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Abstract
Ecological interactions play a fundamental role in determining the genetic structure of plant species in time and space. The 
demography of the Andean Puya hamata has been linked to fire regimes and hummingbird behaviour, which might modify 
the plant’s population genetic structure. Naturally, poor dispersal results in patches of genetically related plants, a pattern 
intensified further by burning which promotes seedling germination around parent plants. Later, when these plants flower, 
large patches are attractive to territorial hummingbirds which prevent visits by traplining hummingbird species, carrying 
pollen from likely unrelated plants. To explore this hypothesis, a genetic study of P. hamata using microsatellite markers was 
conducted with (i) isolated and grouped adults in two size categories of patches, and (ii) seeds collected from the same patches 
and isolated individuals. Isolated individual plants presented a higher observed heterozygosity with close to zero inbreeding. 
Adult plants from large patches showed a lower observed heterozygosity and higher inbreeding than plants from other spatial 
contexts. Seed genetic structure displayed a gradient of diversity: lower at patch centres but higher at patch edges, in small 
patches, and for isolated infructescences. The spatial context of these plants, especially the contrast between large patch 
centres and other situations, determines the genetic diversity of their seeds via hummingbird foraging behaviour. Territorial 
hummingbirds restrict gene flow in and out of large patches, but traplining hummingbirds maintain genetic diversity among 
isolated plants, small patches, and plants at the edges of large patches. Our study illustrates the need to consider interactions 
between land use, plants, and their pollinators when considering genetic diversity at the landscape scale.
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Introduction

The high-elevation tropical Andean páramo ecosystem 
is characterized by rich plant diversity and endemism 
(Madriñán et al. 2013; Sklenar et al. 2011). Additionally, 
páramos are hotspots for ecosystems services, including 
providing water reservoirs, carbon sequestration, irrigation, 
and rural livelihood improvement (Madriñán et al. 2013). 

However, páramo ecosystems face challenges like climate 
change (Aide et al. 2019; Carilla et al. 2018) and anthropo-
genic perturbations (Keating 2007; Vásquez et al. 2015) that 
threaten their ecological integrity. These challenges produce 
regional landscape transformations and ecosystem modifi-
cations (Aide et al. 2019), which strongly affect plant rich-
ness as well as biotic and abiotic interactions that shape the 
genetic structure of ecological communities (Gilman et al. 
2010; Young and Leon 2007).

Pollination and seed dispersal are keystone interactions 
that shape plant species’ genetic structure (Midgley et al. 
1991; Valenta et al. 2017). Within the context of climate 
change, these species interactions could alter, modifying 
communities and creating new scenarios for species diver-
sification (Buermann et al. 2011; Gilman et al. 2010). These 
new scenarios could lead to novel ecological connections 
that may reduce plants’ genetic diversity and reproductive 
output through genetic drift and inbreeding (Chase et al. 
1996; Fadrique et al. 2018). Thus, understanding the biotic 
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and abiotic interactions that shape current plant populations’ 
genetic diversity in the páramo is important to be able to 
handle the unpredictable landscape transformations caused 
by climate change.

Puya hamata L.B. Sm. (Bromeliaceae) is a good biologi-
cal model for exploring the impact of species interaction and 
environmental constraints on genetic diversity. P. hamata 
is a conspicuous giant basal rosette that forms dense local 
populations in humid páramos in Ecuador and Colombia 
(Schmidt Jabaily and Sytsma 2013) and has multiple eco-
logical interactions with vertebrates (Garcia-Meneses and 
Ramsay 2014). Its seed dispersal is mainly by gravity and 
wind, and it has restricted seed mobility, which explains its 
aggregated distribution (Benzing 2000; Miller 1988). Addi-
tionally, P. hamata seeds have a higher germination rate, 
seedling recruitment, and survival in fire-prone páramos 
(Laegaard 1992). The plant is adapted to fire, with thermal 
insulation of its meristem, and seed germination occurs only 
at temperatures above 14 °C, which are often found in more 
open vegetation, often in recently burned tussock grassland 
(Garcia-Meneses and Ramsay 2014; Ramsay and Oxley 
1996). These traits result in the formation of high-density 
patches of young plants derived from one or several parents 
in recently burned páramos (Garcia-Meneses and Ramsay 
2014). These patches vary from isolated individuals to large 
patches with > 100 individuals, and this mosaic of patches 
covers dozens of square kilometers on the páramo. Thus, the 
páramo fires promote seed germination, but have only lim-
ited effects on the growth rate and survival of adult plants.

Moreover, P. hamata is a hummingbird-pollinated plant 
offering a concentrated nectar resource that attracts hum-
mingbirds with a high metabolic rate (Altshuler and Dudley 
2006; Woods and Ramsay 2001). Competition for nectar 
among pollinators often results in different foraging strat-
egies (territorial or traplining; Rappole and Schuchmann 
2003) that promote or inhibit the transfer of genetic material 
among the plants. This behaviour has been previously linked 
to the spatial distribution of nectar for P. hamata pollinators 
(Garcia-Meneses and Ramsay 2012; Woods and Ramsay 
2001) and other high-elevation Andean species like Oreo-
callis grandiflora (Hazlehurst and Karubian 2016). Resource 
availability defines foraging behaviour that eventually struc-
tures plant population genetic diversity.

In summary, the fire response of P. hamata would be 
expected to drive spatial and genetic structure in adult 
plants, while hummingbird foraging behaviour, in response 
to the spatial pattern of flowering plants, would be expected 
to affect the genetic structure of seeds. However, P. hamata’s 
fine-scale genetic structure has not yet been explored; popu-
lation genetic studies have focused mainly on P. raimondii 
(Hornung-Leoni et al. 2013; Sgorbati et al. 2004).

This study explores P. hamata populations’ genetic diver-
sity and structure in the northern Andes of Ecuador. We 

will test the following ecological hypotheses related to P. 
hamata’s dispersal and pollination using molecular mark-
ers, following ideas proposed by Garcia-Meneses and Ram-
say (2012): (i) we expect individuals in patches to have low 
genetic diversity and high rates of inbreeding, due to the 
plant’s limited seed dispersal and germination response to 
fire, while isolated individuals’ genetic composition would 
be more diverse, because they come from many prove-
nances; (ii) we expect that seeds from plants in the centre of 
large patches will exhibit lower genetic diversity and higher 
inbreeding (better defended by territorial hummingbirds) 
than those from patch edges, smaller patches, or isolated 
individuals (influenced more by traplining hummingbirds).

Materials and methods

Model system and study site

The genus Puya (Bromeliaceae) comprises conspicuous 
rosettes widely distributed on the páramos from Costa Rica 
to northern Argentina and Chile (Sklenar et al. 2011). P. 
hamata is a rosette that forms locally clumped populations 
in humid páramos between 3300 and 3700 m asl in Colom-
bia, Ecuador and Peru (Miller and Silander 1991; Schmidt 
Jabaily and Sytsma 2013). P. hamata has a rosette reach-
ing > 2 m in diameter and a 4-m tall inflorescence with 
around 1000 flowers (Garcia-Meneses and Ramsay 2012), 
attracting hummingbirds (Miller 1986).

The study area comprises the humid páramos on the 
southern slopes of Volcán Chiles on the Ecuador-Colombian 
border (Carchi Province, UTM coordinates: 18 N 173248 
89318), between 3400 and 4200 m asl, with an annual pre-
cipitation of 1000–1500 mm and constant environmental 
humidity (Hofstede et al. 1998). This area is owned by 
Comuna La Esperanza farmers in Tufiño who, in the past, 
have used burning as an agricultural tool associated with 
livestock grazing, leading to a landscape mosaic of areas 
with different times since fire and patches of P. hamata of 
different ages (Garcia-Meneses and Ramsay 2014).

Sampling method

The experimental design comprised two surveys across a 
variety of spatial contexts for P. hamata: (i) leaf sampling 
to explore the genetic structure of adult individuals; and (ii) 
seed sampling to assess their genetic structure. Leaves were 
sampled in August 2013 from 20 isolated individuals (I), 35 
individuals from three small patches of  > 5 and < 20 indi-
viduals (S1 n = 12; S2 n = 10; S3 n = 13); and 39 individuals 
from three large patches, each > 100 individuals (L1 n = 13, 
L2 n = 13, L3 n = 13). In total, 94 individuals were sampled 
(Fig. 1).
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Seed sampling occurred in February 2014 and com-
prised eight infructescences from isolated individuals (I), 
six infructescences from individuals in small patches (S), 
and 14 infructescences from individuals from a single 
large patch of which seven were from individuals on the 
patch edge (LE) and seven from individuals in the patch 
centre (LC). From each infructescence, we randomly 
selected 10 seeds from different sections of the infructes-
cence. A total of 28 infructescences were collected (280 
seeds).

DNA isolation, primer screening, and genotyping

DNA extraction from the leaf samples followed Doyle 
(1991)’s method. DNA extraction from seeds was done 
using the Wizard genomic DNA Purification Kit according 
to the manufacturer’s instructions. A set of five microsatel-
lite markers (simple sequence repeats or SSRs) of genera 
Aechmea (Bromeliaceae) and 15 SSRs of Ananas (Bro-
meliaceae) were chosen to be transferred to P. hamata. 
Polymerase chain reaction (PCR) amplifications followed 
Goetze et al. (2013) and Wöhrmann and Weising (2011). 
PCR products were separated by electrophoresis in 6% 
denatured polyacrylamide gels and silver nitrate staining. 
Samples without an amplification of at least four loci were 
not considered for the study.

Statistical analysis

Genetic data derived from adult individuals and infructes-
cences were evaluated at two different levels: (i) genetic 
structure and (ii) patch arrangement. Genetic structure was 
evaluated with GenAlEx 6.5 (Peakall and Smouse 2006) 
using 10,000 permutations. The inbreeding coefficient 
(Fis), the number of private alleles (PA, as a measure of flow 
gene), average expected heterozygosity (He, genetic diver-
sity), and observed heterozygosity (Ho) were calculated for 
adults and seeds. Allelic richness (AR) within each patch 
and isolated individuals was computed by the rarefaction 
method implemented in HP-RARE (Kalinowski, 2005). 
Deviations from Hardy–Weinberg equilibrium (HWE) and 
linkage disequilibrium for adults and seeds were computed 
using GENEPOP v4.2 with default parameters (Raymond 
and Rousset 1995). Statistical differences among the genetic 
indexes were computed with a Mann–Whitney U test using 
XLSTAT for Excel (Addinsoft Inc, New York, USA).

A genetic distance-based analysis (patch arrangement) 
was conducted to visualize the genetic composition among 
adults and seeds. A principal coordinate analysis (PCoA) 
was performed using Codom-Genotypic distance as imple-
mented by GenAlEx 6.5. Seeds PCoA was conducted 
using a pooled data set of seeds for each infructescence. 
A second PCoA was conducted among P. hamata adults. A 
Bayesian clustering analysis was performed to determine 

Fig. 1   Study site. The location of the 74 P. hamata adults (red color): 
15 isolated plants (circles: I66–I80), small patches (squares: S1, S2, 
S3), and large patches (triangles: L1, L2, L3). The location of the 

20 P. hamata infructescence (blue color): isolated plants (circles: I3, 
I4, I5, I7, I8, I10), small patches (squares: S2, S3, S4, S7), and large 
patches (triangle: LC1–LC5 + LE1–LE5)
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genetic similarity among adults and seeds using Structure 
v2.3 (Pritchard et al. 2000). An admixture mode and simu-
lations were performed with a burn-in length of 1,000,000 
repetitions followed by 2,000,000 Markov-Chain Monte 
Carlo replicates. The number of distinct genetic clusters 
(K) present in the data set was from 1 to 10 using 5 itera-
tions per K. We used the ΔK method (Evanno et al. 2005) 
as implemented in STRU​CTU​RE HARVESTER v.0.6.94 
(Earl and von Holdt 2012) to detect the number of K that 
best fits the data.

Three distance matrices were created: a spatial matrix 
using distance (m) between pairs of plants, calculated with 
Esri ArcMapTM 10.2.0.3348 (Environmental Systems 
Research Institute, Redlands, CA, USA); a genetic matrix 
using Codom-Genotypic distance between plants; and an 
altitude matrix of altitudinal distance (m) between plants. 
A Mantel test analysis was conducted to examine relation-
ships between the matrices independently for adults and 
seeds using GenAlEx 6.5 with 10,000 permutations.

Results

Transfer of molecular markers and DNA isolation

Six out of 20 SSRs’ loci were successfully transferred to 
P. hamata: five loci of Ananas comosus and one SSR of 
Aechmea caudata. Among the loci transferred, Acom 64.22 
was monomorphic, while the others were polymorphic 
ranging from 3 to 13 alleles (Table 1). We used the five 
polymorphic loci for the genetic analysis. Of the 94 adult 
individuals, only 74 gave a positive signal for DNA isolation 
(Table 2). P. hamata seeds are less than 2 mm in size and 
were, therefore, troublesome for the DNA isolation and PCR 
amplification. Of the 280 seeds sampled, only 187 seeds 
(grouped in 20 infructescences) gave a positive signal for 
DNA isolation (Table 3). Linkage disequilibrium was not 
significant (P > 0.05) for any pair of loci when tested within 
clusters of adults and seeds (Online Resource 1), supporting 
the assumption of loci independence. Significant deviations 

Table 1   Set of positive 
microsatellite loci of the 
bromeliad genera Aechmea (Ac) 
and Ananas (Acom) successfully 
transferred to P. hamata 

Number of alleles (A) was computed with 261 P. hamata samples (74 individuals, and 187 seeds)

Locus Repeat motif Primer sequence (5′–3′) Mean (bp) A

Acom 64.22 (TCC)5 F: CTC​CTC​ATC​TAC​CGC​ACC​TC 195 1
R: CCC​TAG​ACG​ACG​ACG​AAG​AG

Acom 78.4 (GT)14 F: GCA​AAT​GAG​GCC​ACA​AAC​TT 171 3
R: GGG​TGG​TGT​GGA​CTT​TCT​CT

Acom 101.1 (CGT)11 F: CGA​GAG​AGA​TTG​TGC​GTT​TG 183 5
R: GGG​GGA​ACA​CAC​TGC​TAA​AG

Acom 117.15 (CT)20 F: GCA​ACC​CCA​ATA​CCC​TAA​CC 182 13
R: GTA​CTC​CGC​CAT​TGT​TGG​TG

Acom 119.1 (CTTT)7 F: TTC​TGA​TCA​ATG​AGT​GGA​CACC​ 208 5
R: TCC​TGA​ATC​CAA​AGG​CAA​AG

Ac40 (AG)18 F: GCA​GCA​CCA​GAG​ACA​GCA​ 198 11
R: GTG​GGA​GAG​TGT​GGA​GAG​GT

Table 2   Genetic diversity of six 
patches (with 59 individuals) 
and isolated individuals (n = 15) 
of P. hamata derived from five 
simple microsatellite loci

Significant departures from HWE are indicated as **P < 0.01. Number of individuals (n), allelic richness 
(AR), number of private alleles (PA), expected heterozygosity (He), observed heterozygosity (Ho), and the 
inbreeding coefficient (Fis) are shown. S2 was excluded for calculations of mean and standard deviation 
(SD) due to its small-sample size

Patch Altitude (m asl) n PA AR He Ho Fis

S1 (small) 3658 11 0 2.74 0.39 0.37 − 0.01**
S2 (small) 3654 3 0 1.4 0.12 0.07 0.45**
S3 (small) 3737 11 0 1.99 0.42 0.63 − 0.50**
I (isolated) 3800 15 2 2.74 0.54 0.57 − 0.08**
L1 (large) 3580 10 1 2.4 0.34 0.25 0.32**
L2 (large) 3979 12 2 1.75 0.19 0.12 0.17**
L3 (large) 3730 12 0 2.8 0.53 0.37 0.27**
Mean ± SD 2.4 ± 0.44 0.40 ± 0.13 0.38 ± 0.19 0.02 ± 0.30
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from HWE were computed within patches for adults and 
seeds (P < 0.05; Tables 2, 3).  

Diversity and genetic structure

The allelic richness showed no evident pattern among 
patches. Meanwhile, the observed heterozygosity (Ho) was 
higher for the small patch S3 and for isolated individuals, 
and expected heterozygosity (He) was higher for isolated 
individuals. Private alleles were only present for isolated 
plants and ones from large patches. Plants in large patches 
tended to be more homozygous than the HWE expectation 
(range 0.17–0.32; Table 2).

PCoA analysis placed the 74 adult plants into three 
weakly defined clusters (A, B, C; Fig. 2), which correlated 
somewhat with the large patches in this study: A (n = 32) 
included 7/10 L1 individuals plus others; B (n = 16) included 
all L2 individuals plus four individuals from other patches; 
and C (n = 21) included 7/12 L3 individuals plus others. Five 
individuals from small patches and isolated individuals were 
placed outside these analysis clusters (Fig. 2a). By contrast, 

Bayesian analysis recognized only two groups (ΔK = 2, 
Fig. 2b): K1 (n = 23) corresponded to PCoA cluster B and 
K2 (n = 51) included the rest of the individuals (Online 
Resource 2). K1 mostly comprised individuals from altitudes 
≥ 3980 masl, while K2 those from < 3980 masl (Fig. 2c).

The allelic richness in seeds decreased from those 
of small patches to those from plants in the centre of 
large patches (Table 3), with significant differences for 
S-LE (Mann–Whitney U test: U = 15; P = 0.057) and 
S-LC (U = 20; P = 0.02). Only isolated plants had private 
alleles. Statistically significant differences were detected 
for genetic diversity among S–LC (U = 20; P = 0.02) and 
LE–LC (U = 19.5; P = 0.01); and for observed heterozygo-
sity between S–LC (U = 19; P = 0.03) and LC–LE (U = 20; 
P = 0.02).

Four PCoA clusters were derived from the 20 infructes-
cences (W, X, Y, Z; Fig. 3). W comprised mostly isolated 
infructescences, X all small patches, Y mostly edges of large 
patches, and Z all centres of large patches (Fig. 3a). Bayes-
ian analysis with 187 seeds from the 20 infructescences 
detected three groups (ΔK = 3, Fig. 3b; Online Resource 3). 

Table 3   Genetic diversity of 
20 P. hamata infructescences 
(187 seeds) derived from five 
microsatellite loci

Significant departures from HWE are indicated as **P < 0.01. Number of individuals (n), number of pri-
vate alleles (PA), allelic richness (AR), expected heterozygosity (He), observed heterozygosity (Ho), and 
the inbreeding coefficient (Fis) are shown. LE5 was excluded for calculations of mean and standard devia-
tion due to its small-sample size

Infructescences Altitude (m asl) n PA AR He Ho Fis

Isolated Mean 2.38 0.45 0.54 − 0.23
 I3 3718 10 1 2.39 0.53 0.73 − 0.40**
 I4 3761 10 0 2.74 0.55 0.52 − 0.05**
 I5 3768 10 3 2.84 0.50 0.55 − 0.18**
 I7 4009 10 0 1.89 0.27 0.42 − 0.37**
 I8 4054 10 1 2.12 0.41 0.36 0.14**
 I10 3981 10 0 2.34 0.45 0.68 − 0.54**

Small patch Mean 2.64 0.53 0.61 − 0.20
 S2 3749 10 0 2.49 0.53 0.52 0.02**
 S3 4042 10 0 2.56 0.50 0.70 − 0.39**
 S4 3754 9 0 2.83 0.53 0.58 − 0.16**
 S7 3647 10 0 2.7 0.57 0.66 − 0.26**

Edge of large patch Mean 2.28 0.49 0.67 − 0.33
 LE1 3979 10 0 2.54 0.53 0.73 − 0.39**
 LE2 3979 10 0 2.07 0.42 0.56 − 0.23**
 LE3 3979 10 0 2.1 0.49 0.66 − 0.31**
 LE4 3979 10 0 2.44 0.54 0.72 − 0.40**
 LE5 3979 4 0 1.8 0.32 0.55 − 0.62**

Centre of large patch Mean 2.03 0.36 0.48 − 0.31
 LC1 3979 10 0 2.14 0.39 0.50 − 0.29**
 LC2 3979 10 0 1.81 0.32 0.54 − 0.56**
 LC3 3979 10 0 1.99 0.33 0.48 − 0.38**
 LC4 3979 6 0 1.93 0.34 0.40 − 0.16**
 LC5 3979 8 0 2.29 0.42 0.48 − 0.18**

Overall mean 2.32 0.46 0.58 − 0.27
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This grouping pattern strongly matched those from PCoA, 
where K1 corresponded to W, K2 to Z + Y, and K3 to X. 
Unlike PCoA, Bayesian analysis did not detect genetic dif-
ferentiation between infructescences from the large patches’ 
centres and edges.

Nearby patches tended to be genetically more similar than 
expected by chance, and genetic differences increased lin-
early with spatial distances and altitude (Table 4).

Discussion

Effect of fire on the genetic structure of P. hamata 
individuals

Isolated adults and small patches had higher values for 
both expected and observed heterozygosity than larger 
patches. In addition, larger patches presented high values 

Fig. 2   a Principal coordinates analysis (PCoA) of 74 P. hamata adult 
individuals. The two PCoA axes explain 63.18% of the variance. Iso-
lated plants (orange  circles), small patches (squares: light orange S1, 
orange S2, dark orange S3), and large patches (triangles: light orange 
L1, orange L2, dark orange L3) are shown. Only the 23 individuals 

clustered by K1 are named in the PCoA. b Schematic representation 
of Bayesian analysis by STRU​CTU​RE with the respective Delta K/K 
plot. c Geographical location of the P. hamata adult individuals based 
on the Bayesian analysis
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of inbreeding. Limited seed dispersal in Puya explains 
the higher inbreeding found in large patches, where most 
plants would be expected to derive from the same par-
ent after fire had opened up the vegetation canopy (Gar-
cia-Meneses and Ramsay 2014). By contrast, the higher 
genetic diversity among isolated plants and small patches 
can be explained by their probable origin as rare, uncon-
nected seed dispersal events from distant parents. Thus, 

the spatial context of adult Puya plants is linked to their 
heterozygosity, allelic richness and inbreeding levels.

The genetic diversity of P. hamata adults in this study 
was relatively high and corresponded to a wider genetic pool 
when compared with some other Puya species. For instance, 
Sgorbati et al. (2004), applying AFLP and cpSSRs markers, 
found a low and extremely uniform genetic diversity among 
P. raimondii populations distributed in Peru’s central and 

Fig. 3   a Principal coordinates analysis (PCoA) of 20 P. hamata 
seeds/infructescences. The two PCoA axes explain 62.03% of the var-
iance. Isolated plants (blue circles), small patches (blue squares), cen-
tres of large patches (blue triangles), and edges of large patches (blue 

diamonds) are shown. b Schematic representation of Bayesian analy-
sis by STRU​CTU​RE: K1 (n = 50), K2 (n = 88) and K3 (n = 49), with 
the respective Delta K/K plot. c Geographical location of the seeds/
infructescences based on the Bayesian analysis
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southern Andes, which suggests a single progenitor causes 
genetic uniformity among and within P. raimondii popu-
lations. Conversely, Hornung-Leoni et al. (2013), working 
with several P. raimondii populations from Peru’s central 
Andes and using AFLP markers, reported a high level of 
genetic variation among populations. Geographical bias in 
sampling and limitations in technical tools could explain 
this significant difference (Hornung-Leoni et al. 2013). In 
particular, the nature of the genetic marker types needs to 
be interpreted carefully, because the unknown marker prop-
erties like mutation rate would affect the levels of varia-
tion. Our study revealed higher levels of genetic diversity 
at a finer spatial scale than the aforementioned studies. It 
would be possible to observe both high and low genetic 
diversity within the same Puya population, depending on 
whether samples were taken from isolated individuals or 
ones from the centres of large patches. The spatial context 
of the sampled plants should be accounted for in future stud-
ies, and samples of isolated individuals would provide better 
estimates of genetic diversity for an area than samples from 
within large patches of P. hamata.

The moderate levels of genetic diversity exhibited by 
P. hamata plants (mean He= 0.46 ± 0.07 SD) are compa-
rable with other Andean plant studies at similar spatial 
scale and with similar molecular markers. Almeida et al. 
(2013) reported higher genetic diversity values (range 
He = 0.70–0.76) for perennial evergreen Lasiocephalus 
ovatus populations, but Vásquez et al. (2016) found several 
populations of the long-lived semelparous giant rosette Lupi-
nus alopecuroides had lower diversity (range He = 0–0.51).

Effect of pollinator behaviour on the genetic 
structure of seeds of P. hamata

A fine-scale genetic structure was detected among P. hamata 
seeds. This pattern can be explained by (i) the isolated or 
aggregated spatial context of infructescences, and (ii) the 
location of infructescences within larger patches (edge or 
centre). There was a diversity gradient from the centres of 
large patches (less diversity) to the edges of large patches, 

small patches, and isolated plants (more diversity), con-
sistent with the hypothesis of Garcia-Meneses and Ram-
say (2012). Traplining hummingbirds, moving from plant 
to plant at a landscape scale, forage more frequently on P. 
hamata inflorescences in isolated, small-patch or patch-
edge contexts, while the centres of larger patches are well 
defended by territorial hummingbirds against traplining 
competitors (Woods and Ramsay 2001). This favours out-
crossing in isolated, small-patch or patch-edge contexts and 
boosts genetic diversity. The territorial defence of patch cen-
tres reduces the probability of incorporating new genetic 
material from other populations (Groom 1998; Woods and 
Ramsay 2001). Territory size for the Aglaeactis cupripennis 
hummingbird varied from 0.03 to 0.54 ha in Ecuadorian and 
Peruvian montane forest (Céspedes et al. 2019), but the con-
centrated nectar sources in large P. hamata patches are likely 
to result in smaller end of this range in the páramo. Nev-
ertheless, territorial individuals are often unable to defend 
all plants in their territory simultaneously, allowing traplin-
ers to enter territories for short feeding bouts, especially at 
the margins. The emergence of traplining or territoriality 
as foraging strategies in hummingbirds has been linked to 
ecological and evolutionary strategies to reduce competi-
tion between these pollinators (Rappole and Schuchmann 
2003) and is likely to be robust in the face of changes in 
hummingbird composition from place to place. In places 
where A. cupripennis is absent, other hummingbird species 
have been observed to establish territories around P. hamata 
patches (Miller 1988), maintaining the barrier for outcross-
ing in patch centres.

Altitude partially explained the genetic relationships of 
adults and seeds, with some differentiation between indi-
viduals at higher versus lower altitudes. This was expected, 
since altitude controls the altitudinal movement of genotypes 
(Almeida et al. 2013) as well as hummingbird movements 
(Buermann et al. 2011; Ohsawa and Ide 2008; Rappole and 
Schuchmann 2003). However, seeds from small patches of 
P. hamata were defined as a single, discrete genetic cluster, 
despite the altitudinal range they occupied (3647–4042 m). 
Although spatially and altitudinally distant, genetic flux 
existed among these small patches, which resulted in similar 
genetic composition. It seems likely that traplining hum-
mingbirds transfer genes among these patches over a wide 
altitudinal range. Traplining hummingbirds not only visit 
widely separated individuals (Gill 1988), but also fly over 
greater altitudinal ranges compared to territorial humming-
birds (Barbará et al. 2007; López-Segoviano et al. 2018). 
In our study, the territorial species, A. cupripennis, is more 
often found in cloud forest at lower altitudes, but forages in 
the lower reaches of páramo grasslands, especially during 
Puya flowering events.

There is some evidence in our study for different pol-
linator behaviour for small patches compared with isolated 

Table 4   Results of Mantel test (r2) showing the significant correla-
tions among spatial, genetic, and altitude distance matrices of P. 
hamata populations included in this study (adults and seeds)

All correlations were statistically significant with a P value < 0.01

Seeds

Altitude Genetic Spatial

Adults
 Altitude – 0.044** 0.541**
 Genetic 0.087** – 0.031**
 Spatial 0.050** 0.052** –
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plants. Seeds were genetically distinct for these categories 
(Fig. 3). We do not have an evidenced explanation for this 
pattern, but we speculate that different traplining species 
might partition their foraging, such that some species might 
specialise on small patches, while others focus on isolated 
plants. This would require confirmation with behavioural 
studies.

The incorporation of isolated plants and small patches 
into traplining by pollinators could move alleles among 
larger patches of Puya, with the isolated plants and small 
patches acting as stepping stones, in the manner suggested 
by Howe and Miriti (2004). In this regard, the ecological and 
genetic contribution of isolated individuals located between 
forest remnants has already been reported in the context of 
tropical forest ecology (Chase et al. 1996; Fuchs and Ham-
rick 2010; Guevara et al. 1992).

Conclusion

The spatial context of P. hamata plants at a landscape scale 
is driven by burning, common throughout the páramo grass-
lands of the Andes and Central America (Horn and Kappelle 
2009). P. hamata patchiness in association with burning 
has been noted several times (Garcia-Meneses and Ram-
say 2014; Laegaard 1992; Miller and Silander 1991), and 
in its absence, Puya species would be rarer and the popula-
tion would consist mostly of isolated individuals or small 
patches. Only in the presence of burning would large patches 
of Puya be expected. Thus, the genetic patterns reported 
here are the outcome of the interaction of burning influ-
ences on patchiness of adult plants (driven by germination 
requirements and poor seed dispersal) and pollinator behav-
iour in response to patchiness of nectar resources (specifi-
cally territoriality).

Andean mountains are particularly at risk from climate 
change (Urrutia and Vuille 2009), with more rapid change 
expected at higher elevations (Pepin et al. 2015). The impact 
of this warming, alongside land-use changes, makes it dif-
ficult to predict species’ responses (Buermann et al. 2011; 
Frei et al. 2010) and the influence of burning on future 
páramo landscapes. Temperature increases at the páramo-
forest ecotone will favour more agricultural activity and, 
consequently, increase anthropogenic fires (Anderson et al. 
2011). In addition, potentially drier conditions in the páramo 
zone could favour the rapid spread of fires forming larger 
patches (Ruiz Carrascal et al. 2011), changing the balance of 
large patches versus small patches and isolated plants. The 
dominance of larger patches in a population could mean a 
loss of genetic diversity in P. hamata. It is clear from our 
work that isolated and small-patch Puya plants are a sig-
nificant genetic resource that should be taken into account 

when developing management strategies for these plants and 
their pollinators.

In conclusion, poorly dispersed P. hamata seeds with par-
ticular germination requirements lead to the formation of 
large patches of closely related plants in burned landscapes. 
Territorial hummingbirds restrict gene flow in and out of 
these large patches, but traplining hummingbirds maintain 
genetic diversity among small patches and isolated plants. 
These traplining foragers also introduce genetic diversity to 
plants at the edges of large patches. All of this is consistent 
with the findings of Garcia-Meneses and Ramsay (2012) on 
reproductive output and their predictions on gene flow. Our 
study illustrates the need to consider interactions between 
land use, plants, and their pollinators to maintain genetic 
diversity at the landscape scale.
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