ |I| = k , det(DI) �= 0

}
.

The next and final claim shows that there exists a unique I ∈ Γ with maxi-
mal dI . The proof uses standard techniques from matroid theory.

Claim 4.9. Let dmax � maxI∈Γ{dI}. Then there exists a unique I∗ ∈ Γ such
that dI∗ = dmax. Moreover, for every I �= I∗ we have that dI < dI∗ − dk.

Proof. Let v1, . . . , vn denote the rows of D. We can treat v1, . . . , vn as
vectors in a k-dimensional vector space over the field of rational functions in
variables t1, . . . , tk.

We are going to construct the set I∗ using the following greedy algorithm:
Start with I∗ = ∅ and at each step add to I∗ the largest i ∈ [n] for which the
set { vj | j ∈ I∗ ∪ {i} } is linearly independent. Since we assumed that D has
maximal rank, this process will end after precisely k steps, yielding a set I∗ of
size k and such that det (DI∗) �= 0. Denote by I∗ = {i∗1 < · · · < i∗k}.

Observing the formula for dI given by Claim 4.8 and recalling from Eq. (4.5)
that the degrees of the polynomials ri are strictly increasing, we see that the
greedy construction of I∗ ensures that dI∗ = dmax. Assume for contradiction
that there exists a set I ′ �= I in Γ such that dI′ = dmax and denote by I ′ =
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{i′1 < · · · < i′k}. From the monotonicity of deg(ri(t)) it follows that there must
be an index j ∈ [k] such that i′j > i∗j (otherwise we would have dI′ < dI∗).
Let j′ ∈ [k] be the largest index such that i′j′ > i∗j′ . Since I ′ ∈ Γ we have
that the set {vi′

j′
, vi′

j′+1
, . . . , vi′k

} is linearly independent. Therefore there must

be an index 0 ≤ α ≤ k − j′ such that the vector vi′
j′+α

is not spanned by the

set of vectors {vi∗
j′+1

, vi∗
j′+2

, . . . , vi∗k
}. This contradicts the greedy construction

of I∗ since, by construction, all the vectors vi∗
j′+1, vi∗

j′+2, . . . , vn are spanned by

{vi∗
j′+1

, vi∗
j′+2

, . . . , vi∗k
}.

To prove the ‘moreover’ part of the claim we use Claim 4.7. Let I = {i1 <
· · · < ik} be such that I �= I∗ and I ∈ Γ. Using the same logic as above we
can deduce that for all j ∈ [k], ij ≤ i∗j and that for some j′ ∈ [k], ij′ < i∗j′ .
Plugging this information into the formula for dI we get that

dI∗ − dI′ =
k∑

j=1

j ·
(

deg
(
ri∗j

(t)
)
− deg

(
rij(t)

))

≥ deg
(
ri∗

j′
(t)

)
− deg

(
rij′ (t)

)

> dk ,

where the last inequality follows from Claim 4.7. �
We can now use Claim 4.9 to show that the sum in (4.6) is not zero. Let

I∗ ∈ Γ be the set with unique maximal dI∗ given by Claim 4.9. Rewrite (4.6)
in the following form

det(R · D) =
∑

I⊂[n]
|I|=k

det(RI) · det(DI)

=
∑

I∈Γ

det(RI) · det(DI)

= det(RI∗) · det(DI∗) +
∑

I∈Γ
I �=I∗

det(RI) · det(DI) .(4.10)

The degree of the first summand in (4.10) is at least

deg
(
det(RI∗) · det(DI∗)

)
= dI∗ + deg

(
det(DI∗)

)
≥ dI∗ .

Using the ‘moreover’ part of Claim 4.9 we can upper bound the degrees of the
other summands in (4.10). That is, for all I ∈ Γ different from I∗ we have

deg
(
det(RI) · det(DI)

)
= dI + deg

(
det(DI)

)
≤ dI + dk < dI∗ ,
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(we use the fact that all the entries of D are polynomials of degree at most d).
Therefore, the sum in (4.10) cannot be zero. This concludes the proof of
Theorem 4.1. �

5. Extractors for polynomial sources

In this section we describe our construction of an extractor for full rank polyno-
mial sources and prove Theorem 1.5. As was mentioned in the introduction, this
construction, together with the rank extractor constructed in previous sections,
will give an extractor for polynomial sources of any rank. In order to describe
our construction we require some additional notations. Let F be a field of prime
cardinality p. For an integer M ≤ p, we denote by modM : F → {0, . . . , M −1}
the modulo-M function. For a vector x ∈ F

n we apply the function modM(x)
coordinate wise. The following theorem directly implies Theorem 1.5.

Theorem 5.1. There exist absolute constants C > 0 and c > 0 such that the
following holds: Let k, d be integers and let F be a field of prime cardinality
p > dCk. Let m > 0 be an integer such that m < c · log(p), let M = 2m and
define the function E : F

k → {0, 1}km as E(y) � modM(y). Then for every
(k, k, d)-polynomial source Y over F, the distribution E(Y ) is ε-close to uniform
with ε = p−Ω(1).

Notice that the construction of the extractor is very simple – taking a
module in each coordinate. Proving that this is an extractor is much more
complicated. The main tool in the proof of Theorem 5.1 will be a theorem
of Bombieri (1966) giving an exponential sum estimate for low degree polyno-
mials defined over curves (one dimensional varieties). We refer the reader to
Appendix A for a discussion of the basic notions of algebraic geometry used in
the proof.

5.1. Preliminaries for the proof of Theorem 5.1.

5.1.1. Block distributions. Our proof will rely on the following standard
lemmas concerning block distributions.

Lemma 5.2. Let A be some finite set and let X = (X1, . . . , Xk) be a distribu-
tion on Ak. Let 0 < ε < 1 and suppose that X1 is ε-close to uniform. Suppose
also that for each 2 ≤ i ≤ k there exists a set Si ⊂ Ai−1 such that

1. Pr[(X1, . . . , Xi−1) ∈ Si] ≥ 1 − ε and
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2. For each s ∈ Si, the conditional distribution (Xi|(X1, . . . , Xi−1) = s) is
ε-close to uniform.

Then X is O(k · ε)-close to uniform.

Proof. We will prove the lemma for k = 2 (the general case will follow
by a straight-forward induction). Let T ⊂ A2 be some non empty set. It
suffices to show that |Pr[(X1, X2) ∈ T ] − |T |/|A|2| ≤ O(ε). For each a ∈ A let
Ta = T ∩ ({a}×A). Let S = S2 ⊂ A be the set from the lemma. We have that

Pr
[
(X1, X2) ∈ T

]
=

∑

a∈A

Pr[X1 = a] · Pr[X2 ∈ Ta|X1 = a]

≤ ε +
∑

a∈S

Pr[X1 = a] · Pr[X2 ∈ Ta|X1 = a]

≤ 2ε +
∑

a∈S

Pr[X1 = a] · |Ta|
|A|

≤ 3ε +
∑

a∈A

|Ta|
|A|2 = 3ε +

|T |
|A|2 .

Similarly, we can show an inequality in the opposite direction and so we con-
clude that (X1, X2) is 3ε-close to uniform. �

For our proof we require a modified version of this last lemma. In the
modified version we fix not only the prefix of the distribution, but rather all
indices except the i’th one. We recall our notation that for a vector v =
(v1, . . . , vn) and for an index i ∈ [n] we have v(−i) = (v1, . . . , vi−1, vi+1, . . . , vn).
In some places we will define a new vector of length n−1 by writing u = u(−i) ∈
An−1. This means that the indices of u go from 1 to n, skipping the i’th index.
That is, u = (u1, . . . , ui−1, ui+1, . . . , un) ∈ An−1.

Lemma 5.3. Let A be some finite set and let X = (X1, . . . , Xk) be a distribu-
tion on Ak. Let 0 < ε < 1 and suppose that for each 1 ≤ i ≤ k there exists a
set Si ⊂ Ak−1 such that

1. Pr[X(−i) ∈ Si] ≥ 1 − ε and

2. For each s(−i) ∈ Si, the conditional distribution (Xi|X(−i) = s(−i)) is
ε-close to uniform.

Then X is O(k · √ε)-close to uniform.
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Proof. The lemma will follow by showing that X satisfies the conditions
of Lemma 5.2 with ε replaced by O(

√
ε). The first block X1 (and indeed, all

other blocks) is easily seen to be 2ε close to uniform by breaking it into a
convex combination over all fixings of the other blocks, and throwing away
those fixings not in S1.

Now, let i > 1. For a prefix (a1, . . . , ai−1) ∈ Ai−1 we define P (a1, . . . , ai−1)
to be the probability that a(−i) = (a1, . . . , ai−1, ai+1, . . . , ak) is in Si when
the additional elements (ai+1, . . . , ak) are chosen according the the distribu-
tion (Xi+1, . . . , Xk|X1 = a1, . . . , Xi−1 = ai−1). A simple averaging argument
shows that the set S ′

i = {(a1, . . . , ai−1) |P (a1, . . . , ai−1) ≥ 1 − √
ε} has proba-

bility at least 1−√
ε in the distribution of (X1, . . . , Xi−1). We can thus, apply

Lemma 5.2 with the sets S ′
i and with ε replaced by 2ε +

√
ε = O(

√
ε). �

5.1.2. Distributions with small Fourier coefficients. The following lem-
ma is an extension of the now folklore Vazirani XOR Lemma (Goldreich 1995)
and is used (Barak et al. 2006; Bourgain 2007) to extract randomness from
distributions with bounded Fourier coefficients. What the lemma says is that if
we have a distribution X with a bound of p−Ω(1) on all of its Fourier coefficients
then we can deterministically extract from X (using the modulo function)
Ω(log(p)) bits that are p−Ω(1)-close to uniform. The following formulation of
the lemma follows from the version proved in Rao (2007).

Lemma 5.4. Let p be a prime number and let 0 < α < 1 be such that log(p) <
pα/2. Let X be a distribution on F - the field of p elements. Suppose that for
every non-trivial additive character χ : F → C

∗ we have the bound E[χ(X)] ≤
p−α. Let m = �(α/2) · log(p)�, let M = 2m and let Y = modM(X) be an m-bit
random variable. Then Y is p−α/4-close to uniform.

5.1.3. Some basic facts on varieties. In the proof of Theorem 5.1 we will
use some facts regarding sets of the form V = {x ∈ F̄

n | fi(x) = 0 , i ∈ [r]},
where F̄ is the algebraic closure of a finite field and f1, . . . , fr are polynomi-
als. These sets are algebraic varieties that are defined as an intersection of
hypersurfaces. We include here three lemmas that will be used directly in the
proof in the hope of making this section more readable. Readers less familiar
with the notions of algebraic geometry are referred to the appendix (or to any
standard text on the subject) for the “bigger picture”.

In the following F̄ denote the algebraic closure of a prime finite field F. A va-
riety is the set of common zeros of several polynomials. Intuitively speaking,
an irreducible variety is a variety that is not the union of two or more distinct
varieties. Every variety can be decomposed into a union of irreducible vari-
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eties and this decomposition is unique up to ordering. The notion of dimension
used in the three lemmas below is defined formally in the appendix and can
be thought of as a generalization of the same notion for affine subspaces. The
next lemma, proved in the appendix, gives an upper bound on the number of
irreducible components of a variety.

Lemma 5.5 (Lemma A.31 in the appendix). Let f1, . . . , fr ∈ F[x1, . . . , xn] be
non-constant polynomials of degrees d1, . . . , dr, respectively, and let D = d1 ·
· · dr. Let V = {x ∈ F̄

n | fi(x) = 0, i ∈ [r]}. Assume that V is non-empty
and dim(V ) = n − r. Then the number of irreducible components of V is at
most D.

The next lemma, used to prove Lemma 5.7, gives sufficient conditions under
which the dimension of a variety, which is defined as the set of zeros of r
polynomials in n variables, has dimension n − r. This lemma is proved in the
appendix.

Lemma 5.6 (Lemma A.29 in the appendix). Let 0 < r < n be integers and
let f1, . . . , fr ∈ F[x1, . . . , xn] be non-constant polynomials. For each i ∈ [r], let
Hi = {x ∈ F̄

n | fi(x) = 0} and let Vi = H1 ∩ · · · ∩ Hi. Suppose that for each
2 ≤ i ≤ r, fi does not vanish identically on any of the irreducible components
of the affine variety Vi−1. Then, if Vr is non-empty it is an affine variety all of
whose irreducible components are of dimension n − r.

Consider a system of n − 1 polynomial equations in n variables. The next
lemma gives a bound on the number of ‘shifts’ of the system for which the set
of solutions has dimension larger than one (for the precise meaning of ‘shift’
see the lemma).

Lemma 5.7. Let F be a finite field of size p and let F̄ denote its algebraic
closure. Let f1, . . . , fn−1 ∈ F[x1, . . . , xn] be polynomials of degree ≤ d. For
every a = (a1, . . . , an−1) ∈ F

n−1 let V̂a = {x ∈ F̄
n | fi(x) = ai , i ∈ [n − 1]} and

let A = {a ∈ F
n−1 | V̂a �= ∅ and dim(V̂a) �= 1}. Then |A| ≤ ndnpn−2.

Proof. In order to bound |A| we will describe an injective mapping from A
to some small set. Fix some a = (a1, . . . , an−1) ∈ A. For i ∈ [n − 1] let
Hi = {x ∈ F̄

n | fi(x) = ai} be the hypersurface defined by the i’th restriction
and let Ui = H1 ∩ · · · ∩ Hi so that Un−1 = V̂a. Using Lemma 5.6 we see that
if V̂a is not empty and dim(V̂a) �= 1 then there must be some 2 ≤ i ≤ n − 1
such that Hi contains one of the irreducible components of Ui−1. Let i′ be the
smallest i satisfying this condition and let 0 < L ≤ dn be the index of the
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corresponding irreducible component of Ui′−1 (using some arbitrary ordering of
the components of Ui′−1), where the bound of dn on L follows from Lemma 5.5.
Observe that if we are given the set of values {a(−i′), i′, L} we can determine
ai′ and so recover a. Therefore, there exists an injective mapping from A into
the set F

n−2 × [n] × [dn]. Therefore |A| ≤ ndn · pn−2. �

5.1.4. A theorem of Bombieri. The final ingredient we require for the
proof of Theorem 5.1 is an exponential sum estimate due to Bombieri (1966).
We quote here a weak version of Bombieri’s Theorem which is sufficient for our
needs (we restate and derive this version of the theorem as Theorem A.37 in
the appendix).

Theorem 5.8 (Theorem 6 in Bombieri 1966). Let p be a prime and let 1 < d
be an integer such that dn < p. Let F be the field of p elements and let F̄ be
its algebraic closure. Let f1, . . . , fn−1 ∈ F[x1, . . . , xn] be n − 1 polynomials of
degree ≤ d such that the set V̂ = {x ∈ F̄

n|f1(x) = . . . = fn−1(x) = 0} is a
curve. Let g ∈ F[x1, . . . , xn] be a polynomial of degree ≤ d that is non-constant
on at least one of the irreducible components of V̂ . Let V̂ = V̂1∪· · ·∪ V̂L be the
decomposition of V̂ into irreducible components. Let Û be the union of those
irreducible components of V̂ on which g(x) is non constant and let U = Û ∩F.
Let χ : F → C

∗ be a non-trivial additive character of F. Then

∣
∣
∣
∣
∣

∑

x∈U

χ
(
g(x)

)
∣
∣
∣
∣
∣
≤ 4d2n · p1/2 .

5.2. Proof of Theorem 5.1. Let Y : F
k → F

k be a (k, k, d)-polynomial
source and let f = (f1, . . . , fk) ∈ F[x1, . . . , xk] be a vector of polynomials of
degree at most d such that Y (x) = f(x) = (f1(x), . . . , fk(x)). For i ∈ [k]
and a = a(−i) ∈ F

k−1, we let Va =
{
x ∈ F

k | f (−i)(x) = a
}

and also V̂a ={
x ∈ F̄

k | f (−i)(x) = a
}
, where F̄ denotes the algebraic closure of F. For a non

trivial additive character χ : F → C
∗, such that Va �= ∅ we define the exponen-

tial sum

Υχ(a) =
1

|Va|
∑

x∈Va

χ
(
fi(x)

)
.

In view of Lemma 5.3 and Lemma 5.4 the theorem will follow from the following
lemma.

Lemma 5.9. Using the above notations, there exists 0 < α < 1 such that for
every i ∈ [k] there exists a set Si ⊂ F

k−1 such that
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1. f (−i)(x) lands in Si with probability at least 1 − p−α, when x is chosen
uniformly in F

k.

2. For every a = a(−i) ∈ Si and for every non trivial χ, |Υχ(a)| ≤ p−α.

Before proving the lemma we proceed to show how it is used to complete
the proof of Theorem 5.1. Let us denote by

Zi = modM

(
fi(x)

)

the random variable representing the i’th block of E(Y ). Let 0 < α < 1 be the
constant given by Lemma 5.9. Let i ∈ [k] and let Si ⊂ F

k−1 be the set given
by Lemma 5.9.

We will define subsets S ′
i ⊂ [M ]k−1 and then show that the distribution of

Z = E(Y ) satisfies the conditions of Lemma 5.3 with the sets S ′
1, . . . , S

′
k and

with ε = p−Ω(1). The set S ′
i will include all elements b(−i) ∈ [M ]k−1 such that,

when we condition on the event Z(−i) = b(−i), we get that f (−i)(x) lands in Si

with probability at least 1−p−α/2. From Markov’s inequality and from part (1)
of Lemma 5.9 we have that

Pr[b(−i) ∈ S ′
i] ≥ 1 − p−α/2 .

We now fix a specific value b = b(−i) ∈ S ′
i and show that Zi is close to uniform,

even after we condition on the event Z(−i) = b(−i). Denote by Zi(b) the distri-
bution of Zi conditioned on Z(−i) = b(−i). Let A ⊂ F

k−1 be the set of elements
a(−i) that map to b(−i) by the function mod M(·) and let A′ = A ∩ Si. By
the definition of S ′

i we have that Zi(b) is p−α/2-close to a convex combination
of distributions Wi(a) = (Zi|f (−i)(x) = a) taken over all a = a(−i) ∈ A′ (we
simply throw away all elements a ∈ A\A′ and add them to the error). We now
use part (2) of Lemma 5.9 together with Lemma 5.4 to get that each Wi(a)
in the above convex combination is p−Ω(1)-close to uniform. Therefore Zi(b)
is also p−Ω(1)-close to uniform. We have proved that Z = (Z1, . . . , Zk) satis-
fies all the conditions of Lemma 5.3 with ε = p−Ω(1) and so we are done since
O(k ·

√
p−Ω(1)) = p−Ω(1) when p > dCk and C is sufficiently large.

5.2.1. Proof of Lemma 5.9. Let i ∈ [k]. We would like to distinguish
between “good” and “bad” fixings of f (−i)(x). The “good” fixings will be those
values a = a(−i) ∈ F

k−1 for which we can bound the exponential sum Υχ(a).
Before proving the Lemma formally let us describe briefly the intuition behind
the proof. Each fixing f (−i)(x) = a(−i) defines a variety V . We would like
to apply Bombieri’s Theorem to bound the exponential sum of fi(x) over this
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variety. In order to do so we need to make sure that V is a curve and that fi(x)
is not constant on ‘enough’ of the components of the curve V (where the word
‘enough’ takes into account the number of points in F in each component).
The fact that most fixings satisfy the first condition, that V is a curve, will
follow from a counting argument, based on a version of Bezout’s theorem. The
second condition will follow from Wooley’s Theorem (Theorem 2.8). Intuitively,
Wooley’s theorem tells us that the image of f is close to having high min-
entropy. Clearly, this should allow us to bound the size of those components
on which fi(x) is constant (for ‘most’ fixings of f (−i)(x)).

In order to be able to define these “good” fixings of f (−i)(x) we need to
consider the singular points of the mapping f(x), namely the zeros of its Jaco-
bian. Let J(x) = det

(
∂f
∂x

)
be the determinant of the Jacobian of f(x), which

is a non zero polynomial since the source Y has full rank. Let Sing = {x ∈
F

k | J(x) = 0} be the set of singular points and for each a = a(−i) ∈ F
k−1 let

Singa = Sing ∩ Va.

Definition 5.10. We say that a = a(−i) ∈ F
k−1 is “good” if it satisfies the

following three conditions:

1. |Va| ≥ p5/6.

2. |Singa| ≤ p1/6.

3. V̂a is a curve. That is, dim(V̂a) = 1.

We define the set Si ⊂ F
k−1 to be the set of all “good” a’s.

The next claim shows that most a’s are “good”. Thus proving part (1) of
Lemma 5.9.

Claim 5.11. Let Si be as above. Then Pr[f (−i) ∈ Si] ≥ 1− p−Ω(1), where the
probability is over uniformly chosen x ∈ F

k.

Proof. Let a = a(−i) ∈ F
k−1 be the random variable sampled by a =

f (−i)(x), x uniform. For 1 ≤ j ≤ 3 let Ej denote the event that a satisfies
condition j in Definition 5.10. We can write

(5.12) Pr[a is “bad”] ≤ Pr[Ec
1] + Pr[Ec

2] + Pr[E1 ∧ E2 ∧ Ec
3] .

We will bound each of these three probabilities independently by p−Ω(1), which
will prove the claim. The first probability can be seen to be bounded by p−1/6

by a simple union bound on all a’s with small |Va|.
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To bound the second probability we first observe that |Sing| ≤ deg(J(x)) ·
pk−1 ≤ dk · pk−1. Therefore, the number of different a’s not satisfying con-
dition (2) is at most dk · pk−7/6. From Theorem 2.8 we have that for every
a = a(−i) ∈ F

k−1 the set Va contains at most dk · p non-singular points. There-
fore, the size of the union of all Va’s for which condition (2) is not satisfied is
bounded by

kd · pk−1 + (kd · pk−7/6)(dk · p) ≤ pk−Ω(1)

(the first term counts all singular points and the second term counts all non
singular points), where the inequality holds for p > dCk for sufficiently large
constant C. Therefore the second probability in Eq. (5.12) is also bounded by
p−Ω(1).

We now bound the third probability in Eq. (5.12). Let A ⊂ F
k−1 be the set

of a’s satisfying conditions (1) and (2) but not (3) in the definition of a “good” a.
We first observe that Lemma 5.7 gives us the bound |A| ≤ kdk ·pk−2 on the size
of A. Now, For each a ∈ A the size of Va is bounded by p1/6 + dk · p (Va does
not contain many singular points since a satisfies condition (2)). Therefore, we
have that

∑

a∈A

|Va| ≤ |A| · (p1/6 + dk · p) ≤ kdk · pk−2 · (p1/6 + dk · p) ≤ pk−Ω(1) ,

(when p > dCk and C is sufficiently large). This completes the proof of the
claim. �

We now move to proving part (2) of Lemma 5.9. We will show that for
every a = a(−i) ∈ Si and for every non trivial character χ the sum |Υχ(a)| is
bounded by p−Ω(1).

Claim 5.13. Let a = a(−i) ∈ Si. Then we have the bound |Υχ(a)| ≤ p−Ω(1).

Proof. Let V̂a = Ĉ1 ∪ · · · ∪ ĈL be the decomposition of the curve V̂a into
irreducible components and let Cj = Ĉj ∩ F

k for j ∈ [L]. From Lemma 5.5 we
have that L ≤ dk. We wish to use Theorem 5.8 to bound |Υχ(a)|. Our first
step will be to show that the polynomial fi(x) can be constant only on those
irreducible components Ĉj that have few points in Fp. To show this, notice
that if the polynomial fi(x) is constant on one of the irreducible components
Ĉj then, using Theorem 2.8 and part (2) of the definition of “good” a’s, we get
that |Cj| ≤ p1/6 + dk.

We now consider the modified curve Ûa constructed by taking the union of
those components Ĉj of V̂a for which |Cj| > p1/6 +dk and let Ua = Ûa ∩F

k. We
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can now use Theorem 5.8 to get the bound
∣
∣
∣
∣
∣

∑

x∈Ua

χ
(
fi(x)

)
∣
∣
∣
∣
∣
≤ 4d2k · p1/2 ,

which translates into the bound
∣
∣
∣
∣
∣

∑

x∈Va

χ
(
fi(x)

)
∣
∣
∣
∣
∣
≤ dk · (p1/6 + dk) + 4d2kp1/2 ≤ p2/3

(separating the sum into points in the small components and in the large compo-
nents) where the inequality holds when p > dCk, C sufficiently large. Dividing
this sum by |Va| > p5/6 we get the required bound of p−Ω(1) on |Υχ(a)|. �

Combining the above two claims concludes the proof of Lemma 5.9. �

6. Improving the output length

The extractor constructed in Section 5 can extract a constant fraction of the
min-entropy of the source. It was suggested to us by Salil Vadhan that we can
extract almost all of the min-entropy by using special properties of the source.
This indeed works, and in this section we explain how.

We recall the notations of the last section: let Y : F
k → F

k be a (k, k, d)-
polynomial source. Before describing the improved construction we need to
define seeded extractors. For this section only we denote by Us the uniform
distribution on s bits.

Definition 6.1. A function E : {0, 1}n ×{0, 1}s → {0, 1}m is an (r, ε)-seeded
extractor if for every distribution X such that H∞ (X) ≥ r the distribution
E(X, Us) is ε-close to uniform. E is said to be explicit if it can be computed
in polynomial time.

Roughly speaking the method to extract many bits from Y is as follows:
Let E1 : F → {0, 1}m1 be the extractor for distributions with small Fourier
coefficients given by Lemma 5.4 (namely the mod 2m1 function) and let E2 :
F

k−1 × {0, 1}s → {0, 1}m2 be any seeded extractor with seed length s and
output length m2. Consider the composition of these two extractors given by
E(Y ) = E2(Y

(−k), E1(Yk)) (recall that Y (−k) = (Y1, . . . , Yk−1) ) in which the
role of the uniform seed is taken by E1(Yk). We would like to claim that E(Y )
is close to uniform. The first thing to observe is that m1 has to be larger than s.
This requirement will be easy to satisfy since in our setting, when p ≥ dO(k), the
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output of E1 will be larger then the seed length of standard seeded extractors.
The more important thing to justify is the fact that we can replace the uniform
seed of E2 with a seed that is correlated with the source – Y (−k). This can be
done since for ‘most’ fixings of Y (−k), the random variable E1(Yk) is close to
uniform (this follows from Bombieri’s Theorem and the analysis of Section 5).
We formalize this intuition in the following theorem:

Theorem 6.2. Let k, d be integers and let F be a prime field of size p > dΩ(k).
Let m1 = c · log(p) for some small absolute constant c. Let E1 : F → {0, 1}m1

be the function E1(j) = mod 2m1 (j) and let E2 : F
k−1 × {0, 1}s → {0, 1}m2

be an (r, ε)-seeded extractor (we can safely ignore the technicality that pk−1 is
not a power of two). Suppose that m1 ≥ s and r ≤ (k − 1) · log

(
p
2d

)
. Then for

any (k, k, d)-polynomial source Y : F
k → F

k we have that E2(Y
(−k), E1(Yk))

is ε′-close to uniform, with ε′ = ε + p−Ω(1) (we will use the convention that if
m1 > s then E2 uses only the first s bits of E1(Yk)).

Proof. Assume w.l.o.g that m1 = s. Using Lemma 5.9 together with
Lemma 5.4 we get that with probability at least 1 − p−Ω(1) over a random
fixing Y (−k) = b(−k), the distribution

(
E1(Yk)|Y (−k) = b(−k)

)
is p−Ω(1)-close to

uniform. This means that the joint distribution (Y (−k), E1(Yk)) is p−Ω(1)-close
to (Y (−k), Us). Therefore, we have that E2(Y

(−k), E1(Yk)) is p−Ω(1)-close to
E2(Y

(−k), Us) which is ε+p−Ω(1) close to uniform by the properties of E2. Here
we use the fact that r ≤ (k − 1) · log

(
p
2d

)
and that, from Lemma 2.9, Y (−k) is

p−Ω(1)-close to having min-entropy at least (k − 1) · log
(

p
2d

)
. �

Applying the last theorem with an appropriate seeded extractor enables us
to construct a deterministic extractor for polynomial sources that extract any
constant fraction of the entropy of the source. It is possible to increase further
the output length by using different seeded extractors. However, using current
state-of-the-art seeded extractors, this would cost in terms of the error of the
final construction. In order to avoid these complications we concentrate on
extracting only a constant fraction (arbitrarily close to 1) of the min entropy.

Theorem 6.3. Let k and d > 1 be integers and let F be a field of prime
cardinality p > dΩ(k). Let 0 < α < 1. Then, there exists a function E : F

k →
{0, 1}m that is an explicit (k, d, ε)-extractor for polynomial sources over F

k with
m = (1 − α) · k · log

(
p
2d

)
and ε = p−Ω(1).

Proof. We use the seeded extractors of Raz et al. (1999) in conjunction with
Theorem 6.2. In Raz et al. (1999) it is shown that there exists an explicit (r, ε)-
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seeded extractor E2 : F
k−1 ×{0, 1}s → {0, 1}m2 with the following parameters:

r =
⌊
(k − 1) · log

( p

2d

) ⌋
,

ε = p−Ω(1) ,

m2 ≥ (1 − α/2) · r

s = O
(

log2
(
k · log(p)

)
+ log(1/ε)

)
= O

(
log(p)

)
.

Plugging E2 into the setting described in Theorem 6.2 we get an extractor with
output length m2 ≥ (1− α/2)(k − 1) · log

(
p
2d

)
which is larger then (1− α) · k ·

log
(

p
2d

)
. �

7. Extractors for weak polynomial sources

In this section we discuss the more general class of sources defined in the in-
troduction as (n, k, d)-weak polynomial sources. Our final goal will be to prove
Theorem 1.10, which we restate here for convenience:

Theorem 1.10. There exists absolute constants C and c such that the follow-
ing holds: Let k ≤ n and d > 1 be integers and let d′ = 8k2d3n. Let F be a field
of prime cardinality p > (d′)Ck. Then, there exists a function E : F

n → {0, 1}m

that is an explicit (k, d, ε)-extractor for weak polynomial sources over F
n with

m = �c · k · log(p)� and ε = p−Ω(1).

Theorem 1.10 will be a simple corollary of the following theorem, which
shows that any (n, k, d)-WPS is close to a convex combination of (n, k, d)-
polynomial sources.

Theorem 7.1. Let F be a field of prime cardinality p. Let k ≤ n and d be
integers such that p > max{4D2, 210}, where D = (2k + 1)d2k. Let X be an
(n, k, d)-WPS over F. Then X is δ-close to a convex combination of (n, k, d)-
polynomial sources over F, with δ = d·k

p
.

Before proving Theorem 7.1 we show how it can be used to prove Theo-
rem 1.10.

Proof of Theorem 1.10. Let X be an (n, k, d)-WPS. We take the ex-
tractor E : F

k → {0, 1}m to be the one given by Corollary 1.6 (namely, the
extractor for polynomial sources). Using Theorem 7.1 we get that X is δ-close
to a convex combination of (n, k, d)-polynomial sources, with δ = d·k

p
= p−Ω(1)
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(when p > (d′)Ck and C sufficiently large). We know from Corollary 1.6 that E
is a (k, d, ε)-extractor for polynomial sources over F

n, with ε = p−Ω(1). There-
fore, E(X) is δ-close to a convex combination of distributions, each of which is
ε-close to uniform. It follows, using standard probability theory, that E(X) is
(δ + ε) = p−Ω(1)-close to uniform. �

7.1. Proof of Theorem 7.1. The proof of the theorem will be in two steps.
The first step will be to show that every (n, k, d)-WPS is sampled by a mapping
x : F

n → F
n such that rank(x) ≥ k. The second step will be to show that a

distribution sampled by such a mapping is close to a convex combination of
(n, k, d)-polynomial sources. The first step of the proof of Theorem 7.1 is given
by the following lemma.

Lemma 7.2. Let F be a field of prime cardinality p. Let k ≤ n and d be
integers such that p ≥ max{4D2, 210}, where D = (2k + 1) · d2k. Let X be
an (n, k, d)-WPS over F. Then there exists a mapping x ∈ M(Fn → F

n) with
rank ≥ k such that X = x(Un).

The main thing that is needed in order to prove Lemma 7.2 is to show
that if a polynomially sampled distribution has high entropy, then its rank is
also high. In other words, we need to show that if the rank is low, so is the
entropy. We achieve this kind of bound in two parts. The first part bounds
the entropy of the output distribution of k dependent polynomials. That is, of
k polynomials with rank at most k − 1. This can be viewed as the ‘base case’
for the proof of Lemma 7.2.

Lemma 7.3. Let F be a field of prime cardinality p. Let k, n and d be integers
such that p > D, where D = (n + 1)dn. Let f1, . . . , fk ∈ F[x1, . . . , xn] be k
algebraically dependent polynomials of total degree at most d. Let P denote
the distribution of the mapping f = (f1, . . . , fk) : F

n → F
k on a uniformly

chosen input in F
n. Then P has support size at most D · pk−1.

Proof. From Theorem 3.3 we know that there exists a non zero polynomial
h ∈ F[z1, . . . , zk] of degree ≤ D such that h(f1(x), . . . , fk(x)) ≡ 0 (notice that
we use Theorem 3.3 with the roles of k and n reversed). Therefore, the support
of P is contained in the zero set of h, whose size is bounded by D · pk−1 by
Schwartz–Zippel (Lemma 2.6). �

The second auxiliary lemma we will need in the proof of Lemma 7.2 is the
following lemma which will enable us to reduce the number of variables of a
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mapping (assuming the number of variables is considerably larger than the
number of outputs) while maintaining both the rank and the overall entropy
of the mapping.

Lemma 7.4. Let F be a finite field of cardinality q. Let d, k, n, m be integers
such that 2k ≤ n. Let x ∈ M(Fn → F

m, d) be such that H∞ (x(Un)) ≥ k·log(q).
Then, there exists an affine subspace V ⊂ F

n of dimension 2k such that the
restriction of x to V has min entropy at least k · log(q)−2. That is, if we denote
by UV the uniform distribution on V , then we have H∞ (x(UV )) ≥ k · log(q)−2.

Proof. Take V to be a random affine subspace of dimension 2k. For each
y ∈ F

m let Sy � {t ∈ F
n |x(t) = y} and denote ry � |Sy| · q−n = Pr[x(Un) = y].

Fix some y ∈ F
m. The expectation, over the choice of V, of |Sy ∩ V | is q2k · ry.

We can also bound the variance of |Sy ∩ V | (using pairwise independence of
the points on V) by |Sy|q2k−n(1 − q2k−n) ≤ q2k · ry. Applying Chebyshev’s
inequality, and using the fact that for all y ∈ Fm we have ry ≤ q−k, one can
show that

(7.5) Pr
V

[
|Sy ∩ V | > 4qk

]
≤ ry

9
.

Using the union bound we get that the probability that there exists a y for
which the event in (7.5) happens is bounded by 1/9 and so there exists V such
that for all y ∈ Fm we have |Sy ∩ V | ≤ 4qk. This completes the proof of the
lemma since

Pr
[
x(UV ) = y

]
=

|Sy ∩ V |
q2k

≤ 4q−k . �

The third auxiliary lemma we will use in the proof of Lemma 7.2 is the
following lemma which enables us to reduce the number of polynomials from n
to k while maintaining most of the entropy.

Lemma 7.6. Let F be a finite field of cardinality q. Let k ≤ n be integers and
let 0 < s ≤ k be a real number. Let X be a distribution over F

n such that
H∞ (X) ≥ s · log(q). Then there exists a linear mapping l : F

n → F
k such

that for every α > 0 the distribution l(X) is ε-close to having min entropy
≥ (s − α) · log(q), where ε =

√
2 · q−α/2.

Proof. Let L denote the set of all linear mappings from F
n to F

k and let L
be a random variable uniformly distributed over L. Let us observe the average
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collision probability of l(X) when we average over all l ∈ L.

1

|L|
∑

l∈L
cp

(
l(X)

)
=

∑

l∈L
Pr[L = l] · Pr

x1,x2←X

[
L(x1) = L(x2) |L = l

]

= Pr
x1,x2←X

[
L(x1) = L(x2)

]

≤ Pr
x1,x2←X

[x1 = x2] + Pr
x1,x2←X

[
L(x1) = L(x2) |x1 �= x2

]

≤ q−s + q−k ≤ 2q−s ,

where in the last inequality we used the fact that the min entropy of X is
at least log(qs) and so cp(X) ≤ q−s. Therefore, there exists l ∈ L such that
cp(l(X)) ≤ 2q−s. Let α > 0 and let us use Lemma 2.4 with a = qα

2
and

b = qs−α. We therefore have cp(l(X)) ≤ 1
ab

and so, by the lemma, l(X) is
(1/

√
a)-close to having min entropy at leat log(b) = (s − α) · log(q). �

One more simple auxiliary claim we will require is the following claim.

Claim 7.7. Let 0 < ε < 1/4. Let X be some distribution on some finite set Γ.
Suppose that X is ε-close to a distribution with support size at most M . Then
X is 1/4-far from any distribution with min entropy at least log(2M).

Proof. Assume towards a contradiction that there exists a distribution Y
on Γ such that H∞ (Y ) ≥ log(2M) and X

δ
∼ Y with δ ≤ 1/4. From the

assumption on X we know that there exists a set A ⊂ Γ with |A| ≤ M such
that Pr[X ∈ A] ≥ 1− ε. We therefore have that Pr[Y ∈ A] ≥ 1− ε− δ > 1/2.
Therefore, since Pr[Y = a] ≤ 2− log H∞(Y ) ≤ 1

2M
, we get that Pr[Y ∈ A] ≤

|A| · 1
2M

≤ 1/2, a contradiction. �

We are now ready to prove Lemma 7.2.

Proof of Lemma 7.2. Let x = x(t) ∈ M(Fn → F
n, d) be a mapping such

that X = x(Un). We will show that rank(x) ≥ k. Assume towards a con-
tradiction that rank(x) < k. Using Lemma 7.4 we can replace x with a new
polynomial mapping x̃ ∈ M(Fm → F

n, d) ,with m = min(n, 2k), and such that
(a) rank(x̃) ≤ rank(x) < k and (b) H∞ (x̃(Um)) ≥ (k − 1/4) log(q). Let X̃
denote the output distribution of x̃.

Next, we use Lemma 7.6 with parameters α = 1/4 and s = k − 1/4. We
get that there exists a linear mapping l : F

n → F
k such that l(X̃) is ε-close to
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having min-entropy at least (k − 1/2) · log(p), where

ε =
√

2 · p1/8 < 1/4 ,

where the last inequality uses the fact that p > 210.
Notice that the distribution l(X̃) is the output distribution of k dependent

polynomials. To see this write D = ∂x
∂t

and let Al be a k × n matrix represent-
ing l. The partial derivative matrix of l ◦ x is simply Al · D and the rank of
this matrix is at most the rank of D, which we assumed is bounded by k − 1.
Theorem 3.3 now implies that the polynomials sampling l(X̃) are dependent.

We can now use Lemma 7.3 to get that l(X̃) has support size at most
D ·pk−1, where D = (m+1)dm. Therefore, by Claim 7.7, l(X̃) is (1/4)-far from
any distribution with min entropy at least log(2D · pk−1). This implies

pk−1/2 < 2D · pk−1 ,

which gives p < 4D2, a contradiction. �
The second step in the proof of Theorem 7.1 is the following lemma.

Lemma 7.8. Let F be a finite field. Let k ≤ n and d be integers. Let
x ∈ M(Fn → F

n, d) be a mapping with rank k. Let X be the distribu-
tion x(Un). Then X is ε-close to a convex combination of (n, k, d)-polynomial
sources over F, where ε = d·k

|F| .

Proof. Denote by D the sub-matrix of the first k rows and k columns of
∂x
∂t

, i.e.,

D =

⎛

⎜
⎝

∂x1

∂t1
. . . ∂x1

∂tk
...

. . .
...

∂xk

∂t1
. . . ∂xk

∂tk

⎞

⎟
⎠ .

We can assume w.l.o.g that D is non singular (this can be obtained by rela-
belling the t’s and x’s). Let f : F

n → F be defined as f(t) � det(D)(t). By
assumption, f is non-zero and deg(f) ≤ d · k. For c = (ck+1, . . . , cn) ∈ F

n−k

define the mapping xc : F
k → F

n as x restricted to c, that is xc(t1, . . . , tk) �
x(t1, . . . , tk, cr+1, . . . , cn). Note that, the first k rows of ∂xc

∂t
are exactly D un-

der the restriction tk+1 = ck+1, . . . , tn = cn. Thus ∂xc

∂t
has full rank whenever

fc(t1, . . . , tk) � f(t1, . . . , tk, ck+1, . . . , cn) is non-zero. Using Claim 2.7, fc ≡ 0
with probability at most d·k

|F| (for uniformly chosen c). Let Xc be the distri-

bution xc(Uk). Then X is a convex combination of the Xc’s. Moreover, using
Lemma 2.1, X is d·k

|F| -close to a convex combination of the Xc’s for which fc is

non-zero, and these Xc’s are (n, k, d)-polynomial sources over F. �
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Proof of Theorem 7.1. We first apply Lemma 7.2 to get that X is sam-
pled by a rank k mapping x : F

n → F
n. Then we use Lemma 7.8 to show that

X = x(Un) is δ-close to a convex combination of (n, k, d)-polynomial sources
with δ = d·k

p
. �

7.2. The entropy of a polynomial mapping. We can use the results
of the last section to show that, over sufficiently large fields, the distribution
sampled by a low degree mapping x ∈ M(Fn → F

n, d) is always close to having
entropy approximately k · log(p), where k is equal to the rank of x. This is a
generalization of the affine case, where the entropy is exactly k · log(p). This is
stated formally by the following theorem.

Theorem 7.9. Let k ≤ n and d be integers. Let D = (2k + 1)d2k and let
0 < δ < 1 be a real number. Let F be a field of prime cardinality p such that
p > max{(2d)

k
δ , 2

10
δ , (2D)

2
δ }. Let x ∈ M(Fn → F

n, d) be of rank k and let
X = x(Un) be the distribution sampled by x. Then

1. X has min entropy ≤ (k + δ) · log(p).

2. X is ε-close to having min entropy ≥ (k − δ) · log(p), where ε = 2·d·k
p

.

Proof. We start with a proof of 2, which is easier. We apply Lemma 7.8 to
get that X is d·k

p
-close to a convex combination of (n, k, d)-polynomials sources.

From Theorem 2.9 we have that every distribution in this convex combination
is d·k

p
-close to having min entropy ≥ k · log

(
p
2d

)
. It follows that X is 2·d·k

p
-close

to having min entropy at least

k · log
( p

2d

)
≥ (k − δ) · log(p) ,

where the inequality follows from the bound p ≥ (2d)
k
δ .

We proceed to prove part 1 of the theorem. We can assume w.l.o.g that k <
n, for otherwise an entropy upper bound of n · log(p) would be trivial. Suppose
for contradiction that H∞ (x) > (k+δ)·log(p). Using Lemma 7.4 we can replace
x with a new polynomial mapping x̃ ∈ M(Fm → F

n, d) ,with m = min(n, 2k),
and such that (a) rank(x̃) ≤ rank(x) = k and (b) H∞ (x̃(Um)) ≥ (k+3

4
δ) log(p),

where we need to use the following inequality
(

k +
3

4
δ

)
log(p) ≤ (k + δ) log(p) − 2 ,

which holds for p > 2
10
δ .
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Let X̃ denote the output distribution of x̃. We apply Lemma 7.6 with
α = δ/4 to find a linear mapping l : F

n → F
k+1 such that l(X̃) is ε′-close to

having min-entropy at least (k + δ/2) · log(p) with ε′ =
√

2 · p−δ/8 < 1/4 (here

we use again the bound p > 2
10
δ ).

We proceed in a similar manner as in the proof of Lemma 7.2: We first
use Lemma 7.3 to claim that l(X̃) has support size at most D · pk, where
D = (m+1)dm (again, using the fact that l ◦ x̃ has rank at most rank(x̃) ≤ k).
From this fact and from Claim 7.7 we deduce that

(k + δ/2) · log(p) ≤ log(2D · pk) ,

which is a contradiction since p > (2D)
2
δ . �

8. Rank extractors over the complex numbers

In this section we discuss the interpretation of rank extractors over the com-
plex numbers. This interpretation will follow from the results appearing in
Ehrenborg & Rota (1993), on algebraic independence and full-rank mappings
over C. The following theorem shows that over the complex numbers algebraic
independence is equivalent to full rank.

Theorem 8.1 (Theorem 2.3 in Ehrenborg & Rota 1993). Let x ∈ M(Ck →
C

r, d) where r ≤ k. The mapping x has full rank, that is, rank r, if and only
if x1, . . . , xr are algebraically independent.

The next theorem shows that for a mapping x ∈ M(Ck → C
k, d), full rank

is equivalent to having an image that is “essentially all” of C
k. More precisely,

all of C
k except for a set of measure zero. The theorem follows immediately

from Theorem 2.4 in Ehrenborg & Rota (1993).

Theorem 8.2. Fix any integers d, k and any x ∈ M(Ck → C
k, d). The map-

ping x has full rank if and only if the image x(Ck) of x contains all of C
k except

a set Z ⊆ C
k of measure zero in C

k.

Proof. Assume that x has full rank. In the proof of Theorem 2.4 in Ehren-
borg & Rota (1993), it is shown that x(Ck) contains all of C

k except the set Z
of zeros of some polynomial H : C

k → C. Such a set Z has measure zero. Now
assume x(Ck) contains all of C

k except for a set of measure zero in C
k. Then

x(Ck) is dense in C
k and it follows from Theorem 2.4 in Ehrenborg & Rota

(1993) that x1, . . . , xn are algebraically independent, and therefore by Theo-
rem 8.1, x has full rank. �
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It follows that our constructions of rank extractors can be viewed as ‘dis-
persers’ for low-degree sources over C. That is, they are fixed mappings that
map every k-dimensional low degree source over C

n into almost all of C
k.

Corollary 8.3. Fix any integers d, k and n with n ≥ k. Let y : C
n → C

k be
the mapping from Theorem 1.3. Then, for any x ∈ M(Ck → C

n, d) with full
rank, y(x(Ck)) contains all of C

k except for a set of measure zero.

As far as we know, this kind of generalized dispersers were not considered
before, and it will be interesting to find applications for them.

9. Discussion and open problems

Our paper invites further work in several directions. A recent work of Kayal
(2007) makes progress on several of these issues.

◦ The extractors we give in this paper work when the field size is dΩ(k).
Extending our results to the case where the field size is polynomial in k
is an interesting open problem. Building on the results of this paper it is
enough to construct such an extractor for polynomial sources of full rank.

◦ An affine source may be viewed in two dual ways: as the image of an affine
map, or as the kernel of one. Our extension here to low degree sources
takes the first view. An interesting problem is extending the second view:
extracting from low degree algebraic varieties.

◦ We prove an exponential upper bound of (n + 1)dn on the degree of the
annihilating polynomial for a set of degree d dependent polynomials in
n variables. Can this bound be improved in general? Are there lower
bounds? This seems to be open even over the complex numbers. An
improvement on the upper bound above will yield a tighter connection
between min-entropy and algebraic rank for smaller field sizes. However,
it is possible that the latter can be obtained without the former.

◦ What is the computational complexity of testing algebraic independence?
When the field size affords the equivalence to the rank of the Jacobian,
there is a simple RP algorithm. Can one do it for smaller fields?

◦ What is the complexity of finding an annihilating polynomial when the
polynomials are dependent? Our degree bound guarantees a PSPACE
algorithm. Is there a better one, or can this problem be complete for this
class?
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A. Basic notions from algebraic geometry

In Section 5 we use a theorem of Bombieri (1966) regarding character sums
over curves. The very statement, let alone applicability of Bombieri’s theorem
requires some basic notions from algebraic geometry. In this section, we give
some basic background necessary for stating the theorem and applying it as
done in Section 5. The main issue in Section 5 is to show that the varieties
that come up in that section are suitable for the theorem. Specifically, we
need to show that these varieties are indeed curves, i.e., have dimension 1 and
that their ‘degree’ is not too large. (All these terms will be defined formally.)
For this purpose, we need some lemmas regarding the dimension and degree of
intersections of varieties. Another issue is that Bombieri’s theorem is stated for
projective curves while we want to apply it on affine curves. For this purpose,
we need some lemmas on the relations between affine and projective varieties.
We note that all these issues are standard. We stress that this section is far
from a full introduction to basic algebraic geometry. For a very accessible
introduction we recommend Cox et al. (1992) whom most of the the definitions
and notation in this section follow.

Throughout this section F will always denote an algebraically closed field.

A.1. Affine and projective varieties. The basic objects of study in alge-
braic geometry are the sets of solutions to a system of polynomial equations.
Such a set is called a variety. We now formally define affine space and affine
varieties.

Definition A.1 (Affine space). We define n-dimensional affine space over F

as
F

n �
{
(a1, . . . , an) | ai ∈ F

}
.

(In most textbooks in algebraic geometry the notation A
n is used rather

than F
n. However, in Cox et al. (1992) which we are following, the more

usual F
n is used.)

Definition A.2 (Affine variety). Let f1, . . . , fs be polynomials in F[x1, . . . ,
xn]. We set

V(f1, . . . , fs) =
{
(a1, . . . , an) ∈ F

n | ∀ 1 ≤ i ≤ s fi(a1, . . . , an) = 0
}

.

We call V(f1, . . . , fs) the affine variety defined by f1, . . . , fs. A subset V ⊆ F
n

is an affine variety if V = V(f1, . . . , fs) for some set of polynomials f1, . . . , fs ∈
F[x1, . . . , xn]. We say that V is reducible if it can be written as V = V1 ∪ V2

where the Vi’s are affine varieties such that V �= V1, V2. Otherwise, we say
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that V is irreducible. (In some textbooks, the term variety always means an
irreducible variety and general varieties are called algebraic sets.)

As a simple example of an affine variety take V = V(x1 · x2) ⊆ F
2. Note

that V is reducible as it is the union of the varieties V1 = V(x1) and V2 = V(x2),
i.e., the sets {(0, x2)|x2 ∈ F}, {(x1, 0)|x1 ∈ F} ⊆ F

2. It can be shown that V1

and V2 are irreducible. Note that this is not a disjoint union as V1∩V2 = (0, 0).
Though affine space and affine varieties seem to be the natural objects we

want to investigate, it turns out to be very useful to work in projective space.
Intuitively, a projective space is an affine space extended with additional ‘extra
points’. This intuition may not be clear from the following definition but will
become clearer later on.

Definition A.3 (Projective space). We define an equivalence relation ∼ over
F

n+1\{0} by setting
(x0, . . . , xn) ∼ (y0, . . . , yn)

if and only if there exists a nonzero λ ∈ F such that (x0, . . . , xn) = (λ·y0, . . . , λ·
yn). We define the n-dimensional projective space P

n over F to be the set of all
equivalence classes of ∼. Thus,

P
n = (Fn+1 − {0})/ ∼ .

Each non-zero n + 1-tuple (x0, . . . , xn) ∈ F
n defines a point p ∈ P

n. We say
that (x0, . . . , xn) are homogenous coordinates of p.

We say that a polynomial f ∈ F[x0, . . . , xn] is homogenous if all of its
monomials have the same total degree. It is easy to see that for a homogenous
polynomial f of total degree d and any nonzero λ ∈ F

f(λ · a0, . . . , λ · an) = λdf(a0, . . . , an) .

In particular, f(λ · a0, . . . , λ · an) = 0 if and only if f(a0, . . . , an) = 0. Thus,
the set of ‘zeros’ of f is a well defined object in P

n.
This leads to the following definition.

Definition A.4 (Projective variety). Let f1, . . . , fs ∈ F[x0, . . . , xn] be ho-
mogenous polynomials. We set

V(f1, . . . , fs) =
{
(a0, . . . , an) ∈ P

n | ∀ 1 ≤ i ≤ s fi(a0, . . . , an) = 0
}

.

A subset V ⊆ P
n is a projective variety if V = V(f1, . . . , fs) for some set of

homogenous polynomials f1, . . . , fs ∈ F[x0, . . . , xn]. We say that V is reducible
if it can be written as V = V1 ∪ V2 where the Vi’s are projective varieties such
that V �= V1, V2. Otherwise, we say that V is irreducible.
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An important basic property of (affine and projective) varieties is that they
decompose into irreducible varieties in a unique way. Thus, we can speak
unambiguously about the irreducible components of a variety.

Proposition A.5. (Cox et al. (1992), Chapter 4, §6, Theorem 4 and Chap-
ter 8, §3, Theorem 6). We say that V = V1∪· · ·∪Vm is a minimal decomposition
of V if Vi � Vj for every i �= j. Let V be an affine (projective) variety. Then V
has a minimal decomposition

V = V1 ∪ · · · ∪ Vm

where the Vi’s are irreducible affine (projective) varieties. Furthermore, this
minimal decomposition is unique up to the order in which V1, . . . , Vm are writ-
ten.

A.2. Varieties and ideals. An affine variety is essentially a geometric ob-
ject – a set of points in the space F

n. A fundamental idea in algebraic ge-
ometry is to relate a variety to an algebraic object. This algebraic object
will be the set of all polynomials that vanish on the variety. It is easy to
see that this set of polynomials forms an ideal in the ring F[x1, . . . , xn]. First
we recall some basic facts and notation regarding ideals in F[x1, . . . , xn]. For
f1, . . . , fs ∈ F[x1, . . . , xn] we denote by 〈f1, . . . , fs〉 the ideal generated by
f1, . . . , fs. That is,

〈f1, . . . , fs〉 �
{

s∑

i=1

gi · fi | ∀ 1 ≤ i ≤ s gi ∈ F[x1, . . . , xn]

}

.

By the Hilbert Basis Theorem (see Cox et al. (1992), Chapter 2, §5) every
ideal I ⊂ F[x1, . . . , xn] is finitely generated, i.e., I = 〈f1, . . . , fs〉 for some
f1, . . . , fs ∈ F[x1, . . . , xn]. For an ideal I = 〈f1, . . . , fs〉, it is easy to see that
a point (a1, . . . , an) ∈ F

n is a zero of every f ∈ I if and only if it is a zero of
f1, . . . , fs.

Definition A.6 (Affine varieties and ideals). For an affine variety V ⊆ F
n we

define I(V ) to be the ideal of all polynomials f such that f(a1, . . . , an) = 0 for
every (a1, . . . , an) ∈ V . For an ideal I = 〈f1, . . . , fs〉 ⊆ F[x1, . . . , xn] we define
V(I) ⊆ F

n to be the affine variety V(I) = {(a1, . . . , an) | f(a1, . . . , an) =
0 ,∀f ∈ I} = V(f1, . . . , fs).

Before making the corresponding definitions for projective varieties we will
need some terminology. We remarked above that it makes sense to ask whether
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a homogenous polynomial f ∈ F[x0, . . . , xn] vanishes at a point p ∈ P
n. For a

non-homogenous polynomial f ∈ F[x0, . . . , xn] we say that f(p) = 0 for p ∈ P
n

if f(a0, . . . , an) = 0 for all representatives (a0, . . . , an) of p.

We say that an ideal I ⊆ F[x0, . . . , xn] is homogenous if it is generated by
a set of homogenous polynomials, i.e., I = 〈f1, . . . , fs〉 where f1, . . . , fs are
homogenous. We can now give the following definitions.

Definition A.7 (Projective varieties and homogenous ideals). For a projec-
tive variety X ⊆ P

n we define I(X) to be the ideal of all polynomials f with
f(p) = 0 for every p ∈ X. It can be shown that I(X) is always a homogenous
ideal.

For a homogenous ideal I ⊆ F[x0, . . . , xn] we define V(I) ⊆ P
n to be the

projective variety of all points p ∈ P
n that are zeros of all polynomials f ∈ I.

If I = 〈f1, . . . , fs〉 for homogenous polynomials f1, . . . , fs then it can be shown
that V(I) = V(f1, . . . , fs).

One reason the correspondence between ideals and varieties is useful is
that operations on ideals have simple corollaries in terms of the corresponding
varieties. We need the following fact about intersections of ideals.

Proposition A.8. (Cox et al. (1992), Chapter 4, §3, Theorem 15 and Chap-
ter 8, §3, Exercise 7). Let I1, I2 be ideals in F[x1, . . . , xn] or homogenous ideals
in F[x0, . . . , xn]. Then

V(I1 ∩ I2) = V(I1) ∪ V(I2) .

A.3. The dimension and degree of a variety. There are several equiva-
lent definitions of the dimension and degree of a variety (degree is defined only
for projective varieties). Here we define dimension and degree in terms of the
Hilbert polynomial of a variety. First we need to define the Hilbert function
and Hilbert polynomial of an ideal.

We say that an ideal I is a monomial ideal if it is generated by a set of
monomials. (By Dickson’s Lemma (Cox et al. (1992), Chapter 2, §4 Theorem 5)
if I is a monomial ideal it can always be generated by a finite set of monomials.)
For example I =< x1, x

2
2 > is a monomial ideal. We first define the Hilbert

function for monomial ideals.

Definition A.9 (Hilbert function of a monomial ideal). Let I be a monomial
ideal in F[x1, . . . , xn]. The affine Hilbert function of I denoted aHFI(s), is a
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function on non-negative integers defined by

aHFI(s) = number of monic monomials in F[x1, . . . , xn]
of degree at most s not contained in I .

Similarly, let I be a homogenous monomial ideal in F[x0, . . . , xn]. The
Hilbert function of I denoted HFI(s), is a function on non-negative integers
defined by

HFI(s) = number of monic monomials in F[x0, . . . , xn]
of degree exactly s not contained in I .

Roughly speaking, for a monomial ideal I the monomials not in I are a
basis for the space of polynomials that are ‘different modulo I’. Thus, aHFI(s)
is the dimension of the space of such polynomials of degree at most s. This
is the idea behind the definition of the Hilbert function for general ideals.
First we need some notation. For a subset of polynomials I ⊆ F[x1, . . . , xn]
and a non-negative integer s, we denote by I≤s ⊆ F[x1, . . . , xn] the set of
polynomials in I of (total) degree at most s. For example, F[x1, . . . , xn]≤s is
the set of all polynomials of degree at most s. Similarly, for a subset I ⊆
F[x0, . . . , xn] we denote by Is ⊆ F[x0, . . . , xn] the set of all polynomials in I
of degree exactly s. Note that if I ⊆ F[x1, . . . , xn] is a linear subspace, then
so are I≤s and Is. In particular if I ⊆ F[x1, . . . , xn] is an ideal, then it is also
a linear subspace and so is I≤s. We recall a basic notion for linear algebra:
For subspaces W ⊆ I ⊆ F[x1, . . . , xn] we denote by I/W the quotient space of
equivalence classes of I over W . That is, we define an equivalence relation ∼
over I by v ∼ v′ ↔ v − v′ ∈ W and let I/W be the space of these equivalence
classes. We can now make the following definition.

Definition A.10 (Hilbert function of a general ideal). Let I be an ideal in
F[x1, . . . , xn]. The affine Hilbert function of I, denoted aHFI(s), is defined as
aHFI(s) � dim (F[x1, . . . , xn]≤s/I≤s).

Let I be a homogenous ideal in F[x0, . . . , xn] the Hilbert function of I,
denoted HFI(s) is defined as HFI(s) � dim (F[x0, . . . , xn]s/Is).

It can be shown that for large enough input s, the Hilbert Function coincides
with a polynomial.

Theorem A.11 (See Cox et al. 1992 Chapter 9, §3).

1. Let I be an ideal in F[x1, . . . , xn]. There exists a polynomial aHPI(s)
such that for large enough s, aHPI(s) = aHFI(s). We call aHPI(s) the
affine Hilbert polynomial of I.



cc 18 (2009) Extractors and rank extractors for polynomial sources 49

2. Let I be a homogenous ideal in F[x0, . . . , xn]. There exists a polynomial
HPI(s) such that for large enough s, HPI(s) = HFI(s). We call HPI(s)
the Hilbert polynomial of I.

Let V ⊆ F
n be an affine variety with I = I(V ). Let’s try to see why it

could make sense to define the dimension of a variety in terms of the affine
Hilbert polynomial of I. Since I is exactly the set of polynomials that van-
ish on V , polynomials f, g ∈ F[x1, . . . , xn] are identical on V if and only if
f − g ∈ I. It follows that F[x1, . . . , xn]/I is exactly the space of polynomial
functions from V to F. Now recall that for a linear subspace A ⊆ F

n, the
dimension of A can be defined as the dimension of the space of linear functions
from A to F. Similarly, we could try to define the dimension of V as the dimen-
sion of the space of polynomial functions from V to F, i.e., the dimension of
F[x1, . . . , xn]/I. However, since the polynomials in this space have unbounded
degree, F[x1, . . . , xn]/I has infinite dimension. Instead, we can take an ‘asymp-
totic’ approach and define the dimension of V by how fast this space grows
as we increase the degree of the polynomials. More accurately, we can define
dim(V ) by how fast aHPI(s) = dim(F[x1, . . . , xn]≤s/I≤s) grows as s increases.
This corresponds to the degree of aHPI(s).

Definition A.12 (Dimension of a variety). Let V ⊆ F
n be an affine variety

and let I = I(V ). The dimension of V denoted dim(V ), is defined to be the
degree of aHPI(s).

Let V ⊆ P
n be a projective variety and let I = I(V ). The dimension of V

is defined to be the degree of HPI(s).

To gain intuition on the above definition, it is helpful to see how it coincides
with the definition of dimension for a linear subspace. Take for example, the
subspace V ⊆ F

n defined by the constraints {x1 = 0, x2 = 0}. Then I �
I(V ) =< x1, x2 > and the monomials not in I are exactly the monomials
xa3

3 · · ·xan
n where a3, . . . , an are non-negative integers. In particular, the number

of such monomials of degree at most s is
(

n−2+s
n−2

)
, which is a degree n − 2

polynomial in s. Therefore, since I is a monomial ideal by the definition above
dim(V ) = deg(aHPI(s)) = n − 2.

The following property of the dimension of a variety will be very useful for
us later on.

Proposition A.13 (Cox et al. 1992, Chapter 9,§4 Corollary 9). Let V be an
affine or projective variety. Then the dimension of V is the maximum of the
dimensions of its irreducible components.
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We now define the degree of a projective variety (degree is not defined for
affine varieties).

Definition A.14 (Degree of a variety). The degree of V denoted deg(V ), is
defined to be the leading coefficient of HPI(s) multiplied by dim(V )!.

Though not immediate from the definition, it can be shown that the degree
is always a non-negative integer. To gain intuition on the above definition, let
us see how it coincides with the definition of degree for a univariate polyno-
mial. For simplicity of the example we’ll assume degree is defined for an affine
variety V in a similar way to projective varieties. That is, deg(V ) is the leading
coefficient of the affine Hilbert polynomial of I(V ) times dim(V )!. Let I ⊆ F[x1]
be the ideal 〈x3

1−1〉. It can be shown that I = I(V ) where V = V(x3
1−1) ∈ F,

i.e., V is simply the roots of x3
1−1 and |V | = 3 (since F is algebraically closed).

Furthermore, it can be seen that {1, x1, x
2
1} is a basis for k[x1]/I. Hence,

aHPI(s) is simply the constant 3 and therefore dim(V ) = deg(aHPI(s)) = 0
and deg(V ) = 3 · 0! = 3. Thus deg(V ) bounds the size of V . It can be shown
that deg(V ) always bounds |V | when V is a projective variety of finite size.

A.4. The projective closure of an affine variety. We call an affine (pro-
jective) variety of dimension 1 an affine (projective) curve. As mentioned above,
in Section 5 we use a theorem of Bombieri (1966) for affine curves while in
Bombieri (1966) the theorem is stated for projective curves. The transition be-
tween the cases, presented in A.7, is completely standard. For this purpose, the
following definitions enable us to relate an affine variety with its ‘corresponding’
projective variety. First we need the following definitions.

Definition A.15 (Homogenization).

◦ For a polynomial f ∈ F[x1, . . . , xn] of degree d, we define the homogenized
version fh ∈ F[x0, . . . , xn] by

fh(x0, x1, . . . , xn) = xd
0 · f(x1/x0, . . . , xn/x0) .

◦ Similarly, for an ideal I = 〈f1, . . . , fs〉 we define the ideal Ih =< fh|f ∈
I >. Note that Ih is always homogenous. In particular, it is easy to see
that Ih = 〈fh

1 , . . . , fh
s 〉.

We can now define the projective closure of an affine variety.
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Definition A.16 (Projective closure). Let V ⊆ F
n be an affine variety with

ideal I = I(V ). We define the projective closure V ⊆ P
n to be the projective

variety V(Ih).
Let U0 ⊆ P

n be defined as U0 = {(a0, a1, . . . , an) ∈ P
n|a0 = 1}. Note that

U0 can be identified with F
n. Thus, we can think of an affine variety V ⊆ F

n as
being contained in U0. For a projective variety V ⊆ P

n, we denote V a � V ∩U0.
Intuitively, this is “the affine part of V ”.

The following propositions, show various connections between an affine va-
riety and its projective closure.

Proposition A.17. (Cox et al. (1992), Chapter 8, §4, Proposition 7 and
Exercise 9). Let V ⊆ F

n be an affine variety. Then

1. V ∩ U0 = V.

2. V is irreducible if and only if V is irreducible.

Proposition A.18 (Cox et al. 1992, Chapter 9, §3, Theorem 12). Let V⊆F
n

be an affine variety. Then

dim(V ) = dim(V ) .

Proposition A.19 (Cox et al. 1992, Chapter 8, §4, Theorem 8). Let f1, . . . ,
fr ∈ F[x1, . . . , xn] be polynomials such that V = V(f1, . . . , fr) ⊆ F

n is non-
empty. Then

V = V(fh
1 , . . . , fh

r ) .

Claim A.20. Let V1, . . . , Vr ⊆ F
n be affine varieties. Then V1 ∪ · · · ∪ Vr =

V 1 ∪ · · · ∪ V r.

Proof. We prove the claim for r = 2. The statement for general r follows
by induction.

Let I1, I2 be the ideals I(V1), I(V2) respectively. It can be shown that V(Ih
1 ∩

Ih
2 ) = V((I1 ∩ I2)

h). We have

V1 ∪ V2 = V
(
(I1 ∩ I2)

h
)

= V(Ih
1 ∩ Ih

2 ) = V(Ih
1 ) ∪ V(Ih

2 ) = V 1 ∪ V 2 ,

where we used Proposition A.8 in the first and second to last equality. �
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Corollary A.21. Let V ⊆ F
n be an affine variety with irreducible compo-

nents V1, . . . , Vr. Then, the irreducible components of V ⊆ P
n are V 1, . . . , V r.

Proof. Follows from Proposition A.17 and Claim A.20. �

Claim A.22. Let V ⊆ F
n be an affine variety. If f ∈ F[x1, . . . , xn] does not

vanish identically on V then fh does not vanish identically on V ⊆ P
n.

Proof. For any a ∈ F
n f(a) = fh(1, a). Therefore, if f(a) �= 0 for a ∈ V ,

then fh(1, a) �= 0 where (1, a) ∈ V by Proposition A.17. �

A.5. The dimension of intersections of hypersurfaces. We say that an
affine (projective) variety V is a hypersurface if V = V(f) for a (homogenous)
polynomial f . In this subsection we state and prove standard results regarding
the dimension of intersections of hypersurfaces. The following definition will
be important.

Definition A.23. We say that an affine or projective variety V has pure
dimension if all its irreducible components have the same dimension.

We need the following propositions about the intersection of a hypersurface
with a variety.

Proposition A.24 (Cox et al. 1992, Chapter 9, §4, Proposition 7). Let V ⊆
P

n be a projective variety with dim(V ) ≥ 1. Then for any non-constant ho-
mogenous polynomial f ∈ F[x0, . . . , xn], V ∩ V(f) �= ∅.

Proposition A.25. (Shafarevich (1994), Chapter I, §6, Corollary 1 of Theo-
rem 5). Let V ⊆ P

n be an irreducible projective variety. Let f ∈ F[x0, . . . , xn]
be a homogenous polynomial that does not vanish identically on V and denote
H = V(f). If V ∩ H �= ∅, then V ∩ H has pure dimension dim(V ) − 1.

Claim A.26. Let V ⊆ P
n be a projective variety of pure dimension dim(V ) ≥

1. Let f ∈ F[x0, . . . , xn] be a non-constant homogenous polynomial and let
H = V(f) ⊆ P

n. Assume that f does not vanish identically on any of the
irreducible components of V . Then V ∩ H has pure dimension dim(V ) − 1.

Proof. Let V = Z1 ∪ · · · ∪ Zk be the decomposition of V into irreducible
components. Fix any j ∈ [k]. By Proposition A.24, Zj ∩ H is non-empty, and
since f does not vanish on Zj, by Proposition A.25 all irreducible components
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of Zj ∩ H have dimension dim(V ) − 1. To conclude, note that the union of
the irreducible components of Zj ∩ H over all j ∈ [k] is V ∩ H and therefore
the irreducible components of V ∩ H are just a subset of these components
(excluding a component that is contained in another). Hence, all irreducible
components of V ∩ H have dimension dim(V ) − 1 and the claim follows. �

As a special case we get the following.

Corollary A.27. Let f ∈ F[x0, . . . , xn] be a non-constant homogenous poly-
nomial. Then the hypersurface H = V(f) ⊆ P

n has pure dimension n − 1.

Proof. P
n can be shown to be irreducible and in particular has pure dimen-

sion. Thus, using Claim A.26 with V = P
n we get the desired result. �

We can now state and prove the main lemma we use regarding the dimension
of intersections of hypersurfaces.

Lemma A.28. Let 0 < r < n be integers and let f1, . . . , fr ∈ F[x0, . . . , xn] be
non-constant homogenous polynomials. For each i ∈ [r], let Hi = V(fi) ⊆ P

n

and let Vi = V(f1, . . . , fi) = H1 ∩ · · · ∩ Hi. Then

1. All irreducible components of the projective variety Vr have dimension at
least n − r.

2. Suppose furthermore that for each 2 ≤ i ≤ r, fi does not vanish identi-
cally on any of the irreducible components of Vi−1. Then Vr is a projective
variety of pure dimension n − r.

Proof. We prove the first item by induction on r. For r = 1 this follows
from Corollary A.27. Assume the claim for r−1. Let Vr−1 = Z1∪· · ·∪Zk be the
decomposition of Vr−1 into irreducible components. Fix any j ∈ [k]. Similarly
to the proof of Claim A.26, we will show that all the irreducible components of
Zj ∩Hr have dimension at least n− r and since the irreducible components of
Vr are a subset of these, the claim follows. From the induction hypothesis we
have dim(Zj) ≥ n − (r − 1). If fr vanishes on Zj then Zj ∩ Hr = Zj (which is
the only irreducible component) and we are done. Otherwise, by Claim A.26
all components of Zj ∩ Hr have dimension at least n − r.

We now prove the second item by induction on r. For r = 1 this is exactly
Corollary A.27. Assume the claim for r−1. Then by the induction hypothesis,
Vr−1 has pure dimension n − r + 1. Therefore, by Claim A.26 Vr = Vr−1 ∩ Hr

has pure dimension n − r. �
We also need the corresponding lemma in affine space.
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Lemma A.29. Let 0 < r < n be integers and let f1, . . . , fr ∈ F[x1, . . . , xn]
be non-constant polynomials. For each i ∈ [r], let Hi = V(fi) ⊆ F

n and let
Vi = V(f1, . . . , fi) = H1 ∩ · · · ∩ Hi. Suppose that for each 2 ≤ i ≤ r, fi does
not vanish identically on any of the irreducible components of the affine variety
Vi−1. Then, if Vr is non-empty it is an affine variety of pure-dimension n − r.

Proof. For 1 ≤ i ≤ r, let Xi = V(fh
1 , . . . , fh

i ). By Proposition A.19, for
every 1 ≤ i ≤ r Xi = V i. Therefore, by Corollary A.21 the irreducible compo-
nents of Xi−1 are simply the projective closures of the irreducible components
of Vi−1. By Claim A.22 it follows that fh

i does not vanish identically on any
of the irreducible components of Xi−1. Hence, we can use Lemma A.28 and
Xr is a projective variety of pure dimension n − r and since Xr = V r, using
Proposition A.18 Vr is an affine variety of pure dimension n − r. �

A.6. The degree of intersections of hypersurfaces. We now discuss de-
gree. The main result we prove is the following corollary of Bezout’s Theorem.

Lemma A.30. Let f1, . . . , fr ∈ F[x0, . . . , xn] be non-constant homogenous
polynomials of degrees d1, . . . , dr respectively, and let D = d1 · · · dr. Let
X = V(f1, . . . , fr) ⊆ P

n. Assume that dim(X) = n − r. Then

1. deg(X) ≤ D.

2. The number of irreducible components of X is at most D.

Using this lemma, we immediately get a bound on the number of irreducible
components of an affine variety.

Lemma A.31. Let f1, . . . , fr ∈ F[x1, . . . , xn] be non-constant polynomials of
degrees d1, . . . , dr, respectively, and let D = d1 · · · dr. Let V = V(f1, . . . , fr) ⊆
F

n. Assume that V is non-empty and dim(V ) = n − r. Then the number of
irreducible components of V is at most D.

Proof. Let X = V . By Proposition A.19, X = V(fh
1 , . . . , fh

r ). There-
fore, by Lemma A.30, X has at most D irreducible components and by Corol-
lary A.21 V has at most D irreducible components. �

The following proposition states that a degree of a hypersurface is at most
the degree of any polynomial defining it.
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Proposition A.32 (Cox et al. 1992, Chapter 9, §4, Exercise 12). Let f be a
non-constant homogenous polynomial. Let H = V(f1). Then deg(H) ≤
deg(f).

We will need the following definitions taken from Harris (1992).

Definition A.33. Let X, Y ⊆ P
n be projective varieties. We say that X

and Y intersect properly if

dim(X ∩ Y ) = dim(X) + dim(Y ) − n .

We quote (a corollary of) Bezout’s Theorem.

Theorem A.34. (Bezout – taken from Harris (1992), Chapter 18, Theo-
rem 18.4 and Corollary 18.5). Let X, Y ⊆ P

n be projective varieties of pure
dimension intersecting properly. Then

1. deg(X ∩ Y ) ≤ deg(X) · deg(Y ).

2. The number of irreducible components of X∩Y is at most deg(X)·deg(Y ).

Claim A.35. Let X = V(f1, . . . , fr) ⊆ P
n where f1, . . . , fr ∈ F[x0, . . . , xn] are

non-constant homogenous polynomials. Assume that dim(X) = n − r. For
i = 1, . . . , r let Hi = V(fi) and Xi = V(f1, . . . , fi) = H1 ∩ · · · ∩ Hi. Then for
all i ∈ [r], Xi has pure dimension n − i.

Proof. By Lemma A.28, all irreducible components of V(f1, . . . , fi) have
dimension at least n − i. Thus, it is enough to prove that V(f1, . . . , fi) has
(not necessarily pure) dimension n − i. We prove this by backwards induction
on i. For i = r it is already given that dim(X) = dim(Xr) = n−r. Assume the
claim for i+1 and assume for contradiction that dim(Xi) �= n−i. Using Lemma
A.28 it follows that dim(Xi) > n − i. Therefore, by Claim A.26 dim(Xi+1) =
dim(Xi∩V(fi+1)) > n−(i+1) and this contradicts the induction hypothesis. �

We can now prove Lemma A.30.

Proof of Lemma A.30. We prove the claim by induction on r. For r = 1,
it follows from Proposition A.32 that deg(X) ≤ deg(f1) = d1. Assume the
claim for r − 1. For i = 1, . . . , r denote Hi = V(fi). Given H1, . . . , Hr, denote
Xr−1 = H1 ∩ · · · ∩ Hr−1. We know from the induction hypothesis that

deg(Xr−1) ≤ d1 · · · dr−1 .
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From Claim A.35, Xr−1 has pure dimension n− (r−1) and it follows that Xr−1

and Hr intersect properly. Therefore, we can use Theorem A.34 and get

deg(X) = deg(Xr−1 ∩ Hr) ≤ deg(Xr−1) · deg(Hr) ≤ d1 · · · dr = D .

Similarly, from Theorem A.34 we get that the number of irreducible components
of X is at most deg(Xr−1) · deg(Hr) ≤ D. �

A.7. Bombieri’s theorem. We quote an estimate of Bombieri (1966) for
character sums over projective curves and show that the estimate can be used
also for affine curves. (Recall that curve is a variety of dimension 1.) First we
introduce some notation. Let X ⊆ P

n be a projective curve of degree D. Let F

denote the algebraic closure of Fp for some prime p. Let R ∈ Fp(x0, . . . , xn) be
a homogenous rational function whose numerator and denumerator both have
degree d. Then, for any x ∈ F

n+1 and non-zero λ ∈ F we have

R(λ · x) =
p(λ · x)

q(λ · x)
=

λdp(x)

λdq(x)

=
p(x)

q(x)
= R(x) .

Therefore R is a well defined function on points of P
n that are not poles of R,

i.e., points x ∈ P
n such that q(x) �= 0. We define

Sm(R, X) �
∑

x∈Xm,q(x) �=0

ep

(
σR(x)

)

where Xm is the set of points of X with coordinates in Fpm , σ denotes the trace
from Fpm to Fp and ep(x) is the function e2πix/p (see Lidl & Niederreiter (1997)
for a definition of the trace function. For the case m = 1, which is the only one
we will use, the trace is simply the identity function.). Note that we sum only
over non-poles of R.

Theorem A.36 (Theorem 6 in Bombieri 1966). Let R and X be as above.
Let Γ1, . . . , ΓL be the irreducible components of X. Assume R is non-constant
on Γi for i = 1, . . . , L. If d · D < p then

|Sm(R, X)| ≤ 4dD2 · pm/2 .

For an affine curve C ⊆ F
n, and a polynomial g ∈ Fp[x1, . . . , xn] we define

Sm(g, C) �
∑

(a1,...,am)∈Cm

ep

(
σg(a1, . . . , am)

)
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where Cm denotes the set of points of C with coordinates in Fpm . We also denote
S(g, C) � S1(g, C). We can now state and prove a version of Theorem A.36
for affine curves.

Theorem A.37. Let V ⊆ F
n be an affine curve such that V = V(f1, . . . , fn−1)

for polynomials fi ∈ F[x1, . . . , xn]. Let D = deg(f1)···deg(fn−1). Let V1, . . . , VL

be the irreducible components of V . Let g ∈ Fp[x1, . . . , xn] be a polynomial of
degree d that is non-constant on some Vi. Let C be the union of the irreducible
components Vi such that g is non-constant on Vi. Assume that d · D < p. We
have

Sm(g, C) ≤ 4dD2 · pm/2 .

In particular,
S(g, C) ≤ 4dD2 · p1/2 .

Proof. We identify g with a homogenous rational function R defined as

R(x0, x) =
gh(x0, x)

xd
0

.

Note that for every a ∈ F
n R(1, a) = g(a).

Denote X = C.

Claim A.38.

Sm(g, C) = Sm(R, X) .

Proof. Using Proposition A.17 X consists precisely of the points (1, a)
where a ∈ C and, possibly, some ‘points at infinity’, i.e., points of the form (0, a)
for a ∈ F

n. Since R has poles on all points of the form (0, a) and R(1, a) = g(a)
for all x ∈ F

n, we get that summing R over all non-poles in X is exactly the
same as summing g over all of C. In particular, summing R over all non-poles
in Xm is exactly the same as summing g over all of Cm. That is,

Sm(g, C) = Sm(R, X) . �

We now want to bound Sm(R, X) using Theorem A.36. Note that both the
numerator and denumerator of R are homogenous of degree exactly d so R is
suitable for the theorem. We need to show that X is a projective variety of
dimension 1 such that R is non-constant on any of its irreducible components:
Recall that the irreducible components of C are simply a subset of V1, . . . , VL.
Assume without loss of generality, that C = V1∪· · ·∪Vr. Using Corollary A.21,
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it is clear that if g is non-constant on the irreducible components V1, . . . , Vr

of C, then R is non-constant on the irreducible components V 1, . . . , V r of X.
By Proposition A.18 and Corollary A.21 dim(V ) = 1 and V 1, . . . , V L are the
irreducible components of V . By Proposition A.19, V = V(fh

1 , . . . , fh
n−1) and

therefore by Claim A.35 for every i, V i has dimension 1. It follows that X =
V 1 ∪ · · · ∪ V r has dimension 1.

Finally, we need to bound the degree of X. By Lemma A.30 deg(V ) ≤ D.
Since the degree of a projective variety is the sum of degrees of its irreducible
components (see Harris (1992), Chapter 18) then deg(X) ≤ D.

Therefore, we can use Theorem A.36. We get

|Sm(g, C)| = |Sm(R, X)| ≤ 4dD2 · pm/2 . �
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