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Abstract. We study the complexity of constructing pseudorandom
generators (PRGs) from hard functions, focussing on constant-depth
circuits. We show that, starting from a function f : {0, 1}l → {0, 1}
computable in alternating time O(l) with O(1) alternations that is hard
on average (i.e. there is a constant ε > 0 such that every circuit of size
2εl fails to compute f on at least a 1/poly(l) fraction of inputs) we can
construct a PRG : {0, 1}O(logn) → {0, 1}n computable by DLOGTIME -
uniform constant-depth circuits of size polynomial in n. Such a PRG
implies BP ·AC 0 = AC 0 under DLOGTIME -uniformity.
On the negative side, we prove that starting from a worst-case hard
function f : {0, 1}l → {0, 1} (i.e. there is a constant ε > 0 such
that every circuit of size 2εl fails to compute f on some input) for
every positive constant δ < 1 there is no black-box construction of a
PRG : {0, 1}δn → {0, 1}n computable by constant-depth circuits of size
polynomial in n.
We also study worst-case hardness amplification, which is the related
problem of producing an average-case hard function starting from a
worst-case hard one. In particular, we deduce that there is no black-
box worst-case hardness amplification within the polynomial time hier-
archy. These negative results are obtained by showing that polynomial-
size constant-depth circuits cannot compute good extractors and list-
decodable codes.

Keywords. Pseudorandom generator, hardness, constant-depth cir-
cuit, DLOGTIME -uniformity, noise sensitivity.
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1. Introduction

A rigorous notion of pseudorandom generators (PRGs) was introduced in the
seminal works of Blum & Micali (1984) and Yao (1982), and has since found a
striking variety of applications in cryptography and complexity theory. A PRG
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G : {0, 1}u → {0, 1}n is an efficient procedure that stretches u input bits into
n � u output bits such that the output of the PRG is indistinguishable from
random to small circuits. That is, for every circuit A of size n we have

∣∣∣ Pr
x∈{0,1}u

[A(G(x)) = 1]− Pr
x∈{0,1}n

[A(x) = 1]
∣∣∣ ≤ 1/n.1

Throughout this work the complexity of a PRG is measured in terms of its
output length (denoted n above).

While the existence of PRGs is a major open problem, there has been a series
of fascinating works constructing PRGs from weaker and weaker assumptions.

Nisan & Wigderson (1994) show how to construct PRGs from strong ave-
rage-case hardness assumptions, namely the existence of a Boolean function
f : {0, 1}l → {0, 1} in E := TIME(2O(l)) that is hard on average for circuits.
In particular, they show that starting from a function f : {0, 1}l → {0, 1} in E
such that (for some constant ε > 0) every circuit of size 2εl fails to compute f on
at least a 1/2− 1/2εl fraction of inputs, it is possible to construct a PRG with
logarithmic input length, i.e. G : {0, 1}O(logn) → {0, 1}n, computable in time
polynomial in n. Efficient PRGs with logarithmic seed length are of particular
interest because, as we discuss below, they imply BP · P = P . Note that the
PRG G is computable in time polynomial in n even though it is constructed
from a function f that is computable in exponential time (i.e. in E). This is
possible because G only evaluates f on inputs of length l = O(log n).

Because the average-case hardness assumption in Nisan & Wigderson (1994)
seemed very strong, much research was devoted to constructing PRGs with log-
arithmic seed length under a weaker worst-case hardness assumption, namely
the existence of a function f : {0, 1}l → {0, 1} in E such that (for some con-
stant ε > 0) every circuit of size 2εl fails to compute f on some input (e.g.
Babai et al. 1993; Impagliazzo 1995). This research culminated in Impagliazzo
& Wigderson (1997) where it is shown how to amplify the worst-case hardness
of functions in E to the average-case hardness required in Nisan & Wigderson
(1994). We survey these results in Section 3. More direct proofs and improved
results were obtained in Sudan et al. (2001); Impagliazzo et al. (2000); Shaltiel
& Umans (2001); Umans (2002).

1The original definition of Blum & Micali (1984) and Yao (1982) is different in that it
requires that every polynomial-size circuit has negligible advantage in distinguishing the out-
put of the PRG from random. For derandomization purposes it is enough to fix a universal
constant c and require that every circuit of size nc has advantage at most 1/nc in distin-
guishing the output of the PRG from random. Also, since the circuit can ignore part of the
input, we can set c = 1. In this paper we adopt this latter definition of PRG.
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1.1. The problem we study. In this paper we address the following prob-
lem: What is the complexity of constructing a PRG from a hard function?
There are at least two reasons for studying this problem. First, we want to un-
derstand the computational relationship between two fundamental quantities
in theoretical computer science: hardness and randomness. Second, PRGs are
a basic tool whose variety of applications justifies the quest for more and more
efficient constructions.

Derandomization. An important application that demands more and more
efficient PRGs is the high-end derandomization of a complexity class C, that
is, proving BP · C = C. For such application we need PRGs with logarithmic
seed length, which as we said above can be constructed starting from a function
having exponential circuit complexity. For example, Impagliazzo & Wigderson
(1997) show that BP · P = P if there is a function f : {0, 1}l → {0, 1} in E
that requires circuits of size 2Ω(l). This derandomization works as follows. We
run the algorithm we want to derandomize using all the possible outputs of the
PRG in place of true random bits. Then we decide according to majority vote.
Since the seed length is logarithmic, this process is efficient, i.e. only gives a
polynomial slow-down.

It is then clear that if we aim to derandomize a probabilistic complexity
class BP · C using a PRG, then the PRG must be computable in C. There-
fore, the lower the complexity class we want to derandomize, the more effi-
cient the PRG must be. For example, already to derandomize BP · L (where
L := SPACE (log n)), one needs a more efficient PRG construction than the
one given in Nisan & Wigderson (1994) and used in Impagliazzo & Wigderson
(1997) to derandomize BP ·P . This problem is solved by Klivans & van Melke-
beek (1999) who obtain BP ·L = L under the assumption that there is a function
f : {0, 1}l → {0, 1} computable in linear space that requires circuits of size 2Ω(l).

In this paper we study more efficient PRG constructions that could be used
to derandomize probabilistic classes below BP ·L. In particular, we aim to prove
BP ·AC 0 = AC 0 subject to DLOGTIME -uniformity, where AC 0 denotes the
class of functions computable by polynomial-size constant-depth circuits, and
DLOGTIME -uniformity is a strong uniformity condition discussed below (at
the end of Section 1.2).

Note that the high-end derandomization BP · AC 0 = AC 0 subject to
DLOGTIME -uniformity is not known to hold unconditionally. Indeed, it is
still open whether the weaker inclusion P -uniform BP ·AC 0 ⊆ P is true: The
most efficient unconditional derandomization of P -uniform BP · AC 0 is the
one obtained by Nisan (1991) that runs in quasipolynomial time. Such de-
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randomization is based on the fact that the parity function on l bits cannot
be computed (on average) by constant-depth circuits of size 2l

ε
(where ε is a

constant depending on the depth of the circuit; see e.g. H̊astad 1987). On the
other hand, proving P -uniform BP · AC 0 ⊆ P through a PRG would require
exhibiting a function f : {0, 1}l → {0, 1} in E that (for some constant ε > 0)
cannot be computed by constant-depth circuits of size 2εl. But it is consistent
with the current state of knowledge that every function f : {0, 1}l → {0, 1} in
E is computable by circuits of size 2o(l) and depth 3.

It should be noted that a result by Valiant (1977) states that if a function
f : {0, 1}l → {0, 1} (for some constant ε > 0) cannot be computed by circuits
of size 2εl and depth 3, then it cannot be computed by circuits of linear size and
logarithmic depth. Exhibiting a “natural function” that cannot be computed in
the latter circuit class (i.e. linear size and logarithmic depth) is a long-standing
open problem proposed in Valiant (1977).

1.2. Black-box PRG construction. As we explained in Section 1.1 in
this work we study the complexity of constructing PRGs from hard func-
tions. We now discuss what we mean by “constructing”. An oracle proce-
dure Gf : {0, 1}u → {0, 1}n is a black-box PRG construction from worst-case
hard functions if for every function f : {0, 1}l → {0, 1} and for every function
A : {0, 1}n → {0, 1}, if A distinguishes the output of the PRG from random, i.e.

∣∣∣ Pr
x∈{0,1}u

[A(G(x)) = 1]− Pr
x∈{0,1}n

[A(x) = 1]
∣∣∣ > 1/n,

then there is an oracle circuit C of size s that, given oracle access to A, com-
putes f everywhere, i.e. CA(x) = f(x) for every x.

The idea is that if we start with a function f such that no circuit of size
s · n can compute f everywhere (i.e. f is worst-case hard for size s · n) then G
is a PRG. This is because if a circuit A of size n distinguishes the output of
G from random then CA is a circuit of size s · n computing f everywhere, and
this contradicts the hardness of f .

Note that in a black-box PRG construction we need the input length l of the
hard function f to be Ω(log n). Otherwise it can be shown that every function
f : {0, 1}l → {0, 1} can be computed by circuits of size 2l ≤ n, and so our
assumption that f is worst-case hard for size s · n is immediately false.

The PRG construction defined above is called black-box because it works
for every function f and every potential distinguisher A, regardless of their
complexity. While it is conceivable that non-black-box PRG constructions are
more powerful than black-box ones, we note that all known PRG constructions
are black-box, e.g. Blum & Micali (1984); Yao (1982); Impagliazzo & Wigderson
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(1997); Klivans & van Melkebeek (1999); Sudan et al. (2001); Impagliazzo et al.
(2000); Shaltiel & Umans (2001); Umans (2002), and all those in this paper.
However, non-black-box PRG constructions are known to be more powerful
than black-box ones in the uniform setting, i.e. when we only require that
the output of the PRG be indistinguishable from random to uniform machines
(as opposed to nonuniform circuits, required by our definition). We refer the
reader to Trevisan & Vadhan (2002) for a discussion of this issue.

So far we have discussed black-box PRG constructions from worst-case hard
functions. Black-box PRG constructions from average-case hard functions are
analogous except that we only require that CA computes f on average (as
opposed to everywhere). By the same reasoning this suffices to ensure that Gf

is a PRG whenever f is hard on average.

Black-box PRG constructions in AC 0 . The main technical question ad-
dressed in this paper is: is there a black-box PRG construction in AC 0 ? (Recall
AC 0 denotes the class of functions computable by polynomial-size constant-
depth circuits.) As we explain below (Section 1.3), in this paper we exhibit
both positive and negative results on this question. Our negative results apply
regardless of the uniformity of AC 0 , and our positive results hold even under
a strict uniformity condition, namely DLOGTIME -uniformity, which we now
discuss. Informally, a family of circuits is DLOGTIME -uniform if given indices
to two gates one can decide their type and whether they are connected in linear
time in the length of the indices (which is logarithmic time in the size of the
circuit). There is a consensus that this is the “right” uniformity condition for
AC 0 , and the evidence for this is that DLOGTIME -uniform AC 0 has several
different and elegant characterizations; see Barrington et al. (1990). A char-
acterization that we will often use in this work is the following: DLOGTIME -
uniform AC 0 is equivalent to ATIME (O(1), log n), where ATIME (O(1), log n)
denotes alternating time O(log n) with O(1) alternations (cf. Theorem 2.2).
The class ATIME (O(1), log n), introduced by Sipser (1983), is the logarith-
mic analogue of the polynomial time hierarchy (ATIME (O(1), nO(1))), and it
is strictly contained in SPACE (log n).

1.3. Our results. Some of our results are summarized and compared to
previous ones in Table 1. Our main finding is that there are black-box PRG
constructions Gf from (mild) average-case hard functions such that Gf is com-
putable in ATIME (O(1), log n)f . But there is no black-box PRG construction
Gf from worst-case hard functions such that Gf is computable by small nonuni-
form oracle constant-depth circuits.
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Table 1.1: A comparison of some of our results with previous ones.

(Recall ATIME (O(1), log n) = DLOGTIME -uniform AC 0 .)

Hardness amplification PRG construction Derandomization
from strong hardness given by PRG construction

for functions : {0, 1}l → {0, 1} for PRG : {0, 1}O(logn) → {0, 1}n

Previous results

Worst-case hard Worst-case
⇓ Complexity of PRG hardness assumption

strongly hard implies
Possible both in

TIME (2O(l)) [Theorems 3.3, 3.4, 3.5] TIME (nO(1)) [Theorem 3.2] BP · P = P [Theorem 3.5]
and in SPACE (O(l)) [Theorem 3.7] SPACE (O(log n)) [Theorem 3.7] BP · L = L [Theorem 3.7]

Our results

Worst-case hard Mildly hard Mild average-case
⇓ ⇓ Complexity of PRG hardness assumption

mildly hard strongly hard implies
Impossible in Possible in BP · ATIME (O(1), log n)

ATIME (O(1), 2o(l)) ATIME (O(1), l) ATIME (O(1), log n) ‖
if black-box [Theorem 4.2] [Theorem 4.1] ATIME (O(1), log n)

[Corollary 7.5] [Theorems 4.3, 4.7]
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The positive side. We show that there is a black-box PRG construction
Gf : {0, 1}O(logn) → {0, 1}n from mild average-case hard functions such that
Gf is computable in ATIME (O(1), log n)f , where a function f : {0, 1}l →
{0, 1} is mildly hard on average if there is a constant ε > 0 such that ev-
ery circuit of size 2εl fails to compute f on at least a 1/poly(l) fraction of
inputs. In particular we deduce that if there is a function f : {0, 1}l →
{0, 1} in ATIME (O(1), l) that is mildly hard on average then there exists
a PRG G : {0, 1}O(logn) → {0, 1}n computable in ATIME (O(1), log n), and
BP · ATIME (O(1), log n) = ATIME (O(1), log n). (When we say that G is
computable in ATIME (O(1), log n) we mean that given x and i ≤ n we can
compute the i-th output bit of G(x) in ATIME (O(1), log n).) The main new
technical tool to achieve this result is a construction of combinatorial designs
that is computable in ATIME (O(1), log n). We also show that it is possi-
ble to amplify mild average-case hardness up to strong average-case hardness
within ATIME (O(1), l), where l is the input size of the mild average-case hard
function.

In addition, using results by Agrawal (2001), we show that our PRG con-
struction can be based on the weaker hardness assumption that there exists a
function that is hard for constant-depth circuits (whereas the discussion above
refers to hardness against general circuits).

The negative side. We show that, for every positive constant δ < 1, any
black-box PRG construction Gf : {0, 1}δn → {0, 1}n from worst-case hard
functions such that Gf is computable by an oracle circuit of constant depth
and size g must essentially satisfy (we omit here some low order terms)

(1.1) logO(1) g ≥ 2l/s,

where we start with a function f : {0, 1}l → {0, 1} that is worst-case hard for
circuits of size s. We stress that inequality (1.1) holds even when the input
length of G is as big as u = δn (recall our goal should be u = O(log n)). To
understand inequality (1.1) we must recall (from Section 1.2) that l ≥ Ω(log n).
So when we start with a function that cannot be computed by circuits of size
s = 2εl, inequality (1.1) gives logO(1) g ≥ 2(1−ε)l ≥ nΩ(1), and in particular the
black-box PRG construction cannot be computed by a constant-depth circuit
of size polynomial in n. We also show that this bound on g is tight.

On the other hand, if one insists on g polynomial in n then inequality (1.1)
implies that we must start with a function f : {0, 1}l → {0, 1} that is worst-
case hard for circuits of size s ≥ 2l/logO(1) n ≥ 2l/lO(1). However, we show
that this bound is so strong that worst-case and mild average-case hardness
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are equivalent, in the sense that every function f : {0, 1}l → {0, 1} that is
worst-case hard for circuits of size 2l/lO(1) is actually mildly average-case hard
for circuits of roughly the same size. In such a case one can construct a PRG
using our construction from mild average-case hard functions.

We obtain analogous negative results for black-box constructions of average-
case hard functions starting from worst-case hard ones. This gives the entry
in the bottom left corner in Table 1. In particular we show that, starting
from a worst-case hard function f , there is no black-box construction of a
mild average-case hard function computable in the polynomial time hierarchy.
Again, note that all known approaches are black-box, e.g. Babai et al. (1993);
Sudan et al. (2001). However, similarly to PRG constructions (cf. Section 1.2),
non-black-box hardness amplification is known to be more powerful than black-
box hardness amplification in the uniform setting, i.e. when the function is hard
for uniform machines (as opposed to nonuniform circuits). We refer the reader
to Trevisan & Vadhan (2002) for a discussion of this issue.

It should be noted that a certain negative result for black-box worst-case
hardness amplification already follows from our previous results. Namely, if
there is a black-box worst-case hardness amplification then combining this with
our black-box PRG construction from mild average-case hardness one gets a
black-box PRG construction from worst-case hardness, and we have already
given a negative result on this. However, we get a more general negative result
through a direct proof.

Discussion. Since Impagliazzo & Wigderson (1997), PRG constructions from
worst-case hard functions have been simplified and strengthened; see Sudan
et al. (2001); Impagliazzo et al. (2000); Shaltiel & Umans (2001); Umans (2002).
In particular, the latest constructions do not fall in the twofold paradigm
of “hardness amplification + Nisan-Wigderson PRG”, but directly transform
worst-case hardness into randomness. However, our results suggest that the
process of transforming worst-case hardness into randomness is twofold: black-
box worst-case hardness amplification is harder than black-box PRG construc-
tions from mild average-case hardness.

Our techniques. We now sketch the ideas behind our negative results. Our
negative result for black-box PRG constructions employs the following ideas.
First we use the fact, discovered by Trevisan (2001) (see also Trevisan & Vadhan
2002; Shaltiel 2002), that black-box PRG constructions give rise to “good”
extractors, an object introduced in Nisan & Zuckerman (1996). Then we show
that constant-depth circuits cannot compute “good” extractors. For this last
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point we use the notion of noise sensitivity, which is a measure of how likely
the output of a function is to change when the input is perturbed with random
noise. On the one hand we show that extractors are very sensitive to noise,
while on the other hand we know that constant-depth circuits are not (see
Linial et al. 1993; Boppana 1997). This dichotomy establishes our negative
result.

Our negative result for black-box worst-case hardness amplifications pro-
ceeds along similar lines: First, following Sudan et al. (2001) and Trevisan &
Vadhan (2002), we show that black-box worst-case hardness amplifications give
rise to “good” list-decodable codes. Then we show that “good” list-decodable
codes are very sensitive to noise. Again, the negative result follows from the
fact that constant-depth circuits are not very sensitive to noise.

1.4. Additional related work. There exist several other works addressing
the complexity of PRGs (other than those we have already mentioned). We
discuss known negative results first. Kharitonov et al. (1989) and Yu & Yung
(1994) prove strong negative results about the ability of various automata and
other space-restricted devices to compute PRGs. Linial et al. (1993) prove
that small constant-depth circuits cannot compute pseudorandom functions
(an object related to PRGs). Cryan & Miltersen (2001) consider the ques-
tion of whether there are PRGs in NC 0 . However, none of the above works
study the complexity of constructing PRGs from hard functions. It should
also be noted that space lower bounds for on-line computation of extractors
and list-decodable codes are proved in Bar-Yossef et al. (2002). However, these
lower bounds hold only in the on-line model of computation and therefore are
incomparable with our results.

We now discuss known positive results on PRG constructions. There has
been a series of works on the construction of PRGs from hard functions: Im-
pagliazzo & Wigderson (1997); Klivans & van Melkebeek (1999); Sudan et al.
(2001); Impagliazzo et al. (2000); Shaltiel & Umans (2001); Umans (2002). Pre-
vious to our paper, the most efficient construction is the one given in Klivans
& van Melkebeek (1999) that constructs a PRG : {0, 1}O(logn) → {0, 1}n com-
putable in space O(log n). Note that in this paper we consider constructions in
ATIME (O(1), log n), a class strictly contained in space O(log n). Other works
give PRG constructions under the assumption that some specific problem is
hard: Impagliazzo & Naor (1996) show how to construct PRGs based on the
assumed intractability of the subset sum problem. In particular, they show
how to construct a PRG : {0, 1}n−Θ(logn) → {0, 1}n in AC 0 . Naor & Reingold
(1997) give PRG constructions based on number-theoretic hardness assump-
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tions. Their PRGs are computable by polynomial-size constant-depth circuits
with MAJORITY gates (TC 0 ).

1.5. Organization. In Section 2 we give some preliminaries. In Section 3
we survey previous constructions of PRGs from hard functions. In Section 4 we
describe our main results. In Section 5 we show how to construct a PRG com-
putable in ATIME (O(1), log n) from a mild average-case hardness assumption.
In Section 6 we prove our negative result for black-box PRG constructions from
worst-case hardness assumptions. We also discuss in which sense our results
are tight. In Section 7 we prove our negative result for black-box worst-case
hardness amplification. In Section 8 we relax the hardness assumptions to the
existence of functions hard for constant-depth circuits. In Section 9 we prove
a lemma about noise sensitivity of constant-depth circuits which is used in our
negative results. Finally, Section 10 discusses some open problems.

2. Preliminaries

Complexity. We denote by ATIME (O(1), l) the class of functions comput-
able in time O(l) with constant number of alternations by a multitape Turing
machine. (The Turing machine has a special address tape. On a given time
step the machine has access to the bit of the input denoted by the contents
of the address tape. This is to handle running times smaller than the input
length.) We sometimes make use of the following result, usually attributed to
Nepomnjaščĭı (1970):

Theorem 2.1 (Nepomnjaščĭı 1970). For any ε > 0, if f : {0, 1}l → {0, 1} is
computable by an algorithm running in time poly(l) and using space l1−ε then
f is in ATIME (O(1), l).

A non-boolean function f : {0, 1}n → {0, 1}n′ is in ATIME (O(1), l) if for
every i the i-th output bit f(x)i of f is in ATIME (O(1), l). Note that if
g : {0, 1}n′ → {0, 1} is in ATIME (O(1), l) then the function g ◦ f is also in
ATIME (O(1), l).

We will occasionally consider the following complexity classes: We denote
by CTIME (O(1), l) the extension of ATIME (O(1), l) where we also allow for
counting quantifiers (see, e.g., Wagner 1986; Torán 1988). Along the same
lines we denote by A⊕TIME (O(1), l) the extension of ATIME (O(1), l) where
we also allow for parity quantifiers.

We now define some complexity classes defined in terms of circuits. In
this paper all gates in circuits have unbounded fan-in, with the only exception
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of NOT gates that have fan-in one. The size of a circuit is the number of
edges in the circuit. We denote by AC 0 the class of functions computable
by polynomial-size constant-depth circuits of AND, OR and NOT gates. We
denote by TC 0 the class of functions computable by polynomial-size constant-
depth circuits of AND, OR, NOT and MAJORITY gates.

When we say uniform we always mean DLOGTIME -uniform (see, e.g.,
Barrington et al. 1990; Vollmer 1999). Other types of uniformity (e.g. P -
uniformity) are always explicitly stated. Barrington et al. (1990) showed that
uniform AC 0 is equivalent to ATIME (O(1), log n) (see also Vollmer 1999,
Corollary 4.32). The same techniques give analogous equivalences for the
classes we defined above:

Theorem 2.2 (Barrington et al. 1990). Let f : {0, 1}n → {0, 1}.

◦ f is in uniform AC 0 if and only if it is in ATIME (O(1), log n).

◦ f is in uniform AC 0 with PARITY gates if and only if it is in
A⊕TIME (O(1), log n).

◦ f is in uniform TC 0 if and only if it is in CTIME (O(1), log n).

The following inclusions hold (see, e.g., Vollmer 1999, p. 161): uniform
AC 0 ( uniform AC 0 with PARITY gates ( uniform TC 0 ( L. The first two
inclusions also hold for non-uniform circuits.

For background on circuit complexity and uniformity the reader may consult
the survey by Allender & Wagner (1990) and the excellent textbook by Vollmer
(1999).

Finally, for a complexity class C, the class BP · C consists of the lan-
guages L for which there is V ∈ C and a polynomial p such that x ∈ L ⇒
Pry : |y|=p(|x|)[V (x, y) = 1] ≥ 2/3 and x 6∈ L⇒ Pry : |y|=p(|x|)[V (x, y) = 1] ≤ 1/3.

Hardness and pseudorandomness. We denote by Ul a random variable
uniform on {0, 1}l.

We denote by CKT the class of circuits (with no depth restriction) made
of AND, OR and NOT gates. We denote by AC 0 [d] the class of circuits of
depth d made of AND, OR and NOT gates. We denote by TC 0 [d] the class of
circuits of depth d made of AND, OR, NOT and MAJORITY gates.

Let C be a circuit class (e.g. CKT ,AC 0 [17], . . .). A function f : {0, 1}l →
{0, 1} is (g, δ)-hard for C if for every circuit C ∈ C of size at most g we have

Pr[C(Ul) = f(Ul)] < δ.
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Worst-case hardness corresponds to δ = 1. Our threshold for average-case
hardness is mild average-case hardness, corresponding to δ at most 1− 1/lc for
some c. When we say that a function f : {0, 1}l → {0, 1} is (2Ω(l), 1/2+2−Ω(l))-
hard for C we mean that there is a constant ε > 0 such that for every l the
function f : {0, 1}l → {0, 1} is (2εl, 1/2 + 2−εl)-hard for C.

A function G : {0, 1}u → {0, 1}n is an (n, ε)-pseudorandom generator
(PRG) against C if for all C ∈ C of size at most n we have

∣∣∣Pr[C(G(Uu)) = 1]− Pr[C(Un) = 1]
∣∣∣ ≤ ε.

An n-PRG is an (n, 1/n)-PRG. We refer to u as the seed length of G.

3. Previous PRG constructions from hard functions

In this section we survey previous PRG constructions from hard functions.
This survey is only needed to understand our more efficient PRG constructions
and our new derandomization results. The reader who is only interested in our
negative results can safely skip this section.

We start with PRGs against CKT (recall CKT simply denotes standard
circuits with no depth restrictions). Then we focus on PRGs against constant-
depth circuits.

3.1. PRGs against CKT . Nisan & Wigderson (1994) show how to construct
PRGs from strong average-case hardness assumptions. We recall the definition
of their PRG and state their result.

Definition 3.1 (Nisan & Wigderson 1994). An (m, l) design of size n over a
universe of size u is a collection (S1, . . . , Sn) of subsets of {1, . . . , u}, each of
size l, such that for any 1 ≤ i < j ≤ n, the intersection Si ∩ Sj has size at
most m.

For a function f : {0, 1}l → {0, 1}, and a (log n, l) design of size n over a
universe of size u, the Nisan–Wigderson PRG NWf is defined as

NWf : {0, 1}u → {0, 1}n, NWf (x) = f(x|S1) ◦ · · · ◦ f(x|Sn),

where x|S is the string obtained from x by selecting the bits indexed by S.

Theorem 3.2 (Nisan & Wigderson 1994). If there is a function f : {0, 1}l →
{0, 1} in E that is (2Ω(l), 1/2 + 2−Ω(l))-hard for CKT then there is an n-PRG
against CKT with seed length O(log n) and computable in time poly(n), and
in particular BP · P = P .
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Proof idea. The PRG is NWf for a family of (log n, c log n) designs of size
n over a universe of size d log n, for some constants c, d. Specifically, one needs
such a family for every given c and some d. Nisan and Wigderson show that
these families are computable in time poly(n), and that NWf is an n-PRG.
The “in particular” part is proved as follows: We run the algorithm we want to
derandomize using all the possible outputs of the PRG in place of true random
bits. Then we decide according to majority vote. �

An important point to keep in mind is that, although we are assuming that
f is in E, the PRG is computable in time poly(n). This comes from the fact
that f is evaluated on inputs of length O(log n).

A major line of research in the last ten years has focussed on relaxing the
average-case hardness assumption in Theorem 3.2 to a worst-case one, that is,
the existence of a function in E that is (2Ω(l), 1)-hard for CKT . This was first
achieved through the following hardness amplifications within E.

First, in Babai et al. (1993), random self-reducibility of EXP-complete prob-
lems is used to convert a worst-case hard function to one with mild average-case
hardness.

Theorem 3.3 (Babai et al. 1993). If there is a function f : {0, 1}l → {0, 1}
in E that is (2Ω(l), 1)-hard for CKT , then there is a function f ′ ∈ E that is
(2Ω(l), 1− 1/poly(l))-hard for CKT .

Proof idea. f ′ is a small degree, multi-variate polynomial extension of f .
For a suitable choice of parameters, the random self-reducibility of low-degree
polynomials implies that f ′ has the required hardness. �

Then in Impagliazzo (1995) mild average-case hardness is amplified to con-
stant hardness.

Theorem 3.4 (Impagliazzo 1995). If there is a function f : {0, 1}l → {0, 1}
in E that is (2Ω(l), 1−1/poly(l))-hard for CKT , then there is a function f ′ ∈ E
that is (2Ω(l), 2/3)-hard for CKT .

Proof idea. Let f̃ : {0, 1}O(l) → {0, 1} be

f̃(a, r) := 〈f(x1) ◦ · · · ◦ f(xl), r〉,

where |a| = O(l), |r| = l and x1, . . . , xl are pairwise independent samples in
{0, 1}l obtained from seed a, and 〈·, ·〉 denotes inner product mod 2. In other
words, f̃ is the inner product of the random string r with l evaluations of f on
pairwise independent inputs x1, . . . , xl.
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It is shown in Impagliazzo (1995) that, if we apply this transformation
a constant number of times to f , then we obtain a function with constant
hardness. �

Finally, in Impagliazzo & Wigderson (1997) it is shown how to amplify
constant hardness to the kind of hardness required in Theorem 3.2.

Theorem 3.5 (Impagliazzo & Wigderson 1997). If there exists a function f :
{0, 1}l → {0, 1} in E that is (2Ω(l), 2/3)-hard for CKT , then there is a function
f ′ ∈ E which is (2Ω(l), 1/2 + 2−Ω(l))-hard for CKT .

Proof idea. Consider f ′ : {0, 1}O(l) → {0, 1} defined as

f ′(x, r, v1, p) := 〈f(x|S1 ⊕ v1) ◦ · · · ◦ f(x|Sl ⊕ vl), r〉,

where ⊕ denotes bitwise XOR, (S1, . . . , Sl) is an (l, cl) design of size l over
a universe of size dl, for some c, d as in Theorem 3.2, and (v1, . . . , vl) is a
walk in an expander graph over {0, 1}O(l) with constant degree and bounded
second largest eigenvalue. This walk is obtained by starting at v1 and walking
according to p. �

Combining all these results, one gets:

Theorem 3.6 (Impagliazzo & Wigderson 1997). If there exists a function f :
{0, 1}l → {0, 1} in E that is (2Ω(l), 1)-hard for CKT then there is an n-PRG
against CKT with seed length O(log n) and computable in time poly(n), and
in particular BP · P = P .

After Impagliazzo & Wigderson (1997) PRGs constructions from worst-case
hard functions have been simplified and strengthened (see Sudan et al. 2001;
Impagliazzo et al. 2000; Shaltiel & Umans 2001; Umans 2002). In particular,
last constructions do not fall in the twofold paradigm “hardness amplifica-
tion + NW PRG”, but directly transform worst-case hardness into pseudo-
randomness. However, our results show that transforming worst-case hardness
into pseudorandomness is a substantially harder task than transforming mild
average-case hardness into pseudorandomness. Therefore we use the earlier
constructions that allow us to investigate the fine structure of hardness ampli-
fication.

Klivans & van Melkebeek (1999) prove a space-bounded analogue of The-
orem 3.6. They show how to amplify hardness within linear space, then they
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give a more efficient implementation of the NW PRG. We summarize their final
result in the following theorem.

Theorem 3.7 (Klivans & van Melkebeek 1999). If there exists a function f :
{0, 1}l → {0, 1} in SPACE (l) that is (2Ω(l), 1)-hard for CKT , then there is an n-
PRG against CKT with seed length O(log n) and computable in SPACE (log n),
and in particular BP · L = L.

3.2. PRGs against constant-depth circuits. A natural question, ad-
dressed by Agrawal (2001), is: What are the hardness assumptions needed
for constructing PRGs against more restricted classes of circuits? As pointed
out in Agrawal (2001), in all the proofs of correctness of the above construc-
tions the depth only increases by a constant amount, provided that the circuits
have MAJORITY gates. This gives the following result (recall that TC 0 [d] de-
notes the class of circuits of depth d made of AND, OR, NOT and MAJORITY
gates):

Theorem 3.8 (Agrawal 2001). There is a constant c such that if there is a
function f : {0, 1}l → {0, 1} in E that is (2Ω(l), 1)-hard for TC 0 [d + c], then
there is an n-PRG against TC 0 [d] with seed length O(log n) and computable in
time poly(n). In particular, if for every d there is a function f : {0, 1}l → {0, 1}
in E that is (2Ω(l), 1)-hard for TC 0 [d], then BP · TC 0 = TC 0 subject to P -
uniformity.

Now we focus on PRGs against constant-depth circuits without MAJORITY
gates. Note that Theorem 3.8 does not immediately translate to constant-depth
circuits because it is known that small constant-depth circuits cannot compute
majority (see Furst et al. 1984; H̊astad 1987).

Nisan (1991) constructs an unconditional PRG against constant-depth cir-
cuits, using the results by H̊astad (1987) on the average-case hardness of the
function parity(x1 . . . xl) := (

∑
i xi) mod 2.

Recall that AC 0 [d] denotes the class of circuits of depth d made of AND,
OR and NOT gates.

Theorem 3.9 (Nisan 1991). For every d there is an n-PRG against AC 0 [d]
with seed length logO(1) n, and computable in time poly(n).

Proof idea. The PRG is NWparity for a family of (log n, logc n) designs of
size n over a universe of size loge n, for some constants c, e. Specifically, one
needs such a family for every given c and some e. Nisan shows how to construct
such families in time poly(n). �
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Although Nisan’s PRG does not rely on any complexity assumption, it has
polylogarithmic seed length, and therefore it cannot be used directly to obtain
BP · AC 0 = AC 0 subject to P -uniformity.

One can try to construct, under the assumption that some function is
hard for constant-depth circuits, a PRG with logarithmic seed length against
constant-depth circuits, following the construction in Section 3.1. The difficulty
in this approach is that the proof of correctness of the construction in Theo-
rem 3.5 (and other approaches like Sudan et al. 2001) does not carry through
in small constant-depth circuits. This problem is discussed and then solved by
Agrawal (2001):

Theorem 3.10 (Agrawal 2001). There is a constant c such that if there is a
function f : {0, 1}l → {0, 1} in E that is (2Ω(l), 1)-hard for AC 0 [c · d], then
there is an (n, 1/logO(1) n)-PRG against AC 0 [d] with seed length O(log n) and
computable in time poly(n).

Proof idea. Agrawal’s PRG is obtained by combining a conditional PRG
G with Nisan’s unconditional PRG from Theorem 3.9. Since Nisan’s PRG has
polylogarithmic seed length, we can get a combined PRG with logarithmic seed
length if G has only polynomial stretch (i.e. G : {0, 1}l → {0, 1}lO(1)

). Now, to
construct such a G we can use exactly the same construction in Section 3.1:
Agrawal shows that, since the stretch of G is only polynomial, all the proofs of
correctness carry through in small constant-depth circuits. �

Note that Theorem 3.10 gives an (n, 1/logO(1) n)-PRG instead of an n-PRG.
However, this is sufficient for derandomization purposes.

As we already mentioned, a PRG with logarithmic seed length allows us
to derandomize an algorithm provided that we can compute majority. While
AC 0 cannot compute majority, Klivans (2001) notices that one can use a con-
struction by Ajtai (1993) to approximately compute majority in AC 0 , which
is enough for the derandomization to go through. This gives the following
corollary.

Corollary 3.11 (Agrawal 2001; Klivans 2001). If for every d there is a func-
tion f : {0, 1}l → {0, 1} in E that is (2Ω(l), 1)-hard for AC 0 [d], then BP ·AC 0 =
AC 0 subject to P -uniformity.

The P -uniformity in Theorem 3.8 and Corollary 3.11 can be lowered to
L-uniformity (i.e. circuit families described by a Turing machine running in
logarithmic space) using techniques in Klivans & van Melkebeek (1999); Klivans
(2001).
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4. Our results

In this section we describe our results. The main ones are summarized and
compared to previous results in Table 1. Our main finding is that constructions
from worst-case hard functions have higher complexity than constructions from
mildly hard on average functions.

Improving on the complexity of the design construction in the NW PRG,
we obtain the following:

Theorem 4.1. If there is a function f : {0, 1}l → {0, 1} in ATIME (O(1), l)
that is (2Ω(l), 1/2 + 2−Ω(l))-hard for CKT then there is an n-PRG against CKT
with seed length O(log n) and computable in ATIME (O(1), log n), and

BP · ATIME (O(1), log n) = ATIME (O(1), log n).

In analogy with the results discussed in Section 3.1, to relax the average-case
hardness assumption in Theorem 4.1 we study hardness amplification in the
linear exponential analogue of ATIME (O(1), log n), that is, linear alternating
time with O(1) alternations.

Combining our design construction with a result by Ajtai (1993) on the
complexity of certain expander graphs we show that average-case hardness can
be amplified from mild to strong within linear alternating time.

Theorem 4.2. If there is a function f : {0, 1}l → {0, 1} in ATIME (O(1), l)
that is (2Ω(l), 1 − 1/poly(l))-hard for CKT , then there is a function f ′ ∈
ATIME (O(1), l) which is (2Ω(l), 1/2 + 2−Ω(l))-hard for CKT .

Combining Theorems 4.1 and 4.2 we can construct a PRG computable in
ATIME (O(1), log n) from a function of mild average-case hardness.

Theorem 4.3. If there is a function f : {0, 1}l → {0, 1} in ATIME (O(1), l)
that is (2Ω(l), 1−1/poly(l))-hard for CKT then there is an n-PRG against CKT
with seed length O(log n) and computable in ATIME (O(1), log n), and

BP · ATIME (O(1), log n) = ATIME (O(1), log n).

Theorems 4.1, 4.2 and 4.3 are proved in Section 5.

On the negative side, we show a negative result for black-box PRG con-
structions starting from worst-case hard functions (cf. Section 1.2).
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Theorem 4.4 (informal). Starting from a worst-case hard function, for every
positive constant δ < 1 there is no black-box construction of a PRG : {0, 1}δn →
{0, 1}n computable by a constant-depth circuit of size 2n

o(1)
.

It is interesting to note that the bottleneck is indeed worst-case hardness
amplification:

Theorem 4.5 (informal). Starting from a worst-case hard function f : {0, 1}l
→ {0, 1}, there is no black-box construction of a mildly hard on average func-
tion f ′ : {0, 1}l′ → {0, 1} computable in ATIME (O(1), 2o(l)).

In particular, there is no black-box worst-case hardness amplification within
the polynomial time hierarchy.

Theorems 4.4 and 4.5 are tight in the following sense: The only settings
of parameters which are not ruled out correspond either to computational re-
sources that allow for the worst-case hardness amplification in Theorem 3.3,
which combined with Theorem 4.3 gives a PRG construction from worst-case
hard functions, or else they correspond to hardness assumptions so strong that
worst-case hardness and mild average-case hardness collapse, in which case no
worst-case hardness amplification is needed, and to get a PRG one can apply
Theorem 4.3 directly.

Theorems 4.4 and 4.5 are obtained by showing that constant-depth circuits
cannot compute good extractors and list-decodable codes. These theorems are
formally stated and proved in Sections 6 and 7, respectively.

We note that worst-case to average-case hardness amplification becomes
feasible if one allows PARITY gates. This allows us to construct a PRG com-
putable in A⊕TIME (O(1), log n) from a worst-case hardness assumption.

Theorem 4.6. If there is a function f : {0, 1}l → {0, 1} in A⊕TIME (O(1), l)
that is (2Ω(l), 1)-hard for CKT then there is an n-PRG against CKT with seed
length O(log n) and computable in A⊕TIME (O(1), log n), and

BP · A⊕TIME (O(1), log n) = A⊕TIME (O(1), log n).

Theorem 4.6 is proved in Section 6.1.
What is not completely satisfactory in the above derandomization results is

that our hardness assumptions are qualitatively stronger than the correspond-
ing derandomizations. For example, consider Theorem 4.3. The nonuniform
analogue of ATIME (O(1), log n) is AC 0 , so one wants the same conclusions
under the weaker assumption of a hard function for small constant-depth cir-
cuits. Using Agrawal’s construction presented in Theorem 3.10, we obtain the
following theorem.
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Theorem 4.7. There exists a constant c such that if there is a function
f : {0, 1}l → {0, 1} in ATIME (O(1), l) that is (2Ω(l), 1 − 1/lb)-hard for
AC 0 [c ·max(b, d)], then there is an (n, 1/logO(1) n)-PRG against AC 0 [d] with
logarithmic seed length and computable in ATIME (O(1), log n).

In particular, if there is a constant b such that for every d there is a function
in ATIME (O(1), l) that is (2Ω(l), 1− 1/lb)-hard for AC 0 [d], then

BP · ATIME (O(1), log n) = ATIME (O(1), log n).

Finally, we point out the following derandomization of BP · CTIME (O(1),
log n) under worst-case hardness assumptions for small constant-depth circuits
with MAJORITY gates.

Theorem 4.8. There exists a constant c such that if there is a function
f : {0, 1}l → {0, 1} in CTIME (O(1), l) that is (2Ω(l), 1)-hard for TC 0 [c + d],
then there is an n-PRG against TC 0 [d] with seed length O(log n) and com-
putable in CTIME (O(1), log n).

In particular, if for every d there is a function f : {0, 1}l → {0, 1} in
CTIME (O(1), l) that is (2Ω(l), 1)-hard for TC 0 [d], then

BP · CTIME (O(1), log n) = CTIME (O(1), log n).

Theorems 4.7 and 4.8 are proved in Section 8.
Note that our results could be equivalently stated in terms of DLOGTIME -

uniform circuit classes because of Theorem 2.2.

5. Average-case hardness vs. randomness

In this section we show how to construct an n-PRG G : {0, 1}O(logn) → {0, 1}n
against CKT computable in ATIME (O(1), log n) starting from a function f :
{0, 1}l → {0, 1} in ATIME (O(1), l) that is (2Ω(l), 1− 1/poly(l))-hard for CKT .
In particular, we prove Theorems 4.1, 4.2 and 4.3.

Here our main new technical contribution is the construction of the family
of designs to be used in the NW PRG, which we now discuss.

First we show how to compute pairwise independent samples over {0, 1}l in
ATIME (O(1), l). A matrix T with entries in {0, 1} is Toeplitz if it is constant
on diagonals. It is well known (cf. Goldreich 1997) that if we choose a random
l × l Toeplitz matrix T and a random vector U ∈ {0, 1}l, then the 2l random
variables {Tx+ U : x ∈ {0, 1}l} are pairwise independent over {0, 1}l.

Clearly, an l × l Toeplitz matrix T is uniquely determined by the string
t ∈ {0, 1}2l−1 of its values on the first row and on the first column. The
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following lemma states that we can compute pairwise independent samples
over {0, 1}l in ATIME (O(1), l).

Lemma 5.1. There exists a machine A(t, x, u) which computes Tx + u in
ATIME (O(1), l) for |x| = |u| = l, |t| = 2l − 1 and T the Toeplitz matrix
determined by t.

Proof. Recall that what we need to show is that, given t, x, u and i, we can
compute the i-th bit of Tx + u in ATIME (O(1), l). We actually show that it
can be computed in deterministic time O(l). It is easy to see that the i-th bit
of Tx+ u is

〈ti . . . ti+l−1, x〉+ ui.

Note that the inner product is over l bits, and therefore can be computed in
time O(l). �

We now show our design construction.

Lemma 5.2. For every constant c there is a constant d such that there is a
family {Dn} of (log n, c log n) designs of size n over a universe of size d log n
with the following property: There is a machine in ATIME (O(1), log n) which,
given n and k ≤ n, computes the characteristic vector of the k-th set in Dn.

Proof. Let l := log n. First we show the existence with a probabilistic
argument. Then we show how to derandomize the argument. Finally, we show
how the derandomization is implementable in ATIME (O(1), l).

Existence: We view the universe as cl blocks of b elements each, i.e. let d := cb,
for some b we specify later.

Let us choose S1, . . . , Sn at random from the sets which have exactly one
element in each block. Notice the size of these sets is cl, as required.

For every i 6= j, by a union bound,

Pr[|Si ∩ Sj| ≥ l] ≤
(
cl

l

)(
1

b

)l
≤
(
ecl

l

)l(
1

b

)l
≤
(
ec

b

)l
.

If we take b := 4ec, the latter equals 1/n2. So, by a union bound,

Pr[∃i < j : |Si ∩ Sj| ≥ l] ≤
∑

i<j

Pr[|Si ∩ Sj| ≥ l] ≤
(
n

2

)
1

n2
<

1

2
< 1.

Therefore such designs exist.
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Derandomization: Note that the analysis goes through even if the sets are just
pairwise independent. We use this below to show that we can compute in
ATIME (O(1), log n) the characteristic vectors of the sets in Dn.

ATIME (O(1), l): Each string s ∈ {0, 1}(log b)·cl represents a set S with one el-
ement in each block in the following natural way: View s as cl blocks of log b
bits each; the i-th block of s is an index to an element in the i-th block of
b elements in our universe. We can easily construct a machine T running in
time O(l) computing this transformation, i.e. T (s) ∈ {0, 1}b·cl is the character-
istic vector of the set with one element in each block which s ∈ {0, 1}(log b)·cl

represents.
Let A ∈ ATIME (O(1), l) be the machine given by Lemma 5.1 that, given a

and i, computes the i-th pairwise independent sample over {0, 1}(log b)·cl accord-
ing to a. Note we can check in ATIME (O(1), l) if the samples corresponding
to some a form a design:

∀i 6= j ∈ {0, 1}l
∣∣∣T (A(a, i)) ∩ T (A(a, j))

∣∣∣ ≤ l.

We already know that A and T are in ATIME (O(1), l). Note that com-
puting the intersection size is feasible since we are dealing with strings of
length O(l).

To put our hands on some particular design, we can existentially guess a
string a∗ and universally verify that it is the lexicographically first string whose
samples correspond to a design. The characteristic vector of the k-th set in Dn

is then T (A(a∗, k)). �

Remark 5.3. Our construction of designs is a mix of the constructions in Raz
et al. (1999) and Klivans & van Melkebeek (1999): We choose the sets with
one element in each block, as in Raz et al. (1999), and we derandomize the ar-
gument through pairwise independence, as in Klivans & van Melkebeek (1999).
Neither the construction in Raz et al. (1999) nor the one in Klivans & van
Melkebeek (1999) seems to be easily implementable in ATIME (O(1), log n):
The construction in Raz et al. (1999) seems to require polynomial space in the
size of the design because of the method of conditional probabilities. The con-
struction in Klivans & van Melkebeek (1999) needs to associate to a number
x ≤

(
c logn
d logn

)
the x-th subset of {1, . . . , c log n} of size d log n. This latter oper-

ation can be easily computed in SPACE (log n), going through all the subsets,
but we do not know if it can be computed in ATIME (O(1), log n). Moreover,
the analysis of our construction is simpler than the analysis in Klivans & van
Melkebeek (1999).
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Other constructions of designs are obtained by Hartman & Raz (2003) and
Luca Trevisan & Hoeteck Wee (personal communication, Sept. 2002). These
constructions either do not achieve the parameters of interest here, or, to the
best of our knowledge, are not known to be computable in ATIME (O(1), log n).

Plugging this design construction into the NW PRG we obtain the following:

Theorem 4.1, restated. If there exists a function f : {0, 1}l → {0, 1}
in ATIME (O(1), l) that is (2Ω(l), 1/2 + 2−Ω(l))-hard for CKT then there ex-
ists an n-PRG against CKT with seed length O(log n) and computable in
ATIME (O(1), log n), and BP · ATIME (O(1), log n) = ATIME (O(1), log n).

Proof. The PRG is NWf , with the design construction from Lemma 5.2.
The correctness of this construction has been proved in Nisan & Wigderson
(1994). The fact that NWf ∈ ATIME (O(1), log n) follows from Lemma 5.2
and the fact that f ∈ ATIME (O(1), log n). In analogy with Corollary 3.11,
to obtain BP · ATIME (O(1), log n) = ATIME (O(1), log n) we use the con-
struction for approximate majority by Ajtai (1993). (In Ajtai 1993 the con-
struction is given in terms of first-order definability, but this coincides with
ATIME (O(1), log n), see Barrington et al. 1990.) �

Along the lines of the previous results discussed in Section 3.1, we now
want to relax the strong average-case hardness assumption. Therefore we now
prove some results about hardness amplification within ATIME (O(1), l). These
hardness amplifications will allow us to start from a function with mild average-
case hardness. See Sections 7 and 6.1 for a discussion of worst-case hardness
assumptions.

Lemma 5.4. If there is a function f : {0, 1}l → {0, 1} in ATIME (O(1), l)
that is (2Ω(l), 1 − 1/poly(l))-hard for CKT , then there is a function f ′ ∈
ATIME (O(1), l) that is (2Ω(l), 2/3)-hard for CKT .

Proof. We use the construction in Theorem 3.4. The correctness of this
construction has already been proved in Impagliazzo (1995), so it is only left to
see that f ′ ∈ ATIME (O(1), l). This follows from the construction of a pairwise
independent sample space given in Lemma 5.1. �

Combining our design construction with a result by Ajtai (1993) on the
complexity of certain expander graphs we can amplify from constant hardness
to exponential hardness.
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Lemma 5.5. If there is a function f : {0, 1}l → {0, 1} in ATIME (O(1), l) that
is (2Ω(l), 2/3)-hard for CKT , then there is a function f ′ ∈ ATIME (O(1), l)
which is (2Ω(l), 1/2 + 2−Ω(l))-hard for CKT .

Proof. We use the construction in Theorem 3.5. The correctness of this
construction has already been proved in Impagliazzo & Wigderson (1997), so it
is only left to see that f ′ ∈ ATIME (O(1), l). Lemma 5.2 shows how to compute
the required designs in ATIME (O(1), l).

It remains to show how to compute walks on expanders in ATIME (O(1), l).
This problem, for the parameters of interest here, has already been solved by
Ajtai (1993), using the expander construction by Lubotzky et al. (1988).

Lemma 5.6 (Ajtai 1993). There is a constant α, 0 < α < 1, such that for every
prime n congruent to 1 modulo 4 there is a 6-regular graph Gn on n vertices
with second largest eigenvalue at most α. Moreover, there is a machine in
ATIME (O(1), log n) which, given a prime n congruent to 1 modulo 4, x ∈ Gn

and p, with |p| ≤ O(log n), computes the node in Gn reached starting from x
and following the path specified by p.

�

Combining the above two hardness amplifications we get the following the-
orem.

Theorem 4.2, restated. If there exists a function f : {0, 1}l → {0, 1} in
ATIME (O(1), l) that is (2Ω(l), 1 − 1/poly(l))-hard for CKT , then there is a
function f ′ ∈ ATIME (O(1), l) which is (2Ω(l), 1/2 + 2−Ω(l))-hard for CKT .

This allows us to construct a PRG computable in ATIME (O(1), log n) from
a function of mild average-case hardness.

Theorem 4.3, restated. If there exists a function f : {0, 1}l → {0, 1} in
ATIME (O(1), l) that is (2Ω(l), 1 − 1/poly(l))-hard for CKT then there ex-
ists an n-PRG against CKT with seed length O(log n) and computable in
ATIME (O(1), log n), and BP · ATIME (O(1), log n) = ATIME (O(1), log n).

6. PRGs from worst-case hardness

In this section we discuss PRG constructions from worst-case hardness assump-
tions, and in particular we prove a formal version of Theorem 4.4, establishing
a negative result for black-box PRG constructions from worst-case hardness
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assumptions. In Section 6.1 we discuss the tightness of our negative result and
we also prove Theorem 4.6.

To show our negative result for black-box PRG constructions we proceed
in two steps: First we use the fact, discovered by Trevisan (2001) (see also
Trevisan & Vadhan 2002; Shaltiel 2002), that black-box PRG constructions
give rise to “good” extractors. Then we show that “good” extractors are not
computable by small constant-depth circuits. To explain the intuition behind
this last step we need the notion of noise sensitivity. Roughly speaking, the
noise sensitivity of a function is a measure of how likely the output of the
function is to change when one perturbs the input with random noise. We
show that “good” extractors are very sensitive to noise. Since constant-depth
circuits are not (see Section 9), we obtain our negative result.

We now proceed to turn the above sketch into a formal proof.

Definition 6.1. An oracle algorithm Gf : {0, 1}u → {0, 1}n is an (l, s, ε)-
black-box PRG construction if for every f : {0, 1}l → {0, 1} and for every
A : {0, 1}n → {0, 1} such that

∣∣∣Pr[A(Gf (Uu)) = 1]− Pr[A(Un) = 1]
∣∣∣ ≥ ε

there is an oracle circuit C of size at most s such that CA(x) = f(x) for every x.

Note that in the above definition we did not specify the type of the circuit
C (e.g. CKT ,AC 0 [17], . . .) because it does not play a role in this section. Also
note that if Gf : {0, 1}u → {0, 1}n is an (l, s, ε)-black-box PRG construction
then for every function f : {0, 1}l → {0, 1}, if f is (ns, 1)-hard then Gf is an
n-PRG.

We note that in this notation the PRG construction in Theorem 3.6 is an
(O(log n), nγ , 1/n)-black-box PRG construction for some 0 < γ < 1 (see, e.g.,
Trevisan 2001). This PRG construction also gives u = O(log n), which is what
one needs for high-end derandomization. However, our negative result applies
regardless of this.

We now define extractors. The min-entropy of a random variable X is
defined as H∞(X) := minx log(1/Pr[X = x]).

Definition 6.2 (Nisan & Zuckerman 1996). E : {0, 1}h × {0, 1}u → {0, 1}n
is a (k, ε) extractor if for every random variable X of min-entropy at least k,
and for every T ⊆ {0, 1}n,

∣∣∣Pr[E(X,Uu) ∈ T ]− Pr[Un ∈ T ]
∣∣∣ ≤ ε.

We call T ⊆ {0, 1}n a test and y ∈ {0, 1}u a seed.



cc 13 (2004) Complexity of constructing PRGs 171

Trevisan (2001) shows that black-box PRG constructions are extractors (see
also Trevisan & Vadhan 2002; Shaltiel 2002). For completeness, we now state
and prove this result.

Theorem 6.3 (Trevisan 2001). Let Gf : {0, 1}u → {0, 1}n be an (l, s, ε)-

black-box PRG construction. Then E : {0, 1}2l × {0, 1}u → {0, 1}n defined
as E(x, y) := Gx(y) is an (O(s log s) + log(1/ε), 2ε) extractor.

Proof. Let X be a random variable and T ⊆ {0, 1}n such that
∣∣∣ Pr
X,Uu

[E(X,Uu) ∈ T ]− Pr
Un

[Un ∈ T ]
∣∣∣ > 2ε.

Then, using the triangle inequality we get

Pr
X

[∣∣∣Pr
Uu

[E(X,Uu) ∈ T ]− Pr
Un

[Un ∈ T ]
∣∣∣ ≥ ε

]
> ε.

Since for every x such that |PrUu [E(x, Uu) ∈ T ]− PrUn [Un ∈ T ]| ≥ ε there
must exist an oracle circuit of size at most s such that CT = x, the number
of such x is bounded by the number of oracle circuits of size at most s. There
are at most 2O(s log s) such circuits. Therefore X lands in a set of size at most
2O(s log s) with probability greater than ε, and so H∞(X) < O(s log s)+log(1/ε).

�
The following theorem states that, for every positive constant δ < 1, con-

stant-depth circuits cannot compute good extractors for min-entropy k ≤ nδ

and seed length u ≤ δn. In a subsequent work (“On constructing parallel
pseudorandom generators from one-way functions”, 2004, Electronic Collo-
quim on Computational Complexity, Technical Report 04-074) we show that
small constant-depth circuits can compute extractors when the seed length u
is greater than n.

Theorem 6.4. Fix positive constants ε < 1, δ < 1. Let E : {0, 1}h×{0, 1}u →
{0, 1}n be a (k, ε) extractor, with u ≤ δn, and let E be computable by a circuit
of size g and depth d. Then

logd−1 g ≥ Ω

(
h

k

)
.

Before proving Theorem 6.4 note that, in combination with Theorem 6.3,
it yields the following negative result for black-box PRG constructions. In the
following corollary the reader is invited to ignore the term O(l) that will be
negligible for most settings of parameters.
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Corollary 6.5 (formal version of Theorem 4.4). Let ε := 1/4 and fix a pos-
itive a constant δ < 1. Let G : {0, 1}δn → {0, 1}n be an (l, s, ε)-black-box
PRG construction, and let Gf be computable by an oracle circuit of size g and
depth d. Then

log g ≥
(

2l

s log s

)1/O(d)

−O(l).

In particular, for any fixed constants γ < 1, c ≥ 1, there is no (c log n, nγ , ε)-
black-box PRG construction computable by a constant-depth circuit of
size 2n

o(1)
.

Proof. A circuit Cf of size g and depth d with oracle access to f : {0, 1}l →
{0, 1} can be transformed into another equivalent circuit C ′ of size g ·poly(l) ·2l
and depth O(d) such that Cf (x) = C ′(x, f) for every x, f . Note that C ′ does
not have an oracle but instead takes the truth-table of f as part of the input.
This transformation is simply obtained by replacing every oracle gate of C with
a constant-depth circuit of size poly(l) · 2l that answers the query by looking
at the truth-table of f .

The result then follows from Theorems 6.3 and 6.4. �

To prove Theorem 6.4 we make use of the following fact about low noise
sensitivity of constant-depth circuits, which we deduce by combining results
in Kahn et al. (1988); Boppana (1997); O’Donnell (2002). We denote bitwise
XOR by ⊕.

Lemma 6.6. Let C : {0, 1}n → {0, 1} be a circuit of size g and depth d. Let
X ∈ {0, 1}n be a random input and let Ψ ∈ {0, 1}n be a random noise vector
where each bit is 1 independently with probability δ < 1/2. Then

Pr
X,Ψ

[C(X) 6= C(X ⊕Ψ)] ≤ O(δ logd−1 g).

The proof of Lemma 6.6 requires a detour into Fourier analysis and therefore
we defer it to Section 9.

The following easy lemma states that a random vector of noise has high
min-entropy.

Lemma 6.7. Fix any x ∈ {0, 1}h, and let Ψ ∈ {0, 1}n be a random noise
vector where each bit is 1 independently with probability k/h ≤ 1/2. Then
H∞(x⊕Ψ) ≥ Ω(k).
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Proof. We have

H∞(x⊕Ψ) ≥ log(1/Pr[x⊕Ψ = x]) = log(1/(1− k/h)h) ≥ Ω(k),

where the first inequality holds because k/h ≤ 1/2. �

Proof of Theorem 6.4. For z, z ′ ∈ {0, 1}n let ∆(z, z′) denote the relative
Hamming distance, i.e. Pri[zi 6= z′i]. Let E(x, y)i denote the i-th bit of E(x, y).
Let Ψ ∈ {0, 1}h be a random noise vector where each bit is 1 independently with
probability O(k/h) so that for every fixed x ∈ {0, 1}h we have H∞(x⊕Ψ) ≥ k
by Lemma 6.7. Let X be chosen at random in {0, 1}h.

The main ideas are the following: For every seed y, we expect ∆(E(X, y),
E(X ⊕ Ψ, y)) to be “small” by the low average sensitivity of constant-depth
circuits (Lemma 6.6). We can fix X = x maintaining this property. Now we
can tell whether a sample z comes from E(x⊕Ψ, Uu), rather than being truly
random, checking whether there is a seed y such that ∆(E(x, y), z) is “small”.
This contradicts the fact that E is an extractor since for every fixed x ∈ {0, 1}h
the distribution x⊕Ψ has high min-entropy by Lemma 6.7.

Fix a seed y and a position i ∈ {1, . . . , n}. By Lemma 6.6

Pr
X,Ψ

[E(X, y)i 6= E(X ⊕Ψ, y)i] ≤
O(k logd−1 g)

h
.

By linearity of expectation,

E
X,Ψ,Y

[∆(E(X,Y ), E(X ⊕Ψ, Y ))] ≤ O(k logd−1 g)

h
.

By averaging there must exist a fixed x such that

E
Ψ,Y

[∆(E(x, Y ), E(x⊕Ψ, Y ))] ≤ O(k logd−1 g)

h
.

Pick a small constant ξ > 0. By the Markov inequality,

(6.8) Pr
Ψ,Y

[∆(E(x, Y ), E(x⊕Ψ, Y )) ≥ ξ] ≤ O(k logd−1 g)

h · ξ .

We are now ready to define the test T that will distinguish the output of
the extractor from Un:

T := {z ∈ {0, 1}n : ∃y ∈ {0, 1}u ∆(E(x, y), z) ≤ ξ}.
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By (6.8) we have

(6.9) Pr
Ψ,Y

[E(x⊕Ψ, Y ) ∈ T ] ≥ 1− O(k logd−1 g)

h · ξ .

We now show that a truly random sample will pass the test with very low
probability. Fix a seed y. Then

Pr
Un

[∆(E(x, y), Un) ≤ ξ] ≤ Vn(ξ)

2n
≤ 2(H(ξ)−1)n,

where Vn(ξ) is the size of a Hamming ball in {0, 1}n of radius ξn, and H(x) =
−x log x− (1− x) log(1− x) is the binary entropy function.

Since there are 2u seeds, using a union bound we obtain

(6.10) Pr
Un

[Un ∈ T ] ≤ 2u · 2(H(ξ)−1)n ≤ 2δn+(H(ξ)−1)n = o(1),

where the last equality holds for sufficiently small ξ.
Since H∞(x⊕Ψ) ≥ k, and E is a (k, ε) extractor, the probabilities in (6.9)

and in (6.10) differ by at most ε. Thus we obtain

1− O(k logd−1 g)

h · ξ ≤ ε+ o(1),

which concludes the proof. �

6.1. Tightness. In this section we study in more detail the consequences of
Corollary 6.5. Recall that it established the following tradeoff for an (l, s, ε)
black-box PRG construction G such that Gf is computable by an oracle circuit
of size g and depth d:

log g ≥
(

2l

s log s

)1/O(d)

−O(l).

We investigate what happens in the following two cases:

◦ The PRG construction is computable by a constant-depth circuit of size
g = poly(n).

◦ The PRG construction is based on the existence of a function f : {0, 1}l →
{0, 1} that is (2Ω(l), 1)-hard for CKT .

Note that to obtain for ATIME (O(1), log n) a result analogous to Theo-
rem 3.6 one needs both the above items.
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PRG construction computable by a constant-depth circuit of size
g = poly(n). If one wants g = poly(n) then s ≥ 2l/lO(1). In particular, the
function f : {0, 1}l → {0, 1} we start with must be hard for circuits of size at
least 2l/lO(1). However, the next easy proposition shows that for such big sizes
mild average-case and worst-case hardness collapse! Consequently, under such
an assumption no worst-case to average-case hardness amplification is needed,
and to get a PRG one could apply directly Theorem 4.3 or Theorem 4.7.

We state the next proposition for both CKT and AC 0 [d] since in Section 8
we discuss derandomization under hardness assumptions for constant-depth
circuits.

Proposition 6.11. There is a constant k such that if f : {0, 1}l → {0, 1} is
(k ·2l/lc−1, 1)-hard for CKT (respectively, AC 0 [d+k]) then f is (2l/lc, 1−1/lc)-
hard for CKT (respectively, AC 0 [d]).

Proof. Suppose not. Let C be a circuit of size at most 2l/lc (and depth d)
such that

Pr[C(Ul) 6= f(Ul)] < 1/lc.

Then there are at most 2l/lc inputs x such that C(x) 6= f(x). We can construct
a circuit C ′ of size at most 2l ·2l/lc which, given x, decides whether C(x) 6= f(x)
(recall our size measure is the number of edges). C ′ does a simple lookup table:
For every x such that C(x) 6= f(x) there is an AND gate with l connections
to the corresponding input bits (or their negations). After this layer of AND
gates we put an OR gate with 2l/lc connections. It is easy to see that such a
circuit correctly decides whether C(x) 6= f(x) and has size at most 2 · 2l/lc−1

(and depth 2).
Combining C and C ′ with a XOR we obtain a circuit of size at most 4·2l/lc−1

(and depth d+ 3) computing f everywhere. Contradiction (for k = 4). �

PRG construction based on f : {0, 1}l → {0, 1} that is (2Ω(l), 1)-hard.
If one wants s = 2εl then t ≥ 2Ω(l/d). We now prove that these resources are also
sufficient. Our approach shows that they allow for computing worst-case to mild
average-case hardness amplification. One can then obtain a PRG construction
from worst-case hard functions by combining this hardness amplification with
the construction in Theorem 4.3.

To show that these resources are sufficient for computing worst-case to
mild average-case hardness amplification we examine the construction in The-
orem 3.3. First we show that one parity quantifier is sufficient for it, and then
we note that this parity quantifier can be simulated in ATIME (d, 2O(l/d)).



176 Viola cc 13 (2004)

Theorem 6.12. If there is a function f : {0, 1}l → {0, 1} in ATIME (O(1), l)
that is (2Ω(l), 1)-hard for CKT , then there is a function f ′ ∈ ⊕·ATIME (O(1), l)
which is (2Ω(l), 1− 1/poly(l))-hard for CKT .

Proof. We use the same construction in Theorem 3.3. Let us recall it. Fix
a field F of size 4l2. Let H be the first (lexicographically)

√
|F | elements of F .

Let k := l/log |H|, so that f can be seen as mapping Hk to {0, 1}. Let
f̂ : F k → F be

f̂(x1, . . . , xk) :=
∑

h1,...,hk∈H
f(h1, . . . , hk)δh1(x1) · · · δhk(xk),

where for h ∈ H and x ∈ F ,

δh(x) :=
∏

h′∈H,h′ 6=h

x− h′
h− h′ .

As pointed out in Babai et al. (1993) (see also Agrawal 2001), f̂ has the re-
quired hardness, but f̂ is not yet our final function since it is not boolean.
Define f ′(x, i) := f̂(x)i, note |i| = O(log l). It is easy to see that this final
transformation preserves mild hardness.

Thus we only need to show that f ′ ∈ ⊕ · ATIME (O(1), l). First we show
that given h ∈ H and x ∈ F we can compute δh(x) in ATIME (O(1), l).

To compute δh(x) we need to perform poly(l) field operations. Note that
the field F can be found, and a single field operation computed, in time
poly log lO(1) = poly log l (see Shoup 1990). Moreover, we can use the same
space for all the field operations, for a total of poly log l space. By Theorem 2.1
we can compute δh(x) in ATIME (O(1), l).

Similarly, given h1, . . . , hk, x1, . . . , xk, we can compute f(h1, . . . , hk) ·δh1(x1)
· · · δhk(xk) in ATIME (O(1), l). In fact, f ∈ ATIME (O(1), l) by assumption and
the total time to compute δh1(x1) · · · δhk(xk) is still poly(l), and moreover we
can reuse the same space for the δ’s. So by Theorem 2.1 this product can be
computed in ATIME (O(1), l).

What is left to do is to sum over all 2l possible h1, . . . , hk. Now note we can
assume that the characteristic of F is 2, so addition equals XOR. In particular,
the i-th output bit of f ′ is the parity of the i-th bit of f(h1, . . . , hk)δh1(x1)
· · · δhk(xk) over all 2l possible h1, . . . , hk. Thus f ′ ∈ ⊕ · ATIME (O(1), l). �

Note that the parity quantifier in the above computation ranges over 2l

bits. The following easy lemma states that this parity can be computed in
ATIME (d, 2O(l/d)).
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Lemma 6.13. For every integer d ≥ 1, the parity of n bits can be computed
in ATIME (d, nO(1/d)).

Proof sketch. The idea is trading alternations for time taking advantage
of the associativity of parity. Namely, we partition the input into nO(1/d) pieces,
existentially guess the parity of each, and universally verify that each guess is
correct (recursively with the same algorithm). �

Therefore ATIME (d + O(1), 2O(l/d)) is necessary and sufficient for PRG
constructions from worst-case hard functions.

Combining Theorems 4.3 and 6.12 we obtain Theorem 4.6.

Theorem 4.6, restated. If there exists a function f : {0, 1}l → {0, 1} in
A⊕TIME (O(1), l) that is (2Ω(l), 1)-hard for CKT then there is an n-PRG against
CKT with seed length O(log n) and computable in A⊕TIME (O(1), log n), and
BP · A⊕TIME (O(1), log n) = A⊕TIME (O(1), log n).

7. Worst-case hardness amplification

In this section we discuss worst-case hardness amplification. In particular, we
prove a formal version of Theorem 4.5, establishing a negative result for black-
box worst-case hardness amplifications. As mentioned in the introduction, a
certain negative result for black-box worst-case hardness amplifications already
follows from our previous results. Namely, if there is a black-box worst-case
hardness amplification then combining this with our black-box PRG construc-
tion from mild average-case hardness (Theorem 4.3) one gets a black-box PRG
construction from worst-case hardness, and the negative result in Corollary 6.5
applies. In this section we give a direct proof of a negative result for black-
box worst-case hardness amplification. This direct proof yields a more general
negative result than what one can get using the above approach.

The general ideas in our negative result are the same we employed in our
negative result for black-box PRG constructions in Section 6, with the exception
that “extractors” will be replaced with list-decodable codes : First we show that
every black-box hardness amplification gives rise to a “good” list-decodable
code. Then we show that “good” list-decodable codes are very sensitive to
noise. Since constant-depth circuits are not, we get our negative result.

We now proceed to turn the above sketch into a formal proof.

Definition 7.1. An oracle algorithm Amp : {0, 1}l′ → {0, 1} is an (l, δ, s)-
black-box worst-case hardness amplification if for every f : {0, 1}l → {0, 1} and
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for every A : {0, 1}l′ → {0, 1} such that

Pr[A(Ul′) = Ampf (Ul′)] ≥ δ,

there is an oracle circuit C of size at most s such that CA(x) = f(x).

Note in the above definition we have not specified the type of the circuit C
(e.g. CKT ,AC 0 [17], . . .) because it does not play a role in this section. Also
note that, if Amp is an (l, δ, s)-black-box worst-case hardness amplification,
then for every function f : {0, 1}l → {0, 1}, if f is (s′, 1)-hard then Ampf is
(s′/s, δ)-hard.

We note that in this notation the hardness amplification in Theorem 3.3 is
an (l, 1 − 1/poly(l), poly(l))-black-box hardness amplification. It should also
be noted that in this hardness amplification the input length increases only
by a constant factor, i.e. Ampf : {0, 1}O(l) → {0, 1}. While this is what one
needs for high-end derandomization (see Impagliazzo & Wigderson 1997), our
negative result applies regardless of this.

We give the definition of list-decodable codes:

Definition 7.2. A code C : {0, 1}n → {0, 1}n̄ is (δ, ρ)-list-decodable if for
every x̄ ∈ {0, 1}n̄,

|{y ∈ {0, 1}n : ∆(x̄, C(y)) ≤ δ}| ≤ ρ,

where ∆ is the relative Hamming distance: ∆(x̄, ȳ) := Pri[x̄i 6= ȳi]. We refer
to x ∈ {0, 1}n as messages and to C(x), x ∈ {0, 1}n, as codewords.

Let Amp be a black-box worst-case hardness amplification. The following
lemma, implicit in Sudan et al. (2001) and Trevisan & Vadhan (2002), states
that if we consider the truth table of a function f as a message and the truth
table of Ampf as a codeword, then Amp can be seen as an encoding algorithm.

Lemma 7.3. Let Amp be an (l, δ, s)-black-box worst-case hardness amplifica-
tion. Then Enc : {0, 1}2l → {0, 1}n̄ defined as Enc(f) := Ampf is (1 − δ,
2O(s·log s))-list-decodable.

Proof. Consider A ∈ {0, 1}n̄. By definition of hardness amplification, for
every f such that Prx∈{0,1}n̄ [A(x) = Ampf (x)] ≥ δ, there is an oracle circuit
C of size at most s such that CA(x) = f(x). Therefore the number of such
codewords is bounded by the number of oracle circuits. Noting that there are
at most 2O(s·log s) oracle circuits of size at most s, and that Prx∈{0,1}n̄ [A(x) =
Ampf (x)] = 1−∆(A,Ampf ), completes the proof. �
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The following theorem states that constant-depth circuits cannot compute
list-decodable codes even for very weak parameters.

Theorem 7.4. There is a constant γ, 0 < γ < 1, such that the following
holds. Let C : {0, 1}n → {0, 1}n̄ be a (δ, 2m)-list-decodable code, with m ≤ γn.
If C can be computed by a circuit of size g and depth d, then

logd−1 g ≥ Ω

(
nδ

m

)
.

Before proving Theorem 7.4 note that, in combination with Lemma 7.3, it
yields the following negative result for black-box hardness amplification. While
the following corollary holds even for nonuniform circuits (like Corollary 6.5),
we state a uniform version to point out the connection with the polynomial
time hierarchy.

Corollary 7.5 (formal version of Theorem 4.5). Suppose that Amp is an
(l, 1−δ, s) black-box hardness amplification, and that Ampf is in ATIME (d, t)f .
Then

t ≥ Ω

(
2lδ

s log s

)1/(d+O(1))

.

In particular, for any constants c > 0, ε < 1, there is no (l, 1 − 1/lc, 2lε)-
black-box worst-case hardness amplification computable in ATIME (O(1), 2o(l)).
In particular, there is no black-box worst-case hardness amplification in the
polynomial time hierarchy.

Proof. By standard techniques (see e.g. Furst et al. 1984; H̊astad 1987), the
ATIME (d, t)f computation can be carried out by a circuit of depth d + O(1)
and size 2O(t), where we view the oracle as part of the input. The result then
follows from Lemma 7.3 and Theorem 7.4. �

Remark 7.6. Corollary 7.5 is tight in the same way as Corollary 6.5: The only
settings of parameters that are not ruled out either allow for the construction
in Theorem 6.12, or else correspond to hardness assumptions so strong that
worst-case hardness and average-case hardness collapse, and therefore worst-
case hardness amplification is vacuous (see Section 6.1).

We now prove Theorem 7.4. The proof is very similar to the proof of
Theorem 6.4, and again makes use of Lemmas 6.6 and 6.7.
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Proof of Theorem 7.4. Let Ci(x) denote the i-th bit of C(x). Let Ψ ∈
{0, 1}n be a random noise vector where each bit is 1 independently with prob-
ability O(m/n) so that for every fixed x ∈ {0, 1}n we have H∞(x⊕Ψ) ≥ m+ 1
by Lemma 6.7. Let X be chosen at random in {0, 1}n.

The idea of the proof is to consider the quantity

Pr
i,X,Ψ

[Ci(X) 6= Ci(X ⊕Ψ)]

and to bound it using (1) the assumption that C is (δ, 2m)-list-decodable and
(2) the low average sensitivity of constant-depth circuits (Lemma 6.6).

For every fixed x ∈ {0, 1}n, the list-decodability assumption tells us that
there are at most 2m messages whose codewords are at distance at most δ from
C(x). Fix any such message. Since H∞(x⊕ Ψ) ≥ m + 1, the probability that
x⊕Ψ is equal to this message is at most 2−(m+1). Therefore, by a union bound,

Pr
X,Ψ

[∆(C(X), C(X ⊕Ψ)) ≤ δ] ≤ 2m · 2−(m+1) = 1/2.

Hence

(7.7) Pr
i,X,Ψ

[Ci(X) 6= Ci(X ⊕Ψ)]

≥ Pr
i,X,Ψ

[Ci(X) 6= Ci(X ⊕Ψ) |∆(C(X), C(X ⊕Ψ)) > δ]

· Pr
X,Ψ

[∆(C(X), C(X ⊕Ψ)) > δ]

≥ δ · 1

2
.

On the other hand, by Lemma 6.6 we have

(7.8) Pr
i,X,Ψ

[Ci(X) 6= Ci(X ⊕Ψ)] ≤ m · O(logd−1 g)

n
.

The theorem follows on putting together bounds (7.7) and (7.8). �

8. Derandomization from weaker assumptions

In this section we work on relaxing the hardness assumptions needed in our
derandomization results. In particular, we prove Theorems 4.7 and 4.8.

We start with the latter. As explained in Section 3.2, Agrawal (2001) notices
that all the proofs of correctness of the constructions described in Section 3.1
carry through against small constant-depth circuits with MAJORITY gates.
Combining this with Theorem 4.6, and recalling that counting quantifiers can
simulate parity quantifiers, one gets the following theorem.
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Theorem 4.8, restated. There is a constant c such that if there is a func-
tion f : {0, 1}l → {0, 1} in CTIME (O(1), l) that is (2Ω(l), 1)-hard for TC 0 [c+d],
then there is an n-PRG against TC 0 [d] with seed length O(log n) and com-
putable in CTIME (O(1), log n).

In particular, if for every d there is a function f : {0, 1}l → {0, 1} in
CTIME (O(1), l) that is (2Ω(l), 1)-hard for TC 0 [d], then

BP · CTIME (O(1), log n) = CTIME (O(1), log n).

Now we focus on Theorem 4.7. For proving it we use the same construc-
tion in Theorem 3.10, but without the worst-case to average-case hardness
amplification step in Theorem 3.3. The correctness of this construction has
already been proved in Agrawal (2001), so we only need to show that it has an
implementation in ATIME (O(1), log n).

Recall that this construction combined the conditional PRG from Sec-
tion 3.1 with Nisan’s unconditional PRG (Theorem 3.9). We have already
shown in Section 5 how to compute the conditional PRG. So it is only left to
discuss Nisan’s unconditional PRG. In particular, we need to show that the
following items are computable in ATIME (O(1), log n):

◦ A family of (log n, logc n) designs of size n over a universe of size logd n,
for every given value of c ≥ 1 and some d ≥ c.

◦ parity over logc n bits, for every given value of c.

The result about parity has been proved in Lemma 6.13. We now show that
the design construction in Nisan (1991) is computable in ATIME (O(1), log n).

Lemma 8.1. For every constant c there is a constant d such that there is a
family {Dn} of (log n, logc n) designs of size n over a universe of size logd n
with the following property: There is a machine in ATIME (O(1), log n) which,
given n and k ≤ n, computes the characteristic vector of the k-th set in Dn.

Proof. Let l := log n. Let us first recall the construction in Nisan (1991).
Let lc be the cardinality of a field F . Let d := 2c, i.e. the universe size is
|F |2 = ld. Given a string i of length l, we view the string as the coefficients of
a univariate polynomial î with coefficients in F . The corresponding set is

Si := {a ◦ î(a) : a ∈ F}.
It is pointed out by Nisan (1991) that S1, . . . , Sn is an (l, lc) design. Thus we
only need to show that it is computable in ATIME (O(1), l).
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Our task is, given k and an element j of the universe, to decide whether
j ∈ Sk in ATIME (O(1), l). Let j|c log l be the first c log l bits of j. Now,

j ∈ Sk if and only if j = j|c log l ◦ k̂(j|c log l). To compute k̂(j|c log l) we need to
perform poly(l) field operations. Note that the field F can be found, and a
single field operation computed, in time poly log lO(1) = poly log l (see Shoup
1990). Moreover, we can use the same space for all the field operations, for
a total of poly log l space. Consequently, we can decide whether j ∈ Sk in
ATIME (O(1), l) by Theorem 2.1. �

This completes the proof of Theorem 4.7.

Theorem 4.7, restated. There is a constant c such that if there is a func-
tion f : {0, 1}l → {0, 1} in ATIME (O(1), l) that is (2Ω(l), 1 − 1/lb)-hard for
AC 0 [c ·max(b, d)], then there is an (n, 1/logO(1) n)-PRG against AC 0 [d] with
logarithmic seed length and computable in ATIME (O(1), log n).

In particular, if there exists a constant b such that for every d there is
a function in ATIME (O(1), l) that is (2Ω(l), 1 − 1/lb)-hard for AC 0 [d], then
BP · ATIME (O(1), log n) = ATIME (O(1), log n).

9. Noise sensitivity of constant-depth circuits

In this section we prove Lemma 6.6. Recall that ⊕ denotes bitwise XOR.

Lemma 6.6, restated. Let C : {0, 1}n → {0, 1} be a circuit of size g and
depth d. Let X ∈ {0, 1}n be a random input and let Ψ ∈ {0, 1}n be a random
noise vector where each bit is 1 independently with probability δ < 1/2. Then

Pr
X,Ψ

[C(X) 6= C(X ⊕Ψ)] ≤ O(δ logd−1 g).

Although it is well known that constant-depth circuits have small noise
sensitivity, the bound we need is not stated anywhere, and to prove it we need
to introduce the Fourier machinery and then combine several results.

We now set up the usual Fourier machinery (see e.g. Linial et al. 1993 for
details). Whenever we discuss Fourier coefficients, we will use {+1,−1} instead
of {0, 1}. When working over {+1,−1} we denote also by ⊕ bitwise multipli-
cation. Let f : {+1,−1}n → {+1,−1} be any boolean function. Then f has a
unique representation as a multilinear polynomial in x1, . . . , xn of total degree
at most n. The S-th Fourier coefficient of f , denoted f̂(S), is the coefficient of
the monomial

∏
i∈S xi in this polynomial. We also have, by Parseval’s identity,
∑

S⊆[n]

f̂(S)2 = 1, where [n] := {1, . . . , n}.
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The first result we need is a characterization of the noise sensitivity of a
function in terms of its Fourier coefficients. Such a characterization is given by
O’Donnell (2002).

Lemma 9.1 (O’Donnell 2002). Let f : {+1,−1}n → {+1,−1} be any boolean
function. Let X ∈ {+1,−1}n be a random input and let Ψ ∈ {+1,−1}n be a
random noise vector where each bit is 1 independently with probability δ < 1/2.
Then

Pr
X,Ψ

[f(X) 6= f(X ⊕Ψ)] =
1

2
− 1

2

∑

S⊆[n]

(1− 2δ)|S|f̂(S)2.

The second result we need is a bound on the Fourier coefficients of functions
computed by constant-depth circuits. Boppana (1997) gives a tight bound on
the average sensitivity of constant-depth circuits. Combining this bound with
the characterization of average sensitivity in terms of Fourier coefficients given
by Kahn et al. (1988) (see also Linial et al. 1993), we obtain the following
bound.

Lemma 9.2 (Kahn et al. 1988; Boppana 1997). Let f be computable by a cir-
cuit of size g and depth d. Then

∑

S⊆[n]

|S|f̂(S)2 ≤ O(logd−1 g).

We can now prove Lemma 6.6.

Proof of Lemma 6.6. Let f : {+1,−1}n → {+1,−1} be the function
computed by C. We have

Pr
X,Ψ

[C(X) 6= C(X ⊕Ψ)]

=
1

2
− 1

2

∑

S⊆[n]

(1− 2δ)|S|f̂(S)2 (by Lemma 9.1)

≤ 1

2
− 1

2

∑

S⊆[n]

(1− 2δ|S|)f̂(S)2 (by Bernoulli’s inequality)

=
1

2

∑

S⊆[n]

2δ|S|f̂(S)2 (by Parseval’s identity)

≤ O(δ logd−1 g) (by Lemma 9.2),

which proves the lemma. �
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10. Open problems

Notice the gap between Theorems 4.6 and 4.8: While parity quantifiers are
sufficient for a PRG construction from a worst-case hard function, we seem
to need hardness against circuits with MAJORITY gates for proving its cor-
rectness. (Recall that, for constant-depth computation, MAJORITY gates are
strictly more powerful than PARITY gates.) This is what prevents us from
using the known exponential lower bounds for constant-depth circuits with
PARITY gates (Razborov 1987; Smolensky 1987) to construct a PRG against
small constant-depth circuits with PARITY gates. (The related question of the
existence of hardcore sets for such circuits was independently raised by Eric
Allender and Sambuddha Roy, personal communication, Nov. 2002.) This is
also what prevents us from constructing, under some complexity assumption
for small constant-depth circuits, an (n, 1/n)-PRG against AC 0 [d] with seed
length O(log n) (Theorems 3.10 and 4.7 only give an (n, 1/logO(1) n)-PRG.)

The bottleneck is not the NW PRG, whose proof of correctness does not
rely on the use of MAJORITY gates, rather the bottleneck is hardness am-
plification. As we have seen in Section 7, black-box hardness amplification
gives rise to “good” list-decodable codes. Moreover, these codes are locally
list-decodable, i.e. for every corrupted codeword there is a small circuit which,
given oracle access to the corrupted codeword, computes the associated mes-
sage everywhere (see, e.g., Sudan et al. 2001). The difficulty is that, while
parity quantifiers are sufficient for computing “good” error correcting codes
(e.g. linear codes), it seems that MAJORITY gates are needed for locally
list-decoding of “good” error correcting codes. We believe that MAJOR-
ITY gates are indeed necessary. In particular we conjecture that no locally
list-decodable code with the parameters of the code in Sudan et al. (2001)
can be locally list-decoded by small constant-depth circuits with PARITY
gates.
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