
comput. complex. 14 (2005), 72 – 88

1016-3328/05/010072–17

DOI 10.1007/s00037-005-0191-0

c© Birkhäuser Verlag, Basel 2005

computational complexity

NEAT FUNCTION ALGEBRAIC

CHARACTERIZATIONS OF LOGSPACE

AND LINSPACE

Lars Kristiansen

Abstract. We characterize complexity classes by function algebras
that neither contain bounds nor any kind of variable segregation. The
class of languages decidable in logarithmic space is characterized by the
closure of a neat class of initial functions (projections and constants)
under composition and simultaneous recursion on notation. We give
a similar characterization of the class of number-theoretic 0-1 valued
functions computable in linear space using simultaneous recursion on
natural numbers in place of simultaneous recursion on notation.

Keywords. Function algebras, recursion schemes, logspace,
linspace.

Subject classification. 68Q15, 68Q05, 03D10, 03D20.

1. Introduction

Complexity classes defined by Turing machines, like e.g. logspace, linspace,
p, pspace, can be characterized by function algebras, that is, a complexity
class can be characterized by a closure of some initial function under certain
composition and recursion schemes. Cobham’s characterization of the poly-
nomial time computable functions and Ritchie’s characterization of the linear
space computable functions are typical examples (Cobham 1965; Ritchie 1963).
Until around 1990 every such characterization was based on some version of
bounded recursion. Then it was discovered that complexity classes can also be
characterized by using unbounded recursion schemes which distinguish between
variables as to their position in a function (e.g. Simmons 1988; Leivant 1991,
1993; Bellantoni & Cook 1992). The Bellantoni–Cook characterization of the
polynomial time computable functions is a typical example. The segregation
techniques which go back to these authors are often called ramification or tier-
ing techniques in the literature. See Clote (1999) for more historical details.

In this paper we characterize complexity classes by function algebras that
contain neither bounds nor any kind of variable segregation.

cc 14 (2005) Function algebraic characterizations 73

We prove that the class of languages decidable in logarithmic space is char-
acterized by the closure of a neat class of initial functions (projections and
constants) under composition and simultaneous recursion on notation, i.e. the
scheme

fi(~x, ε) = gi(~x),

fi(~x, 0y) = h0
i (~x, y, f1(~x, y), . . . , fk(~x, y)),

fi(~x, 1y) = h1
i (~x, y, f1(~x, y), . . . , fk(~x, y)),

for i = 1, . . . , k. If f is generated by this algebra, then there exists a fixed
m ∈ N such that if f(w1, . . . , wn) = v and |v| ≥ m, then v equals an end
segment of some wi. This allows a Turing machine working in logarithmic
space to keep track of f(w1, . . . , wn) by keeping track of the length of the end
segments of the inputs w1, . . . , wn. Given this observation, it is easy to see that
a language decided by a function in the algebra can also be decided by a Turing
machine working in logarithmic space. It is harder to see that every language
decided by a Turing machine working in logarithmic space can be decided by
a function in the algebra. To prove this, we make a detour via a computation
in a specially tailored imperative programming language.

Further, we characterize the class of number-theoretic 0-1 valued functions
computable in linear space as the 0-1 valued functions in the closure of a neat
class on initial functions (projections and constants) under composition and
simultaneous recursion, i.e. the scheme

fi(~x, 0) = gi(~x), fi(~x, y + 1) = hi(~x, y, f1(~x, y), . . . , fk(~x, y)),

for i = 1, . . . , k. For every function f in the algebra we have

(1.1) f(~x) ≤ max(~x,m)

for some fixed m ∈ N. The set of linear space computable functions with the
property (1.1) is closed under composition and simultaneous recursion, and
hence it follows easily that every function in the algebra can be computed by
a Turing machine working within the required space restrictions. Again the
inclusion the other way around is harder to prove, and again the proof makes
a detour via a computation in an imperative programming language.

Finally, the reader should note that we do not characterize classes of func-
tions computable within certain resource constraints, e.g. we do not character-
ize the class of number-theoretic functions computable in linear space, but the
class of 0-1 valued number-theoretic functions computable in linear space. To
characterize complexity-theoretic function classes by function algebras, some
kind of variable segregation, or explicit bounds, seem necessary.

74 Kristiansen cc 14 (2005)

2. Preliminaries

We assume the reader is familiar with basic complexity theory and some recur-
sion theory, e.g. Turing machines, complexity classes, etc. See e.g. Odifreddi
(1999) or Clote (1999). We also assume familiarity with imperative program-
ming languages. We will use informal Hoare-like sentences to specify or reason
about imperative programs, that is, we will use the notation {A} P {B}, the
meaning being that if the condition given by the sentence A is fulfilled before P

is executed, then the condition given by the sentence B is fulfilled after the exe-
cution of P. For example, {X = x, Y = y}P{X = x′, Y = y′} reads as if the values
x and y are held by the variables X and Y, respectively, before the execution of P,
then the values x′ and y′ are held by X and Y after the execution of P. (We use
typewriter style uppercase letters, with or without subscripts and superscripts,
to denote program variables.) Another typical example is {~X = ~x} P {Y = f(~x)}
meaning that if the values ~x are held by ~X, respectively, before the execution of
P, then the value held by Y after the execution of P equals f(~x). Here ~x (resp.
~X) abbreviates as usual the list x1, . . . , xn (resp. X1, . . . , Xn) where n is some
arbitrary but fixed natural number, and f is an n-ary function. Whenever
convenient ~X will also denote a set of program variables {X1, . . . , Xn}. We will

also use vector notation for functions, and e.g. ~X = ~f(y) abbreviates the list
X1 = f1(y), . . . , Xn = fn(y) where n is some fixed number. V(P) denotes the
set of variables occurring in a program P. A program P computes a function f
when {~X = ~x}P{Y = f(~x)} for some ~X, Y ∈ V(P). (If ~Z = V(P) \ ~X, we expect
{~X = ~x,~Z = ~z}P{Y = f(~x)} to hold for any ~z.) When we construct programs,
we occasionally need what we call fresh variables. That a variable is fresh sim-
ply means that the variable is not used elsewhere. Occasionally, we will also
call variables registers.

We will use some notation and terminology from Clote (1999). An operator,
here also called (definition) scheme, is a mapping from functions to functions. If
X is a set of functions, and op is a collection of operators, then [X ; op] denotes
the smallest set of functions containing X and closed under the operations of
op. The set [X ; op] is called a function algebra. comp denotes the definition
scheme called composition, i.e. the scheme f(~x) = h(g1(~x), . . . , gm(~x)) where
m ≥ 0. br denotes the bounded recursion scheme, i.e. the scheme

f(~x, 0) = g(~x), f(~x, y + 1) = h(~x, y, f(~x, y)), f(~x, y) ≤ j(~x, y).

sim and simn denote, respectively, the schemes for simultaneous recursion and
simultaneous recursion on notation given in the introductory section. (Note
that sim is a classical recursion scheme studied intensively in the literature

cc 14 (2005) Function algebraic characterizations 75

over the years, e.g. in Hilbert & Bernays 1934 and Péter 1957. The scheme
simn is sim generalized to recursion on notation.) Let Ini denote the projection
function Ini (x1, . . . , xi, . . . , xn) = xi where i, n are fixed numbers such that
1 ≤ i ≤ n. Let I denote the set of all such projection functions. Let Ck
denote the 0-ary constant function Ck = k where k ∈ N (k ∈W). Let CN (CW)
denote the set of all such constant functions. If X is a class of number-theoretic
functions, then X? denotes the 0-1 valued functions in X , i.e. X? = {f | f ∈ X
and ran(f) = {0, 1}}.

3. linspace

Definition 3.1. We define linspace as the class of number-theoretic 0-1 val-
ued functions computable by a Turing machine working in linear space.

We now define the imperative programming languages LOOP and LOOP−.

The syntax of LOOP is as follows. The language LOOP has an infinite supply
of variables. (i) suc(X) is a program if X is a variable; (ii) pred(X) is a program
if X is a variable; (iii) Y:= X is a program if X and Y are variables; (iv) Y:= k is
a program if Y is a variable and k denotes a value in N; (v) P1; P2 is a program
if P1 and P2 are programs; (vi) loop X [P] is a program if P is a program, X is
a variable, and X 6∈ V(P); (vii) nothing else is a program.

The semantics of LOOP is as expected from the syntax. Each variable holds a
natural number, i.e. a value in N. The instruction suc(X) increases the number
held by X by 1. The instruction pred(X) decreases the number held by X by
1 (if possible; otherwise the instruction does nothing). The instructions Y:= X

and Y:= k are ordinary assignment operations. (Note that for each k ∈ N we
have an operation Y:= k where k denotes k.) To execute the program P1; P2

we first execute the program P1, then the program P2. To execute the program
loop X [P], we execute the subprogram P, x times in a row, where x is the
value in the register X when the execution starts. The value held by X will not
be modified during the execution. (Note that X does not occur in P.)

A LOOP program P is a LOOP− program if P does not have a subprogram
of the form suc(X). We define L− as the class of functions computable by a
LOOP− program.

A programming language similar to LOOP is studied in Meyer & Ritchie
(1967).

Lemma 3.2. Let P be a LOOP program where V(P) = ~X. Further, assume that
no register during an execution of P on input ~X = ~x exceeds some fixed m ∈ N.

76 Kristiansen cc 14 (2005)

Then there exists a LOOP− program Q such that

{~X = ~x}P{~X = ~x′} ⇔ {~X = ~x, M = m}Q{~X = ~x′}.

Proof. Note that if m > x, then m .− ((m .−x) .−1) = x+ 1. Thus, let M and
Y be fresh variables, and let Q be P where each subprogram of the form suc(X)

is replaced by the subprogram

Y:= M; loop X [pred(Y)]; pred(Y); X:= M; loop Y [pred(X)]. �

Lemma 3.3. There exists a LOOP− program P such that

{X = x, Y = y}P{Z = max(x, y)}.

Moreover, no register during the execution of P on input X = x, Y = y exceeds
max(x, y, 1).

Proof. Let P be the program

U:= X; loop Y [pred(U)];

V:= 1; loop U [pred(V)]; Z:= X; loop V [Z:= Y] �

Lemma 3.4. Let P be a LOOP program and assume V(P) = ~X. Further, assume
that no register during an execution of P on input ~X = ~x exceeds max(~x,m)n for
some fixedm,n ∈ N. Then there exists a LOOP program Q and a fixed b ∈ N such
that (i) no register during an execution of Q on input ~Y = ~y exceeds max(~y, b)
(where V(P) ⊆ V(Q) = ~Y) and (ii) if P computes a 0-1 valued function f , then
Q computes f .

Proof. Let P be as in the lemma. Let k ∈ N be the largest number such
that P has a subprogram of the form X:= k where k denotes k, and let b =
max(~x,m, k, 1)+1. Suppose a register holds the number a during the execution
of P on input ~X = ~x. Then there exist a0, . . . , an−1 < b such that a = an−1b

n−1 +
an−2b

n−2 + . . . + a0b
0, i.e. a can be represented by n digits in base b. We will

construct the program Q in the lemma such that each variable X ∈ V(P) is
represented in base b by the variables Xn−1, . . . , X0 ∈ V(Q).

Given that the number b − 1 is stored in a register M, we can construct a
LOOP program suc(Xn−1 . . . X0) (resp. pred(Xn−1 . . . X0)) simulating the opera-
tion suc(X) (resp. pred(X)) in base b such that no variable will hold a number
≥ b during the operation. We leave the details to the reader.

Let Y be a fresh variable, and let if Xn−1 . . . X0 > 0 [R] ≡

Y:= 0; loop Xn−1 [Y:= 1]; . . . loop X0 [Y:= 1]; loop Y [R].

cc 14 (2005) Function algebraic characterizations 77

So the program if Xn−1 . . . X0 > 0 [R] executes R if the number represented in
base b by the contents of Xn−1, . . . , X0 does not equal 0; otherwise the program
does not modify any of the variables occurring in R.

We will now define the program transformation τ recursively over the build-
up of a LOOP program. Fix variables M0, . . . , Mn−1 6∈ V(P) and let

1. τ(suc(X)) ≡ suc(Xn−1 . . . X0)

2. τ(pred(X)) ≡ pred(Xn−1 . . . X0)

3. τ(Y:= X) ≡ Yn−1:= Xn−1; . . . Y1:= X1; Y0:= X0

4. τ(X:= k) ≡ Xn−1:= 0; . . . X1:= 0; X0:= k

5. τ(Q; R) ≡ τ(Q); τ(R)

6. τ(loop X [R]) ≡

τ(Z:= X);
loop M0 [. . . loop Mn−1 [if Zn−1 . . . Z0 > 0 [τ(R)]; τ(pred(Z))] . . .]

where Z is a fresh variable.

This completes the definition of τ . Note that the number denoted by k in 4 is
strictly less than the base b.

Now assume V(P) = ~X = X1, . . . , Xp where P is the program in the lemma.
For i = 1, . . . , p let Ri ≡ Xn−1

i := 0; . . . X1
i := 0; X0

i := Xi. By Lemma 3.3 there
exists a LOOP− program Q0 such that (i) {~X = ~x}Q0{~X = ~x, M = max(~x, b − 1)}
where M 6∈ ~X and (ii) during the execution of Q0 on input ~X = ~x no register
exceeds max(~x, b− 1).

Finally, let Q ≡ R1; . . . Rp; Q0; M0:= M; . . . Mn−1:= M; τ(P). Then (i) no
variable in V(Q) = ~Y will exceed max(~y, b−1) during an execution of Q on input
~Y = ~y, and (ii) if P computes a 0-1 valued function f and leaves the result in
the register Z, i.e. if {~X = ~x}P{Z = f(~x)}, then Q will also compute f and leave
the result in the register Z0, i.e. {~X = ~x}Q{Z0 = f(~x)}. This completes the
proof. �

Lemma 3.5. L− ⊆ [I, CN; comp, sim].

Proof. Let P be a LOOP− program and assume V(P) = ~X. We will prove by

induction on the build-up of P that there exist ~f ∈ [I, CN; comp, sim] such that

{~X = ~x}P{~X = ~f(~x)}.

78 Kristiansen cc 14 (2005)

Assume P ≡ X:= Y. Then we have {X = x, Y = y}P{X = I2
2 (x, y), Y =

I2
2 (x, y)} and I2

2 is one of the initial functions in [I, CN; comp, sim].
Assume P ≡ X:= k where k denotes the element k ∈ N. Let f(x) = Ck.

Then we have {X = x}P{X = f(x)} and f ∈ [I, CN; comp, sim].
Assume P ≡ pred(X). Let f(0) = C0 and f(y + 1) = I2

1 (y, f(y)). Then we
have {X = x}P{X = f(x)} and f ∈ [I, CN; comp, sim].

Assume P ≡ Q;R where V(Q) = ~Y and V(R) = ~Z. The induction hypoth-

esis yields functions ~g,~h ∈ [I, CN; comp, sim] such that {~Y = ~y}Q{~Y = ~g(~y)}
and {~Z = ~z}R{~Z = ~h(~z)}. Use the functions ~g,~h, projection functions and the

composition scheme to generate functions ~f such that {~X = ~x}P{~X = ~f(~x)}
where ~X = V(Q) ∪ V(R). (The details are straightforward, but tedious. Note
that for any function f ∈ [I, CN; comp, sim] there exists a function f ′ ∈
[I, CN; comp, sim] such that f ′(~x, ~y) = f(~x) for any ~y.)

Assume P ≡ loop X [Q] where X 6∈ V(Q) = {Y1, . . . , Yk}. The induction
hypothesis yields functions ~g ∈ [I, CN; comp, sim] such that {~Y = ~y}Q{~Y =
~g(~y)}. Let

• g′i(y, ~x) = gi(I
k+1
2 (y, ~x), . . . , Ik+1

k+1 (y, ~x)) (so g′i(y, ~x) = gi(~x) for any y),

• fi(~y, 0) = Iki (~y) and fi(~y, z + 1) = g′i(z, f1(~y, z), . . . , fk(~y, z)),

for i = 1, . . . , k. Then we have {~Y = ~y, X = x}P{~Y = ~f(~y, x), X = Ik+1
k+1 (~y, x)}.

Furthermore, ~f and Ik+1
k+1 are functions in [I, CN; comp, sim]. �

Lemma 3.6. Let F be the set of all number-theoretic functions f such that (i)
f(~x) ≤ max(~x,m) for some fixed m ∈ N, and (ii) f is computed by a Turing
machine working in linear space. Then F is closed under composition (comp)
and simultaneous recursion (sim).

Proof. We leave this (easy) proof to the reader. �

Theorem 3.7. linspace = [I, CN; comp, sim]?.

Proof. Assume f ∈ linspace. The class of number-theoretic functions
computable by a Turing machine working in linear space equals the Grzegorczyk
class E2 def

= [0, I, s,+, x2 + 2; comp,br]. (This is a well-known result proved by
Ritchie 1963.) Thus, f ∈ E2. It is easy to prove by induction on the build-up
of f from functions in the algebra [0, I, s,+, x2 + 2; comp,br] that there exist
fixed m,n ∈ N and a LOOP program P computing f such that no register in V(P)
will exceed max(~x,m)n during the computation of f(~x). Thus, by Lemma 3.4,

cc 14 (2005) Function algebraic characterizations 79

there will be a fixed k ∈ N and a LOOP program P computing f such that no
register in V(P) will exceed max(~x, k) during the computation of f(~x). Thus, it
follows from Lemmas 3.2 and 3.3 that f can be computed by a LOOP− program.
Thus, f ∈ L−? . By Lemma 3.5, we have f ∈ [I, CN; comp, sim]?. This proves
linspace ⊆ [I, CN; comp, sim]?.

To prove the inclusion the other way around, we note that for any f ∈
[I, CN; comp, sim] there exists a fixed m ∈ N such that f(~x) ≤ max(~x,m).
Hence, we have [I, CN; comp, sim]? ⊆ linspace by Lemma 3.6. �

Corollary 3.8. A number-theoretic 0-1 valued function is computable by a
Turing machine working in linear space if and only if the function can be defined
from constant functions (CN) and projection functions (I) by composition and
simultaneous recursion.

4. logspace

Definition 4.1. A word is a string of bits, i.e. a string over the bit alphabet
{0, 1}. Let ε denote the empty word. Let W denote the set of words. A word
y is an end segment of a word x when there exists a word z such that zy = x.
A language is a subset of W. A language A is in logspace when A can be
decided by a Turing machine working in logarithmic space. (A Turing machine
M decides a language A when M on input x halts in a distinguished accept
state qA if x ∈ A, and in a distinguished reject state qR if x 6∈ A.) A function
f : W→W decides a language A when f(x) = ε⇔ x ∈ A. A program decides
a language A when it computes a function which decides A.

We shall define the imperative programming language CLIP.
The syntax of CLIP is as follows. The language CLIP has an infinite supply

of variables. (i) clip(X) is a program if X is a variable; (ii) Y:= X is a program
if X and Y are variables; (iii) Y:= w is a program if Y is a variable and w denotes a
word; (iv) P1; P2 is a program if P1 and P2 are programs; (v) if left(X)=0 [P]

is a program if P is a program and X is a variable; (vi) if left(X)=1 [P] is a
program if P is a program and X is a variable; (vii) foreach X [P] is a program
if P is a program, X is a variable, and X 6∈ V(P); (viii) nothing else is a program.

The semantics of CLIP is as expected from the syntax. Each variable holds a
value in W. The instructions Y:= X and Y:= w are ordinary assignment opera-
tions. (Note that for each w ∈W we have an operation Y:= w where w denotes
w.) The instruction clip(X) removes the leftmost bit from the word held by
X (if possible; otherwise the instruction does nothing). To execute the pro-
gram P1;P2, we first execute the program P1, then we execute the program P2.
To execute the program if left(X)=0 [P], we execute P if X = 0x for some

80 Kristiansen cc 14 (2005)

x ∈W; otherwise we do nothing. To execute the program if left(X)=1 [P],
we execute P if X = 1x for some x ∈ W; otherwise we do nothing. To execute
the program foreach X [P], we execute the subprogram P, n times in a row,
where n is the length of the word held by X. The value held by X will not be
modified during the execution. (Note that X does not occur in P.)

Lemma 4.2. Every language in logspace can be decided by a CLIP program.

Proof. A 2-tape Turing machine is specified by (Q,Σ,Γ, δ, q0) where Q is
a finite set of states containing the accept state qA and the reject state qR;
Σ (resp. Γ) is a finite read-only input (resp. read-write work) tape alphabet
not containing the blank symbol B; δ is the transition function and maps
(Q\{qA, qR})×(Σ∪{B})×(Γ∪{B}) into Q×(Γ∪{B})×{−1, 0, 1}×{−1, 0, 1}.

Let M be a 2-tape Turing machine and assume that (i) M terminates (in
state qA or qR) on any input, (ii) M ’s input alphabet Σ equals {0, 1} and (iii)
the number of cells visited on M ’s work tape is bounded by k0 log2(|x|+ 2) for
some fixed k0 ∈ N (|x| denotes the length of the input). It will be sufficient to
prove that there exists a CLIP program P such that

{X = x}P{Y = ε} ⇔ M accepts x.

The proof is long. First we will simulate M by a program P0 written in an
expressive informal imperative programming language. Then we will transform
P0 into a program P1 written in a mixture of the languages CLIP and LOOP.
Thereafter we will do several transformations of P1 and achieve a program P2

written in a mixture of CLIP and LOOP− code. Finally, we will transform P2

into the desired CLIP program P.
In the informal high level language, we represent the work tape by two

stacks, leftW and rightW over Γ ∪ {B}. The tape configuration αaβ is rep-
resented by leftW = αR and rightW = aβ where αR denotes the sequence
α reversed. (Convention: When a stack stores a sequence of symbols α, the
leftmost symbol of α should be at the top of the stack and the rightmost at
the bottom.) Thus we can simulate the head’s movement on the input tape
smoothly by a few standard operations on stacks. The input tape is repre-
sented similarly by the stacks leftI and rightI over Σ∪ {B}. The transition
function δ can be viewed as a finite table T1, . . . , T`. The ith entry in the table
Ti has the form q, a, b, (q′, b′, v, w) where δ(q, a, b) = (q′, b′, v, w). For each entry
Ti we construct the program Qi ≡

if state=q and top(rightI)=a and top(rightW)=b then

begin state:= q′; scW:= b′; moveI(v); moveW(w) end

cc 14 (2005) Function algebraic characterizations 81

where the subprogram moveI(v) (resp. moveW(w)) simulates the movement of
the scanning head on the input (resp. working) tape. Let init be a procedure
initiating the stacks properly. Then the following program P0 simulates M .
P0 ≡

init; state:=q0;

while not (state=qA or state=qR) do begin Q1; . . . ;Qk end.

Our next task is to implement P0 in a mixture of CLIP and LOOP code.
Thus, the language has two types of variables, W-variables and N-variables.
We represent M ’s input tape by W-variables, and we implement the procedure
moveI in pure CLIP code. To see that this is possible, note the following (in
the indicated order). (i) M ’s input alphabet is {0, 1}, and we can, without loss
of generality, assume that M never scans any other blank cells than the blank
cell immediately to the left of the input and the blank cell immediately to the
right of the input. Hence, the input tape configuration αbβ can be represented
as a difference list by two W-variables S = bβ and M = αbβ. In addition to
the difference list we need two “status” W-variables T and U; the variable T

holds the word 0 if a blank cell is scanned, otherwise T holds the word 1; the
variable U holds the word 0 if the blank cell to the right of the input is scanned,
otherwise U holds the word 1. (ii) To simulate the transformation from the
tape configuration αabβ to the tape configuration αabβ, it is sufficient to exe-
cute the operation clip(S). (iii) To simulate the transformation from the tape
configuration αabβ to the tape configuration αabβ, we execute the CLIP code

A:= M; foreach S [clip(A)]; clip(A); S:= M; foreach A [clip(S)]

where A is fresh. From (i), (ii), and (iii) we conclude that the input tape can be
represented by W-variables and that the configuration of the input tape can be
updated by pure CLIP code. The remaining parts of the program Q1; . . . ;Qk,
i.e. the body of the while loop in P0, will be implemented in LOOP code. In
particular, we will represent the work tape by N-variables, and we will update
the configuration of the work tape by pure LOOP code. This is possible since
the language is powerful enough to compute any primitive recursive function.
In particular, LOOP programs can perform arithmetical operations like multipli-
cation, addition, subtraction and integer division. Let b denote the cardinality
of the set Γ ∪ {B}, that is, the number of different symbols M can write to its
work tape. Let α : {0, . . . , b− 1} → Γ∪{B} be a bijection, and let the number
i < b represent the symbol α(i). We represent the stack α(x1), . . . , α(xn), where
α(x1) is the top element and α(xn) is the bottom element, by the natural number

x1 + x2b
1 + x3b

2 + · · ·+ xnb
n−1,

82 Kristiansen cc 14 (2005)

i.e. as an n-digit number in base b. We implement the stack operations by their
obvious arithmetical correspondents, e.g. the pop operation corresponds to in-
teger division by b. (We need a status variable to distinguish the empty stack
from the stack only containing the single element 0.) Hence, we conclude that
the body of the while loop and the initiation part init can be implemented
in a mixture of LOOP and CLIP code.

Let body denote the implementation of the loop body, and let init’ denote
the implementation of init. Note that since M works in logarithmic space and
does terminate, there exist fixed k1,m1 ∈ N such that the number of times the
body of the while loop in P0 will be executed is bounded by max(|x|, k1)m1

where |x| denotes the length of the input. Let W1, . . . , Wm1 be fresh W-variables,
and let Z1, . . . , Zm1 be fresh N-variables. Furthermore, let setoutput be code
setting the W-variable Y to the empty word ε if M is in the state qA, and to
the word 0 if M is in the state qR. Finally, let P1 ≡

init’; Z1:= k1; . . . Zm1:= k1; W1:= X; . . . Wm1:= X;

loop Z1[. . . loop Zm1
[foreach W1 [. . . foreach Wm1 [body] . . .]] . . .];

setoutput

Then {X = x}P1{Y = ε} ⇔M accepts x.

(4.3)
Let a be the largest number held by an N-variable during the
execution of P1 on input X = x. We have a < max(|x|, k2)m2 for
some fixed k2,m2 ∈ N.

We prove (4.3). The work tape is simulated by stacks. These stacks are rep-
resented by natural numbers held by N-variables. It is easy to see that a in
(4.3) represents a stack. Now, a stack of height n is represented as an n-digit
number in base b (where b is the cardinality of the set Γ ∪ {B}). Since M
works in space k0 log2(|x| + 2), we have a < bk0 log2(|x|+2)+1. Now, b and k0 are
fixed numbers, i.e. they do not depend on the input x, and thus (4.3) follows
by standard number-theoretic reasoning.

Next we transform P1 into a program P′1 such that (i) for some fixed k3 ∈ N
no N-variable in P′1 exceeds max(|x|, k3) during an execution of P′1 on input
X = x and (ii) {X = x}P1{Y = ε} iff {X = x}P′1{Y = ε}. That such a trans-
formation is possible follows from (4.3) and a straightforward generalization
of Lemma 3.4. Let A and M be fresh N-variables, and let P2 be P′1 where each
subprogram of the form suc(Z) is replaced by the subprogram

A:= M; loop Z [pred(A)]; pred(A); Z:= M; loop A [pred(Z)].

cc 14 (2005) Function algebraic characterizations 83

Then we have

{X = x, M = m}P2{Y = ε} ⇔ M accepts x

whenever m ≥ max(|x|, k3). Besides, imperatives of the form suc(Z) do not
occur in P2.

We will now transform P2 into a CLIP program. Let P′2 be P2 where each sub-
program of the form pred(Z) is replaced by clip(Z); each occurrence of a sub-
program of the form Z:= c, where c denotes c ∈ N, is replaced by Z:= w where
w denotes a word of length c; each occurrence of the syntactical element loop is
replaced by the syntactical element foreach. Now, P′2 is a CLIP program and

{X = x, M = m}P′2{Y = ε} ⇔ M accepts x

whenever |m| ≥ max(|x|, k). Further, there exists a CLIP program lengthmax

such that

{X = x}lengthmax{M = m where |m| = max(|x|, k)}.
(To construct lengthmax use the idea in the proof of Lemma 3.3.) Finally, let
P ≡ lengthmax; P′2. Then P is a CLIP program and

{X = x}P{Y = ε} ⇔ M accepts x.

This completes the proof. �

Lemma 4.4. Every function computed by a CLIP program is in the algebra
[I, CW; comp, simn].

Proof. Let P be a CLIP program where V(P) = ~X. We will prove by induc-

tion on the build-up of P that there exist ~f ∈ [I, CW; comp, simn] such that

{~X = ~x}P{~X = ~f(~x)}.
The cases P ≡ X:= Y, P ≡ X:= k and P ≡ Q;R are similar to the correspond-

ing cases in the proof of Lemma 3.5.
Assume P ≡ clip(X). Let f(ε) = Cε, f(0x) = I2

1 (x, f(x)) and f(1x) =
I2

1 (x, f(x)). Then we have {X = x}P{X = f(x)} and f ∈ [I, CW; comp, simn].
Assume P ≡ if left(X)=0 [Q] where X 6∈ V(Q). The induction hypothesis

yields functions ~g ∈ [I, CW; comp, simn] such that {~Y = ~y}Q{~Y = ~g(~y)}. Let
c(z1, z2, ε) = I2

2 (z1, z2), c(z1, z2, 0x) = I4
1 (z1, z2, x, c(z1, z2, x)) and c(z1, z2, 1x) =

I4
2 (z1, z2, x, c(z1, z2, x)). Then c ∈ [I, CW; comp, simn] and c(z1, z2, x) = z1 if
x = 0y for some y ∈W, otherwise c(z1, z2, x) = z2. Use the function c, the func-
tions ~g, projection functions and the composition scheme to generate functions
~f ∈ [I, CW; comp, simn] such that {~Z = ~z}P{~Z = ~f(~z)} where ~Z = ~Y, X.

84 Kristiansen cc 14 (2005)

Assume P ≡ if left(X)=1 [Q] where X 6∈ V(Q). This case is analogous to
the preceding case.

Assume P ≡ foreach X [Q] where X 6∈ V(Q). Generalize the case P ≡
loop X [Q] in the proof of Lemma 3.5 to recursion on notation. This can be
done straightforwardly. �

Lemma 4.5. Let f ∈ [I, CW; comp, simn]. There exists a fixed m ∈ N such
that if f(v1, . . . , vn) = w and |w| > m, then w equals an end segment of one of
the words v1, . . . , vn.

Proof. Let C ′W be a finite subset of CW such that f ∈ [I, C ′W; comp, simn].
Let E be the least set such that (1) C ′W ∪ {v1, . . . , vn} ⊆ E and (2) if x ∈ E
and y is an end segment of x, then y ∈ E. We prove

(4.6) ~x ∈ E ⇒ f(~x) ∈ E

by induction on the build-up of f from the functions in [I, C ′W; comp, simn].
If f ∈ I ∪ C ′W, then (4.6) holds trivially. If f is generated by composition
(comp), then (4.6) follows straightforwardly from the induction hypothesis. If
f is generated by simultaneous recursion (simn) a second induction is required:
Let us say f is f1 where

fi(~x, ε) = gi(~x),

fi(~x, 0y) = h0
i (~x, y, f1(~x, y), . . . , fk(~x, y)),

fi(~x, 1y) = h1
i (~x, y, f1(~x, y), . . . , fk(~x, y)),

for i = 1, . . . , k. We prove by induction on the build-up of y that ~x, y ∈ E ⇒
fi(~x, y) ∈ E for i = 1, . . . , k. Case y = ε. Then fi(~x, y) = gi(~x). Assume
~x, y ∈ E. Then we have fi(~x, y) ∈ E by the induction hypothesis on gi. Case
y = 0z. Then fi(~x, y) = h0

i (~x, z, f1(~x, z), . . . , fk(~x, z)). Now, assume ~x, y ∈ E.
Then we also have z ∈ E since z is an end segment of y. By the induction
hypothesis on z we have f1(~x, z), . . . , fk(~x, z) ∈ E. Finally, by the induction
hypothesis on h0

i we have fi(~x, y) ∈ E. Case y = 1z. This case is similar to
the preceding one. This proves (4.6).

Let m be such that m ≥ |u| for every u ∈ C ′W. Assume f(v1, . . . , vn) = w
and |w| > m. By (4.6) we have w ∈ E, and since |w| > m, the word w cannot
be an end segment of one of the words in C ′W. Hence, w is an end segment of
one of the words v1, . . . , vn. �

cc 14 (2005) Function algebraic characterizations 85

Theorem 4.7. A language is in logspace if and only if it can be decided by
a function in [I, CW; comp, simn].

Proof. That any language in logspace can be decided by a function in
the algebra follows from Lemma 4.2 and Lemma 4.4.

To prove the equivalence the other way around, assume f is a unary function
in the algebra. We will argue that the language decided by f , i.e. the language
{x | f(x) = ε}, can be decided by a Turing machine working in logarithmic
space.

By Lemma 4.5 we have a fixed m ∈ N such that if |f(v)| > m then f(v)
equals an end segment of v. It is easy to construct an (informal) algorithm
computing f using a fixed number of registers storing words, and if a register
during the computation of f(v) stores w where |w| > m, then w equals an end
segment of v. The Turing machine will represent each register by a string of
bits and blanks in the form bc1 . . . cmd1 . . . dk where k = dlog2(|v| + 1)e + 1.
The symbol b is a status bit telling if the length of the word held by the reg-
ister is less than or equal to m; if so, the string c1 . . . cm stores the word (an
end segment of c1 . . . cm might be blanks); if not, the word held by the reg-
ister is an end segment of the input, and the bits d1 . . . dk give the length of
the end segment in binary notation (and hence the Turing machine can read
the word from the input tape). The Turing machine starts the computation
of f on input v by marking off a fixed number of areas on its work tape,
one area for each register, each area occupying 1 + m + dlog2(|v| + 1)e + 1
tape cells excluding the markers. Then the Turing machine follows the algo-
rithm and computes the value f(v). Finally, the Turing machine checks the
value f(v) which will be stored in a particular register; if the value is the
empty string, the Turing machine passes on to the accept state qA; otherwise
it passes on to the reject state qR. It is obvious that a Turing machine de-
signed along these lines will work in logarithmic space, and there should be no
need to carry out the construction in details. The Turing machine will need
some space for bookkeeping purposes, but the number of tape cells required
will be small compared to the number of tape cells required to represent the
registers. �

Corollary 4.8. A language A can be decided by a Turing machine working
in logarithmic space if and and only if A = {x | f(x) = ε} for some func-
tion f defined from constant functions (CW) and projection functions (I) by
composition and simultaneous recursion on notation.

86 Kristiansen cc 14 (2005)

5. Some references

There are some results in the literature comparable to our characterizations
of logspace and linspace. Clote (1990) characterizes the complexity class
AC0 by a function algebra that contains neither bounds nor variable segrega-
tion. Ishihara (1999) characterizes the polytime functions by a similar function
algebra. The operators in Clote’s algebra are composition and concatenation
recursion, whereas Ishihara’s operators are composition and a stronger version
of concatenation recursion (called full concatenation recursion). In contrast to
us, Clote and Ishihara use complicated initial functions including the smash
function. Jones (1999) characterizes logspace by a programming language
reminiscent of our language CLIP. A pure recursion-theoretic characterization
of logspace, similar to the one given in Corollary 4.8 above, should be within
range of the results in Jones (1999). However, Jones does no attempt to state
such a characterization. Neither is his programming language tailored to yield
one. (Our CLIP language is specially tailored for this purpose.)

The results in this paper originated from our studies of imperative pro-
gramming languages. It seems fruitful to integrate complexity theory and pro-
gramming language theory. See Jones (1997, 1999, 2001), Irwin et al. (2001),
Kristiansen & Niggl (2004), and Kristiansen & Voda (2003).

Lind (1974) is the first author who characterizes logspace by a function al-
gebra (containing explicit bounds). Bellantoni (1992) characterizes logspace
by a function algebra where the definition schemes distinguish between safe
and normal arguments. Bellantoni (1992) also characterizes linspace by such
a function algebra. Ritchie (1963) is the first author characterizing linspace by
a function algebra (containing explicit bounds). As mentioned above, Ritchie
proves that the class of number-theoretic functions computable by a Turing
machine working in linear space equals the Grzegorczyk class E 2. See Clote
(1999) for more references and the historical details.

Acknowledgements

The author wants to thank the referees and the editor for valuable advice
regarding the presentation.

References

S. J. Bellantoni (1992). Predicative recursion and computational complexity.
Technical Report 264/92, University of Toronto, Computer Science Department.

cc 14 (2005) Function algebraic characterizations 87

S. J. Bellantoni & S. Cook (1992). A new recursion-theoretic characterization
of the polytime functions. Comput. Complexity 2, 97–110.

P. Clote (1990). Sequential, machine-independent characterizations of parallel
complexity classes ALOGTIME, ACk, NCk and NC. In Feasible Mathematics,
S. Buss and P. J. Scott (eds.), Birkhäuser, 49–70.

P. Clote (1999). Computation models and function algebras. In Handbook of
Computability Theory, E. Griffor (ed.), Elsevier, 589–681.

A. Cobham (1965). The intrinsic computational difficulty of functions. In Logic,
Methodology and Philosophy of Science (Proc. 1964 Internat. Congr.), North-
Holland, 24–30.

D. Hilbert & P. Bernays (1934). Grundlagen der Mathematik. Springer, Berlin.

R. J. Irwin, B. M. Kapron & J. S. Royer (2001). On characterizations of the
basic feasible functionals. I. J. Funct. Programming 11, 117–153.

H. Ishihara (1999). Function algebraic characterization of the polytime functions.
Comput. Complexity 8, 346–356.

N. D. Jones (1997). Computability and Complexity from a Programming Perspec-
tive. MIT Press, Cambridge, MA.

N. D. Jones (1999). logspace and ptime characterized by programming languages.
Theoret. Comput. Sci. 228, 151–174.

N. D. Jones (2001). The expressive power of higher-order types or, life without
CONS. J. Funct. Programming 11, 55–94.

L. Kristiansen & K.-H. Niggl (2004). On the computational complexity of im-
perative programming languages. Theoret. Comput. Sci. 318, 139–161.

L. Kristiansen & P. J. Voda (2003). Complexity classes and fragments of C.
Inform. Process. Lett. 88, 213–218.

D. Leivant (1991). A foundational delineation of computational feasibility. In IEEE
6th Annual Symposium on Logic in Computer Science, IEEE, 39–47.

D. Leivant (1993). Stratified functional programs and computational complexity.
In Conference Record of the Twentieth Annual ACM Symposium on Principles of
Programming Languages, ACM, New York, 325–333.

J. C. Lind (1974). Computing in logarithmic space. Technical report, Project MAC
Technical Memorandum 52, Massachusetts Institute of Technology.

88 Kristiansen cc 14 (2005)

A. R. Meyer & D. M. Ritchie (1967). The complexity of loop programs. In Proc.
ACM Nat. Conf., 465–469.

P. Odifreddi (1999). Classical Recursion Theory. Vol. II. Studies in Logic Found.
Math. 143 North-Holland, Amsterdam.

R. Péter (1957). Rekursive Funktionen. Verlag der Ungarischen Akademie der
Wissenschaften, Budapest. English translation: Academic Press, New York, 1967.

R. W. Ritchie (1963). Classes of predictably computable functions. Trans. Amer.
Math. Soc. 106, 139–173.

H. Simmons (1988). The realm of primitive recursion. Arch. Math. 27, 177–188.

Manuscript received September 2002

Lars Kristiansen
Oslo University College
Faculty of Engineering
Cort Adelers gate 30
N-0254 Oslo, Norway
larskri@iu.hio.no

http://www.iu.hio.no/~larskri

Department of Mathematics
University of Oslo
Postboks 1053, Blindern
N-0316 Oslo, Norway

