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TOWARDS PROVING STRONG DIRECT

PRODUCT THEOREMS

Ronen Shaltiel

Abstract. A fundamental question of complexity theory is the direct
product question. A famous example is Yao’s XOR-lemma, in which one
assumes that some function f is hard on average for small circuits (mean-
ing that every circuit of some fixed size s which attempts to compute f
is wrong on a non-negligible fraction of the inputs) and concludes that
every circuit of size s′ only has a small advantage over guessing randomly
when computing f⊕k(x1, . . . , xk) = f(x1)⊕· · ·⊕f(xk) on independently
chosen x1, . . . , xk. All known proofs of this lemma have the property
that s′ < s. In words, the circuit which attempts to compute f⊕k is
smaller than the circuit which attempts to compute f on a single input!
This paper addresses the issue of proving strong direct product asser-
tions, that is, ones in which s′ ≈ ks and is in particular larger than s.
We study the question of proving strong direct product question for
decision trees and communication protocols.

Keywords. Product theorems, XOR-lemma, hardness amplification,
average case complexity.

Subject classification. 68Q17, 68Q15.

1. Introduction

1.1. The direct product question. Suppose you are given a biased coin
(that is, one in which the probability to get heads is 1/2 + α), and you toss it
k times and compute the exclusive-or of the outcomes. It is easy to see that
the bias of the “new coin” you obtain goes to zero exponentially fast with k.
(More precisely, the “new coin” will have probability 1/2 + (2α)k/2.)1 The
direct product question asks to what extent this is true in the computational
world.

1A nice measure of the bias of a random coin is the advantage of the coin which is defined
to be the difference between the probabilities of heads and tails, or 2α in the notation above.
The nice thing about this measure is that the advantage of the “new coin” is exactly the
advantage of the original coin raised to the kth power. To see this one encodes heads as 1 and
tails as −1. In this encoding the advantage of a coin Z is given by E(Z), and exclusive-or is
multiplication. It now follows that the advantage of

∏
Zi is given by E(

∏
Zi) =

∏
E(Zi).
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Suppose you have a boolean function which is hard on average for some
complexity class. This intuitively means that from the point of view of any
algorithm from that class the outcome of the function on a uniformly chosen
input looks like a (biased) random coin. Is it true that XORing k independent
copies of this “biased coin” produces a bit which is much less biased from the
point of view of algorithms in the given complexity class? Such assertions
are referred to as direct product assertions. It turns out that proving such
assertions is much more involved than one might expect at first glance.

1.1.1. Informal statement of the question. Given a boolean function f
over domain X and an integer k, we define a function f⊕k : Xk → {0, 1} by

f⊕k(x1, . . . , xk) = f(x1)⊕ · · · ⊕ f(xk).

The intuition presented before suggests that if f is hard on average (say f can
be computed correctly by some complexity class on at most a (1/2+α)-fraction
of the inputs), then we expect f⊕k to be computed correctly on a fraction of
inputs which is about 1/2 + αk. In other words, we expect f⊕k to become
“exponentially harder” on average. What makes this problem much harder
than the information theoretic problem about the exclusive-or of independent
random coins presented above is that the algorithm attempting to compute
f⊕k(x1, . . . , xk) may correlate computations on different inputs, which intu-
itively corresponds to making the coins correlated. We will use an “abstract
model of computation” to model the complexity class, as the direct product
question can be stated in many computational models.

1.1.2. An abstract model of computation. Consider some computa-
tional resource (such as circuit size, decision tree depth, number of bits ex-
changed in a communication protocol. . . ). Let Resr denote the class of all
functions computable using r “units” of the resource. In this paper we con-
sider the following concrete classes:

◦ Sizes, the family of functions computed by circuits of size s.

◦ Commc, the family of functions (on two inputs) computed by a determin-
istic communication protocol which exchanges c bits.

◦ Depthd, the family of functions computed by decision trees of depth d.

Saying that a function f is “hard on average” for Resr means that every
algorithm from Resr computes f correctly on a fraction of the inputs which is
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bounded away from one2. We use the following notation:

SucRes
r (f) = max

P∈Resr
Pr

x∈RX
[P (x) = f(x)].

Since f is boolean it can always be computed correctly on at least half the
inputs. Thus, we will be interested in the advantage the algorithm can get over
guessing randomly, which is given by SucRes

r (f) − 1/2. It turns out that it is
nicer to work with this quantity when it is normalized. We define the advantage
Resr has on f in the following way:

AdvRes
r (f) = 2(SucRes

r (f)− 1/2).

When normalized this way, the advantage also has the following useful in-
terpretation (see also footnote 1):

AdvRes
r (f) = max

P∈Resr
Pr

x∈RX
[P (x) = f(x)]− Pr

x∈RX
[P (x) 6= f(x)].

1.1.3. Formal statement of the direct product question. The direct
product question can now be presented as follows:

The direct product problem: Is it true that for all f and r, k:

AdvRes
r (f) ≤ p⇒ AdvRes

r′ (f⊕k) ≤ p′,

where r′ and p′ are parameters which may depend on r, p and k? In words, one
supposes that f is hard on average to algorithms with r units of the resource
and concludes that f⊕k is hard on average to algorithms having r′ units of the
resource. Naturally, the assertion is stronger when r′ is large and p′ is small.
It seems reasonable to allow the algorithm attempting to compute f⊕k to use
r′ = kr units of the resource. This will at least enable it to run k copies of the
best algorithm for f in Resr on the k independent inputs. This strategy indeed
computes f with advantage AdvRes

r (f)k. Thus, we say that the assertion is
optimal when r′ = kr and p′ = pk.

However, it turns out that such assertions are often proven for much smaller
r′. As we will see, in some cases only results with r′ � r � kr are known. In
this paper we are interested in proving direct product assertions for large r ′.
We will call such assertions strong if r′ = Ω(kr) and p′ = pΩ(k).

The strong-direct product problem: Is it true that for all f and r, k,

AdvRes
r (f) ≤ p⇒ AdvRes

Ω(kr)(f
⊕k) ≤ pΩ(k)?

2In this paper we restrict ourselves to average case hardness relative to the uniform
distribution. Some of our results do not generalize to arbitrary probability distributions.
See the open problems in Section 6.
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The choice of r′ = Ω(kr) is not that important. Most of our results give
tradeoffs between r′ and p′. What is important (and different than most of the
previous work in this area) is that we are interested in r′ � r.

1.1.4. The concatenation variant. A different variant of the direct prod-
uct problem that is often considered is the concatenation variant. It involves
replacing the function f⊕k with f (k)(x1, . . . , xk) = (f(x1), . . . , f(xk)). In words,
rather than trying to compute the exclusive-or of the outputs of the function on
independent inputs, the algorithm is asked to compute all the outputs correctly
simultaneously. In this setup the wanted assertion is the following:

SucRes
r (f (k)) ≤ p⇒ SucRes

r′ (f) ≤ p′.

Once again, it is desired to have r′ = kr and p′ = pk, and one can define
optimal and strong such assertions in an analogous way. The two variants of
the direct product question are related. In particular, an optimal direct product
theorem in the xor variant implies an optimal direct product theorem in the
concatenation variant.

1.2. Previous work. The most studied computational model for direct prod-
uct results is boolean circuits. The so-called “Yao’s XOR-lemma” (Yao 1982)
can be stated this way in our terminology:

AdvSize
s (f) ≤ p⇒ AdvSize

s′ (f⊕k) ≤ pk + ε,

where s′ = s(ε/n)O(1), and n is the number of inputs of f . Note that in this
result s′ is actually smaller than s. In other words, the circuit which tries to
compute f on many instances is smaller than the one which tries to compute
f on one instance. This is unavoidable in the sense that all known proofs of
this lemma (Goldreich et al. 1995; Impagliazzo 1995; Impagliazzo & Wigderson
1997; Levin 1987) work by proving the contrapositive claim: AdvSize

s′ (f⊕k) >
pk + ε⇒ AdvSize

s (f) > p, and use the circuit which computes f⊕k too well as a
subcircuit in the circuit that computes f too well. (See Goldreich et al. 1995
for a survey on Yao’s XOR-lemma.)

Another weakness of this result is that p′ is always larger than 1/s, which
means that one does not benefit from taking k > log s. An unpublished result
which is commonly attributed to Steven Rudich shows that all “black box”3

proofs of the XOR-lemma suffer from this flaw. Thus, proving a result in

3“Black box” refers to proofs like the ones mentioned above, that use a circuit which
computes f⊕k too well as a black box in a circuit that computes f too well.
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which s′ > s or p′ < 1/s seems to be beyond our current ability, as we do not
know how to handle boolean circuits other than using them as black boxes.
It should be noted that despite these weaknesses Yao’s XOR-lemma has many
applications in complexity theory.

The direct product question was also studied in other computational mod-
els. (We mention only previous work which is relevant to this paper, and the
interested reader may find more references in Impagliazzo et al. 1994). Nisan
et al. (1999) study the concatenation variant of the direct product question in
decision trees. They consider a specific variant of decision trees which they call
“decision forests”. A k-decision forest of depth d consists of k decision trees of
depth d. Each is allowed to query all k inputs, and the ith tree is supposed to
compute f(xi). The final output of the decision forest is the concatenation of
outputs of individual trees. Let us denote the class of all functions computable
by depth d k-decision forests by Forestk,d. With this terminology their result
could be stated this way:

SucDepth
d (f) ≤ p⇒ SucForest

k,d (f (k)) ≤ pk.

(Here f (k)(x1, . . . , xk) = (f(x1), . . . , f(xk)), see Section 1.1.4). This result is
optimal in the sense that a decision forest of depth d can run k decision trees of
depth d in parallel and compute f (k) with success SucDepth

d (f)k. Parnafes et al.
(1997) used the technique of Raz’s parallel repetition theorem (Raz 1998) to
study the concatenation variant of the direct product question for communica-
tion protocols. They prove a product theorem for “forests of c-bit communica-
tion protocols”. (A forest of c-bit communication protocols is a collection of k
c-bit communication protocols, each is over all k inputs, and the ith protocol is
supposed to compute the function on the ith input.) Their result is similar in
flavor to that of Nisan et al. (1999) with the exception that p′ = pΩ(k/c). This
dependence on c comes from the technique of Raz, but whereas a dependence
on c is unavoidable in the parallel repetition theorem (as was shown by Feige &
Verbitsky 2002), it is open whether the result of Parnafes et al. (1997) is best
possible for forests of communication protocols.

1.3. Our results. Our first result is a general counterexample which shows
that strong direct product assertions (or even ones with r′ sufficiently larger
than r) are simply not true. This counterexample applies to many models of
computation and in particular to boolean circuits, communication protocols
and decision trees.

While this counterexample rules out the possibility of proving strong direct
product assertions, it seems to exploit defects in the formulation of the prob-
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lem rather than show that our general intuition for direct product assertions
is false. Intuitively, the algorithm of the counterexample is able to compute
f⊕k correctly with high probability by using its resources in an unbalanced
way allocating a lot of its resources to specific instances. This does not con-
tradict our intuition for why strong direct product assertions are true as this
is not a counterexample to our belief that it is not beneficial for the algorithm
to correlate computations on different inputs. We elaborate on this point in
Section 3.3. In any case, as the assertion is not true as is, in order to capture
our intuition and prove results with a strong direct product flavor we have to
either strengthen the assumption or weaken the conclusion.

1.3.1. Strengthening the assumption: demanding more information
on the function. The function presented in the counterexample has a large
subset of “easy inputs”, and it is feasible to check whether a given input is
“easy”. It is natural to ask what kind of restrictions can be placed on the
function in order to make a strong direct product assertion hold. We give
such a restriction for communication protocols. This is done by insisting that
the function f has low discrepancy. (The discrepancy of f(x, y), denoted by
disc(f) measures how unbalanced f is in large rectangles.) It is standard that
low discrepancy entails that the function is hard on average for communication
protocols. More precisely,

AdvComm
c (f) ≤ disc(f)2c.

However, having low discrepancy is stronger than being hard on average and
it intuitively says that the function has no large recognizable subset of easy
inputs. The main result of this paper is the following inequality:

AdvComm
kc/3 (f⊕k) ≤ O(disc(f)2c)k/3.

(We stress that the constant hidden in the O(·) notation is a universal constant
and does not depend on the choice of f .) This inequality has the following
interpretation: If the fact that AdvComm

c (f) ≤ p follows from the fact that f
has low discrepancy (disc(f) ≤ p2−c) then a strong direct product assertion
holds for f . We would like to point out that the “discrepancy method” is
the most common way to prove that f is hard on average for communication
protocols.

We prove the above statement by proving a “product theorem” for discrep-
ancy. More precisely, we prove that

disc(f⊕k) = O(disc(f))k/3.
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(Again, the constant hidden in the O(·)-notation does not depend on f .) The
main step in this proof establishes a connection between the discrepancy of a
matrix and its spectral norm.

1.3.2. Discrepancy and spectral norm. A communication complexity
problem f can be encoded as a matrix A where Axy = (−1)f(x,y). The main
lemma of the paper gives the following connection between the discrepancy of
A and its spectral norm ‖A‖2:

Ω

(‖A‖2

N

)3

≤ disc(A) ≤ ‖A‖2

N
.

The proof uses the method of Nisan & Wigderson (1995). This lemma imme-
diately implies the “product theorem” for discrepancy as ‖A⊗k‖2 (the spectral
norm of the tensor product of A with itself k times) is equal to ‖A‖k2. Thus, once
one can switch between discrepancy and spectral norm, the multiplicativity of
the spectral norm gives the “product theorem” for discrepancy.

1.3.3. Weakening the conclusion: imposing restrictions on the algo-
rithm. Another way to prove a strong direct product assertion is to weaken
the conclusion. We suggest proving the assertion only for algorithms with cer-
tain restrictions. In a way the “forest model” of Nisan et al. (1999) is such a
restriction. However, the forest model is only suitable for the “concatenation
variant” of the direct product question and makes no sense in the “XOR vari-
ant”. In this paper we suggest a different restriction. The algorithm presented
in the counterexample has the property that it uses its resource in an “unfair”
way spending more than r units on particular inputs. We suggest a “fairness”
restriction on the algorithm. Some evidence for the potential of this direction is
that we can prove an optimal direct product assertion for “fair” decision trees.

A decision tree of depth kd over variables x1, . . . , xk is fair if on every path
from the root to a leaf at most d bits from each variable are queried. Let us
denote the class of fair decision trees of depth kd by FairDepthkd. It is not
hard to prove that

AdvDepth
d (f) ≤ p⇒ AdvFairDepth

kd (f⊕k) ≤ pk.

It is our hope that the two directions we present here can be extended to
prove strong direct product assertions for stronger computational models.

1.4. Organization of the paper. In Section 3 we present our counterex-
ample. In Section 4 we prove a strong direct product assertion for communi-
cation protocols assuming the function has low discrepancy. In Section 5 we
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prove a strong direct product theorem for fair decision trees. In Section 6 we
present open problems and possible generalizations.

2. Preliminaries

We use ⊕ to denote the exclusive-or. For two matrices A and B of size N ×N ,
we use A⊗B to denote their tensor product. More precisely A⊗B is an N 2×N2

matrix. We think of it as an N ×N matrix with entries being matrices of size
N ×N and place a copy of the matrix Aij · B in the ith row and jth column.
The tensor product of A with itself k times is denoted by A⊗k.

We use Sizes to denote the class of all functions (over arbitrary number of
inputs) computable by boolean circuits of size s.

We use Commc to denote the class of all functions of two arguments f(x, y)
which can be computed by a c-bit communication protocol. The exact definition
of a communication protocol can be found in any textbook on this subject
(e.g., Kushilevitz & Nisan 1997). Loosely speaking, a communication protocol
is a protocol for two players which works in steps. At each step the protocol
specifies a player, and this player sends a bit which may depend on his input
and previously sent bits. The only property of such protocols used in this paper
is that such a protocol induces a partition of the inputs into 2c rectangles, and
on each such rectangle the answer of the protocol is constant.

We use Depthd to denote the class of all functions computed by a decision
tree of depth d. A decision tree is a binary tree in which every internal node
is labeled with a specific bit of the input, and leafs are labeled with outputs.
An input to the decision tree defines a path from root to leaf in the obvious
way (at each node the variable which is labeled by the node is inspected and
the path continues to the left son if the value is zero and to the right one if the
value is one). The output of the tree on this input is the leaf label.

3. A general counterexample

In this section we give a general counterexample to direct product assertions
with r′ � r which works for boolean circuits, decision trees and communication
protocols. We show that given a function which is hard given r units of the
resource and easy given slightly more units, we can construct a function which
is hard given r units of the resource, and yet computing it on k independent
inputs is easy. We present the example using our general notation in Section 3.1
and then draw conclusions for specific models in Section 3.2. In Section 3.3 we
discuss the implications of this counterexample.
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3.1. The general setting. We will present a function which is hard on
average given r units of the resource, yet f⊕k can be computed correctly with
probability 1 − 2−Ω(k) given r′ units of the resource, for r′ sufficiently larger
than r.

The counterexample works assuming the existence of a function which is
hard given r units of the resource, and easy given slightly more units. Formally,
we assume the existence of a function g : {0, 1}n → {0, 1} and r < r̄ such that:

◦ SucRes
r (g) ≤ 3/4,

◦ g ∈ Resr̄.

Another ingredient is an easy function (over few inputs) which answers one
on a prescribed fraction of its inputs. Formally, given a rational constant q < 1
we assume the existence of a function h : {0, 1}l → {0, 1} and a small number
r∗ such that

◦ h ∈ Resr∗ ,

◦ Pry∈R{0,1}l[h(y) = 1] = q.

Our counterexample function is a combination of the easy and hard functions.

Definition 3.1. We define a function fq : {0, 1}n × {0, 1}l → {0, 1} in the
following way:

f(x, y) =

{
g(x) if h(y) = 1,
0 if h(y) = 0.

An algorithm for computing f⊕k can utilize its resource smartly by spending
a lot of the resource on the (expectedly few) inputs in which f involves the hard
function, and spend a very small amount on other inputs. This is made formal
in the following lemma.

“Lemma” 3.2. 4 The following inequalities hold:

◦ SucRes
r (f) ≤ 1− q/4.

◦ If r′ ≥ 2qkr̄ + kr∗ then SucRes
r′ (f⊕k) ≥ 1− 2−Ω(k).

4The lemma is put in quotes because the formal statement requires some natural prop-
erties of the “abstract” computational model. Stating these properties precisely is tedious.
The reader can verify that the algorithm described in the proof can be carried out in any
of the models studied in this paper: boolean circuits, communication protocols and decision
trees (as well as in any computational model that comes to mind).
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Proof. For the first item note that an algorithm which is correct on f with
probability greater than 1− q/4 induces an algorithm that is correct on g with
probability greater than 3/4. More precisely, given an input for g, one can fix
a y such that h(y) = 1 and run the algorithm on the pair of inputs. For the
second item, note that when (y1, . . . , yk) are randomly chosen, we expect qk of
them to have h(yi) = 1. By Chernoff’s inequality the probability that more
than 2qk of them have h(yi) = 1 is bounded by 2−Ω(k). We can check which of
the yi’s have h(yi) = 1 using kr∗ units of the resource. Assuming the constant
function zero can be computed using 0 units of the resource, we can compute
the function f on (xi, yi)’s such that h(yi) = 0. Assuming that there are at
most 2qk of yi’s such that h(yi) = 1 we can use 2qkr̄ units to compute the
outputs of the “hard inputs”. (Here we use some natural closure properties of
the computational model.) Thus, SucRes

kr∗+2qkr̄(f
⊕k) ≥ 1− 2−Ω(k). �

Remark 3.3. It should be noted that the function f constructed here is not
as pathological as it may seem at first glance. Impagliazzo’s hard core theorem
(Impagliazzo 1995) shows that (at least in the boolean circuit model) every
function f with SucSize

s (f) ≤ 1 − q has a large subset of the inputs on which
any (slightly smaller) circuit succeeds with probability roughly 1/2. In our
example the “hard core” of f is the function g. The unnatural state of affairs
in our example is that the function is easy outside of the hard core, and deciding
whether an input is in the hard core is an easy computational task.

3.2. Conclusions for specific models. In order to use the counterexample
from the previous section we will show the existence of the required “building
block” functions g and h for various computational models.

We will use the same function as “h” in all constructions. Namely we choose
q = 2−l for integer l, and define h : {0, 1}l → {0, 1} to take the value one if all
its inputs are zeroes, and zero otherwise. It is immediate to verify that h is in
Comml,Depthl, SizeO(l), and accepts a q-fraction of its inputs.

3.2.1. Communication protocols. For communication complexity we use
the inner product function as “g”. More precisely, consider the function g :
{0, 1}n × {0, 1}n → {0, 1} defined by g(x, y) =

∑
1≤i≤n xiyi mod 2. As do all

functions over n bit inputs, g ∈ Commn. It is known that g is very hard on
average given n/4 bits of communication5.

5Preparing for Section 4, we remark that the proof of that statement works by showing
that g has very low discrepancy.
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Theorem 3.4 (Chor & Goldreich 1988). AdvComm
n/4 (g) ≤ 2−Ω(n).

Using “Lemma” 3.2 with a sufficiently small constant q we conclude that
for c = n/4 and large enough k, AdvComm

Ω(kc) (f⊕k) > AdvComm
c (f). Thus, there

are no strong direct product assertions for communication protocols.

3.2.2. Decision trees. For decision trees we choose g to be the parity func-
tion g(x) =

⊕
1≤i≤n xi. It is immediate that g ∈ Depthn and AdvDepth

n−1 (g) = 0.
Once again we can use “Lemma” 3.2 to get a counterexample with the same
behavior of parameters as the counterexample for communication protocols.

3.2.3. Boolean circuits. The counterexample applies also to boolean cir-
cuits. That is, it is possible to prove the existence of a function g which is
hard on average for some size and easy for slightly larger size. (Any function
can be computed in size roughly 2n/n and a counting argument could be used
to show that there is a function which is hard on average for slightly smaller
size.) However, in this model, there are much stronger counterexamples. This
is shown by the following “mass production” theorem by Uhlig.

Theorem 3.5 (Uhlig 1974). For every function f : {0, 1}n → {0, 1} and k =
2o(n/ logn), we have f⊕k ∈ Size2nn−1+o(2nn−1).

This means that if f has near maximal circuit complexity then huge sav-
ings can be made when computing f on many inputs. This is much stronger
than our counterexample as in this setup savings can actually be made on the
worst x1, . . . , xk whereas our example only shows that savings can be made on
“average” x1, . . . , xk.

It should be pointed out that this is not the case in decision trees. It is
easy to show that if f 6∈ Depthd then f⊕k 6∈ Depthkd, and no savings can be
made on the worst case. It is not known whether significant savings can be
made on the worst case in communication protocols. This question is known
as the “direct sum conjecture” of Karchmer et al. (1995). In some sense (see
Karchmer et al. 1995), a negative answer will supply a lower bound for boolean
circuits with small depth.

3.3. Interpretation of the counterexample. It seems that the counterex-
ample does not contradict our intuition as to why direct product assertions are
true. When proving a direct product assertion, the main task is to show that
the algorithm does not benefit from correlating computations on different in-
puts. In the counterexample we presented no real correlations occur. Instead,
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the algorithm uses its resource in an unbalanced way, spending a lot of it on
particular inputs. This is best explained when considering the concatenation
variant of the direct product question. In this case, the algorithm outputs
answers for each input. Note that with probability 1 − 2Ω(k) each of these
answers depend only on its corresponding input. Moreover, the algorithm is
able to compute f on single instances with advantage greater than p. This is
something which is ruled out when r′ ≤ r.

We would like to change the formulation of the direct product problem to
rule out such cases. In the next two sections we suggest two such approaches.
One involves adding assumptions on the function f , in hope that such assump-
tions can prevent the situation of the counterexample. Intuitively, if f is hard
in a “robust way”, any additional resources spent on f on one instance will
result in a “loss” in another instance, and it will not be beneficial to treat the
inputs unfairly. The other approach involves restricting the algorithm in a way
that ensures that it cannot have advantage greater than p when attempting to
compute f on any single coordinate.

4. A discrepancy product theorem

In the previous section we have seen that a direct product assertion for com-
munication protocols is not true if we allow the protocol trying to compute f⊕k

to pass slightly more bits than the protocol attempting to compute f . In this
section we show that if f has “low discrepancy” then a strong direct product
theorem holds for f .

A communication complexity problem f(x, y) can be viewed as a matrix
A such that Axy = f(x, y). It will be convenient to think of the outputs of
a communication complexity problem as {−1, 1} rather than {0, 1}, thus the
matrix will have entries in {−1, 1}. The choice of {−1, 1} is made so that the
tensor product of A with itself k times (denoted by A⊗k) is exactly the matrix
of the communication problem f⊕k. We assume the inputs of both players are
of the same size, which means that A is a square matrix.

For a set C ⊆ [N ], we use χC to denote the characteristic vector of C, that
is, (χC)i = 1 for i ∈ C and (χC)i = 0 for i 6∈ C.

Definition 4.1. Let A be an N by N matrix with entries in {−1, 1}. For a
rectangle R = C ×D, where C,D ⊆ [N ], we define

discR(A) =
|χtCAχD|
N2

.
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The discrepancy of A is defined in the following way:

disc(A) = max
R

discR(A),

where the maximum is taken over all rectangles R = C ×D with C,D ⊆ [N ].

For a fixed rectangle R = C ×D, |χtCAχD|/|C ×D| measures how unbal-
anced the matrix A is in the rectangle R. If R is a rectangle reached in a leaf
of a communication protocol then this quantity is the advantage the protocol
gets in the rectangle R. The definition of discR(A) multiplies this quantity by
|C ×D|/N 2 to take into account the volume of the rectangle. More precisely,
the advantage is multiplied by the volume of the rectangle R to give the con-
tribution of R to the overall advantage of the protocol. This normalization is
made so that low discrepancy will imply that the problem is hard on average.
This is made formal in the following lemma.

Lemma 4.2. AdvComm
c (A) ≤ disc(A)2c.

Proof. Let P be the c-bit communication protocol which achieves the max-
imum in the definition of AdvComm

c (A). A c-bit communication protocol par-
titions A into 2c disjoint rectangles. On each rectangle Ri = Ci × Di the
advantage of the protocol in the rectangle is given by |χtCiAχDi |/|Ci×Di|. We
can now bound the advantage of P :

AdvComm
c (A) =

∑

1≤i≤2c

|Ci ×Di|
N2

· |χ
t
Ci
AχDi |

|Ci ×Di|
≤ 2cdisc(A). �

The requirement that disc(A) is small is stronger than that A is hard on
average. Still, the most common way of showing that communication problems
are hard on average is by showing that they have low discrepancy.

Remark 4.3. In Remark 3.3 we pointed out that the function of the coun-
terexample has a large set of easy inputs, and it is possible to check whether
a given input is easy. Intuitively, low discrepancy exactly avoids this kind of
scenario as it enforces that in any large rectangle the function is hard. It is
impossible that the two players pass few bits and reach a large set on which
the function is easy.

We show that the discrepancy of the tensor product of A with itself k times
goes down exponentially with k.
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Theorem 4.4. There exists some constant a such that for every matrix A and
integer k > 1, disc(A⊗k) ≤ (a · disc(A))k/3.

This has the following interpretation: Suppose (as is often the case) that
the fact that AdvComm

c (A) ≤ p follows from the fact that disc(A) ≤ p2−c. In
that case

AdvComm
kc/3 (A⊗k) ≤ disc(A⊗k)2kc/3 ≤ (a · disc(A) · 2c)k/3 ≤ (ap)k/3.

In words, we get a strong direct product theorem for A. This is stated with
more generality in the next corollary.

Corollary 4.5. There exists some constant a such that for every matrix A
and integers k, c′, AdvComm

c′ (A⊗k) ≤ (a · disc(A))k/32c
′
.

Remark 4.6. While we do not know whether Theorem 4.4 is tight, it is im-
possible to get an estimate disc(A⊗k) ≤ disc(A)Ω(k). In fact, we now show an
example of a matrix A where disc(A⊗k) is constant and does not depend on k.
Consider an N by N matrix B for N = 2n, which corresponds to the following
communication game: Each of the two players gets an n-bit vector and the
players want to compute the exclusive-or of the 2n bits. It is easy to see that
disc(B) = 1/4 and does not depend on N . (To show that disc(B) ≥ 1/4 note
that B has a trivial 2-bit communication protocol in which each player sends
the exclusive-or of its bits). However, B⊗k is equal to the matrix B of size
Nk × Nk. Thus, disc(B⊗k) = disc(B) = 1/4 for all k, and does not go down
when k is increased.

The proof of the theorem will require the definition of the spectral norm of
a matrix A.

Definition 4.7. For a vector x we use ‖x‖2 to denote the L2-norm of x. For
a matrix A, ‖A‖2 is defined to be maxx:‖x‖2=1 ‖Ax‖2.

It will be useful to consider equivalent definitions of this norm.

Fact 4.8. Equivalent definitions for ‖A‖2 are:

(i) ‖A‖2 = maxx:‖x‖2=1, y:‖y‖2=1 x
tAy,

(ii) ‖A‖2 = max{
√
λ | λ is an eigenvalue of AtA}.

A useful property of ‖A‖2 is that it is multiplicative under tensor product.
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Fact 4.9. ‖A⊗k‖2 = ‖A‖k2.

Proof. The proof of Fact 4.9 consists of two steps. The first is to show this
is true for symmetric matrices. If A is symmetric then it can be diagonalized.
Moreover, ‖A‖2 = |λ|, where λ is the maximal eigenvalue of A in absolute value.
It is easy to see that A⊗k can also be diagonalized, and that its eigenvalues are
exactly all products of eigenvalues of A. Thus, ‖A⊗k‖2 = |λ|k. The fact now
follows for non-symmetric matrices by using the second item of Fact 4.8. Note
that the matrix AtA is symmetric and that (A⊗k)tA⊗k = (AtA)⊗k. �

In the remainder of this section we prove Theorem 4.4. The first step is
to express the discrepancy in terms of the spectral norm. We then use the
multiplicativity of the spectral norm to get the conclusion. The second item of
Fact 4.8 enables us to upper bound the discrepancy using the spectral norm.

Lemma 4.10. disc(A) ≤ ‖A‖2/N .

Proof. Let R = C × D be a rectangle such that disc(A) = discR(A). We
have disc(A) = |χtCAχD|/N 2. We define x = χC/

√
|C| and y = χD/

√
|D|.

Note that ‖χC‖2 = ‖χD‖2 = 1. It follows from the first item of Fact 4.8 that

‖A‖2 ≥ |xtAy| =
|χtCAχD|√
|C|
√
|D|
≥ |χ

t
CAχD|
N

≥ disc(A)N. �

Nisan & Wigderson (1995) address the so-called “log-rank conjecture” and
show that disc(A) = Ω(1/rank(A)3/2). We use the technique from that paper
to lower bound the discrepancy using the spectral norm.

Lemma 4.11. disc(A) = Ω(‖A‖2/N)3.

We start by showing that Theorem 4.4 easily follows from Lemma 4.11.

Proof (of Theorem 4.4).

disc(A⊗k) ≤ ‖A
⊗k‖2

Nk
=

(‖A‖2

N

)k
= O(disc(A))k/3.

We have applied consecutively Lemma 4.10, Fact 4.9, and Lemma 4.11. �

We want to prove Lemma 4.11 in a similar way to the previous lemma.
The first step is a way to transform a bilinear form with arbitrary vectors into
one with characteristic vectors. Such a transformation was given in Nisan &
Wigderson (1995).



16 Shaltiel cc 12 (2003)

Lemma 4.12 (Nisan & Wigderson 1995). Let u, v be vectors such that
‖u‖∞, ‖v‖∞ ≤ 1. Then there exists a rectangleR = C×D such that |χtCAχD| ≥
utAv/4.

For completeness we give the proof of this lemma.

Proof. Let z = Av, so that utAv = utz. There is a subset C of the
coordinates such that

∑
i∈C uizi ≥ utAv/2. (This subset is either the indices

at which both are positive or the indices at which both u and z are negative).
In both cases, |χtCAv| ≥

∑
i∈C uizi ≥ utAv/2. We now repeat this argument

one more time to find a subset D. If χtCAv is negative, then we replace v by
v′ = −v and otherwise we set v′ = v. In both cases χtCAv

′ = |χtCAv|. Let
z = χtCA, so that χtCAv

′ = ztv′. By the same argument we find a set D so that
|χtCAχD| ≥ χtCAv

′/2 = |χtCAv|/2 ≥ utAv/4. �

We are now tempted to use Lemma 4.12 directly to prove Lemma 4.11.
That is, start from u, v with ‖u‖2 = ‖v‖2 = 1 such that ‖A‖2 = utAv and
get a rectangle R = C × D with roughly the same value. This will not do
since to get a bound on disc(A) we have to divide by N 2. Thus, the above
argument only gives the non-impressive estimate disc(A) ≥ ‖A‖2/4N

2. To do
better we note that had it been the case that u and v had ‖u‖∞, ‖v‖∞ ≤ ρ < 1
we could deduce that ρ2disc(A) ≥ ‖A‖2/4N

2 and do better. Following Nisan
& Wigderson (1995) we show that ‖A‖2 can be approximated by such u and v.

Lemma 4.13. For every ρ > 0 there are vectors u, v with ‖u‖∞, ‖v‖∞ ≤ ρ such
that utAv ≥ ‖A‖2 − 2

√
N/ρ.

Proof. Let x and y be vectors such that ‖x‖2 = ‖y‖2 = 1 and ‖A‖2 = xtAy.
Let I = {i | xi > ρ} and J = {j | yj > ρ}. Let u be the vector obtained from
x by setting the coordinates in I equal to zero, and v be the vector obtained
from y by setting the coordinates in J equal to zero. Note that |I|, |J | ≤ 1/ρ2

(since otherwise the contribution of elements in I (resp. J) to the norm of x
(resp. y) is greater than one). We now have

utAv ≥ ‖A‖2 −
∣∣∣
∑

i∈I, j∈[N ]

xiaijyj +
∑

i∈[N ], j∈J
xiaijyj

∣∣∣.

We will now argue that the two terms on the right hand side are small
because they involve small rectangles. We will bound the first term, and the
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second can be bounded the same way:
∣∣∣
∑

i∈I, j∈[N ]

xiaijyj

∣∣∣ ≤
∑

i∈I, j∈[N ]

|xiyj | =
∑

i∈I
|xi|

∑

j∈[N ]

|yj|

≤
√
|I|
√
N ‖x‖2‖y‖2 ≤

√
N

ρ

(where the second inequality follows from the Cauchy–Schwarz inequality).
Plugging this in the previous calculation we obtain

utAv ≥ ‖A‖2 −
2
√
N

ρ
. �

Lemma 4.11 now follows from the previous lemmas.

Proof (of Lemma 4.11). Given a matrix A, we set

ρ =
3
√
N

‖A‖2

.

Let u, v be the vectors whose existence is given by Lemma 4.13. We now define
new vectors ū = u/ρ and v̄ = v/ρ. Note that ‖ū‖∞, ‖v̄‖∞ ≤ 1. By Lemma 4.12
there exists a rectangle R = C ×D such that

|χtCAχD| ≥
ūtAv̄

4
=
utAv

4ρ2
=
‖A‖2 − 2

√
N/ρ

4ρ2
=
‖A‖3

2

108N
.

We conclude that disc(A) = Ω(‖A‖2/N)3. �

5. Fair decision trees

In this section we prove an optimal direct product theorem for fair decision
trees. The proof is quite simple and mimics the technique of Nisan et al.
(1999). The purpose of this section is to promote the notion of fairness which
can perhaps be extended to more interesting models of computation. We start
with the definition of fairness for decision trees.

Definition 5.1. A decision tree over inputs x1, . . . , xk is (d1, . . . , dk)-fair if
for every 1 ≤ i ≤ k and on every path from the root to a leaf the decision
tree queries at most di bits from xi. A decision tree is d-fair if it is (d, . . . , d)-
fair. Let FairDepthd1,...,dk

denote the class of functions over inputs x1, . . . , xk
computed by (d1, . . . , dk)-fair decision trees, and FairDepthkd = FairDepthd,...,d.
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Theorem 5.2. AdvFairDepth
kd (f⊕k) ≤ AdvDepth

d (f)k.

The proof of this theorem is by induction and is similar to that of Nisan
et al. (1999). To simplify the notation we will prove it for k = 2. The proof for
general k follows in the same way. To have a stronger induction hypothesis we
will prove the following stronger version.

Lemma 5.3. For any two functions f1, f2 and numbers d1, d2,

AdvFairDepth
d1,d2

(f ⊕ g) ≤ AdvDepth
d1

(f1) · AdvDepth
d2

(f2).

Proof. We prove the lemma by induction on d1 +d2. If d1 +d2 = 0 then the
decision tree does not base its answer on the inputs. It is standard to check that
indeed AdvFairDepth

0,0 (f1 ⊕ f2) = AdvDepth
0 (f1) · AdvDepth

0 (f2). (From the point of
view of a tree which makes no queries the outputs of f1 and f2 are independent
random variables.) To bound AdvFairDepth

d1,d2
(f1 ⊕ f2) for d1 + d2 > 0, let T be a

decision tree which achieves this advantage. Without loss of generality the first
query of T is from x1. We will use the notation x1 = (y, b) where b is the bit
queried by T and y is the remaining bits. We denote the two subtrees of T by
T 0 and T 1 respectively. For b ∈ {0, 1}, we define functions gb(y) = f1((y, b)).
We now have

AdvFairDepth
d1,d2

(f1 ⊕ f2) =
∑

b∈{0,1}

1

2
AdvTb(gb ⊕ f2).

Here, AdvT (f) is used to denote the advantage of T on f . However, T 0 and T 1

are of depth d1 − 1 + d2, and are in FairDepthd1−1,d2
. Applying our induction

hypothesis we find that the above is

≤
∑

b∈{0,1}

1

2
AdvFairDepth

d1−1,d2
(gb ⊕ f2)

≤ AdvDepth
d2

(f2)
∑

b∈{0,1}

1

2
· AdvDepth

d1−1 (gb).

Consider trees P 0, P 1 which achieve the advantage on g0, g1. We now construct
a tree P of depth d1 which starts by querying b and depending on the outcome
activates P b. We then have

∑

b∈{0,1}

1

2
AdvDepth

d1−1 (gb) = Advp(f1) ≤ AdvDepth
d1

(f1).

The equality follows from the definition of P , and the inequality from the fact
that P is of depth d1. Plugging this in our previous calculation we prove the
lemma. �
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6. Discussion and open problems

We have suggested two approaches for obtaining direct product assertions.
The first is to strengthen the assumption and prove the assertion only for
functions f with a certain property (as we did for communication games using
low discrepancy). The second approach is to weaken the conclusion and prove
the assertion only for restricted algorithms (as we did for fair decision trees).

The most interesting open problem is to extend these approaches to other
computational models. There are also some interesting concrete open prob-
lems regarding communication games. For example, can the notion of discrep-
ancy be altered to match other probability distributions on the inputs of the
two players (not just the uniform distribution) while still enabling a strong
direct product assertion? Another problem is whether the approach of this
paper can be extended to one-sided discrepancy, which removes the absolute
value in Definition 4.1. These two problems are motivated by Razborov’s proof
(Razborov 1992) of the lower bound on the disjointness function (Babai et al.
1986; Kalyanasundaram & Schnitger 1992) which uses one-sided discrepancy
in a non-uniform distribution.

More generally, an interesting problem is whether the notion of “fairness”
suggested here can be used for other models of computation. A natural place to
start is communication protocols or even one-round communication protocols.
In the following we discuss how to generalize the definition of fairness to other
computational models.

6.1. Fairness for general models of computation. While it is easy to
define fairness for decision trees, how does one define a fair communication
protocol or a fair computation in general? Before making our suggestions, let
us examine what is the role of fairness in the argument. Recall the information
theoretic analogue presented at the beginning of the introduction. The goal
there is to predict the outcome of an exclusive-or of k independent biased
coins. The direct product question is the analogue of this question in the sense
that from of the point of view of any algorithm in Resr the function (or more
precisely the exclusive-or of the outcome of the function with the answer of the
algorithm) is a biased coin. What makes the computational version difficult
is that the algorithm may make these biased coins correlated. However, we
still want to have that each individual coin is not fully determined. In other
words, that the algorithm attempting to compute f⊕k cannot compute any of
the individual outcomes of f(xi). When r′ ≤ r (as is the case in Yao’s XOR-
lemma), this happens simply because the protocol attempting to compute f⊕k

is “small” enough to be bounded by the hypothesis. The role of the fairness
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restriction is to ensure this situation when r′ > r. Having this in mind we can
now suggest two approaches to impose a fairness restriction on general models
of computation.

6.1.1. A syntactic approach. We want that a protocol using r′ > r units
of the resource will not be able to compute any individual outcome of (f(x1),
. . . , f(xk)) too well. In fair decision trees this is guaranteed because once you fix
k− 1 inputs of a d-fair decision tree, the induced tree is of depth d, and is thus
bounded by the hypothesis of the direct product assertion. This leads us to the
following definition of syntactic fairness for a general model of computation.

Definition 6.1. An algorithm P ′ ∈ Resr′ with inputs x1, . . . , xk is r-fair if
for every 1 ≤ i ≤ k and every fixing a1, . . . , ai−1, ai+1, . . . , ak for the variables
x1, . . . , xi−1, xi+1, . . . , xk, algorithm P ′(a1, . . . , ai−1, x, ai+1, . . . , ak) can be sim-
ulated by an algorithm P (x) in Resr.

Syntactic fairness seems a very strong restriction. However, at this point we
do not know whether syntactic fairness gives a strong direct product assertion
in communication protocols.

6.1.2. A semantic approach. The intuition above is that syntactic fairness
guarantees that the algorithm cannot compute any individual outcome too well.
Consider the concatenation variant of the direct product question defined in
Section 1.1.4. In this variant the algorithm P ′ is required to give outputs for
all k inputs. We can replace the syntactic approach above by imposing that for
every 1 ≤ i ≤ k, the algorithm P ′ succeeds on xi with probability at most p.

Definition 6.2. An algorithm P ′ ∈ Resr′ with inputs x1, . . . , xk and outputs
in {0, 1}k is (r, p)-semantically fair for f if for every 1 ≤ i ≤ k,

Pr
x1,...,xk

[P ′i (x1, . . . , xk) = f(xi)] ≤ p.

Syntactic fairness automatically implies semantic fairness. However, seman-
tic fairness is far less restricting.
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