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Abstract
Global warming is expected to have large impacts on high alpine and Arctic ecosystems in the future. Here we report effects 
of 18 years of experimental warming on two contrasting high alpine plant communities in subarctic Sweden. Using open-top 
chambers, we analysed effects of long-term passive experimental warming on a heath and a meadow. We determined the 
impact on species composition, species diversity (at the level of rare, common and dominant species), and phylogenetic and 
functional diversity. Long-term warming drove differentiation in species composition in both communities; warmed plots, 
but not control plots, had distinctly different species composition in 2013 compared with 1995. Beta diversity increased 
in the meadow, while it decreased in the heath. Long-term warming had significant negative effects on the three orders of 
phylogenetic Hill diversity in the meadow. There was a similar tendency in the heath, but only phylogenetic diversity of 
dominant species was significantly affected. Long-term warming caused reductions in forbs in the heath, while evergreen 
shrubs increased. In the meadow, deciduous and evergreen shrubs showed increased abundance from 2001 to 2013 in warmed 
plots. Responses in species and phylogenetic diversity to experimental warming varied over both time (medium (7 years) vs 
long-term (18 years)) and space (between two neighbouring plant communities). The meadow community was more nega-
tively affected in terms of species and phylogenetic diversity than the heath community. A potential driver for the changes 
in the meadow may be decreased soil moisture caused by long-term warming.
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Introduction

Environmental changes are likely to cause large vegeta-
tion shifts in many polar and alpine regions (Rowland et al. 
2016). Global warming may pose a serious threat to isolated 
endemic alpine species when neither upward nor poleward 
distribution shifts are possible (Kidane et al. 2019). In addi-
tion, global warming may seriously shrink suitable habitats 
(Ferrarini et al. 2019a) and cause local extinction of species 
at the extreme of their distribution range (Ferrarini et al. 
2016; Hampe and Petit 2005). Global warming has already 
been shown to cause range shifts (Chen et al. 2011; Kullman 
2002; Steinbauer et al. 2019) and composition shifts (Evan-
gelista et al. 2016; Koltz et al. 2018; Liberati et al. 2019; 
Rosbakh et al. 2014). A widespread trend at many alpine and 
Arctic sites is an increase in shrubs (Jägerbrand et al. 2009; 
Maliniemi et al. 2018; Myers-Smith et al. 2011; Vowles and 
Björk 2019). Other plant groups (forbs and graminoids) have 
more inconsistent responses (Elmendorf et al. 2012; Vowles 
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et al. 2017). However, a meta-analysis of 61 warming experi-
ments in tundra vegetation found that graminoids tended to 
increase at colder sites, while showing neutral or negative 
responses at warmer sites (Elmendorf et al. 2012). Cushion 
plants, such as the widespread Silene acaulis, are predicted 
to be vulnerable to climate change in alpine areas (Doak and 
Morris 2010; Ferrarini et al. 2019a, b). However, many plant 
species in polar and alpine regions are long-lived (Ferrarini 
et al. 2019a; Morris and Doak 1998). Thus, even when con-
ditions at a site become unfavourable due to environmental 
change, long-lived plant species can be expected to persist 
for more years than animals and short-lived species, as the 
plants are confined to the site and cannot migrate once estab-
lished. In addition, longer lived plant species have been sug-
gested to be less vulnerable to increased climate variability 
than short-lived species (Morris et al. 2008). However, we 
are not aware of any long-term (> 10 years) experimental 
studies that have tried to mimic the predicted increase of 
interannual variability of climatic factors, or different types 
of warming scenarios (ex. different levels of warming, 
increased warming with years, or occasional heat waves). 
Those conducted to date are short term. One previous study 
has applied a high level of warming, simulating a heat wave 
for 2 weeks in Greenland (Marchand et al. 2006), one study 
has applied low level, high level and increasing warming for 
4 years in sub-arctic alpine Sweden (Alatalo et al. 2016), and 
one study has applied low and high levels of warming for 
5 years in sub-arctic alpine Sweden (Jonasson et al. 1999).

Solar radiation and temperature have been shown to be 
dominant factors controlling net primary production in 
alpine meadows and grasslands in Tibet (Wang et al. 2018; 
Zheng et al. 2020) and Scotland (Gimona et al. 2006), while 
summer precipitation is an important driver for species 
richness in Tibet (Li et al. 2020). Extreme warming events 
that are accompanied by drought have been shown to have 
more severe effects on plant communities than warming 
without accompanying drought (Bragazza, 2008; De Boeck 
et al. 2016). From the growing number of experimental 
global change experiments performed, we have learnt that 
short- (1–3 years), medium- (4–7 years) and longer term 
(> 10 years) responses may differ (Alatalo et al. 2015b; Ala-
talo and Little 2014; Baruah et al. 2018; Hollister et al. 2005; 
Kremers et al. 2015; Walker et al. 2020).

Climate change experiments have been conducted at Lat-
njajaure field station in northern Sweden since 1993. An 
increasing number of studies at the field station are now 
covering potential impacts of climate change on different 
organism groups and ecosystem properties. In an experi-
ment established at the station in 1995, on a nutrient- and 
species-poor heath and a more species- and nutrient-rich 
mesic meadow, we have previously reported on short- and 
medium-term responses and the impact of long-term warm-
ing on lichens (Alatalo et al. 2017a), bryophytes (Alatalo 

et al. 2020), soil fauna (Alatalo et al. 2015a, 2017b), and 
plant traits (Baruah et al. 2017).

In the present study, we examined the effect of 18 years 
of experimental warming on vascular plant communities. 
Specifically, we determined the impact on species compo-
sition, species diversity (at the level of rare, common and 
dominant species of each community), and phylogenetic 
and functional diversity of vascular plants. We hypothesised 
that (1) the effect of experimental warming is greater over 
time compared with in the early years of the experiment 
(Komatsu et al. 2019). Specifically, we hypothesised that 
long-term warming would have (2) a negative impact on 
species richness and diversity in the meadow, with well-
developed vegetation cover, due to increased competition 
between species following lower environmental stress (as 
temperature increases), and (3) a positive impact on species 
richness and diversity in the heath, with its less developed 
vegetation cover allowing species to colonise new space.

Materials and methods

Study area

The study was conducted at Latnjajaure field station, which 
is located in the Latnjavagge valley (68°21´N, 18°29´E; 
1000 m a.s.l.) in northern Sweden. The climate at the site 
is classified as subarctic (Polunin 1951), with snow cover 
for around 8 months of the year (usually from October to 
May), cool summers and relatively mild, snow-rich winters. 
The growing season starts in late May and ends in early 
September (Molau et al. 2005). Climate data were collected 
throughout the year at the weather station at Latnjajaure 
field station, with hourly means, maxima and minima 
recorded. Mean annual air temperature in the study period 
(1993–2013) ranged from  – 0.76 to  – 2.92 °C (Alatalo et al. 
2017a). Mean monthly temperature was highest in July, 
ranging from 5.9 °C in 1995 to 13.1 °C in 2013 (Alatalo 
et al. 2017a). Mean annual precipitation during the period 
was 846 mm, but in individual years, it ranged from a low of 
607 mm (1996) to a high of 1091 mm (2003) (Alatalo et al. 
2017a). Detailed monthly mean, max and min temperature 
data and precipitation data (Alatalo et al. 2017a) are sup-
plied in electronic supplementary materials to this paper. 
Physical conditions in the soils in the valley vary from dry, 
acidic and nutrient-poor to wet, base-rich and more nutri-
ent-rich, with an associated variation in plant communities 
(Alatalo et al. 2017b; Björk et al. 2007; Lindblad et al. 2006; 
Sarneel et al. 2020).

The mesic meadow community has a vegetation averag-
ing 67% canopy cover (Alatalo et al. 2017a), dominated by 
Carex vaginata, Carex bigelowii, Festuca ovina, Salix reticu-
lata, Salix polaris, Cassiope tetragona, Bistorta vivipara and 
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Thalictrum alpinum (Alatalo et al. 2014; Molau and Alatalo 
1998). The more sparsely vegetated poor heath community 
(average 54% canopy cover) (Alatalo et al. 2017a) is domi-
nated by Betula nana, Salix herbacea and Calamagrostis lap-
ponica (Alatalo et al. 2015c; Molau and Alatalo 1998). The 
mesic meadow has thicker soil cover and higher soil nutrient 
and moisture content than the heath (for details, see Alatalo 
et al. (2017b)).

Experimental design and measurements

In July 1995, twelve 1 m × 1 m plots with homogeneous vege-
tation cover were marked out in an alpine mesic meadow plant 
community and in a heath plant community, and randomly 
assigned to treatments (control and experimental warming) in 
a factorial design. At the start of the experiment, there were 
eight control plots and four plots with experimental warm-
ing (total 12) in each plant community. However, as we could 
not identify all initial control plots in 2013, we only made 
measurements in four control and four experimental warming 
plots in each community in 2013. The experimental site was 
dismantled in 2016 (2013 being the last year of plant measure-
ments). For 1995–2001, we used data from eight control plots. 
Experimental warming is applied at the site using open-top 
chambers (OTCs) left on plots with warming treatment all year 
around. In the initial years, the temperature in the control and 
OTC plots was monitored with Delta™ and Tinytag™ loggers 
(Molau and Alatalo 1998). As found in other studies (Hollis-
ter and Webber 2000; Marion et al. 1997; Molau and Alatalo 
1998), the OTCs increased the air temperature by 1.5–3 °C 
compared with control plots with ambient temperature (Molau 
and Alatalo 1998). OTCs have also been shown to decrease 
canopy moisture (Hollister and Webber 2000), causing earlier 
snow melt and prolonging the growing season (Hollister and 
Webber 2000; Molau and Alatalo 1998).

Abundance of all species was assessed using a 1 m × 1 m 
frame with 100 grid points (Walker 1996) in the middle of 
the growing season in 1995, 1999, 2001 and 2013. Due to 
their hexagonal shape, the OTCs reduced the number of points 
per plot to 77–87, and thus warmed plots had fewer pin-point 
intercepts than control plots. To compensate for this, we ana-
lysed the relative changes from 1995 as suggested by Kent 
et al. (2011). Fixed points at the corner of each plot allowed 
the grid frame to be placed in the same position on the plot on 
each measuring occasion. This method has been shown to be 
accurate in detecting changes in tundra vegetation (May and 
Hollister 2012).

Data analysis

Community composition

The effect of the warming treatment over time on species 
composition in both plant communities was evaluated using 
principal response curves (PRC), which show the commu-
nity-level treatment effects over time compared with the 
control and enable species-level changes to be interpreted 
(Van den Brink and Braak 1999). Monte Carlo permutation 
tests were performed to evaluate the statistical significance 
of differences between each treatment and the control. The 
PRC and permutation tests were performed using the vegan 
package (Oksanen et al. 2017).

We also evaluated temporal variation in species com-
position within each plant community in each year (i.e., 
within-site beta diversity), to test whether small-scale (i.e., 
plot) conditions can lead to different responses in the plant 
communities in the area. Hellinger distance (i.e., Euclid-
ean distance of the Hellinger-transformed data) was used 
as a measure of within-site beta diversity. This dissimilarity 
index was calculated using the vegdist function in the vegan 
package. For each year, mean and 95% confidence intervals 
(CIs) were calculated. The CIs were estimated using a one-
mean t-procedure (Zar 2010). All of the calculated indices 
were relativised, using within-site beta diversity in 1995 as 
the base value. R version 3.5.3 was used for the analyses (R 
Core Team 2019).

Species diversity

Hill species diversity indices were calculated to compare 
changes in the species diversity of the heath and meadow 
communities between the sampling years. These indices are 
considered the standard tool for calculating and comparing 
species diversity (Erfanian et al. 2019a). We considered spe-
cies richness (q = 0 in the Hill species diversity formula), the 
exponential of Shannon diversity (q = 1) and the recipro-
cal of the Simpson index (q = 2), which reveal the diversity 
of rare, common and dominant species, respectively (Chao 
et al. 2014a, b; Erfanian et al. 2019b). Sampling in the pre-
sent study was conducted during several years. Unequal 
sampling effort between sampling years, which greatly 
affects biodiversity estimates, is a typical limitation of this 
type of study (Kent 2011). To eliminate the effects of this 
limitation on our inferences, we used a coverage-based rar-
efaction/extrapolation method, where the species diversities 
in the different years were calculated at the same coverage 
(i.e., sampling effort) level (Chao et al. 2014b; Chao and Jost 
2012). The 95% CIs for the estimated diversities were calcu-
lated, using a bootstrapping approach. These analyses were 
performed in the iNEXT package, using the estimateD func-
tion (Hsieh et al. 2016). All of the calculated indices were 
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relativised, using the species diversity in 1995 as the base 
value. Positive and negative values of relativised diversity 
indicate higher or lower diversity, respectively, compared 
with the 1995 baseline.

Phylogenetic diversity

The phylogenetic diversity of the communities was used, 
since it reflects the evolutionary history of the assemblages 
and is related to their conservation value (Faith 2016; Faith 
and Baker 2006). The phylogenetic tree of the vascular 
plants collected from plots was estimated using the V. Phy-
loMaker package (Jin and Qian 2019). Hill diversity indices 
of phylogenetic diversity at the level of rare (q = 0), com-
mon (q = 1) and dominant (q = 2) species were considered. 
The coverage-based rarefaction/extrapolation method was 
employed to calculate these indices at the same coverage 
level. The iNEXT-PD package was used for the calculations 
(Chao et al. 2010; Hsieh et al. 2016). The results obtained 
were relativised, using the phylogenetic diversity in 1995 
as the base value.

Functional diversity

Changes in the dominance structure of five functional groups 
of vascular plants (cushion-forming plants, deciduous 
shrubs, evergreen shrubs, forbs and grasses) were evaluated. 
Cushion plants included Diapensia lapponica, Harrimanella 
hypnoides, Saxifraga oppositifolia and Silene acaulis. All 
these species can form more or less dense cushions depend-
ing on the physical conditions at the growing site. For exam-
ple, the growth form of S. acaulis can change substantially 

along an elevation gradient (Bonanomi et al. 2015). Due 
to low numbers of observations in some groups, we could 
not statistically compare these results. Boxplots were drawn 
to visualise relative changes in functional group abundance 
between control and warming plots. For relativisation, abun-
dance data for control and warming plots were subtracted 
from the median of the abundance of control plots in 1995. 
The resulting value was divided by the median abundance in 
control plots in 1995. This result was multiplied by 100, to 
show the percentage change in functional group abundance 
during the 18 years of the experiment. Thus, negative val-
ues in boxplots indicate decreased abundance, while positive 
values show increased abundance of functional types com-
pared with the median of the control community. For visu-
alisation, the percentage values were log-transformed. The 
Hellinger distance was calculated separately for each func-
tional group, to assess the species turnover within groups.

Results

Species composition

The PRC analysis results revealed a significant difference (p 
value = 0.039, F value = 7.166) between control and warm-
ing plots of the heath community in terms of species compo-
sition. The PRC analysis explained 16% of the variance, and 
15.35% of this variance contributed to the first axis (Fig. 1). 
For the meadow vegetation, the PRC analysis did not detect 
a significant difference (p value = 0.659, F value = 1.814) 
between species composition of control and warming plots. 
About 9% of variance was explained by the PRC analysis 

Fig. 1  Principal response curve 
(PRC) showing the effect of 
warming treatment over time on 
vascular plant species in heath 
and meadow vegetation at Lat-
njajaure, northern Sweden. Only 
species with relative frequency 
sum > 1 are shown M
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and 7.56% of this explained variance contributed to the 
first axis. Only species with relative frequency sum above 
1 are shown in Fig. 1. In meadow vegetation, Carex vagi-
nata showed the greatest average abundance increase and 
Cassiope tetragona showed the greatest average abundance 
decrease (Fig. 1). In heath vegetation, Betula nana showed 
the greatest increase in average abundance and Empetrum 
hermaphroditum showed the greatest decrease (Fig. 1).

Long-term warming led to a significant decrease in 
beta diversity in the heath plots over time (Fig. 2), but to 
increased beta diversity in the meadow plots (Fig. 2). From 
2001 to 2013, the beta diversity in warming plots stabilised 
for both vegetation types. In 2013, for both vegetation types, 
there was no significant difference between beta diversity 
of control and warming plots. In the heath, the difference 
between control and warming plots was significant from 
1999 until 2001, while in 2013 the confidence intervals 
overlapped slightly. In the meadow, the difference between 
control and warming plots was significant in 1999 and 2001. 
In meadow control plots, beta diversity started to increase 
from 2001.

Species diversity

For meadow vegetation, except in the year 1999, warming 
had a significant negative effect on all three orders of Hill 
species diversity (i.e., q = 0, 1 and 2) compared with the 
control (Fig. 3).

For heath vegetation, except for dominant species in 
2001, there were no significant differences in species diver-
sity (i.e., species richness (q = 0, including rare species), the 

exponential of Shannon diversity (q = 1, or common species) 
and the reciprocal of the Simpson index (q = 2, or dominant 
species)) between warming and control plots (Fig. 3).

Phylogenetic diversity

Comparison of phylogenetic diversity (hereafter PD) esti-
mates for control and warming plots in the meadow showed 
that there was a significant difference between these two 
treatments in the 2001 inventory (Fig. 4). In 1999, PD at 
the level of q = 1 (common species) and 2 (dominant spe-
cies) differed significantly between the control and warming 
treatment. In 2013, only PD at the level of q = 1 (common 
species) showed a significant difference between control and 
warming plots. In all the above cases, warming had a nega-
tive effect.

In the heath vegetation, at the level of q = 2 warming plots 
showed significantly lower PD than control plots (Fig. 4). 
This was also observed in 2013 at the level of q = 1. No sig-
nificant difference was detected between control and warm-
ing plots at the PD level of q = 0.

Functional diversity

In meadow warming plots, abundance of cushion plants 
remained unaffected over time, but abundance of decidu-
ous shrubs increased (Fig. 5). Control plots of both veg-
etation types also showed increased abundance of decidu-
ous shrubs from 1995 until 2001. However, by 2013, the 
abundance of deciduous shrubs had decreased in the con-
trol plots in both communities (Fig. 5). In the meadow, 

Fig. 2  Relative changes in 
within-site beta diversity in 
response to long-term warming 
(1995–2013) in an alpine heath 
community and a meadow com-
munity at Latnjajaure, subarctic 
Sweden. Values represent mean 
and 95% confidence intervals. 
1995 data used as baseline
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evergreen shrub abundance remained similar over time in 
control plots, but increased in warming plots. In the heath, 
abundance of evergreen shrubs increased over time in 
both warming and control plots (Fig. 5). Forb abundance 
remained unchanged in the warming plots in the meadow, 
while it decreased over time in the warming plots in the 
heath (Fig. 5). Graminoid abundance remained stable over 
time in both control and warming plots in the meadow, 

and in warming plots in the heath. However, graminoid 
abundance decreased in the control plots in 2013 (Fig. 5).

Changes in the species composition of each func-
tional group, measured using the Hellinger dissimilar-
ity measure, are presented in Table 1. Cushion-forming 
plants, deciduous shrubs and evergreen shrubs showed 

Fig. 3  Changes in species 
diversity in response to long-
term warming (1995–2013) 
in an alpine heath community 
and a meadow community at 
Latnjajaure, subarctic Sweden. 
Species diversity is shown at 
the level of rare, common and 
dominant species in the commu-
nity, indicated by q = 0 (species 
richness), q = 1 (exponential of 
Shannon diversity) and q = 2 
(reciprocal of Simpson index), 
respectively. 1995 data used as 
baseline

Fig. 4  Changes in phyloge-
netic diversity (Hill diversity 
indices at the level of rare 
(q = 0), common (q = 1), and 
dominant (q = 2) species) in 
response to long-term warming 
(1995–2013) in an alpine heath 
community and a meadow com-
munity at Latnjajaure, subarctic 
Sweden. Values represent mean 
and 95% confidence intervals. 
1995 data used as baseline 1995 1999 2001 2013 1995 1999 2001 2013 1995 1999 2001 2013
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low species turnover in both warmed and control plots. In 
contrast, forbs and graminoids showed moderate species 

turnover from 1995 to 2013 in both warmed and control 
plots.

Discussion

This study examined the impact of long-term experimental 
warming on species composition and species, phylogenetic 
and functional diversity. Our hypothesis (1) was partially 
supported, since the effect of experimental warming was 
greater from year seven of the experiment in the meadow, 
but not in the heath. Moreover, in the meadow, the 7-year 
responses were more pronounced than the responses in year 
18. Our hypothesis (2) was fully supported, as long-term 
warming had a negative impact on species richness and 
diversity in the meadow. However, long-term warming had 
no positive effect on species richness and diversity in the 
heath, contradicting our hypothesis (3).

Ambient temperature at the experimental site showed an 
increase of around 2 °C during the study period (Alatalo 
et al. 2017a). Thus, plants growing in control plots also 
experienced warmer conditions and plants in the warmed 
plots were exposed to a greater temperature increase than 
initially intended (~ 2 °C experimental warming plus ~ 2 °C 
ambient warming). Long-term warming (18 years) drove 
differentiation in species composition of the heath veg-
etation over time, with the warmed plots ending up with 
distinctly different species composition in 2013 compared 
with 1995. In the meadow, warming caused deciduous and 
evergreen shrubs to increase in abundance, while graminoids 
as a group remained stable. However, warming caused some 

Fig. 5  Boxplots showing 
relative changes in abundance 
of cushion plants, deciduous 
shrubs, evergreen shrubs, forbs 
and graminoids over time in 
control (green) and warmed 
(red) plots in meadow (top 
panel) and heath (bottom panel) 
vegetation at Latnjajaure, north-
ern Sweden
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Table 1  Changes in species composition (measured as Hellinger dis-
similarity) of different plant functional groups in response to long-
term warming (1995–2013) in an alpine heath community and a 
meadow community at Latnjajaure, subarctic Sweden

Cushions = cushion-forming plants, D. = deciduous shrubs, E. = ever-
green shrubs

Heath Functional gp Year Meadow

Warming Control Control Warming

0.00 0.27 Cushions 1999 0.09 0.12
0.00 0.00 Cushions 2001 0.10 0.12
0.00 0.00 Cushions 2013 0.08 0.10
0.08 0.03 D. shrubs 1999 0.10 0.24
0.09 0.03 D. shrubs 2001 0.11 0.24
0.15 0.17 D. shrubs 2013 0.19 0.30
0.04 0.09 E. shrubs 1999 0.03 0.05
0.38 0.04 E. shrubs 2001 0.08 0.02
0.08 0.06 E. shrubs 2013 0.12 0.09
1.00 0.47 Forbs 1999 0.03 0.38
0.52 0.38 Forbs 2001 0.08 0.22
0.52 1.00 Forbs 2013 0.12 0.45
0.15 0.14 Graminoids 1999 0.20 0.19
0.18 0.07 Graminoids 2001 0.24 0.20
0.35 0.15 Graminoids 2013 0.25 0.23



188 Alpine Botany (2022) 132:181–193

1 3

graminoid species (e.g. Carex vaginata and Festuca ovina) 
to increase in abundance in the meadow. A previous study 
at the same site found that 7 years of experimental warm-
ing caused sedges to decline in the meadow (Alatalo et al. 
2014). Thus, the short-term and longer term responses dif-
fered. Previous studies have found that the effects of experi-
mental treatments increase with time (larger effects after 
10 years) (Komatsu et al. 2019). Similarly, we found that 
the majority of changes occurred from year 7 in our study 
period. Many previous studies have reported increased 
occurrence of shrubs in alpine and arctic tundra ecosystems, 
and have attributed this to ongoing climate change (Jäger-
brand et al. 2009; Maliniemi et al. 2018; Myers-Smith et al. 
2011; Myers-Smith and Hik 2018; Vowles and Björk 2019). 
Our results show that the responses can vary considerably 
even on local scale, as warming increased deciduous shrubs 
markedly in the meadow plots, but not in the nearby heath 
plots studied at the site, while evergreen shrubs increased 
in both communities. Deciduous shrubs showed a similar 
positive effect of experimental warming in the initial 5-year 
response at our site (Jägerbrand et al. 2009), and in Alaskan 
Tundra (Chapin III and Shaver 1985, 1996). In addition, a 
long-term monitoring study in High Arctic Canada experi-
encing natural warming found that evergreen shrubs, but not 
deciduous shrubs, increased over a period of 27 years (Hud-
son and Henry 2009). Changes in species composition have 
also been reported for grasslands in Tibet (Liu et al. 2018), 
Oklahoma (Shi et al. 2018) and the Pyrenees (Boutin et al. 
2017), for snowbed and nival vegetation in the European 
Alps (Lamprecht et al. 2018; Matteodo et al. 2016) and for 
tussock tundra in Alaska (Leffler et al. 2016).

Variability in the species composition of plots increased 
in the meadow vegetation, while it decreased in the heath 
vegetation. This finding suggests that the meadow vegetation 
responded to climate changes in different ways. Heath veg-
etation showed a poor adaptive response, and we observed 
compositionally homogenised communities. This is a nega-
tive change, as homogenised communities can potentially 
be more vulnerable to future disturbances. Considering the 
differing responses of heath and meadow communities, we 
concluded that the heath vegetation was more susceptible to 
climate change impacts. A previous study in the Swiss Alps 
revisiting 63 sites experiencing natural warming over time 
found that arrival of new species resulted in homogenisation 
of the plant communities (Matteodo et al. 2016). However, 
the stability of species composition varied between plant 
communities, with snowbed communities being more vul-
nerable than grassland communities (Matteodo et al. 2016).

While not applying experimental warming, a monitoring 
study over 40 years in alpine Colorado found that species 
richness declined in all three plant communities studied (dry 
meadow, moist meadow and shrub tundra), with the largest 
decline in the shrub community (Scharnagl et al. 2019). The 

two plant communities at our study site in northern Sweden 
responded with contrasting patterns at different levels of spe-
cies diversity (rare, common and dominant species) to the 
ambient temperature and experimental warming treatments 
over time. Experimental warming caused an initial nega-
tive response in within-site diversity in the heath (Alatalo 
et al. 2015c), which remained negative in the long term (this 
study). While the heath experienced a decrease in dominant 
species (q = 2) evergreen shrubs increased in abundance. In 
alpine Colorado, increases in shrub abundance and plant 
litter under ambient climate conditions was accompanied 
by a decrease in forbs, graminoids and non-vascular plants 
(Scharnagl et al. 2019). The meadow community at our study 
site showed an initial rapid negative response (until 2001), 
after which it started to recover, but it had not returned to 
its initial status after 18 years of warming. In terms of phy-
logenetic diversity, the long-term warming had a significant 
negative effect on the three orders of phylogenetic Hill diver-
sity in the meadow. While there was a similar tendency in 
the heath, only phylogenetic diversity of dominant species 
was significantly affected. The observed reduction in phylo-
genetic diversity of both communities can be considered an 
indication of loss of rare and phylogenetically diverse spe-
cies, as the final colonising species have lower phylogenetic 
diversity, because they come from related taxa. Notably, 
forbs and graminoids in meadow showed larger turnover in 
species composition during the 18-year experiment, while 
shrubs showed much lower turnover in the heath. However, 
these differences in species turnover could potentially be 
explained by differences in their longevity, with forbs and 
graminoids including more short-lived species than shrubs.

In a previous study at our site, it was shown that 7 years 
of warming caused a significant decline in total species 
richness (Alatalo et al. 2014). These results support indi-
cations in other studies that mesic meadow communities 
tend to be more vulnerable than drier sites in terms of spe-
cies loss (Elmendorf et al. 2012). However, several studies 
have shown that plants in tundra and alpine ecosystems are 
often nutrient-limited (Eskelinen et al. 2017; Haag 1974; 
Soudzilovskaia et al. 2005). As nitrogen mineralisation has 
been shown to increase due to increased microbial activity 
in response to warming, plants on thicker, more nutrient-
rich soils that are normally limited by temperature/short 
growing season can be expected to respond more positively 
to warming/extended growing season than plants grow-
ing in thinner soils with nutrient-poor conditions (Rustad 
et al. 2001). However, microbial responses to warming in 
alpine areas also depend on precipitation levels (Hu et al. 
2020). In our long-term experiment, long-term warming 
caused a decrease in soil moisture in the meadow commu-
nity, but not in the heath community (Alatalo et al. 2017b). 
This could potentially help to explain the differences in 
responses between these plant communities. Decreased soil 
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moisture due to experimental warming has been reported to 
be accompanied by a decrease in sedges and an increase in 
grasses and forbs in a meadow community in Tibet following 
short-term experimental warming (Peng et al. 2017), with 
meadows becoming more similar to heaths in alpine Swe-
den (Scharn et al. 2021). However, at our meadow site we 
found a more complex response pattern over time, as sedges 
decreased initially (Alatalo et al. 2014), but increased over 
the longer term (this study). This later increase in sedges was 
mainly driven by Carex vaginata, while the initial shorter 
term responses were dominated by changes in abundance 
of Carex bigelowii (Jägerbrand et al. 2009). Thus, negative 
effects on species and phylogenetic diversity may be driven 
indirectly by decreased moisture levels due to warming, not 
by the warming itself (Scharn et al. 2021). In addition, both 
the responses and major drivers (species) may change over 
time.

Cushion-forming plants are important in alpine areas due 
to their function as facilitator species (Anthelme et al. 2014; 
Cavieres et al. 2014). The shorter term results (1995–2001) 
from our experiment showed that the dominant cushion-
forming plant at the site, Silene acaulis, was highly plastic 
in its phenotypic responses in terms of growth-related plant 
traits to nutrient addition and combined nutrient addition and 
warming, while warming alone had no effect on growth and 
abundance (Alatalo and Little 2014). In the present longer 
term study, the PRC showed that S. acaulis only decreased 
slightly in response to 18 years of warming, so the studied 
population is likely resistant to warming that is not accompa-
nied by an increase in nutrients. The dominant cushion plant 
in the meadow, S. acaulis, has a taproot. As the soil became 
drier in the warmed plots (Alatalo et al. 2017b), having a 
taproot could have provided an advantage over more shal-
low-rooted species in the longer term. However, a previous 
study has shown that S. acaulis populations across the spe-
cies distribution range may respond in different ways, with 
southern populations of S. acaulis having higher growth 
rates than northern populations in North America, but lower 
survival and recruitment (Doak and Morris2010). That study 
also found that the warmest years had a negative effect on 
survival and fruit production, but that moderately warmer 
years had a positive effect (Doak and Morris 2010). In con-
trast, a recent study showed that northern populations of S. 
acaulis may decline, while southern populations may remain 
stable (Peterson et al. 2018). This highlights the difficulty in 
predicting plant species responses to climate change, as both 
life history plasticity and local adaptation will affect species 
responses to warming (Peterson et al. 2018).

In addition, different types of environmental dis-
turbance, such as grazing and land degradation status 
(depending on the status of human land use intensity) 
(Erfanian et  al. 2019a), experimental warming, nutri-
ent addition and changes in light regime (Jonasson et al. 

1999), may have different effects on plant communities. 
Strong evidence of the importance of both duration of 
experimental manipulations and number of disturbances 
is provided by a global study that included data from more 
than 100 experiments (Komatsu et al. 2019). The study 
showed that the greater the number of experimental per-
turbations and the longer the experiment, the less resistant 
plant communities were to the experimental treatments 
(Komatsu et al. 2019). Plant communities were in general 
resistant to experiments that ran for less than 10 years, 
while experiments lasting more than 10 years showed 
larger changes. In addition, plant communities that were 
exposed to three or more experimental treatments showed 
larger changes in community composition than plant com-
munities that experienced fewer environmental manipula-
tions (Komatsu et al. 2019). Thus, short-term responses 
may be poor predictors of potential long-term changes. It 
is, therefore, important to try to ensure that global change 
experiments are maintained and re-sampled over longer 
periods than normally covered by external funding for 
research projects. Unfortunately, our experimental site 
was dismantled in 2016.

Conclusions

This study found that responses in plant species composition 
and phylogenetic diversity to experimental warming varied 
both in time (medium vs long term) and space (neighbour-
ing heath and meadow communities). The heath community 
was more negatively affected in terms of species composi-
tion and community-level responses than the meadow com-
munity. However, the meadow community showed a larger 
decrease in species and in phylogenetic diversity than the 
heath community. Long-term warming caused differentia-
tion in species composition in the two communities, with 
shrubification in both communities and decreases in forbs 
in the heath community. A potential driver for the changes 
in the meadow community may be decreased soil moisture 
caused by the long-term warming.
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