
comput. complex. 10 (2001), 210 – 246

1016-3328/01/030210–37 $ 1.50+0.20/0

c© Birkhäuser Verlag, Basel 2001

computational complexity

COMMUNICATION COMPLEXITY

TOWARDS LOWER BOUNDS

ON CIRCUIT DEPTH

Jeff Edmonds, Russell Impagliazzo,
Steven Rudich, and Jiř́ı Sgall

Abstract. Karchmer, Raz, and Wigderson (1995) discuss the circuit
depth complexity of n-bit Boolean functions constructed by composing
up to d = log n/log log n levels of k = log n-bit Boolean functions. Any
such function is in AC1. They conjecture that circuit depth is additive
under composition, which would imply that any (bounded fan-in) circuit
for this problem requires dk ∈ Ω(log2 n/log log n) depth. This would sep-
arate AC1 from NC1. They recommend using the communication game
characterization of circuit depth. In order to develop techniques for us-
ing communication complexity to prove circuit depth lower bounds, they
suggest an intermediate communication complexity problem which they
call the Universal Composition Relation. We give an almost optimal
lower bound of dk − O(d2(k log k)1/2) for this problem. In addition, we
present a proof, directly in terms of communication complexity, that
there is a function on k bits requiring Ω(k) circuit depth. Although this
fact can be easily established using a counting argument, we hope that
the ideas in our proof will be incorporated more easily into subsequent
arguments which use communication complexity to prove circuit depth
bounds.
Keywords. Communication complexity, Boolean complexity, lower
bounds.

Subject classification. 68Q15, 68Q17.

1. Introduction

Karchmer & Wigderson (1990) observed that the circuit depth (over the basis
∧,∨,¬) of a Boolean function f , Depth(f), can be characterized as the com-
munication complexity of a certain game Rf . For communication game G, we
use the notation CC(G) to represent the communication complexity of G, i.e.,
the number of bits communicated during the course of the best protocol solving
G on the worst-case instance of G. In this notation, CC(Rf) = Depth(f).

cc 10 (2001) Communication complexity and circuit depth 211

Based on this equivalence, Karchmer, Raz & Wigderson (1995) sketched
a plan of attack for proving a super-logarithmic lower bound for the circuit
depth required to compute a specific function in P . (In fact, the function is in
AC1.) This function, which we will refer to as the Iterated Multiplexor, can
be described as follows. The function has two parameters k and d, which, for
optimal results, are set at k = log n and d = logn/log log n. (All logarithms
in this paper are base 2.) The input to the function can be thought of as a
complete ordered k-ary tree with depth d + 1, counting the root as depth 1.
Each of the kd leaves is labeled with an input bit. Every interior (i.e., non-
leaf) node of the tree is labeled by a 2k-input bit string, which is thought of
as explicitly describing a function from {0, 1}k to {0, 1}. This initial labeling
induces a labeling of every node by a bit as follows. The induced bit of a
leaf is just its original label. If an interior node u is labeled by a function
fu, and its children, in order from left to right, have induced bits b1, . . . , bk,
then the induced bit for u is bu = fu(b1, . . . , bk). The output of the Iterated
Multiplexor is the induced bit of the root. The input to the function is of
length kd + 2k ·∑d−1

i=0 k
i ∈ O(n2). The Iterated Multiplexor function can easily

be seen to be in AC1.

Suppose that for each node of the tree, the 2k bits describing the function
are fixed, and moreover on each level all the functions are identical. Then the
Iterated Multiplexor becomes a composition of these functions. For example,
consider the case d = 3, where the nodes at level i ≤ 3 are labeled by fi. Then
the restricted function has k3 Boolean inputs, which we can partition into k2

vectors of length k, ~xij , i, j ∈ {1, . . . , k}. We can write the restricted function as
f1(f2(f3(~x11), . . . , f3(~x1k)), . . . , f2(f3(~xk1), . . . , f3(~xkk))). Intuitively, the circuit
depth complexity of this function should be the sum of that for f1, f2, and
f3, since any circuit should have to compute at least some of the values for f3

before going on to f2, etc.

To prove an Ω(log2 n/log log n) depth lower bound for the Iterated Multi-
plexor function, it suffices to prove that the circuit depth of the composition
of functions is roughly the sum of the depths required for each of the functions
involved: if the functions being composed are randomly chosen k-bit functions,
then they require depth k − o(k). Hence, if there are d = log n/log log n lev-
els of these, then the necessary circuit depth should be approximately dk ∈
Ω(log2 n/log log n).

There are no known examples of functions where the depth of the composi-
tion is smaller than the sum of the depths. For example, if all of the functions
are parity on n bits, the composition of d such functions is parity on nd bits.
The depth of the composition is then roughly 2 log nd = d(2 log n), d times the

212 Edmonds et al. cc 10 (2001)

depth of the function being composed. This also shows that to gain via com-
position, we need to start with a function not in NC. The iterated Multiplexor
construction gets around this, by composing arbitrary functions on O(log n)
bits, rather than fixed functions.

Proving that circuit depth is additive under composition seems extremely
difficult, even for random functions.

Therefore, Karchmer et al. (1995) suggested an abstraction of the com-
munication game for the Composition of Functions. They call this game the
Universal Composition Relation, since any protocol solving this problem
will also solve the associated communication game for any composition of func-
tions. (Thus, a lower bound for any composition implies the same lower bound
for the Universal Composition Relation.) In addition, the known protocols for
the communication game for a composition of randomly chosen functions also
apply to the Universal Composition Relation. Therefore, the hope is that a
lower bound for the Universal Composition Relation problem will yield insight
into the circuit depth of compositions; it is at least a necessary first step.

We now give an informal description of the Karchmer–Wigderson commu-
nication game (Karchmer & Wigderson 1990) and the Universal Composition
Relation. Let f be a Boolean function on k bit inputs. The Karchmer–
Wigderson game for f , Rf , is as follows. One player, called the A-player, is
given a k-bit vector x for which f(x) = 0, and the other, the B-player, a y for
which f(y) = 1. The object of the game is to find a bit position i where the
two differ, i.e., xi 6= yi.

Consider the harder game, which we call the Universal Game, where as
before, the two players are each given a k-bit vector and must find a differing
bit position. However, they are only promised that their vectors are different.
It is known that the complexity of this game is between k − 1 and k + 2. The
lower bound follows similarly to the lower bound for testing equality, and we
will present an adversary argument for it later. For the upper bound, it is easy
to achieve k + log k: one player sends his input and the other replies by the
position of a different bit. To achieve k+ 2, we use the following protocol. The
players alternate in sending one bit each, from the beginning of their inputs
(i.e., the A-player sends his bit 1, then the B-player sends his bit 2, then the
A-player sends his bit 3, etc.) However, if any player sees that the received bit
is not equal to his corresponding bit, he “raises his hand” as follows: in the
next round he sends 1, and in all the following rounds he sends 0. This way
the players exchange the total of k bits. Now, each of them sends a bit which
is 0 if he raised his hand before, and 1 otherwise. If no player raised the hand,
the only difference must be the bit k (using the promise that the inputs are not

cc 10 (2001) Communication complexity and circuit depth 213

equal). If one of the players raised his hand, there is a difference just before
the last 1 sent by him. If both players raised their hands, we take the earlier
of the two positions where they last sent 1. We can read out the answer from
the communicated k+ 2 bits. (For more results on the complexity of this game
see Tardos & Zwick 1997.)

The communication complexity of Rf for a random function f is almost
the same as for the Universal Game: k − o(k). Basically, one player needs to
communicate his entire input to the other player. The difference between the
games is that in the Universal Game, the players are merely promised that their
inputs are different, whereas in Rf , they are also told a particular way in which
their inputs differ. Since the games are of comparable difficulty, the moral
would seem to be that being told that, for your inputs x and y, f(x) 6= f(y) for
a random function f does not convey any more useful information than being
told x 6= y.

The Universal Composition Relation is obtained by applying this intuition
in an analogous way to the Karchmer–Wigderson game for a composition of d
random functions f1, . . . , fd.

The composition function has kd inputs, which can be thought of as labeling
the leaves of a complete ordered k-ary tree of depth d + 1. Similarly to the
case of the Iterated Multiplexor function, any input induces a labeling of every
node of the tree. If a node u at level i ≤ d has children with labels b1, . . . , bk,
from left to right, then the induced label for u is fi(b1, . . . , bk). The two players
in the Karchmer–Wigderson game are each given such a labeled tree, with the
labels at the root different. Their goal is to find an input bit (i.e., leaf) where
their inputs differ.

The obvious protocol for this problem is as follows. The protocol is divided
into d rounds, each requiring k + O(1) bits of communication. Initially, the
players know that the root (level 1) has different labels in their two labelings.
At the beginning of the rth round, the players agree on a node at level r that
has different labels. The players communicate k+O(1) bits to find a difference
in labels of children of this node. Such a difference must exist, since both
players compute the node’s label from the labels of the children in the same
way. This begins the next round. After d rounds the players agree on a leaf
labeled differently. Hence an upper bound on the communication complexity
of the game for the composition of any d functions on k bit inputs is kd+O(d).

The protocol only uses the facts that the two roots have different labels and
that, if a node is labeled differently in the two inputs, then one of its children
is also labeled differently. It follows that one of the leaves is labeled differently.
Thus, this upper bound also holds for the following game.

214 Edmonds et al. cc 10 (2001)

Definition 1.1. The Universal Composition Relation with parame-
ters d and k, denoted UCRd,k, is defined as follows. Each player has as input
a Boolean labeling of all the nodes of an ordered complete k-ary tree of depth
d + 1, counting the root as depth 1. The label of the root for the A-player is
0 and for the B-player is 1. The two inputs must satisfy the following con-
dition: for every interior node of the tree, if the node is labeled differently in
the two players’ inputs, then at least one of the children of the node is labeled
differently. The goal of the players is to agree on a leaf node which is labeled
differently in their two trees.

In this paper, we prove the following lower bound:

Theorem 1.2. CC(UCRd,k) ≥ dk −O(d2(k log k)1/2).

This bound is almost tight for d = o((k/log k)1/2). If this same bound were
proven for the Iterated Multiplexor Function, it would yield a lower bound of
Ω((log n)3/2(log log n)−1/2) on circuit depth by setting d = ε(k/log k)1/2 for a
suitable constant ε > 0. The goal now, in order to separate AC1 from NC1, is
to use these techniques to prove the lower bound for the Iterated Multiplexor
function. This motivated us to re-examine the case for d = 1. We give a proof
directly in terms of communication complexity that there is a function on k
bits requiring Ω(k) circuit depth, i.e., CC(Rf) = Ω(k). Although this fact
can be easily established using a simple counting argument, our proof has the
advantage of being an “adversary argument,” which is more in line with the
proof techniques used for the Universal Composition Relation. We hope our
results will provide a step towards a theory for circuit depth.

An extended abstract of this paper appeared in Edmonds et al. (1991).
Subsequently, using different (and highly interesting) techniques, H̊astad &
Wigderson (1993) obtained a lower bound of dk − 2O(d) for UCRd,k. This is
better for small values of d. However, even if extended to the actual composi-
tion of functions, this would give a depth bound of at most Ω(log n log log n),
whereas ours would give one of the form Ω((log n)3/2/(log log n)1/2). Recently
Raz & McKenzie (1999) used a notion similar to predictability (our main con-
cept) to prove a separation of monotone P from monotone NC. Unfortunately,
no progress has been made in using our techniques for their original purpose,
proving circuit depth lower bounds. It would be interesting to see if this
is because our techniques are “natural” in the sense of Razborov & Rudich
(1997). While we do not see how to use a general lower bound on composi-
tions to derive a “natural” property, such a property might be implicit in our
proofs.

cc 10 (2001) Communication complexity and circuit depth 215

In Section 2, we give a formal definition of communication complexity, and
review some of its basic properties and connections to circuit complexity. In
Sections 3 to 6, Theorem 1.2 is proved. First, in Section 3, we describe the
argument for depth two informally. In Section 4 we develop our main technical
tool, the concept of predictability. The formal proof is presented in Sections 5
and 6, separately for depth two and the general depth. Section 7 gives the new
proof of the existence of a function requiring linear depth circuits to compute.

2. Communication complexity

For a general reference on communication complexity see Kushilevitz & Nisan
(1996). A communication protocol is a method by which two parties, each with
a private input, compute a function of the two inputs by sending messages to
each other. Each message should be a single bit. Who speaks next should be
determined by the conversation so far, and the output of the protocol should
be determined by the total conversation. Formally,

Definition 2.1. Let X, Y , and Z be finite sets. Then a two-person t-
message communication protocol consists of a function T from {0, 1}<t to
{“A-player”, “B-player”}, a function PA from X×{0, 1}<t to {0, 1}, a function
PB from Y ×{0, 1}<t to {0, 1}, and a function Out from {0, 1}t to Z. For x ∈ X,
y ∈ Y , the conversation up to message i determined by the protocol on
inputs x, y is given by Ci = Ci(x, y) where C0 = ε and Ci+1 = (Ci, P

A(x,Ci))
if T (Ci) = “A-player”, and Ci+1 = (Ci, P

B(y, Ci)) otherwise. The output of
the protocol on inputs x, y is Out(Ct(x, y)).

We will use the following general property of communication protocols.

Definition 2.2. Let P be a t-message communication protocol on input sets
X and Y . Let i ≤ t, and let C ∈ {0, 1}i. Let x ∈ X, y ∈ Y . We say that the
pair 〈x, y〉 is consistent with C if Ci(x, y) = C. We will denote the set of pairs
consistent with C by SC . We will let SAC be the set of x ∈ X so that there is a
y ∈ Y with 〈x, y〉 ∈ SC , and similarly SBC = {y | ∃x ∈ X, 〈x, y〉 ∈ SC}.

Lemma 2.3 (Kushilevitz & Nisan 1996, Proposition 1.14). For any communi-
cation protocol and any C ∈ {0, 1}i, SC = SAC × SBC .

We are concerned with communication protocols for problems of the fol-
lowing form. We are promised that a certain relationship holds between the
two inputs. If the relationship holds, the protocol should output a string which
bears a certain relationship to the pair. Formally,

216 Edmonds et al. cc 10 (2001)

Definition 2.4. A communication task T on sets X, Y, Z consists of a
relation R : X × Y → {0, 1} and a relation R′ : X × Y × Z → {0, 1}, so
that for every x, y satisfying R(x, y), there exists a z ∈ Z with R′(x, y, z).
A protocol performs communication task T if, for every x, y satisfying R(x, y),
the output satisfies R′(x, y,Out(Ct(x, y))). The communication complexity
of a communication task T , denoted CC(T), is the least t such that there is a
t-message protocol performing the task.

For every Boolean function f on k-bit strings, we can associate a commu-
nication task whose complexity is exactly the minimum depth, Depth(f), of
a circuit over the basis {∧,∨,¬} that computes f . The task is, given inputs
〈x, y〉 for which f(x) = 0 and f(y) = 1, to find a bit position where x and y
differ.

Definition 2.5. Let f be a function from {0, 1}k to {0, 1}. The communi-
cation task for f , denoted Rf , is given by X = Y = {0, 1}k, Z = {1, . . . , k},
R(x, y) holds if and only if f(x) = 0 and f(y) = 1, and R′(x, y, z) holds if and
only if xz 6= yz, i.e., x and y differ in the bit position z.

This task characterizes the depth of a formula computing f :

Theorem 2.6 (Karchmer & Wigderson 1990). CC(Rf) = Depth(f).

The following theorem is proved using a counting argument, comparing the
number of Boolean circuits of depth d to the number of functions on {0, 1}k.

Theorem 2.7 (Riordan & Shannon 1942). Let f be a Boolean function on
{0, 1}k, chosen randomly. Then, with high probability, Depth(f) ≥ k−O(log k).

Finally, we recast Definition 1.1 in this formal setting.

Definition 2.8. Let k, d be positive integers. Let τ be the complete k-ary
tree of depth d + 1, rooted and ordered. Let τ ′ be the set of all nodes of τ
except for the root, X = {0, 1}τ ′, and LA, LB ∈ X. We say the pair LA, LB is
as promised if (i) there exists a node i on the second level of τ (i.e., a child
of the root) such that LA(i) 6= LB(i) = 1, and (ii) for every interior node i ∈ τ
satisfying LA(i) 6= LB(i), there is a child i′ of i with LA(i′) 6= LB(i′).

Let Z be the set of leaves of τ . The Universal Composition Relation
with parameters d, k, denoted UCRd,k, is the communication task on X,X,Z
withR being the “as promised” relation andR′(LA, LB, j) if and only if LA(j) 6=
LB(j).

cc 10 (2001) Communication complexity and circuit depth 217

3. The case d = 2: Overview

The proof for general d involves a great deal of complicated notation and messy
details, which tend to obscure the basic intuition. Therefore, we will first
present the proof for the special case of d = 2. In this section, we give an
intuitive overview to motivate the next two sections, which present the proof.

Let us consider the task UCR2,k. Each player is given a {0, 1} labeling L
of the complete k-ary tree of depth 3. Since the root is always labeled 0 in
the A-player’s input, and always labeled 1 in the B-player’s, we can ignore the
labeling of the root. Let τ1 be the root of the tree, τ2 be the k children of
the root and τ3 be the k2 leaves. For such a labeling L, let L1 be the induced
labeling on τ2 and L2 on τ3. The bit labeling L2 can either be thought of as
k2 bits indexed by τ3 or as k vectors indexed by τ2. For node i ∈ τ2, bi is used
to denote the ith bit of L1 and ~cvi is used to denote the ith vector of L2 which
labels the children of i. This is called the child vector of i. See Figure 3.1.

0
1
0
1
0
1
1

0
0
1
0
1
1
0

1
1
0
0
1
0
1

0
1
1
1
0
1
1

0
0
1
0
1
1
0

1
1
0
0
1
0
1

... ...

1 0 1 1 0 1 0

0

... ...

1 0 1 0 0 1 0

1

~cvi ~cvi

bi bi

Player A Player B

L1 in {0, 1}τ2 , τ2 = [1..k]

in {0, 1}τ1 , τ1 = [1]

L2 in {0, 1}τ3 , τ3 = [1..k2]

Figure 3.1: The inputs for UCR2,k

We would like to show that any reasonable protocol first communicates
enough bits to find a difference in the players’ L1 vectors and then finds a
difference in the child vector of this differently labeled node. This will take
twice as many communication bits as to find a difference in two distinct k-bit
vectors, i.e., twice as long as the Universal Game. A simple argument that
the Universal Game requires k − 1 bits is as follows.

Each player is given a k-bit vector, with the only requirement being that
they are different. They must find an index where the vectors are different.
The lower bound will be proved by a simple adversary argument. Given a fixed
protocol that is assumed to solve the task in fewer steps, we give a procedure for

218 Edmonds et al. cc 10 (2001)

an adversary to find an input pair on which the protocol fails. The adversary
restricts the set of inputs in each round in order to fix the conversation between
the players up to the current time step. After a certain number of bits have
been communicated, let SA be the set of vectors x that can be given to the A-
player and be consistent with the conversation so far. Define SB similarly. The
adversary will maximize |SA ∩SB| in order to maintain the symmetry between
the players. A bit communicated by the A-player partitions SA into those
vectors on which he communicates a 0 and those on which a 1 is communicated.
The adversary chooses the half that keeps the intersection SA ∩ SB as large as
possible. This at most halves the intersection. Similarly for bits communicated
by the B-player. After t bits, |SA∩SB| ≥ 2k−t. Hence, after k−2 bits |SA∩SB|
contains at least four vectors. If the protocol ends at this point and outputs
a bit position i, then the adversary can find at least two of the four vectors
which are the same at this index (actually, only three vectors are necessary for
this). These two vectors are given to the two players. Therefore, the protocol
fails on this input. So any protocol solving this task requires k − 1 bits of
communication.

This adversary strategy can be summarized by saying that the adversary
delays breaking the symmetry between the players for as long as possible, in
order to make it difficult for the players to find a difference. At the last minute,
this symmetry has to be broken in order to keep the promise of giving them
different vectors.

The same tension between making the players’ inputs the same and making
them different occurs in our lower bound. The lower bound is broken into
stages, one stage per level. In the first stage, the adversary maintains the
symmetry between the players’ values for both L1 and L2. Just before the
players can communicate the k bits describing L1, their L1 vectors are fixed to
be different. In the second stage, the same is done with L2. The symmetry is
kept until just before the players can communicate one child vector in L2.

The lower bound is more complicated than above, because the players may
communicate bits about L2 during the first stage of the protocol, including
hybrid bits involving both the L1 and L2 parts of the input or bits which
involve many places in the L2 vector. For simplicity, we will ignore the last two
complications and come back to them later.

The intuition is that bits communicated about L2 during the first stage of
the protocol are wasted. The players do not know which of the k2 bits in L2 to
communicate. On the other hand, if the players wait until a difference in L1 is
known, then they can concentrate on finding a difference in the corresponding
child vector within L2.

cc 10 (2001) Communication complexity and circuit depth 219

Suppose, pessimistically, that the players communicate k bits about L2

during the first stage. They could either communicate a lot of bits about a
few child vectors or a few bits about lots of child vectors. Either way this is
not useful for the players. Assume lots of bits have been communicated about
a few child vectors. Remember that the adversary only needs to make these
child vectors different for the two players if the corresponding bits in L1 are
different. Thus, the adversary will simply make the corresponding bits in L1

the same, freeing her to fix the entire child vectors in the same way for both
players. Thus, the many bits communicated about L2 could have been replaced
by only a few bits about L1. On the other hand, if only a few bits about any
particular child vectors are known, these bits will not significantly help the
players once a difference in the L1’s is discovered, and the players focus on one
child vector. The dividing line between lots of bits communicated and a few
will be set to k/l bits; the parameter l will be set to

√
k in order to optimize

the lower bound. Note there are at most l child vectors for which at least k/l
bits have been communicated.

Therefore, the general strategy for the adversary is as follows. During the
first k − l − f bits of communication, where f is a small “fudge factor”, we
assume pessimistically that the players learn k−l−f bits about L1 and another
k− l− f bits about L2. After this period, the adversary performs a “clean-up”
which further restricts the allowable input pairs. The adversary first identifies
at most l child vectors for which the players know at least k/l bits, and fixes the
corresponding bits in L1. This leaves only f bits of L1 unknown; the adversary
must now break the symmetry at the L1 level. If no hybrid bits concerning
both L1 and L2 have been communicated, this is simple: the adversary picks
a different L1 vector for each player from the 2f possible vectors. In the real
proof, this will be more complicated. Once this symmetry is broken, the parties
may know many places in which their L1’s differ, and hence know that the
corresponding child vectors are different. But they will not know more than
k/l bits about any one of these child vectors. Thus, the adversary will be able
to force the protocol to go for about k − k/l more steps before any of these
rows are in danger of being forced to be the same for both players. This yields
a lower bound of 2k −O(l + k/l) = 2k −O(k1/2) bits for any protocol solving
the task.

The players have more options than in the above discussion. Although it
does not appear to help them, instead of communicating a bit about L1 or a
bit about L2, they could communicate a bit about the combination. Our lower
bound gets around this complication by (more or less) converting one combi-
nation bit into one bit about L1 and one bit about L2. Another complication
is that, if the players communicate “hybrid” bits, the number of bits known

220 Edmonds et al. cc 10 (2001)

about a child vector is not well-defined. For this purpose, we need to define a
formal measure.

For example, suppose over a sequence of communication bits, the A-player
tells the B-player, “I am not telling you any of my values, but I will tell you
that if the first bit of the first child vector in my L2 is 0, then all k bits in
the second child vector are zero. On the other hand, if this first bit is 1, then
I reveal no information about this second child vector.” The question now is
whether the B-player is considered to know k or zero bits about this second
child vector. A useful information measure for many applications is Entropy.
Because half the time k bits about the second child vector are revealed and
half the time 0 bits are revealed, Entropy measures the number of bits revealed
as the average k/2. Our adversary, however, wants to be more cautious by
assuming that the B-player knows more than this. We define a measure of
“predictability” to be the probability of guessing the value. If the B-player
completely knows the child vector then the probability of guessing it is 1 and
if he knows nothing about it, then the probability is 2−k. The measure is the
average of these, (1 + 2−k)/2 ≈ 1/2. A predictability of 1/2 is then interpreted
to mean that the B-player knows everything but “1 bit” about this child vector.
The next section formally defines this measure.

4. Predictability

Consider a set of vectors S ⊆W π indexed by the set π, and whose elements lie
in set W . For our purposes, W will be the set of k-bit vectors {0, 1}k, making
v ∈ S a vector of vectors of bits, or, alternately, a matrix of bits. However,
we will only use the nature of W in this section to provide some motivating
examples of how the lemmas proved here will be used.

Definition 4.1. For every vector v ∈ S and index i ∈ π, let vi ∈ W be the
element of the vector indexed by i.

For every subset of indices ρ ⊆ π, let Proj(v, ρ) ∈ W π−ρ be the subvector of
v indexed by the indices not in ρ (i.e., a projection which removes the elements
of v indexed by ρ). Similarly let Proj(S, ρ) = {Proj(v, ρ) | v ∈ S} be the
projection of S removing the elements indexed by ρ from every vector in S.
We write Proj(v, i) instead of Proj(v, {i}) and Proj(S, i) instead of Proj(S, {i}).

For every w ∈ Proj(S, ρ), let Cons(S,w) = {v ∈ S | Proj(v, ρ) = w} be
those vectors in S consistently extending the vector w to the elements indexed
by ρ. A function E from Proj(S, ρ) to S is called an extension function if,
for all w ∈ Proj(S, ρ), E(w) ∈ Cons(S,w). Note that any extension function is
1-1, since Proj(E(w), ρ) = w.

cc 10 (2001) Communication complexity and circuit depth 221

Suppose t bits have been communicated about an input in W π and let S be
the set of inputs consistent with this conversation. We can safely assume |S| ≥
2−t · |W π|. An interesting question is, for i ∈ π, how many of these bits were
communicated “about the ith element”. Since the actual bits communicated
could depend on all the elements, this is not a clear-cut issue. Furthermore, if
for example the bitwise parity of all the elements were revealed, each element,
given the communication, would still be completely uniformly distributed, and
so its conditional entropy, given the conversation, would still be large. Thus,
we must also condition on the other elements. Note that this gets us into
the reverse situation, in that if the protocol communicates the parity of the
elements, it simultaneously reduces all of their conditional entropies given the
other elements to 0. We will discuss this problem later in this section.

More precisely, look at the following distribution: choose a random vector
v ∈ S, and reveal Proj(v, i). We want to measure the conditional randomness
of vi. The set Cons(S,Proj(v, i)) contains all vectors v that are consistent with
the revealed information. Therefore, the probability of being able to predict
the value of vi is 1/|Cons(S,Proj(v, i))|. We define the predictability as the
expectation of this probability.

Definition 4.2. The predictability of the ith element in S is

Predi(S) = Expv∈S

[
1

|Cons(S,Proj(v, i))|

]
.

If the ith element vi of v ∈ S is fixed as a function of the other elements, then
Predi(S) = 1. If this element is completely undetermined, then Predi(S) =
1/|W |. We can think of log(Predi(S) · |W |) as the “number of bits known
about element i”, since if S is the set of inputs consistent with t independent
bits communicated about vi, then Predi(S) = 2t/|W |.

Think of S as being partitioned according to Proj(v, i). The number of
equivalence classes is |Proj(S, i)|. The size of the equivalence class of v is
|Cons(S,Proj(v, i))|. The contribution of v towards the expectation in the def-
inition of the predictability is 1/|Cons(S,Proj(v, i))|. So the total contribution
of the vectors in any equivalence class is 1 and the expectation is just the num-
ber of classes normalized by the number of vectors. This gives the following
lemma which can be used as an alternate definition of predictability.

Lemma 4.3. Predi(S) = |Proj(S, i)|/|S|. �

Another measure of the amount of information that has been communi-
cated about vi is called the collision probability and is denoted CPi(S). It

222 Edmonds et al. cc 10 (2001)

is the probability that, for two vectors randomly chosen (with replacement)
from S, the ith element is the same, i.e., CPi(S) = Probv,v′∈S [vi = v′i]. The
predictability of i is an upper bound on this probability.

Lemma 4.4. CPi(S) ≤ Predi(S).

Proof. For any v ∈ S, there are at most |Proj(S, i)| vectors v ′ ∈ S such
that vi = v′i. Hence Probv′∈S[vi = v′i] ≤ |Proj(S, i)|/|S| = Predi(S), and we
average over v ∈ S. �

How does throwing away vectors from S affect the predictability?

Lemma 4.5. Let S ′ ⊆ S. Then

Predi(S
′) ≤ |S||S ′|Predi(S).

Proof. Note that Proj(S ′, i) ⊆ Proj(S, i). Therefore,

Predi(S
′) =

|Proj(S ′, i)|
|S ′| ≤ |Proj(S, i)|

|S ′| =
|S|
|S ′|Predi(S). �

Suppose t bits have been communicated about the vectors v in S, i.e.,
|S| = 2−t · |W π|. A natural property to want is that, for all l, at most l
elements of v can have more than t/l bits “revealed about it”. The problem is
that after only log(|W |) bits have been communicated, it is possible that, for
all i ∈ π, Predi(S) = 1, implying that log(|W |) bits have been communicated
“about each of the elements”. Consider the following example, for W = {0, 1}k.
Suppose that for j ∈ {1, . . . , k}, the bit j of communication reveals that the
parity of the column j is 0. Then for each i ∈ π, the row vi is uniquely
determined by the other rows Proj(v, i). Therefore, for all i ∈ π, Predi(S) = 1.

We will get around this problem as follows. When an element becomes
highly predictable in S, this element is fixed as a function of the other elements
and then ignored. From then on, the set of vectors Proj(S, i) is considered in
place of S. In our previous example, if any one of the rows vi is fixed as
a function of the other rows, then no information at all is known about the
remaining elements Proj(v, i). The vi value is fixed as a function of Proj(v, i),
by choosing one vector v ∈ Cons(S,w) for each w ∈ Proj(S, i). (I.e., we
are fixing an extension function which maps Proj(S, i) 1-1 to S ′ ⊆ S.) This
is equivalent to the condition that the set of all chosen vectors S ′ satisfies
|S ′| = |Proj(S ′, i)| = |Proj(S, i)|; we will use this concise formulation later in

cc 10 (2001) Communication complexity and circuit depth 223

the paper. The following lemma says that if at most t bits have been revealed
about S, then there exists a set of at most l elements such that, if we fixed
them in this way, then no more than t/l bits have been “revealed about” any
of the other elements.

Lemma 4.6. Let |S| ≥ 2−t · |W π| and |π| ≥ l > 0. Then there exists a subset
of elements σ ⊆ π such that

◦ |σ| ≤ l, and

◦ ∀i ∈ π − σ, Predi(Proj(S, σ)) < 2t/l/|W |.

Proof. Initially, let σ = ∅. We will keep adding indices to σ, maintaining
the property that

|Proj(S, σ)|
|W π−σ| ≥ 2−t(1−|σ|/l).

For σ = ∅, this property is true because |S| ≥ 2−t · |W π|. Now assume for
σ ⊆ π the property holds and that there is an index i ∈ π − σ for which
Predi(Proj(S, σ)) ≥ 2t/l/|W |. By Lemma 4.3,

|Proj(S, σ ∪ {i})|
|Proj(S, σ)| = Predi(Proj(S, σ)) ≥ 2t/l

|W | .

It follows that

|Proj(S, σ ∪ {i})|
|W π−σ−{i}| ≥ 2t/l

|W | ·
|Proj(S, σ)|
|W π−σ−{i}|

= 2t/l · |Proj(S, σ)|
|W π−σ| ≥ 2t/l · 2−t(1−|σ|/l) = 2−t(1−|σ∪{i}|/l).

Thus the property holds for σ ∪ {i}. Eventually, for all i ∈ π − σ, we have
Predi(Proj(S, σ)) < 2t/l/|W |. Since Proj(S, σ) ⊆W π−σ, it follows that

1 ≥ |Proj(S, σ)|
|W π−σ| ≥ 2−t(1−|σ|/l)

and thus |σ| ≤ l. �

At certain points in the argument, we will want to ensure that the players
are given vectors that are distinct at many locations. We will do this by
partitioning W for each i ∈ π with a random function gi : W → {0, 1}, and
promising that, for every i ∈ π, gi(v

A
i) = 0 and gi(v

B
i) = 1, where vA and vB

are the inputs for the A-player and the B-player.

224 Edmonds et al. cc 10 (2001)

Lemma 4.7. Suppose for all i ∈ π, Predi(S) ≤ 1/(4|π|m). For each i ∈ π,
pick uniformly at random the functions gi : W → {0, 1}. Then

Prob[(∃v ∈ S)(∀i ∈ π)gi(vi) = 0] > 1− |π| · 2−m.

Proof. For notational convenience, assume, without loss of generality, that
π={1, . . . , |π|}. Let S0 = S and Si={v ∈ Si−1 | |Cons(Si−1,Proj(v, i))| > m},
for i = 1, . . . , |π|.

First we prove by induction on i that

|Si| ≥
(

1− i

2|π|

)
|S|.

For i = 0, it is trivial. Let 1 ≤ i ≤ |π|. By the induction assumption |S i−1| ≥
|S|/2. Thus, by Lemma 4.5, Predi(S

i−1) ≤ 1/(2|π|m). By Markov’s inequality,

Probv∈Si−1 [|Cons(Si−1,Proj(v, i))| ≤ m]

≤ m · Expv∈Si−1

[
1

|Cons(Si−1,Proj(v, i))|

]
= m · Predi(S

i−1) ≤ 1

2|π| .

Thus for a random v chosen uniformly from S i−1 the probability of the event
that |Cons(S,Proj(v, i))| ≤ m (and hence v 6∈ S i) is at most 1/(2|π|). Hence

|Si| ≥
(

1− 1

2|π|

)
|Si−1| ≥

(
1− 1

2|π|

)(
1− i− 1

2|π|

)
|S| >

(
1− i

2|π|

)
|S|

and our claim follows by induction. Applying the claim to i = |π|, we see that
S|π| is nonempty.

Now we will construct a sequence of vectors v(|π|), . . . , v(0) as follows: Let
v(|π|) ∈ S|π|. For i = |π|, . . . , 1, select v(i−1) ∈ Cons(Si−1,Proj(v(i), i)) such

that gi(v
(i−1)
i) = 0, if possible. Let v = v(0). Since v(i) ∈ Si, we have

|Cons(Si−1,Proj(v(i), i))| > m and these (more than m) vectors have distinct
ith entries. So the probability that gi will be 1 on all of them is less than 2−m.
Therefore, v(0) exists with probability at least 1 − |π| · 2−m, and gi(v

(0)
i) = 0,

for all i ∈ π, since v
(0)
i = v

(i−1)
i by the construction. �

The following discussion and lemmas formalize the idea that “a hybrid bit
communicated concerning all levels of the tree is no worse than a single bit
communicated for each level.” We consider the general situation where the
indices in π are partitioned, as π =

⋃d
i=r πi. We would like to view S in a

way that presents the uncertainty in picking an element of S hierarchically,

cc 10 (2001) Communication complexity and circuit depth 225

first picking the information indexed by πd, then by πd−1, . . . , πr. This gives
the following hierarchy tree representation of the set S. (One confusion that
should be avoided is that, in our example, π itself has a tree structure. The
hierarchy tree has the same depth, but it is much larger and the choices in the
hierarchy tree are in reverse order, largest index depth first to smallest last.)

Definition 4.8. Let r < d be integers, let π =
⋃d
i=r πi be an ordered partition

of π, and let S ⊆ W π. Define π≤j =
⋃j
i=r πi, and π≥j = π − π≤j−1. Let

S≥j = Proj(S, π≤j−1) ⊆ W π≥j . In the degenerate case we set S≥d+1 = {Λ},
where Λ is the single “null” vector (i.e., a vector with 0 coordinates).

We define the extension set for L≥j ∈ S≥j , denoted XS(L≥j), as the set
of all labelings of πj−1 which can be consistently added to L≥j, i.e., XS(L≥j) =
Proj(Cons(S≥j−1, L≥j), π≥j). (Note that the extension set contains only label-
ings of a single level, Lj−1, even if S contains labelings of more levels.)

The hierarchy tree HS for S with respect to this partition is a tree of total
depth d+2−r. See Figure 4.1. Each node at depth d+2− j is labeled with an
element Lj ∈ W πj . Hence, the path from the root to this node is labeled with
an element L≥j = 〈Lj, . . . , Ld〉 ∈W π≥j . The hierarchy tree, however, is pruned
so that at this depth it only contains those nodes corresponding to the elements
L≥j ∈ S≥j ⊆ W π≥j . (Note that the root at depth 1 is Λ, the unique element
of S≥d+1, and the leaves at depth d+ 2− r are the elements of S≥r = S.) The
parent of a node L≥j ∈ S≥j for r ≤ j ≤ d is L≥j−1 = Proj(L≥j , πj) ∈ S≥j+1.
Its children are labeled with the elements Lj−1 ∈ XS(L≥j) and correspond to
the elements L≥j−1 = 〈Lj−1, Lj, . . . , Ld〉 ∈ Cons(S≥j−1, L≥j).

We now formalize the intuition that a hybrid bit about a v ∈ S can be
replaced by a simple bit about each level of labeling Lj .

Lemma 4.9. Let H be a finite tree rooted at Λ, and let H1, . . . , Hp be a parti-
tion of the leaves of H. Then there is b, 1 ≤ b ≤ p, and a non-empty subtree H ′

of H also rooted at Λ, so that all leaves of H ′ are in Hb, and, for every interior
node h ∈ H ′, if h has c children in H, h has at least c/p children in H ′.

Proof. Mark every leaf by a number i between 1 and p according to which
set Hi it belongs to. Mark interior nodes in order of decreasing depth, so that
each node has the label that appears most frequently at its children (breaking
ties arbitrarily). Let b be the label of the root Λ. We define H ′ as the tree
containing all the nodes such that all the nodes on the path from it to the root
have label b, i.e., the tree containing the root, its children labeled by b, their
children labeled by b, etc. �

226 Edmonds et al. cc 10 (2001)

...

..
.

Λ

leaves: elements of S

Λ

Ld

Lj

Lj−1

XS(L≥j)

L≥j = 〈Lj , . . . , Ld〉
= path to root
in S≥j

leaves: elements of S

Figure 4.1: The hierarchy tree

Lemma 4.10. Let S ⊆W π and let S1, . . . , Sp be a partition of S. Then there
is b, 1 ≤ b ≤ p, and a subset S ′ of Sb such that for any j, r ≤ j ≤ d + 1, and
any L≥j ∈ (S ′)≥j , |XS′(L≥j)| ≥ |XS(L≥j)|/p.

Proof. Apply Lemma 4.9 to the hierarchy tree HS to get a subtree H ′.
Define S ′ as the set of all leaves of H ′. �

5. Proof for d = 2

Now we prove the lower bound. We start with the special case of d = 2, since
it illustrates the technique while avoiding certain complications. We prove that
the players need to communicate at least 2k − 3

√
k −O(log k) bits.

5.1. Notation. We use the notation from Sections 3 and 4.
There are two equivalent representations for the inputs to the players. See

Figure 5.1. In the bit representation, we think of the inputs as bits indexed

cc 10 (2001) Communication complexity and circuit depth 227

... ...

1 0 1 1 0 1 0

0

... ...

1 0 1 0 0 1 0

0
0
1
0
1
1
0

1
1
0
0
1
0
1

0
1
1
1
0
1
1

0
0
1
0
1
1
0

1
1
0
0
1
0
1

0
1
0
1
0
1
1 ~cvi

bi

Bit Representation Child Vector Representation

L1 in {0, 1}τ2 , τ2 =[1..k] L1 in W τ1 , τ1 =[1]

in {0, 1}τ1 , τ1 =[1]

L2 in W τ2 , τ2 =[1..k]L2 in {0, 1}τ3 , τ3 =[1..k2]

Figure 5.1: The bit and the child vector representation of the inputs

by a complete k-ary depth 3 tree, τ = τ1 ∪ τ2 ∪ τ3. The bit of the root which
is the sole element of τ1 is 0 for the A-player and 1 for the B-player. The bit
labeling node i ∈ τ is denoted by bi. Then L1 is the subarray of bits indexed
by τ2 and L2 the subarray of bits indexed by τ3.

In the child vector representation, we think of the inputs as instead label-
ing the depth 2 tree τ1, τ2 with elements from W = {0, 1}k, the child vectors
of the interior nodes in the tree. Thus, the label of the root τ1 is L1, and
the labels of the leaves τ2 describe L2. (The label of the original root is not
significant, since this is always 0 for the A-player and 1 for the B-player.) The
set of indices is then τ ′ = τ1 ∪ τ2, the root and its k children respectively. We
use the notation ~cvi to denote the child vector of node i ∈ τ ′. Hence, if i′ is
the jth child of i in τ , then bi′ = ~cvi(j). Throughout the paper we use the child
vector representation, unless we explicitly say otherwise.

Let bi, b
′
i, i ∈ τ , be two inputs in bit representation, and let ~cvi, ~cv

′
i, i ∈ τ ′

be the same labelings in child vector representation. We say the promise is
kept at node i ∈ τ ′ if either bi = b′i or ~cvi 6= ~cv′i. The pair is as promised if
it satisfies the relation R, or, equivalently, if the promise is kept at all nodes i.

Let us fix a protocol supposedly solving the problem with fewer than 2k −
3
√
k − log(6k3) bits of communication. Let l =

√
k and t = k − l − log(2k2).

(We assume that l and t are integers, otherwise we round l up and t down.)
For C a partial conversation, let SAC be the set of 〈L1, L2〉 labelings that

can be given to the A-player and be consistent with the conversation C so far.
Define SBC similarly.

5.2. The first stage conversation. During the first stage, the adversary
will pick C to maximize the symmetry between the players. More precisely, the
adversary will find a conversation C and a set S ⊆ SAC ∩SBC that is “full” in the
following sense. Let HS be the hierarchy tree for S with nodes S≥3∪S≥2∪S≥1.

228 Edmonds et al. cc 10 (2001)

... ...

... ...

... ...

... ...

... ...

... ...

... ...

Λ

S≥2

L2

L1

XS(L2)

Figure 5.2: The hierarchy tree HS for S

See Figure 5.2. The set S≥3 consists of a single root Λ. Its children are S≥2 =
XS(Λ) = Proj(S, τ1), which is the set of possible L2 which might arise from
a labeling in S. For a given L2 ∈ S≥2, XS(L2) is the set of all L1 with
〈L1, L2〉 ∈ S. After almost k bits have been communicated, the adversary
wants many possible L2’s that could be given to either player, so that it will
be hard to find a difference in the leaves. There may still be a few vectors in
L2 that have been the subject of significant communication, so the adversary
will want to make the corresponding bits of L1 identical, while allowing the
players to be given distinct L1’s to keep the promise at the root. To do this,
the adversary also wants as many L1’s as possible for each possible L2.

Lemma 5.1. Fix any protocol for UCR2,k. Then there exists a C ∈ {0, 1}t and
an S ⊆ SAC ∩ SBC so that |S≥2| ≥ 2k

2−t; and, for each L2 ∈ S≥2,

|XS(L2)| ≥ 2k−t = 2k22l.

Proof. Partition the set W τ ′ of labelings 〈L1, L2〉 according to the first
t bits of communication that would result if both players are given this la-
beling. (This choice of inputs is not as promised, but the protocol is still
defined.) If 〈L1, L2〉 is in SC , the class of the partition corresponding to par-
tial conversation C, then 〈L1, L2〉 ∈ SAC ∩ SBC . Obtain the conversation C and
subset S ⊆ SC by Lemma 4.10; the guarantee on size of extension sets is ex-
actly as above, since the number of classes in the partition is at most p = 2t,

|S≥2| = |XS(Λ)| ≥ |XW τ ′
(Λ)|/p = 2|τ3|/p = 2k

2−t, and for every L2 ∈ S≥2,

|XS(L2)| ≥ |XW τ ′
(L2)|/p = 2|τ2|/p = 2k−t. �

cc 10 (2001) Communication complexity and circuit depth 229

5.3. Breaking symmetry for L1. Between the stages, the adversary does
some “cleaning up”. At this point, enough information has been communi-
cated about L1 for the players to start finding a difference. On the other
hand, intuitively, only a few child vectors in L2 have had significant amounts
of information revealed about them. The adversary wants to identify the child
vectors of L2 for which more than k/l bits have been communicated, fix these
as functions of the remaining child vectors, and ensure the corresponding bits
of L1 are fixed to be the same for both players. Then the adversary can break
the symmetry for L1, by partitioning possible values for L1 between the two
players, ensuring that the players are given distinct values as promised. This
process is described formally as the proof of the following lemma:

Lemma 5.2. Fix any protocol for UCR2,k. Then there are:

(i) a partial conversation C ∈ {0, 1}t;

(ii) a set of nodes σ ⊆ τ2, |σ| ≤ l;

(iii) a set T ⊆ ({0, 1}k)τ2−σ;

(iv) an extension function E1 : T → ({0, 1}k)τ2 , and

(v) extension functions EA, EB : E1(T)→ {0, 1}τ

satisfying:

(i) For all L2 ∈ E1(T), EA(L2) ∈ SAC and EB(L2) ∈ SBC .

(ii) For all L2, L
′
2 ∈ E1(T), the promise is kept for the pair of inputs EA(L2)

and EB(L′2) at all i ∈ σ ∪ τ1.

(iii) For all i ∈ τ2 − σ, Predi(T) ≤ 2k/l+l · 2−k.

Proof. Let C and S be as guaranteed by Lemma 5.1.
First, we identify the child vectors in L2 where “a lot of information has been

communicated”. By Lemma 4.6 since |S≥2| ≥ 2k
2−t > 2k

2−k (i.e., no more than
k bits have been communicated about L2), there exists a subset σ ⊆ τ2, |σ| ≤ l,
such that if these are ignored, then the remaining child vectors i ∈ τ2− σ have
predictability Predi(Proj(S≥2, σ)) ≤ 2k/l · 2−k (i.e., no more than k/l bits have
been communicated “about each of these child vectors”). For each element
M of Proj(S≥2, σ), choose a single extension E1(M) ∈ S≥2; let H ′ ⊆ S≥2

230 Edmonds et al. cc 10 (2001)

be the set of all values of E1(M). Note that E1 and Proj(L2, σ) are one-to-
one correspondences between H ′ and Proj(S≥2, σ). Let S ′ = {〈L1, L2〉 ∈ S |
L2 ∈ H ′}. Note that (S ′)≥2 = H ′ and XS′(L2) = XS(L2) for every L2 ∈ H ′.

As far as we know, the child vectors of nodes in σ might now be constant in
S′. In order to have the promise kept for these nodes, the adversary now fixes
the bits of L1 labeling the nodes in σ. To choose values of bits indexed by σ, we
again use Lemma 4.10, similarly to the case when |σ| bits are communicated.
More precisely, we partition S ′ into p ≤ 2l sets according to the bits bi, i ∈ σ;
then by Lemma 4.10, there are b̄i, i ∈ σ, and S ′′ ⊆ S ′ such that:

(i) For all labelings in S ′′, and all i ∈ σ, bi = b̄i.

(ii) |(S ′′)≥2| ≥ |(S ′)≥2|/2l = |Proj(S≥2, σ)|/2l.

(iii) For all L2 ∈ (S ′′)≥2, |XS′′(L2)| ≥ |XS′(L2)|/2l = |XS(L2)|/2l ≥ 2k2.

Let T = Proj((S ′′)≥2, σ). Then since (S ′′)≥2 ⊆ H ′ and the function
Proj(L2, σ) is one-to-one on H ′, |T | = |(S ′′)≥2| ≥ |H ′|/2l. Therefore, by
Lemma 4.5, the predictability of any child vector can go up by at most a
factor of 2l over its predictability in Proj(H ′, σ). Therefore, for all i ∈ τ2 − σ,
Predi(T) ≤ 2lPredi(Proj(S≥2, σ)) ≤ 2k/l+l · 2−k (i.e., no more than k/l + l bits
have been communicated “about each of these child vectors”), so condition (iii)
of the lemma is proved.

For the other conditions, we need to define the extension functions EA and
EB. We start by using E1 to go from a labeling of τ2 − σ to an entire L2.
Now we need to find L1’s. The tricky part is to ensure the promise at the
root is kept, i.e. that the L1 vectors are different. Thus, the adversary must
now break the symmetry between the two players’ possible values for L1. For
each L2 ∈ T , one L1 vector is chosen for the A-player from the remaining
set XS(L2) and one is chosen for the B-player. In this way, the L2 chosen
for each player at the end of the protocol will fix the L1 vectors for the two
players in an asymmetric way as a function of the L2. In order to ensure
that the players get different L1 vectors special care needs to be taken. The
adversary chooses a function G : {0, 1}k → {0, 1} randomly. The A-player will
be given an L1 from G−1(0) and the B-player from G−1(1). We must ensure
that for each L2 ∈ E1(T), XS′′(L2) ∩ G−1(0) and XS′′(L2) ∩ G−1(1) contain
at least one vector each. To see that this is the case with high probability,
note that for each such L2, L2 ∈ (S ′′)≥2, thus |XS′′(L2)| ≥ 2k2 and for a
random function G, the probability that all elements of this set are 1’s of the
function, ProbG[XS′′(L2) ∩ G−1(0) = ∅], is at most 2−2k2

, and likewise for all

cc 10 (2001) Communication complexity and circuit depth 231

0’s. Therefore, since there are at most 2k
2

such M , the probability that there
is such an M is small; namely

ProbG[(∃L2 ∈ E1(T))(XS′′(L2) ∩G−1(0) = ∅ ∨XS′′(L2) ∩G−1(1) = ∅)]
≤ 2|T | · 2−2k2 ≤ 21−k2

< 1.

So we pick a function G where this never occurs, and for each L2 ∈ E1(T),
we select LA1 ∈ XS′′(L2)∪G−1(0) and LB1 ∈ XS′′(L2)∪G−1(1) and set EA(L2) =
〈LA1 , L2〉 and EB(L2) = 〈LB1 , L2〉.

Then for any L2, L
′
2 ∈ E1(T), let L = EA(L2) ∈ S ′′ and L′ = EB(L′2) ∈ S ′′.

Then since G(L1) = 0 and G(L′1) = 1, we have L1 6= L′1, and so the promise is
kept at the root for the pair L and L′. For i ∈ σ, since L,L′ ∈ S ′′, bi = b̄i = b′i,
so the promise is kept at each i ∈ σ. So condition (ii) of the lemma holds.

Since S ′′ ⊆ S ⊆ SAC ∩ SBC , we have L ∈ SAC and L′ ∈ SBC . Thus condition (i)
of the lemma holds. �

In the general case, d > 2, we will need to use Lemma 4.7 to handle this
step, because we will need to break the symmetry simultaneously for many
vectors.

5.4. The second stage. During the second stage of the lower bound the
players continue to communicate bits. This stage continues for t′ = k − k/l −
l − log(3k) bits of communication. Since, for each player, we have fixed L1 as
the functions EA, EB of L2, and we have fixed the rest of L2 as the function E1

of Proj(L2, σ), bits communicated partition the set T of possible Proj(L2, σ)’s.
More precisely, look at the conversation produced on inputsEA(M) and EB(M)
for each M ∈ T for t+ t′ bits. (As before, such a pair need not be as promised
for the protocol to be defined.) The first t bits are always C. So this partitions
the set T into at most 2t

′
subsets, at least one of which, T ′ ⊆ T , is of size at

least |T |/2t′. Now by Lemma 4.5 the predictability of any child vector has gone
up by at most the same factor. Since for T we had Predi(T) ≤ 2k/l+l · 2−k for
all i ∈ τ2−σ, we now have Predi(T

′) ≤ 2k/l+l · 2t′ · 2−k = 2− log(3k) = 1/(3k) for
all i ∈ τ2 − σ.

Summarizing:

Lemma 5.3. Fix any protocol for UCRd,k. Let t′′ = t + t′ = 2k − k/l − 2l −
log(6k3). Then there are:

(i) a conversation C ′ ∈ {0, 1}t′′;

(ii) a set of nodes σ ⊆ τ2, |σ| ≤ l;

232 Edmonds et al. cc 10 (2001)

(iii) a set T ′ ⊆ ({0, 1}k)τ2−σ;

(iv) an extension function E1 : T → ({0, 1}k)τ2 , and

(v) extension functions EA, EB : E1(T)→ {0, 1}τ

satisfying:

(i) For all L2 ∈ E1(T ′), EA(L2) ∈ SAC′ and EB(L2) ∈ SBC′ .

(ii) For all L2, L
′
2 ∈ E1(T ′), the promise is kept for the pair of inputs EA(L2)

and EB(L′2) at all i ∈ σ ∪ τ1.

(iii) For all i ∈ τ2 − σ, Predi(T
′) ≤ 1/(3k).

5.5. Choosing the inputs. The protocol ends at this point and outputs
Out(C ′) ∈ τ3, claiming that bOut(C′) 6= b′Out(C′). The adversary must find a

pair 〈LA1 , LA2 〉 and a pair 〈LB1 , LB2 〉 which are consistent with C ′, which are as
promised at all nodes, and for which the specified leaf Out(C ′) is labeled the
same.

The adversary chooses these inputs by choosing two vectors LA2 , LB2 indepen-
dently and uniformly at random from the set E1(T ′) (since E1 is one-to-one, this
is equivalent to sampling from T ′). This fixes the inputs 〈LA1 , LA2 〉 = EA(LA2)
and 〈LB1 , LB2 〉 = EB(LB2).

The claim is that with probability at least 1/6, these inputs meet the ad-
versary’s requirements.

First, the pair is consistent with C ′ by Lemma 5.3(i).
We now compute a lower bound on the probability that the pair of inputs

is as promised. By Lemma 5.3(ii) the promise is kept for all nodes in τ1 ∪ σ.
So we just need to look at the probability they keep the promise at nodes
i ∈ τ2 − σ. For the promise to be kept at such nodes, it suffices that, for
each i ∈ τ2 − σ, ~cvi 6= ~cv′i. Now, ~cvi and ~cv′i are parts of two uniform and
independent samples from T ′. Lemma 4.4 states that the probability, for two
samples randomly chosen (with replacement) from T ′, that the ith component
is the same, is no more than Predi(T

′), which is bounded by Predi(T
′) ≤ 1/(3k)

using Lemma 5.3(iii). Thus, the probability that at least one of the k such child
vectors is the same is no more than 1/3 and the input pair is as promised with
probability at least 2/3.

Now let us calculate the probability that the specified index of τ2 is labeled
the same. Let p be the probability that for a random L2∈E1(T ′), bOut(C′) =1.
Because both players’ L2’s are identically and independently chosen from E1(T ′),

cc 10 (2001) Communication complexity and circuit depth 233

this probability is the same for both players and the probability that the label
is different is 2p(1− p) ≤ 1/2.

Thus, the probability that the pair is as promised and the bits bOut(C′) are
the same is at least 2/3− 1/2 = 1/6. Therefore, there exists a choice of inputs
which causes the protocol to fail. Since this holds for an arbitrary protocol, we
get

Theorem 5.4. CC(UCR2,k) ≥ 2k − 3
√
k − log(6k3).

6. Proof for d ≥ 3

6.1. Overview. Although the proof is considerably more complicated, the
intuition behind the case d ≥ 3 is the same as that for d = 2. In both, the
adversary tries to delay progress on the part of the protocol as long as possible,
where progress means finding a difference in the players’ labeling deep in the
tree. If the players know a difference at some node at level i they can find a
difference at level i + 1 within k bits of communication. Thus approximately
every k bits we begin a new “stage” of the lower bound. During stage r, the
adversary assumes that the players have already found a difference in level r−1
and tries to prevent them from finding a difference in level r.

The way this is modeled in the proof is for the adversary to find a conversa-
tion for the first r stages and a set of possible inputs for each player where each
pair of possible inputs leads to this conversation. Furthermore, the way we
model “the players know no difference beyond depth r in the tree” is to make
these sets identical as far as their possible Lr+1, . . . , Ld parts. This means that
we cannot guarantee to fulfill the promises in these parts, since we cannot guar-
antee any differences at these levels. However, we make sure that this set is
large, so that two random elements of the set are likely to have enough differ-
ences to fulfill the promises. By fixing L1, . . . , Lr as functions of Lr+1, . . . , Ld
in different ways for the two players, we ensure the promises are kept for these
levels.

More precisely, at the end of stage r, the adversary has fixed a conversation
Cr and a small set σr ⊆ τr+1 which are the child vectors in Lr+1 about which
“significant communication” has occurred. The adversary maintains a set of
labelings Tr of τ≥r+1 − σr which are possible for both players. This specifies
possible labelings Lr+2, . . . , Ld symmetrically for the players, as well as the
“unpredictable” parts of Lr+1. Then the labeling of σr, and hence Lr+1, is
determined by an extension function Er symmetrically for both players, which
are then asymmetrically extended to complete labelings by functions EA

r and
EB
r . Intuitively, since the sets of inputs for the two players are the same as far

234 Edmonds et al. cc 10 (2001)

as their labelings of τ≥r+1 go, the players do not yet know a difference at the
(r + 1)st level.

The delicate part is when the players have revealed enough information to
almost find a difference at the rth level. In order not to violate a promise, we
need to break symmetry at the rth level, but maintain it at the (r + 1)st. The
steps towards doing this are:

1. Identify the set of nodes σr+1 at level r+1 where “significant information
has been communicated”.

2. Fix the child vectors of these nodes as functions of the rest of Lr+1.

3. Fix the bits labeling these nodes.

4. For each i ∈ τr+1 − σr, partition the elements of {0, 1}k between the
players to make sure that these child vectors differ.

6.2. Notation. Let l =
√
k/log k, a1 = dk/l, a2 = dl log k, a3 = 4d log k+4,

and s = k − a1 − a2 − a3 − 2l = k − O(d(k log k)1/2). (Note that a1 = a2, to
optimize the bound.) Fix any protocol which supposedly solves UCRd,k using
at most sd bits of communication. We call the time from bit (r − 1)s + 1 to
bit rs of the conversation stage r of the protocol.

For j, 1 ≤ j ≤ d + 1, let τj represent the nodes of the complete, depth
d + 1, k-ary tree at depth j, so τ1 is a single root, τ2 its k children, etc.
Remember, in the child vector representation, Li is an array of elements of
{0, 1}k indexed by τi; in the bit representation it is an array of bits indexed
by τi+1. For notational convenience, we will think of a labeling as having both
representations. In particular, we will call a function an extension function even
if its input is in one format and output in the other, as long as the input and
output are identical where they are both defined (if, say, both were converted
to bit representation). For a labeling L, we use the notation bi, i ∈ τ≥2, to
represent the bit labeled by i in the bit representation of L and ~cvi, i ∈ τ≤d, to
represent the k-bit string indexed by i in its child vector representation.

In the proof, after stage r we will have a set of partial labelings Tr, each
member is a possible labeling Lr+2, . . . , Ld, plus the part of Lr+1 which is
indexed by τr+1−σr (for a set σr representing those child vectors in Lr+1 about
which “too much information has been revealed”). We will use Lemma 4.10 on
this set, with respect to the partition τr+1 − σr, τr+2, . . . , τd, so all references
to the hierarchy tree for Tr are with respect to this partition.

Let LA and LB be labelings of τ≥2, with bit representations bAi and bBi and
child vector representations ~cvAi and ~cvBi . We say the pair is as promised for

cc 10 (2001) Communication complexity and circuit depth 235

node i ∈ τ≥2 if either bAi = bBi or ~cvAi 6= ~cvBi . The pair is as promised for
the root i ∈ τ1 if ~cvAi 6= ~cvBi .

6.3. Induction assumption. The inductive statement is analogous to the
case of d = 2, Lemma 5.2. We will prove, by induction on r = 0, . . . , d − 1,
that:

Lemma 6.1. Let 0 ≤ r ≤ d− 1. Then there are:

(i) a partial conversation Cr ∈ {0, 1}sr;

(ii) a set of nodes σr ⊆ τr+1, |σr| ≤ l;

(iii) a set Tr ⊆ ({0, 1}k)τ≥r+1−σr ;

(iv) an extension function Er : Tr → ({0, 1}k)τ≥r+1 , and

(v) extension functions EA
r , E

B
r : Er(Tr)→ {0, 1}τ

satisfying:

(IND-i) For all L≥r+1 ∈ Er(Tr), EA
r (L≥r+1) ∈ SAC and EB

r (L≥r+1) ∈ SBC .

(IND-ii) For all LA≥r+1, L
B
≥r+1 ∈ Er(Tr), the promise is kept for the two inputs

EA
r (LA≥r+1), EB

r (LB≥r+1) at all i ∈ σr ∪ τ≤r.

(IND-iii) For all L≥r+2 ∈ T≥r+2
r and all i ∈ τr+1 − σr,

Predi(X
Tr(L≥r+2)) ≤ 2−(s+a3+l) = 2a1+a2+l · 2−k.

(IND-iv) For all d + 1 ≥ j ≥ r + 3 and all L≥j ∈ T≥jr ,

|XTr(L≥j)| ≥ 2−kr · 2|τj |.

Intuitively, this lemma says that the adversary can maintain a symmetrical set
of L≥r+1’s, Er(Tr), which can be inputs to either player. Any two inputs from
this symmetrical set can be given to the two players without breaking promises
in non-symmetrical parts, by suitable asymmetrical extensions to a complete
input. Any part of Lr+1 that is predictable given the conversation so far has
had the corresponding bit in Lr fixed to ensure the promise is kept there. So
the players still need to work hard to find any difference in Lr+1. Finally, the
number of possible labelings Lr+2, . . . , Ld in the set is large enough that, even
given Lj, . . . , Ld, the players know no more than kr bits about Lj−1, for any
j ≥ r + 3.

236 Edmonds et al. cc 10 (2001)

6.4. The base case. For r = 0, we can pick σ0 = ∅, and T0 = ({0, 1}k)τ≥1 ,
the set of all labelings of all nodes except the root of the tree; C0 = ε; E0,
EA

0 , and EB
0 are all the identity function. All conditions above are vacuously

satisfied (note that in condition (IND-iii), we have a full set of labelings L1 in
the extension set, so the predictability is 2−k, much less than required).

6.5. Induction step. Assume we have Cr−1, Tr−1, σr−1, Er−1, E
A
r−1, E

B
r−1 as

in the induction claim. We want to find Cr, Tr, σr, E
A
r , E

B
r that satisfy the claim

at r. Remember, Er−1(Tr−1) is a set of tuples 〈Lr, . . . , Ld〉 that could be given
to either player and be consistent with the conversation Cr−1 when extended
by EA

r−1 or EB
r−1 to get L0, . . . , Lr−1. These extensions are guaranteed to keep

promises in the lower levels and at those parts of Lr that are indexed by σr−1.
The other parts of Lr are unpredictable, and not much total information has
been revealed about Lr+1, . . . , Ld. So, while the players might have found a
difference in level Lr−1, intuitively they have not found a difference at level
Lr or above. In the induction step, we need to argue that, after s more bits
of communication, while they might be able to find a difference in Lr, we can
keep Lr+1, . . . , Ld symmetrical for the two players.

6.5.1. Picking the conversation for stage r. First, we must pick a con-
versation for stage r that does not give away too much information about any
level of the labeling.

Partition Tr−1 by associating each L≥r ∈ Tr−1 with the bits communicated
on the pair of inputs EA

r−1(Er−1(L≥r)) for the A-player and EB
r−1(Er−1(L≥r)) for

the B-player. (This pair is not as promised, but the protocol is still defined on
it.) The first (r−1)s bits communicated will be Cr−1. The s bits communicated
in stage r thus create a partition of Tr−1 into at most 2s pieces.

The adversary, by Lemma 4.10, can find a subset T ′ ⊆ Tr−1 and a conversa-
tion Cr extending Cr−1 so that all members of T ′ yield conversation Cr, and so
that the following holds: for all j, r + 1 ≤ j ≤ d + 1, and for all L≥j ∈ (T ′)≥j ,
|XT ′(L≥j)| ≥ 2−s · |XTr−1(L≥j)|.

In particular, for j = r+1 and i ∈ τr−σr−1, induction assumption (IND-iii)
and Lemma 4.5 yield Predi(X

T ′(L≥r+1)) ≤ 2s · Predi(X
Tr−1(L≥r+1)) ≤ 2s ·

2−(s+a3+l) = 2−(a3+l) (i.e., even given Lr+1, . . . , Ld, any place in Lr not indexed
by σr−1 is still pretty unpredictable). For j ≥ r + 2, by induction assumption
(IND-iv) we have |XT ′(L≥j)| ≥ 2−s · |XTr−1(L≥j)| ≥ 2−(k(r−1)+s) · 2|τj |. So at
most s more bits have been revealed about any Lj , r + 1 ≤ j ≤ d.

6.5.2. Finding predictable places in Lr+1. Intuitively, we want to argue
that the adversary can arrange for the promises to be kept at level Lr without

cc 10 (2001) Communication complexity and circuit depth 237

revealing any differences in Lr+1. The problem is that there are possibly a few
places in Lr+1 where significant communication has occurred. If we make those
places different in Lr, the players will be on their way to finding a difference
in Lr+1. So we must find those places, and argue that we have enough slack in
Lr to make those places identical while still allowing promises to be kept.

For each L≥r+2 ∈ (T ′)≥r+2, we know that |XT ′(L≥r+2)| ≥ 2−(k(r−1)+s) ·
2|τr+2| ≥ 2−kd · (2k)|τr+1|. By Lemma 4.6, for each such L≥r+2 there is a sub-
set σ′ ⊆ τr+1 of the indices for Lr+1, |σ′| ≤ l, such that if we remove these
child vectors, the other child vectors i ∈ τr+1 − σ′ are unpredictable, i.e.,
Predi(Proj(XT ′(L≥r+2), σ′)) ≤ 2kd/l · 2−k = 2a1 · 2−k.

These predictable child vectors represent the places where the players might
find a difference in Lr+1 quickly, if they knew the corresponding bits in Lr were
different. So we would like to fix the bits corresponding to σ′ in Lr to be
constant and identical for both players. Unfortunately, the set σ ′ depends on
Lr+2, . . . , Ld. Fortunately there are not too many possible sets.

We associate each L≥r+2 ∈ (T ′)≥r+2 with the set σ′ described above. This
partitions (T ′)≥r+2 into at most |τr+1|l ≤ kdl = 2a2 classes, each corresponding
to one possible value of σ′. Now we use Lemma 4.10 (with r + 2 in place
of r) to choose one set σ′ ⊆ τr+1, |σ′| ≤ l, and a corresponding partition class
T ′σ′ ⊆ (T ′)≥r+2. Define σr = σ′ and T ′′ to be the set of all L≥r ∈ T ′ such that
Proj(L≥r, τ≤r+1) ∈ T ′σ′, i.e., the set of extensions of all elements of T ′σ′ by all
consistent Lr+1 and Lr. The following conditions are now satisfied:

◦ For all j, r + 3 ≤ j ≤ d+ 1, and all L≥j ∈ (T ′′)≥j ,

|XT ′′(L≥j)| ≥ 2−a2 · |XT ′(L≥j)| ≥ 2−((r−1)k+s+a2) · 2|τj |.

◦ For all L≥r+2 ∈ (T ′′)≥r+2 and all i ∈ τr+1 − σr,
Predi(Proj(XT ′′(L≥r+2), σr)) ≤ 2a1 · 2−k.

◦ For any L≥r+1 ∈ (T ′′)≥r+1 and any i ∈ τr − σr−1, we have

Predi(X
T ′′(L≥r+1)) = Predi(X

T ′(L≥r+1)) ≤ 2−(a3+l).

The first two conditions are implied by Lemma 4.10 and our choice of σr = σ′,
the last condition follows from Section 6.5.1.

To ensure that promises are kept for i ∈ σr, we fix the corresponding bits
in Lr as follows: Partition T ′′ into at most 2l sets according to the values of
bi, i ∈ σr, in Er−1(L). Applying Lemma 4.10, we get bits b̄i, i ∈ σr, and a
set T ′′′ ⊆ T ′′ with |XT ′′′(L≥j)| ≥ 2−l · |XT ′′(L≥j)|, for every L≥j ∈ T≥j , and
such that for every L≥r ∈ Er−1(T ′′′), and every i ∈ σr, bi = b̄i. Then we have
(applying the similar conditions for T ′′ and Lemma 4.5):

238 Edmonds et al. cc 10 (2001)

Lemma 6.2.

(i) For all L≥r ∈ Er−1(T ′′′), EA
r−1(L≥r) ∈ SACr and EB

r−1(L≥r) ∈ SBCr .
(ii) For all LA≥r, L

B
≥r ∈ Er−1(T ′′′), for EA

r−1(LA≥r) and EB
r−1(LB≥r) the promise

is kept at all i ∈ τ≤r−1 ∪ σr−1 ∪ σr.
(iii) For any L≥r+1 ∈ (T ′′′)≥r+1 and i ∈ τr−σr−1, Predi(X

T ′′′(L≥r+1)) ≤ 2−a3.

(iv) For all L≥r+2 ∈ (T ′′′)≥r+2 and all i ∈ τr+1 − σr,
Predi(Proj(XT ′′′(L≥r+2), σr)) ≤ 2a1+l · 2−k.

(v) For all j, r + 3 ≤ j ≤ d+ 1, and all L≥j ∈ (T ′′′)≥j ,

|XT ′′′(L≥j)| ≥ 2−((r−1)k+s+a2+l) · 2|τj | ≥ 2−rk · 2|τj |.

6.5.3. Breaking symmetry for Lr. At this point, the vectors in Lr corre-
sponding to τr−σr−1 are not sufficiently unpredictable, so that the players can
agree on a difference there with a few bits of communication. Moreover, such
a difference has to exist, since the corresponding bits in Lr−1 have been fixed
as a function of Lr in an asymmetrical way, so if no such difference existed, the
promise would be violated. So to ensure promises are kept, in the following
construction, the adversary breaks the symmetry in a very strong sense, using
the remaining unpredictability of the vectors Lr.

Randomly choose for each index i ∈ τr−σr−1 a function gi from child vectors
{0, 1}k to {0, 1}. The adversary restricts inputs Lr for player A to those where
gi(~cvi) = 0 for all such i, and for B to those where gi(~cvi) = 1 for all such i.
Call such an input Lr a promise keeper for the appropriate player. If LAr is
a promise keeper for A and LBr for B, then LA and LB keep the promise at all
i ∈ τr − σr−1, since we must have ~cvAi 6= ~cvBi .

Let L≥r+1 ∈ (T ′′′)≥r+1. By Lemma 6.2(iii), for all i ∈ τr − σr−1,

Predi(X
T ′′′(L≥r+1)) ≤ 2−a3 =

1

16k4d
≤ 1

4|τr|(|τ |+ log |τr|+ 2)

By Lemma 4.7, setting m = |τ≥r| + log |τr| + 2, the probability that there is
no promise keeper for A in XT ′′′(L≥r+1) is at most |τr|/2m = 1/(4 · 2|τ |) ≤
1/(4|(T ′′′)≥r+1|), and similarly for B. Therefore, for some choice of ~g, there are
such promise keepers PKA(L≥r+1),PKB(L≥r+1) for all L≥r+1 ∈ (T ′′′)≥r+1. We
define EA

r (L≥r+1) = EA
r−1(Er−1((PKA(L≥r+1)))) and similarly EB

r (L≥r+1) =
EB
r−1(Er−1((PKB(L≥r+1)))).

Let Tr = Proj((T ′′′)≥r+1, σr). For each M ∈ Tr, arbitrarily select an exten-
sion Er(M) ∈ (T ′′′)≥r+1. Note that (Tr)

≥j = (T ′′′)≥j for all j, r + 2 ≤ j ≤ d,
and XTr(L≥r+2) = Proj(XT ′′′(L≥r+2), σr) for all L≥r+2 ∈ (Tr)

≥r+2.

cc 10 (2001) Communication complexity and circuit depth 239

6.5.4. Verifying the induction hypothesis for r. We now have defined
Cr, σr, Tr, Er, E

A
r and EB

r . We need to verify that the induction hypothesis
holds for these definitions:

(IND-i) By Lemma 6.2(i), for all L≥r ∈ Er−1(T ′′′), we have EA
r−1(L≥r) ∈ SACr

and EB
r−1(L≥r) ∈ SBCr . Therefore, for L≥r+1 ∈ Er(Tr) we let LA≥r =

Er−1(PKA(L≥r+1)) ∈ Er−1(T ′′′) and LB≥r = Er−1(PKB(L≥r+1)) ∈
Er−1(T ′′′), and obtain EA

r (L≥r+1) = EA
r−1(LA≥r) ∈ SACr and EB

r (L≥r+1) =
EB
r−1(LB≥r) ∈ SBCr .

(IND-ii) Defining LA≥r ∈ T ′′′ and LB≥r ∈ T ′′′ as above, by Lemma 6.2(ii), the
promise is kept at all i ∈ τr−1 ∪ σr−1 ∪ σr. It is also kept at i ∈ τr − σr−1

because gi(~cv
A
i) = 0 and gi(~cv

B
i) = 1. Thus for all LA≥r+1, L

B
≥r+1 ∈ Er(Tr),

the promise is kept for the two inputs EA
r (LA≥r+1), EB

r (LB≥r+1) at all i ∈
σr ∪ τ≤r.

(IND-iii) By Lemma 6.2(iv), for all L≥r+2 ∈ T≥r+2
r and all i ∈ τr+1 − σr, this

follows since

Predi(X
Tr(L≥r+2)) = Predi(Proj(XT ′′′(L≥r+2), σr)) ≤ 2a1+l · 2−k.

(IND-iv) By Lemma 6.2(v), for all j, r + 3 ≤ j ≤ d+ 1, and all L≥j ∈ T≥jr ,

|XTr(L≥j)| = XT ′′′(L≥j) ≥ 2−kr2|τj |.

This finishes the proof of Lemma 6.1.

6.6. The last stage conversation. We have proved the inductive assump-
tion of Lemma 6.1 for r up to d− 1. We need to deal with the last stage sepa-
rately, as some of the induction hypotheses become degenerate when r = d−1.
In this case, note that Td−1 ⊆ ({0, 1}k)τd−σd−1 and Ed−1(Td−1) ⊆ ({0, 1}k)τd is
a symmetric set of possible labelings Ld of the last level that can be extended
to both players. So we are in the analogous position to Section 5.4.

Applying Lemma 6.1 when r = d− 1 gives us Cd−1, σd−1, Td−1, Ed−1, EA
d−1,

and EB
d−1 so that:

(i) For all Ld ∈ Ed−1(Td−1), EA
d−1(Ld) ∈ SACd−1

and EB
d−1(Ld) ∈ SBCd−1

.

(ii) For all LAd , L
B
d ∈ Ed−1(Td−1), the promise is kept for the two inputs

EA
d−1(LAd), EB

d−1(LBd) at all i ∈ σd−1 ∪ τ≤d−1.

240 Edmonds et al. cc 10 (2001)

(iii) (Only applies to Λ, the trivial unique root of the hierarchy tree for Td−1,
and XTd−1(Λ) = Td−1.) For all i ∈ τd − σd−1, Predi(Td−1) ≤ 2−(s+a3+l).

(iv) Does not apply.

Then the last s bits of the protocol (on inputs EA
d−1(Ed−1(M)) for player

A and EB
d−1(Ed−1(M)) for B) partition Td−1 into at most 2s classes. (The first

s(d − 1) bits are always Cd−1.) We pick Td to be the largest class, and Cd to
be the corresponding conversation. Then we have:

Lemma 6.3.

(i) For all Ld ∈ Ed−1(Td), E
A
d−1(Ld) ∈ SACd and EB

d−1(Ld) ∈ SBCd.
(ii) For all LAd , L

B
d ∈ Ed−1(Td), the promise is kept for the pair of inputs

EA
d−1(LAd) and EB

d−1(LBd) at all i ∈ σd−1 ∪ τ≤d−1.

(iii) For all i ∈ τd − σd−1,

Predi(Td) ≤ 2s · 2−(s+a3+l) = 2−(a3+l) ≤ 1/(16k4d) ≤ 1/(16|τd|).

6.7. Picking the inputs. The protocol ends after sd bits and outputs I =
Out(Cd) ∈ τd+1, claiming that bAI 6= bBI . We claim there exist LA and LB such
that they keep all promises, are consistent with Cd, and bAI = bBI .

The adversary chooses these inputs by choosing two elements MA, MB

independently and uniformly at random from the set Td. This determines the
input vectors, by LAd = Ed−1(MA), LBd = Ed−1(MB), LA = EA

d−1(LAd) and
LB = EB

d−1(LBd). We show that, with non-zero probability, all promises are
kept and bAI = bBI .

From Lemma 6.3, we know that the pair is always consistent with Cd and
that all promises are kept at all i ∈ τ≤d−1 ∪ σd−1.

We now compute a lower bound on the probability that the pair of inputs is
as promised at nodes in τd−σd−1. For the promise to be kept at such nodes, it
suffices that, for each such i, ~cvAi 6= ~cvBi . Now, ~cvi and ~cv′i are parts of MA,MB,
which are uniform and independent samples from Td. Lemma 4.4 states that
the probability, for two samples randomly chosen (with replacement) from T ′,
that the ith component is the same is no more than Predi(Td) ≤ 1/(16|τd|) (by
Lemma 6.3(iii)). Thus, the probability that one of the |τd| − |σd−1| such child
vectors is the same is no more than 1/16. Thus, the input pair is as promised
with probability at least 15/16.

As in Section 5.5, the probability that bAI = bBI is at least 1/2, since they are
the same bit in LAd and LBd , and these two are both uniformly and independently
distributed in the same set Ed−1(Td).

cc 10 (2001) Communication complexity and circuit depth 241

Thus, the probability that the pair is as promised and bAI = bBI is at least
15/16 − 1/2 = 3/16. Therefore, there exists a choice of inputs which causes
the protocol to fail. Thus, there is no valid protocol with communication
complexity at most sd = dk −O(d2(k log k)1/2).

7. The multiplexor game, d = 1

Definition 7.1. The Same Function 1-Multiplexor communication game
is played on a fixed set of vectors U ⊆ {0, 1}k. An adversary chooses two vectors
v0, v1 ∈ U and one function f ∈ {0, 1}U , with the restriction that f(v0) = 0
and f(v1) = 1. Player P0 is given (v0, f) and player P1 is given (v1, f). The
players’ goal is to find an index i ∈ [1, k] for which the vectors are different.

In fact, this is the Iterated Multiplexor Game for d = 1 in which the function
f is known to the players (instead of the adversary only promising that there
is such a function). It is the Karchmer–Wigderson Rf game when f is part of
the input.

Theorem 7.2. The Same Function 1-Multiplexor Game requires Ω(log |U |)
bits of communication. In particular, for U = {0, 1}k, Ω(k) bits are needed.

Note that Theorem 7.2 can be proved by a simple counting argument. Ri-
ordan & Shannon (1942) proved there are many more functions in {0, 1}{0,1}k
than there are circuits with depth o(k). Since CC(Rf) = Depth(f), it follows
that there are functions with high communication complexity. If the adver-
sary gives both the players such a function, the lower bound follows. However,
the counting argument of Riordan & Shannon (1942) is notorious for yielding
no intuition for constructing hard functions. Hopefully, our new techniques
will provide new insight especially when combined with other communication
complexity type proofs.

The following proof also provides techniques which might be useful in trans-
lating our lower bound for the Universal Composition Relation into an actual
circuit lower bound. A major tool used in the lower bound for the Universal
Composition Relation is to keep symmetry between the players to as large an
extent as possible. As a bit communicated by one player restricts that player’s
set of possible inputs, we want to restrict the other player’s inputs in the same
way. However, in the communication game for any real function, this symmetry
is lost from the very start, since one player has only inputs from f−1(0) and
the other has inputs from f−1(1).

This lack of symmetry is even a problem in the simple Same Function 1-
Multiplexor game. For any f , the set of inputs that the two players can have are

242 Edmonds et al. cc 10 (2001)

disjoint, and we must give the players the same function f . Our lower bound
has to get around this obstacle, which is also a major problem for converting
the Universal Composition Relation bound into a real circuit bound. We do
this by viewing the entire input as being composed of two parts, the function
and the vector. Although the sets of vector-function pairs allowed for the two
players are disjoint, we keep both the set of possible vectors and the set of
possible functions symmetrical for the two players. We also need to maintain a
fullness property, which is that for any vector still in our set and any function
still in our set, the pair can be given as an input to one of the two players. In
effect, we find a smaller version of the Same Function 1-Multiplexor game after
each bit of communication.

This separation of the input into several parts and maintaining symmetry
for each part might be useful in proving circuit lower bounds for larger depth
Multiplexors, but the situation is certainly much more complicated. A some-
what simpler game where these techniques might apply is the direct sum of two
Same Function 1-Multiplexor games. To get a lower bound significantly more
than k for this direct sum game is an open problem.

Proof of Theorem 7.2. Given a fixed communication protocol, the ad-
versary goes through the protocol round by round maintaining a set of vectors
V ⊆ {0, 1}k and a set of functions F ⊆ {0, 1}{0,1}k from which v0, v1, and f are
chosen. We prove the following by induction on t:

Lemma 7.3. Fix any protocol for the Same Function 1-Multiplexor game on
U . Let c = 12.27. Let 0 ≤ t < logc(|U |). Then there is a partial conversation
C ∈ {0, 1}t, a set V ⊆ U , and a set of functions F ⊆ {0, 1}U so that:

(i) For all v ∈ V and all f ∈ F , if f(v) = 0, then 〈v, f〉 ∈ SAC and if f(v) = 1,
then 〈v, f〉 ∈ SBC .

(ii) |V | ≥ |U |/ct−1.

(iii) FV = {0, 1}V .

Let FV ⊆ {0, 1}V denote the set of projections of elements of F onto V , i.e.,
the set of functions mapping vectors in V to {0, 1} which are consistent with
some function in F . Because we are no longer considering the vectors not in V ,
we do not care what value f takes on these vectors. Property (iii) states that
all functions defined on V are possible. In fact, the proof is easier if we assume
that for every function in FV , there is one and only one function consistent
with it in F . In this case, |F | = 2|V |.

cc 10 (2001) Communication complexity and circuit depth 243

If we can prove Lemma 7.3, the theorem follows. Applying it to U = {0, 1}k
and t = (k − 2)/log c bits of communication, by property (ii), V still contains
at least three vectors. At this point, the communication game is over and
the protocol must specify an index ∈ [1, k] for which the vectors v0 and v1

are different. At least two of the three vectors in V have the same bit at the
specified index. One of these two vectors is given to the A-player and the other
to the B-player. By property (iii), there exists a function f ∈ F for which
f(v0) = 0 and f(v1) = 1. This function is given to both players. By (i), the
protocol’s communication pattern on (v0, v1, f) is as stated. It follows that
the protocol fails to find a difference in the vectors given these inputs. So it
remains to prove Lemma 7.3.

Clearly, when t = 0, we take V = U , F = {0, 1}U , and the three properties
hold. Assume that C, V, F meet the three properties for time t − 1 and that
given the conversation C, the A-player communicates during round t. For every
pair (v, f) for which f(v) = 0, the protocol determines the bit the A-player will
communicate if given the pair. We will denote this bit by bv,f . The rules of
the game ensure that the A-player will never be given a pair (v, f) for which
f(v) = 1. Therefore, the protocol does not specify a bit for this pair. In this
case, define bv,f = ∗. (This represents the fact that the adversary is able to
set this bit to 0 or 1 as needed.) With this notation, the statement “If the
conversation so far is C, and f(v) = 0, then the A-player communicates the
bit a given the pair (v, f) in round t”, becomes simply “[bv,f ∈ {a, ∗}]”.

The adversary proceeds in three steps to obtain the new values for C, V ,
and F .

1. First, she finds F ′ ⊆ F of size (3/2)|V | such that for every v ∈ V there is
av ∈ {0, 1} such that [bv,f ∈ {av, ∗}] for all f ∈ F ′.

2. Next, she finds V ′ ⊆ V of size 2|V |/c such that F ′V ′ = {0, 1}V ′ .

3. Finally, she finds a bit Ct ∈ {0, 1} and a subset V ′′ ⊆ V ′ of size |V |/c
such that for all v ∈ V ′′ and all f ∈ F ′, [bv,f ∈ {Ct, ∗}].

It should be clear that, after these steps, C, Ct, V
′′ and F ′ satisfy the three

properties of the lemma.
Before we give a formal proof that step 1 is possible, we give an intuitive

argument for motivation. The goal of step 1 is to find a subset F ′ of the
functions for which bv,f is constant with respect to f for each v. Consider any
v ∈ V . This vector partitions F into three parts: those f ’s for which bv,f

equals 0, 1, and ∗, i.e. 0 is communicated, 1 is communicated, and f(v) 6= 0.
The adversary is free to choose between the 0 and the 1 part, by setting av

244 Edmonds et al. cc 10 (2001)

appropriately and, either way, is able to keep the entire ∗ part. The ∗ part (i.e.,
those f ∈ F for which f(v) = 1) is likely to make up about half of F , and the
adversary is able to choose the larger of the 0 and the 1 parts; so meeting the
goal for any particular v should be possible while restricting F by at most a
factor of 3/4. Initially, F is of size 2|V |. Therefore, we expect |F ′| to be of size
2|V |(3/4)|V | = (3/2)|V |. The problem with this argument is the statement that
half the v, f pairs should give a ∗, which is true initially, but is not guaranteed
to remain true as we restrict F .

A formal argument goes as follows. The vector ~a = av1 . . . av|V | ∈ {0, 1}V
is said to be consistent with the function f ∈ F if [bv,f ∈ {av, ∗}] for all
v ∈ V . In other words, ~a and f are consistent if ~a agrees with the bit the
A-player will communicate during time step t if given v, f , whenever this last
is actually possible. Step 1 can be rephrased as the adversary’s finding an
~a which is consistent with (3/2)|V | functions in F . Towards this goal, she
constructs a 2|V | ×FV = 2|V |× 2|V | Boolean matrix M . Each row is labeled by
an ~a ∈ {0, 1}V and each column is labeled with a function f ∈ F with the fV ’s
taking on all possible values. The entry M~a,f is set to be 1 if and only if ~a and
f are consistent.

For a given f ∈ F , let l ∈ [0, 2|V |] be the number of v ∈ V for which
f(v) = 1, i.e., for which bv,f = ∗. Then the number of ~a consistent with f is
exactly 2l, since we are free to pick a(v) ∈ {0, 1} for each such v. This is also the
number of 1’s in the column labeled by f . Because FV = {0, 1}V , there are

(|V |
l

)

functions f ∈ F where the number of v ∈ V for which f(v) = 1 is l. It follows

that the total number of 1’s in the matrix is
∑|V |

l=0

(|V |
l

)
2l = (1 + 2)|V | = 3|V |.

There are 2|V | rows. Therefore, there exists an ~a for which its row contains
3|V |/2|V | = (3/2)|V | 1’s. Let F ′ be those f ∈ F that have a 1 in this row. It
follows that for every v ∈ V there exists av ∈ {0, 1} such that [bv,f ∈ {av, ∗}]
for all f ∈ F ′. This completes step 1.

For step 2, we use the following result from extremal set theory:

Lemma 7.4 (Sauer 1972). Let S ⊆ {0, 1}n have |S| ≥ ∑d
j=0

(
n
j

)
. Then there

exist a set of d coordinates on which the projection of S is the whole d-cube.

We view F ′ as a subset of {0, 1}V . Now, |F ′| ≥ (3/2)|V | ≥ ∑2|V |/c
l=0

(|V |
l

)
for

some suitable constant c (c = 12.27 works). So, applying Lemma 7.4 to the
family F ′ and letting V ′ be the guaranteed set of coordinates gives us step 2.

Step 3 is very straightforward. From step 1, the bit communicated by A does
not depend on the function f ∈ F ′, but does depend on v. Label each v ∈ V ′
with the bit av in the vector ~a chosen above. Partition V ′ according to this
labeling and let V ′′ be the larger half and Ct the corresponding bit. It follows

cc 10 (2001) Communication complexity and circuit depth 245

that for all v ∈ V ′′ and all f ∈ F ′, if f(v) = 0 then, after conversation C, the
A-player communicates bit Ct if given input (v, f). This gives us property (iii).

�

Acknowledgements

We would like to thank Toni Pitassi, Dan Simon, and Faith Fich for their
insightful conversations and support.

Partially supported by cooperative research grant INT-9600919/ME-103
from the NSF (USA) and the MŠMT (Czech Republic). Jeff Edmonds par-
tially supported by grant NSERC A9176. Russell Impagliazzo partially sup-
ported by NSERC Post-doctoral fellowship at Univ. of Toronto, NSF YI Award
CCR92-570979, NSF Award CCR-9734911, Sloan Research Fellowship BR-
3311, grant #93025 of the joint US-Czechoslovak Science and Technology Pro-
gram, and USA-Israel BSF Grant 97-00188. Jǐŕı Sgall partially supported by
grants A1019602 and A1019901 of GA AV ČR, and grants 201/97/P038 and
201/01/1195 of GA ČR.

References

J. Edmonds, R. Impagliazzo, S. Rudich & J. Sgall (1991). Communication
complexity towards lower bounds on circuit depth. In Proc. 32nd Ann. IEEE Symp.
on Foundations of Computer Sci., IEEE, 249–257.

J. Håstad & A. Wigderson (1993). Composition of the universal relation. In Ad-
vances in Computational Complexity Theory, J.-Y. Cai (ed.), DIMACS Ser. Discrete
Math. Theoret. Comput. Sci. 13, Amer. Math. Soc., 119–134.

M. Karchmer, R. Raz & A. Wigderson (1995). Super-logarithmic depth lower
bounds via direct sum in communication complexity. Comput. Complexity 5, 191–
204.

M. Karchmer & A. Wigderson (1990). Monotone circuits for connectivity require
super-logarithmic depth. SIAM J. Discrete Math. 3, 255–265.

E. Kushilevitz & N. Nisan (1996). Communication Complexity. Cambridge Univ.
Press.

R. Raz & P. McKenzie (1999). Separation of the monotone NC hierarchy. Com-
binatorica 19, 403–435.

A. A. Razborov & S. Rudich (1997). Natural proofs. J. Comput. System Sci. 57,
127–143.

246 Edmonds et al. cc 10 (2001)

J. Riordan & C. E. Shannon (1942). The number of two-terminal series-parallel
networks. J. Math. Phys. 21, 83–93.

N. Sauer (1972). On the density of families of sets. J. Combin. Theory Ser. (A)
13, 145–147.

G. Tardos & U. Zwick (1997). The communication complexity of the universal
relation. In Proc. 12th Ann. IEEE Conf. on Computational Complexity, IEEE,
247–259.

Manuscript received 30 July 1999

Jeff Edmonds
Department of Computer Science
York University
North York, Ontario M3J 1P3, Canada
jeff@cs.yorku.ca

Russell Impagliazzo
Department of Computer Science
UC San Diego
La Jolla CA 92093, U.S.A.
russell@cs.ucsd.edu

Steven Rudich
Department of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, U.S.A.
rudich@theory.cs.cmu.edu

Jiř́ı Sgall
Mathematical Institute, AS CR
Žitná 25
115 67 Praha 1, Czech Republic
sgall@math.cas.cz

http://www.math.cas.cz/~sgall/

To access this journal online:
http://www.birkhauser.ch

