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ON THE COMPUTATIONAL POWER OF

BOOLEAN DECISION LISTS

Matthias Krause

Abstract. We study the computational power of decision lists over
AND-functions versus threshold-⊕ circuits. AND-decision lists are a
natural generalization of formulas in disjunctive or conjunctive normal
form. We show that, in contrast to CNF- and DNF-formulas, there
are functions with small AND-decision lists which need exponential size
unbounded weight threshold-⊕ circuits. Consequently, it is question-
able if the polynomial learning algorithm for DNFs of Jackson (1994),
which is based on the efficient simulation of DNFs by polynomial weight
threshold-⊕ circuits (Krause & Pudlák 1994), can be successfully ap-
plied to functions with small AND-decision lists. A further result is
that for all k ≥ 1 the complexity class defined by polynomial length
AC0

k -decision lists lies strictly between AC0
k+1 and AC0

k+2.
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1. Introduction

A decision list L of input size n and length m for computing a function f ∈ Bn

is a sequence of m instructions of the form if f i(x) = ai then output f(x) = bi

and stop, followed by the single instruction output f(x) = ¬bm and stop.
For i = 1, . . . ,m the functions f i ∈ Bn are called query functions, and ai

and bi are Boolean constants. Bn denotes the set of all Boolean functions in
n variables. If the query functions are defined to belong to a function basis
S ⊆ Bn then L is called an S-decision list.

Decision lists are a special kind of decision trees and form a basic and
natural model of computation. The standard models of decision lists and de-
cision trees, where the query functions ask for variables, have been studied in
numerous papers. With the results given here we intend to initiate a more sys-
tematic study of decision lists and decision trees which are defined over different
sets of query functions like AND-functions, AC0

k -functions, MOD-functions and
threshold functions. We think that this could be a promising way to extend
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the known reservoir of lower bound arguments, learning rules for Boolean con-
cept classes and efficient data structures and algorithms for implementing and
manipulating Boolean functions.

Our results concern the computational power of AND-decision lists (i.e.,
decision lists over AND-functions), width(k)-decision lists (i.e., decision lists
for which all query functions depend on at most k variables, k a constant), and
AC0

k -decision lists (i.e., decision lists which query AC0
k -functions).

The first group of results is devoted to comparing the computational power
of width(k)-decision lists and AND-decision lists with the power of threshold-⊕
circuits. AND-decision lists are a natural generalization of formulas in disjunc-
tive or conjunctive normal form (for short, DNF- and CNF-formulas) which
can be considered as monotone AND-decision lists. The comparison function
COMPn(x, y), which outputs 1 iff the n-bit number x is not smaller than the
n-bit number y, is a natural witness for the fact that AND-decision lists are
strictly more powerful than DNF- and CNF-formulas. COMPn does not belong
to AC0

2
1, but it has linear length AND-decision lists, it even has linear length

width(2)-decision lists (see Section 2).

Threshold-⊕ circuits (i.e., unbounded fan-in depth-2 circuits with ⊕-gates
at the bottom level and a threshold output gate at the top) were extensively
studied during the last decade (see, e.g., Alon & Bruck 1994, Aspnes et al. 1991,
Bruck 1990, Bruck & Smolensky 1990, Goldmann et al. 1992, Krause & Pudlák
1994, 1995). One reason for the importance of this computational model is that
representing a Boolean function f by threshold-⊕ circuits is equivalent to repre-
senting f as the sign of a polynomial with integer coefficients. This allows us to
characterize the complexity of f with respect to threshold-⊕ circuits in terms of
the spectral coefficients of f (Bruck 1990, Bruck & Smolensky 1990, Linial et al.

1989). Another nice property is that polynomial weight threshold-⊕ circuits
are polynomially PAC-learnable with respect to the uniform distribution (Jack-
son 1994), if membership queries are allowed. As polynomial size CNF- and
DNF-formulas can be efficiently simulated by polynomial weight threshold-⊕
circuits (Krause & Pudlák 1994), Jackson’s learning algorithm yields the only
known polynomial learning algorithm for CNF- and DNF-formulas. Let, as
usual, ˆPT1 and PT1 denote the complexity classes containing those sequences
of Boolean functions which have polynomial weight threshold-⊕ circuits and
polynomial size threshold-⊕ circuits, respectively.

1Note that any monomial accepting (x, x) and (y, y) accepts also (x, y) and (y, x). Con-
sequently, each DNF-formula F for COMPn has at least 2n monomials, as each monomial in
F is allowed to accept at most one input (x, x). A similar argument works for CNF-formulas
for COMPn.
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The main question which stimulated this research was to find out whether
even polynomial length AND-decision lists can be simulated by polynomial
weight threshold-⊕ circuits. This would imply that Jackson’s learning algo-
rithm polynomially learns even functions with polynomial length AND-decision
lists. One main result of this paper is a negative answer to this question.
There are functions with polynomial length AND-decision lists for which even
weighted threshold-⊕ circuits have exponentially many nodes (Theorem 3.1).

Theorem 3.1 is based on analyzing the computational power of width(k)-
decision lists versus threshold-⊕ circuits of bounded weight. The main re-
sult here is that there are even functions with width(2)-decision lists which
cannot be computed by threshold-⊕ circuits of subexponential weight (Theo-
rem 3.2). Theorem 3.2 is proved by using a result of Beigel (1994), providing a
Boolean function f with a width(1)-decision list which cannot be computed by
threshold-⊕ circuits within subexponential weight and sublinear bottom fan-in,
combined with a probabilistic argument.

Note that for any constant k, width(k)-decision lists can always be simu-
lated by polynomial size (but exponential weight) threshold-⊕ circuits. This
is because each decision list of length m can be simulated by an m-ary expo-
nential weight threshold function over the query functions (see relation (F) in
Section 2). COMPn, a function with 2-decision lists, has polynomial weight
threshold-⊕ circuits (Bruck 1990).

Another part of this paper concerns the computational power of AC0
k -

decision lists. For all integers k ≥ 1 let DLk denote the class of all Boolean
functions having polynomial length AC0

k -decision lists. Due to property (G) in
Section 2 it follows that

AC0
k ⊆ DLk−1 ⊆ AC0

k+1.

Our second main result is that all these inclusions are strict (Theorem 4.1).
The proof is done via induction on k. The induction step is based on the
switching lemma of H̊astad (1986). Note that DL1 coincides with the set of all
Boolean functions having polynomial length AND-decision lists. Consequently,
our result DL1 6⊆ PT1 strengthens the main results of Krause & Pudlák (1994)
that AC0

2 ⊆ ˆPT1 but AC0
3 6⊆ PT1.

The paper is organized as follows. In Section 2 we introduce some more
notations and discuss some basic properties of decision lists and threshold-⊕
circuits. Section 3 contains our results about the computational power of AND-
decision lists versus threshold-⊕ circuits. Section 4 is devoted to the proof of
Theorem 4.1.
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2. Some more basics

If not stated otherwise, Boolean functions are defined to be functions which
map {0, 1}n to {0, 1} for some natural number n. As a compressed notation
of decision lists we use expressions like L = (f 1, a1, b1), . . . , (fm, am, bm), where
for i = 1, . . . ,m, f i, ai, bi are defined as at the beginning of Section 1. Note for
instance that the 2-decision list

(xn−1 > yn−1?, 1, 1), (xn−1 < yn−1?, 1, 0), . . . , (x0 > y0?, 1, 1)(x0 < y0?, 1, 0)

computes the decision whether the n-bit number x = (xn−1, . . . , x0) is not
smaller than the n-bit number y = (yn−1, . . . , y0), i.e., COMPn. Observe that:

(A) If L computes the function f then (¬f 1,¬a1, b1), . . . , (¬fm,¬am, bm) also
does.

(B) If L computes f then (f 1, a1,¬b1), . . . , (fm, am,¬bm) computes ¬f .

(C)
∨m

k=1 fk can be computed by (f 1, 1, 1), . . . , (fm, 1, 1).

(D)
∧m

k=1 fk can be computed by (f 1, 0, 0), . . . , (fm, 0, 0).

(E) Each width(k)-decision list of length m can be simulated by an AND-
decision list of length at most 2k−1m.

(F) If L = (f 1, a1, b1), . . . , (fm, am, bm) computes f then

f(x) = 1 iff 2
m

∑

i=1

2m−i(−1)bi

(f i(x) = ai) + (−1)1−bm

≤ 0,

i.e., f can be written as an exponential weight threshold function over
f 1, . . . , fm.

(G) If L = (f 1, a1, b1), . . . , (fm, am, bm) computes f then

f(x) =
∨

i, bi=1

(

i−1
∧

j=1

(f j(x) 6= aj) ∧ (f i(x) = ai)
)

∨ (¬bm)
m
∧

j=1

(f j(x) 6= aj)

=
∧

i, bi=0

(

i−1
∨

j=1

(f j(x) = aj) ∨ (f i(x) 6= ai)
)

∧
(

m
∨

j=1

(f j = aj) ∨ ¬bm
)

.
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Properties (A)–(D) follow directly from the definitions and the De Morgan
laws. Property (E) can be obtained by replacing all query functions fk by
a monotone sublist simulating a DNF-formula for fk according to (C). The
coefficients of the threshold representation in (F) are constructed in such a way
that the computational mode of a decision list is simulated. In particular the
sign is (−1)bi

for the smallest i for which f i(x) = ai, or (−1)1−bm
if f i(x) 6= ai

for all i. The formulas in (G) reflect the fact that L accepts x iff x reaches an
accepting sink iff there is an i, 1 ≤ i ≤ m, with bi = 1 such that f i(x) = ai

and f j(x) 6= aj for all 1 ≤ j < i, or if f j(x) 6= aj for all 1 ≤ j ≤ m and bm = 0.
Conversely, L accepts x iff x does not reach any rejecting sink iff for all i with
bi = 0 we have f i(x) 6= ai or there is a j < i such that f j(x) = aj, and bm = 0
or there is a j ≤ m with f j(x) = aj.

For all constants k let us denote by WIDTHkDL the set of all functions
having width(k)-decision lists. As for each decision list it makes no sense to
pose a query twice, width(k)-decision lists can always be supposed to have
polynomial length.

Typical representatives of these classes are functions dk,n : {0, 1}kn → {0, 1}
defined by dk,n(x1,1, . . . , x1,k, . . . , xn,1, . . . , xn,k) = 1 iff the maximal i for which
∧k

j=1 xi,j = 1 is odd. An AND-decision list for dk,n, n odd, is

((

k
∧

i=1

xi,n, 1, 1
)

,
(

k
∧

i=1

xi,n−1, 1, 0
)

, . . . ,
(

k
∧

i=1

xi,2, 1, 0
)

,
(

k
∧

i=1

xi,1, 1, 1
))

.

Note that (dk,n)n∈N is WIDTHkDL-complete and that (dn,n)n∈N is DL1-complete
with respect to projections. (Projection reducibility is defined as follows. Let
K denote a complexity class consisting of sequences of Boolean functions.
A sequence F = (fn)n∈N of Boolean functions is called K-complete with re-

spect to projections if all G = (gn)n∈N in K are projection reducible to F ,
i.e., there is a polynomially bounded function m : N → N such that for all
n ∈ N, gn is a projection of fm(n). A Boolean function g = g(x1, . . . , xn) is
called a projection of a Boolean function f(y1, . . . , ym), if there is a mapping
π : {y1, . . . , ym} → {x1,¬x1, . . . , xn,¬xn} ∪ {0, 1} such that

g(x1, . . . , xn) = f(π(y1), . . . , π(ym)).

It can be easily derived that each Boolean function with a decision list of
length l over k-ary AND-functions can be written as a projection of dk,n for
some n ≤ 2l.)

A Boolean function f ∈ Bn is called a threshold function if it can be com-
puted by a single threshold gate, i.e., if there are integers a0, . . . , an such that
f(x) = 1 iff a1x1 + · · · + anxn ≥ a0.
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The numbers a0, . . . , an are called edge weights and the value |a0|+ · · ·+ |an|
is called the weight of the gate. The systematic study of threshold functions
started with the work on perceptrons by Minsky & Papert (1968). It was shown
there that all n-ary threshold functions can be written as threshold functions of
weight exp(n log n). There are threshold functions which cannot be written as
polynomial weight threshold functions: see, for instance, COMPn. It is known
that unbounded weight polynomial size threshold-⊕ circuits can do more than
polynomial weight threshold-⊕ circuits, i.e. ˆPT1 ⊂ PT1 (Goldmann et al.

1992).
Computing a Boolean function f ∈ Bn by a threshold-⊕ circuit containing s

⊕-gates of fan-in at most d and one threshold top gate of weight w is the same
as representing f as the sign of a voting polynomial, i.e., a degree-d integer
polynomial in n variables with s monomials, where the sum of the absolute
values of the coefficients is w. As voting polynomials allow a more elegant
presentation of our proof techniques we will use them in the following and give
the corresponding notations.

For b ∈ {0, 1} we write b∗ = (−1)b. For x = (x1, . . . , xn) ∈ {0, 1}n we denote
by x∗ ∈ {1,−1}n the vector x∗ = (x∗

1, . . . , x
∗
n), and for a function f : X → {0, 1}

we define f ∗ : X → {1,−1} by f ∗(x) = (f(x))∗. For a nonzero integer z we
denote by sgn(z) ∈ {1,−1} the sign of z. Observe that f ∈ Bn is a threshold
function iff there are integers b0, . . . , bn such that f ∗(x) = sgn(b0 + b1x1 + · · ·+
bnxn) iff there are integers c0, . . . , cn such that f ∗(x) = sgn(c0+c1x

∗
1+· · ·+cnx

∗
n).

For each subset I ⊆ [n] we denote by mI the monomial mI =
∏

i∈I xi, where
m∅ corresponds to the constant-1 function.

We call p a voting polynomial for f if f ∗(x) = sgn(p(x∗)) for all x ∈ {0, 1}n.
Note that mI(x

∗) = (
⊕

i∈I xi)
∗ for each I ⊆ [n]. Thus, voting polynomials

correspond to threshold-⊕ circuits in a straightforward way. The relevant cost
measures of integer polynomials p =

∑

I⊆[n] aImI are the degree (the maximal

length of a monomial occurring in p), the weight (the sum of the absolute values
of the coefficients), and the length (the number of monomials occurring in p).

We get the complexity measures deg(f), weight(f), length(f) for Boolean
functions f , defined as the minimal degree, minimal weight and minimal length
of a voting polynomial for f , respectively. Moreover we need to consider the
measure weightd(f) defined as the minimal weight of a degree-d voting polyno-
mial for f .

Note that due to (F), d1,n is a threshold function for all n. The following
technical result on writing d1,n as a threshold function can be verified quite
straightforwardly.
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Lemma 2.1. d∗
1,n = sgn (1 + b

∑n
i=1(−a)ixi) for all natural a ≥ 2 and b ≥ 1.2

It follows that for all f ∈ WIDTHkDL we have deg(f) ≤ k, and thus
WIDTHkDL ⊆ PT1.

3. AND-decision lists versus threshold-⊕ circuits

This section is devoted to the proof of

Theorem 3.1. length(dn,n) ∈ 2nΩ(1)
, i.e., DL1 6⊆ PT1.

The proof is performed in two steps. The first is to show the following

Theorem 3.2. weight(d2,n) ∈ 2nΩ(1)
, i.e., WIDTH2DL 6⊆ ˆPT1.

The second step is to deduce Theorem 3.1 from Theorem 3.2. As a byprod-
uct we show that AC0

3 and WIDTH3DL contain heavy threshold functions, i.e.,
threshold functions which do not belong to ˆPT1. The first example of a heavy
threshold function (which is not an AC0-function) was given by Goldmann
et al. (1992).

Proof of Theorem 3.2. The proof uses first a nontrivial tradeoff result
between weight and degree for voting polynomials for d1,n. Using a probabilis-

tic argument Bruck and Smolensky (1990) showed that d1,n ∈ ˆPT1, i.e., d1,n has
polynomial weight voting polynomials. On the other hand, d1,n is an exponen-
tial weight threshold function, i.e. deg(d1,n) = 1. Beigel (1994) observed that
threshold-∧ circuits for d1,n cannot have polynomial weight and small bottom
fan-in simultaneously. In particular, there is a constant C such that for all
n and each depth-2 circuit for d1,n with s ∧-gates of fan-in at most d at the
bottom level and a threshold gate with edge weights of absolute value at most
w at the top we have the relation

w ≥
1

s
2Cn/d2

.

Now, let d, 2 ≤ d ≤ n, be arbitrary, consider a degree-d voting polynomial p of
weight weightd(d1,n) for d1,n, and let W = max |w| over all weights w occurring
in p. Observe that p has at most nd monomials. By means of the formula

d
⊕

j=1

xj =
∑

I⊆[d], I 6=∅

2|I|
∧

i∈I

xi,
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p defines a threshold-∧ circuit for d1,n of at most 2dnd ∧-gates of degree at
most d at the bottom level, and the absolute value of any edge weight does not
exceed W2d. We obtain the relation

2dW ≥ 2−(log(n)+d)2Cn/d2

,

i.e.,

(3.3) weightd
⊕(d1,n) ≥ 2Cn/d2−log(n)−2d.

Next, we use the following construction from Krause & Pudlák (1994). For
all f ∈ Bn let f op ∈ B3n be defined by

f op(x1, . . . , xn, y1, . . . , yn, z1, . . . , zn) = f(u1, . . . , un),

where ui = z̄ixi ∨ ziyi for all i, 1 ≤ i ≤ n. Theorem 3.2 can be derived from
the following technical lemma.

Lemma 3.4. For all f ∈ Bn we have weight(f op) ≥ weightd(f) for all d with

2d ≥ weight(f op).

We complete the proof of Theorem 3.2 using Lemma 3.4. First observe that
dop

1,n ∈ WIDTH2DL. Now suppose that there exist numbers n0 ≥ 1 and ǫ > 0

such that weight(dop
1,n) < 2n1/3−ǫ

for all n ≥ n0. Then, by putting d = n1/3−ǫ

into Lemma 3.4 we see by (3.3) that

2n1/3−ǫ

> weightd(d1,n) ≥ 2Cn1/3+2ǫ−2n1/3−ǫ−log(n)

for all n ≥ n0, which is obviously wrong. �

Proof of Lemma 3.4. We use a probabilistic argument which is similar to
the one in Lemma 2.3 of Krause & Pudlák (1994). Fix f ∈ Bn and a voting
polynomial p =

∑

I⊆X∪Y ∪Z aImI =
∑

I∈M aImI of weight W for f op, and let

d′ = d + 1, where d denotes the minimal natural number for which 2d > W .
Let M denote the set of all I for which aI 6= 0. Observe that |M | ≤ W . Let
f op depend on the sets of variables X = {x1, . . . , xn}, Y = {y1, . . . , yn} and
Z = {z1, . . . , zn}.

Now observe that each assignment c of the Z-variables defines a partition
X ∪ Y = U(c) ∪ V (c), |U(c)| = |V (c)| = n, such that (f op)c depends only on

the variables of U(c). This means that for any fixed assignment u ∈ {0, 1}U(c)

we have f ∗(u) = (f op∗)c(u, v) for all assignments v ∈ {0, 1}V (c). This implies
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f ∗(u) = Ev[(f
op∗)c(u, v)], where Ev denotes the expected value for v randomly

chosen with respect to the uniform distribution on {0, 1}V (c). Consequently,

f ∗(u) = Ev

[

sgn
(

∑

I∈M

aIm
c
I(u

∗, v∗)
)]

= sgn
(

∑

I∈M

aIEv[m
c
I(u

∗, v∗)]
)

.

Note that Ev[m
c
I(u

∗, v∗)] = 0 if I ∩ V (c) 6= ∅. Correspondingly, we say that
c destroys a monomial mI of p if I ∩ V (c) 6= ∅. Each c ∈ {0, 1}Z defines
a {1,−1}-voting polynomial p|c of weight ≤ W for f by removing all those
monomials which are destroyed by c.

Call a monomial mI large if I contains at least d′ variables from X ∪ Y .
Clearly, p contains at most W large monomials. The probability (with respect
to c ∈U {0, 1}Z) that a large monomial is not destroyed by c is at most 2−d′ .
Consequently, the probability that there is an assignment c ∈ {0, 1}Z that
destroys all large gates is at least 1 − W2−d′ , which is positive because of
the choice of d′. The resulting {1,−1}-voting polynomial for f contains only
monomials of length at most d, and we conclude that weightd(f) ≤ W . �

Theorem 3.2 shows that for k = 2 there are sequences f = (fn)n∈N of
Boolean functions with width(k)-decision lists for which width(fn) grows ex-
ponentially in n. It is an interesting question if there are constants k such that
there are threshold functions with this property.

Theorem 3.5. WIDTH3DL contains heavy threshold functions, i.e., a se-

quence t = (tn)n∈N of threshold functions with weight(tn) ∈ 2nΩ(1)
.

Proof. Due to the WIDTH2DL-completeness of the function d2,n we know
by Theorem 3.2 that

weight(d2,n) ∈ 2nΩ(1)

.

Observe that for all a ≥ 2, by Lemma 2.1,

d∗
2,n = sgn

(

1 + 2
n

∑

i=1

(−a)ixi,1xi,2

)

= sgn

(

1 + 2
n

∑

i=1

(−a)i 1

2
(xi,1 + xi,2 − (xi,1 ⊕ xi,2))

)

.

Thus T ∗
n(x, y, z) = sgn(1+

∑n
i=1(−a)i(xi +yi−zi)) defines a threshold function

Tn ∈ B3n with weight(Tn) ∈ 2nΩ(1)
.
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It remains to show that Tn ∈ WIDTH3DL. If xi+yi = zi for all i = 1, . . . , n
then Tn(x, y, z) = 0. We have Tn(x, y, z) = 1 if, for r = max{i : xi + yi 6= zi},
xr + yr > zr and r is odd, or xr + yr < zr and r even.

A width(3)-decision list for Tn consists of n consecutive blocks Dn, Dn−1,
. . . , D1. Inside Di, all inputs satisfying xi + yi < zi, corresponding to x̄iȳizi

= 1, are mapped to bi and all inputs satisfying xi + yi > zi, corresponding to
xiz̄i ∨ yiz̄i ∨ xiyi = 1, are mapped to b̄i, where bi = 1 if i is even and bi = 0
if i is odd. The remaining inputs are forwarded to Di+1 if i < n, and mapped
to 0 if i = n. �

Proof of Theorem 3.1 using Theorem 3.5. We use the main result
from Krause & Pudlák (1995), Theorem 1.4, saying that for all threshold func-

tions tn ∈ Bn, if weight(tn) ∈ 2nΩ(1)
then length(tn ◦ ANDn,n) ∈ 2nΩ(1)

, where
tn ◦ ANDn,m ∈ Bnm is defined as

tn ◦ ANDn,m(x1,1, . . . , x1,m, . . . , xn,1, . . . , xn,m) = tn

(

m
∧

i=1

x1,i, . . . ,
m
∧

i=1

xn,i

)

.

As a consequence, length(Tn ◦ ANDn,n) ∈ 2nΩ(1)
, where Tn denotes the heavy

threshold function considered in Theorem 3.5. As obviously Tn◦ANDn,n ∈ DL1

the theorem follows. �

4. The decision list hierarchy and the AC0-hierarchy

In this section we prove

Theorem 4.1. AC0
k ⊂ DLk−1 ⊂ AC0

k+1 for all k ≥ 1.

The proof is by induction on k. The induction step makes use of an ar-
gument from Theorem 5 (p. 17) of H̊astad (1986), in which the levels of the
AC0-hierarchy are separated. The more advanced technique of H̊astad (1989)
can be used in an equivalent way to prove our theorem. Note that also else-
where in the literature the recursive argument of H̊astad (1986, 1989) was used
to prove hierarchy results (see, e.g., Berg & Ulfberg 1998).

On page 15 (Figure 7) of H̊astad (1986) a Boolean function gk
m is defined.

We define a function hk
m in a slightly modified way by giving the definition of

a circuit Hk
m computing hk

m. For k ≥ 3 let Hk
m consist of k layers consisting of

gates of fan-in 4.4m2, 4.4m3, . . . , 4.4mk−1, 1.1mk,mk. H2
m consists of two layers

consisting of gates of fan-in 1.1m2 and m2. The top gate is a gate computing
d1,4.4m2 (resp. d1,1.1m2 for k = 2), followed by a level of AND-gates, followed by
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a level of OR-gates, followed by a level of AND-gates and so on. The bottom
gates are ANDs, resp. ORs, over pairwise disjoint blocks Bk,m

j , j = 1, 2, . . . ,

containing mk variables each. Observe that hk
m belongs to DLk−1. We show

that hk
m 6∈ ACk

0 by the following modification of Theorem 5 in H̊astad (1986).

Lemma 4.2. There are no depth k + 1 AND, OR circuits computing hk
m with

bottom fan-in ≤ m/10 and size ≤ 2m/10 for m > m0, some absolute constant.

This lemma is proved by induction on k. It is quite straightforward to check
that the induction step is similar to the proof of Theorem 5 in H̊astad (1986).
In particular, consider the probability distribution Rk(m) on the set of partial
assignments to the variables of hk

m. For each block Bk,m
j of the input variables

of hk
m do independently the following experiment.
With probability 1/mk−1 set all Bk,m

j variables to 1. With probability 1 −

1/mk−1 choose a random x ∈ Bk,m
j , set all x′ ∈ Bk,m

j \ {x} to 1, and with

probability 1/m set x to ∗ and with probability 1 − 1/m − 1/mk−1 to 0.
The induction step follows from the two observations:

(1) Applying a random restriction, distributed according to Rk(m), k ≥ 3, to
an AND, OR circuit of depth k + 1, size 2m/10, and bottom fan-in m/10
leads to a circuit of depth k and the same bottom fan-in with probability
1 − 2m/10αm/10, where α ≤ 0.42 for m large enough (Lemma 5 in H̊astad
1986).

(2) Applying a random restriction, distributed according to Rk(m), to hk
m,

k ≥ 3, yields a function which contains hk−1
m as a subfunction with prob-

ability at least 2/3. This can be proved in the same manner as Lemma 8
in H̊astad (1986).

Consequently, for m large enough and k ≥ 2 the existence of an AND, OR
circuit of depth k+1, size 2m/10 and bottom fan-in m/10 computing hk

m implies
the existence of an AND, OR circuit of depth k of at most the same size and
bottom fan-in for hk−1

m . We have to show the base case k = 2. Observe that
we can write

h2
m(B1, . . . , B1.1m2) = d1,1.1m2

(

∧

xi∈B1

xi, . . . ,
∧

xi∈B1.1m2

xi

)

.

Assume that there is a depth-3 AND,OR circuit C of size ≤ 2m/10 and bottom
fan-in ≤ m/10 computing h2

m. Observe that, under R2(m), with probability
(1 − m−2)1.1m2

≈ e−1.1 > 0.3 no bottom AND of H2
m is set to constant 1
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and that the expected number of bottom ANDs which are set to ∗ is 1.1m.
Consequently, if m is large enough then with probability at least 0.3 at least m
bottom ANDs are set to ∗ and no bottom AND is set to 1. Thus, if m is large
enough our assumption implies that there is a depth two AND, OR circuit of
bottom fan-in m/10 computing d1,m. This would imply that either d−1

1,m(1) or

d−1
1,m(0) can be covered by prime implicants of length at most m/10. But this

can be disproved by observing that

d1,m =
∧

r≤m odd

x̄1 · · · x̄r−1xr, resp. ¬d1,m =
∧

r≤m even

x̄1 · · · x̄r−1xr

are the only possibilities to cover d−1
1,m(1) (resp. d−1

1,m(0)) by prime implicants.

To show that DLk−1 ⊂ ACk+1
0 we prove a more general result. Define a

Th(k)-circuit to be a circuit consisting of an unbounded weight threshold gate
on the top followed by k − 1 levels of AND, OR gates. As d1,n is a threshold
function, for all k ≥ 2 all problems in DLk−1 have polynomial size Th(k)-
circuits. Consider a function fk

m which is defined via a circuit Fn as follows. Fn

is a tree consisting of k levels which contain AND and OR gates alternately. For
k > 2 the top gate is an AND gate of fan-in 4.4m4 followed by levels of gates
of fan-in 4.4m5, . . . , 4.4mk+1, 1.1mk+2,mk+2. The gates at the bottom level are
defined over pairwise disjoint blocks of mk+2 variables each. The function f 2

m

is an AND over 1.1m4 OR-gates of fan-in m4. The proof of the theorem will
be finished by applying the following lemma of Berg and Ulfberg (1998). For
the sake of completeness we give a sketch of the proof.

Lemma 4.3 (Berg & Ulfberg 1998). For all k ≥ 2 and m > m0 some absolute

constant, Th(k)-circuits computing fk+1
m with bottom fan-in ≤ m/10 and size

≤ 2m/10 do not exist.

This lemma is proved by induction on k again. The induction step can be
performed exactly in the same way as described above, i.e.. as in H̊astad (1986).
We consider the base case k = 2 and suppose that there is a Th(2)-circuit C =
t(C1, . . . , Cr) of size ≤ 2m/10 and bottom fan-in ≤ m/10 computing f 3

m. Here, t
denotes a threshold function corresponding to the top gate of C. By Lemma 5
from H̊astad (1986), a random restriction from R5(m) with probability 1 −
2m/10αm/10 ≥ 1− 0.84m/10 converts all functions Ci, i = 1, . . . , r, into functions
for which the function itself and its negation have prime implicants of size at
most m/10. This implies that all these restricted functions have decision trees
of depth (m/10)2 (see, e.g., Wegener 2000, Theorem 2.5.11), and thus can be
written as rational polynomials of degree at most (m/10)2. Consequently, with
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probability at least 1 − 0.84m/10 we have deg(C|ρ) ≤ (1/100)m2, where ρ is
R5(m)-distributed. On the other hand, f 3

m|ρ has f 2
m as a subfunction with

probability at least 2/3. This contradicts a result of Minsky and Papert (1968)

saying that deg(
∧n

i=1

∨4n2

j=1 xi,j) = n, i.e., deg(f 2
m) ≥ 1

2
m2.
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