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Abstract
Recent advances in digital audio source recognition, particularly within judicial foren-
sics and intellectual property rights domains, have been significantly propelled by
deep learning technologies. As these methods evolve, they introduce novel models
and enhance processing capabilities crucial for audio source recognition research.
Despite these advancements, the limited availability of high-quality labeled sam-
ples and the labor-intensive nature of data labeling remain substantial challenges.
This paper addresses these challenges by exploring the efficacy of self-attention
mechanisms, specifically through a novel neural network that integrates the Squeeze-
and-Excitation (SE) self-attention mechanism for identifying recording devices. Our
study not only demonstrates a relative improvement of approximately 1.5% in all four
evaluationmetrics over traditional convolutional neural networks but also compares the
performance across two public datasets. Furthermore, we delve into the self-attention
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mechanism’s adaptability across different network architectures by embedding the
Squeeze-and-Excitation mechanism within both residual and conventional convolu-
tional network frameworks. Through ablation studies and comparative analyses, we
reveal that the impact of self-attention mechanisms varies significantly with the under-
lying network architecture. Additionally, employing a transfer learning strategy has
allowed us to leverage data from a baseline network with extensive samples, applying
it to a smaller dataset to successfully identify 141 devices. This approach resulted in
performance enhancements ranging from 4% to 7% across various metrics, highlight-
ing the transfer learning method’s role in advancing digital audio source identification
research. These findings not only validate the Squeeze-and-Excitation self-attention
mechanism’s effectiveness in audio source recognition but also illustrate the broader
applicability and benefits of incorporating advanced learning strategies in overcoming
data scarcity and enhancing model adaptability.

Keywords Digital audio forensics · Deep learning · Self-attention mechanism ·
Transfer learning · Few-shot learning

1 Introduction

In an era of rapid technological development, the use of digital media files has become
intertwinedwith public life, with digital audio comprising a significant portion of these
files [6]. While these data have made people’s lives more convenient, they also pose
various hidden risks [35, 36, 41–43]. For instance, in voice recognition systems, unau-
thorized individuals can exploit voice simulation software to mimic registered voices
and thereby steal identity information [40, 44, 47]. Furthermore, accurate digital audio
source recognition is crucial for forensic analysis and related tasks within the realm
of justice [1, 37]. Consequently, research in this area holds considerable significance
[38].

Inspired by advancements in speaker recognition technology [3, 9, 19, 26], digital
audio source identification has alsomade significant progress [39, 45, 46]. Research on
digital audio source identification comprises three essential components: preprocess-
ing, feature extraction, and representation modeling. Preprocessing of digital audio,
as the initial step in recognition, is necessary to address environmental noise that often
interfereswith the recording process. By undertaking relevant preprocessing, the audio
becomes better suited for subsequent feature extraction work [18, 32].

Feature extraction of preprocessed audio represents another crucial aspect of dig-
ital audio source recognition. Buchholz et al. [5] proposed using frequency domain
features obtained through Short Time Fourier Transform (STFT) as features for digital
audio source forensics. Subsequent studies introduced unsupervised Random Spectral
Features (RSF) [28], supervised Labeled Spectral Features (LSF) [29], and Sketches of
Spectral Features (SSF) [21] features. While these features showed promise in exper-
iments, they suffered from high redundancy and computational complexity. Inverse
spectral coefficient-based characterization features such as Mel-Frequency Cepstral
Coefficients(MFCC) [24], Linear Prediction Coding(LPC) [2], Linear Prediction Cep-
stral Coefficients(LPCC) [14], and Perceptual Linear Predictive(PLP) [16] gained
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popularity and have since become the most effective and commonly employed repre-
sentational information in digital audio source recognition studies.

Representation modeling, which involves generating algorithms that accurately
match the extracted features, is also a crucial task in digital audio source recognition.
Prior to the advent of machine learning, GaussianMixture Models (GMM) dominated
the field. GMMs are probabilistic models that combine weighted and mixed Gaussian
distributions of individual data to calculate posterior probabilities for making pre-
dictions. Consequently, feature extraction based on GMM models, such as Gaussian
Super Vector(GSV) features [20] and i-vector features [10], emerged. The use of i-
vector features significantly influenced subsequent deep learning research. However,
while probability density modeling increased error tolerance in sample recognition,
the results in open-set recognition remained poor.

With the emergence of deep learning, modeling and decision-making approaches
have matured over time. The utilization of d-vectors through Deep Neural Net-
work(DNN) network extraction [33] provided a better solution for efficient device
information. Subsequently, an x-vector framework based onDNNembedding [33]was
introduced to enhance model representativeness. Additionally, the advent of residual
networks [15] enabled the stacking of deeper networks, which has proven pivotal in
numerous deep learning-based studies.

Building upon the aforementioned research, this paper focuses on deep learning and
introduces SE self-attentive mechanism within the convolutional network structure.
Unlike traditional convolutional networks, our approach effectively incorporates both
preceding and subsequent speech information at the frame-level, resulting in improved
robustness. The main contributions of this paper are as follows:

• Integration of Self-Attention Mechanisms We systematically integrate self-
attention mechanisms within both convolutional and residual network structures.
This integration aids in examining the factors that influence the effectiveness of
self-attention. By incorporating these mechanisms, our models gain the ability to
process information more deeply and comprehensively. This reduces data redun-
dancy and significantly improves both the efficiency and robustness of the model,
which is crucial for handling complex audio data.

• Advancements in Few-Shot Learning Addressing the challenges of few-shot
learning, we employ a transfer learning strategy. We initially pre-train our model
using a dataset with ample similar data samples and subsequently fine-tune it on
a smaller, few-shot dataset. This approach not only expedites the training process
but also enhances the model’s performance on limited data. Experimental results
validate the substantial impact of transfer learning in improving the efficacy and
adaptability of the training process under constrained data conditions.

The remainder of the paper is structured as follows: In Sect. 2, we present classical
research approaches in the field based on our survey findings. Section3 provides the
mathematical notation and problem formulation associated with the theory. Detailed
explanations of the deep learning methodologies employed in this study are presented
in Sect. 4. The experimental design, measurement of the proposed approach, and anal-
ysis of the results are described in Sect. 5. Finally, Sect. 6 summarizes the conclusions
drawn from this study, along with its limitations.
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2 RelatedWork

This section provides an overview of different types of speech recognition models
based on various constructionmethods. Themodels are classified into three categories:
Gaussianmixturemodel-based digital audio source recognitionmodels, support vector
machine-based digital audio source recognition models, and deep neural network-
based digital audio source recognition models.

2.1 GaussianMixture Model-Based Digital Audio Source Recognition

GMMs are used when the data is complex and cannot be accurately represented by
a single Gaussian distribution. In GMMs, multiple Gaussian models are mixed with
certain weights to form a probabilistic model that accurately represents the attribute
features of the data. The GSV [20] is a feature data extracted from the mean vector
of the GMM. The mean vector is a crucial component of the GMM model and has
different representations. Therefore, the identification of GSV enables the recognition
of the data used to build the GMM model.

Previous studies have used GMMs trained with the maximum likelihood func-
tion, but Kotropoulos et al. [22] and Zou et al. [48–50] trained GMMs as Universal
BackgroundModels (UBM) using theMFCC feature. They fine-tuned the UBM base-
line system using the Maximum A Posteriori (MAP) algorithm to obtain independent
GMM models. They achieved high recognition accuracy, with the former achieving
97.6% recognition accuracy using an Radial Basis Function-Neural Network(RBF-
NN) classifier on the MOBIPHONE dataset, and the latter achieving an error rate of
2.08% for 14 mobile devices.

To address the limitations of training data length, Hanilci et al. [12] proposed using
maximum mutual information to measure the Gaussian hybrid model. Comparative
experiments demonstrated that training the hybrid Gaussian model using maximum
mutual information wasmore effective than traditional training approaches, especially
for short data.

2.2 Support Vector Machine-Based Digital Audio Source Recognition

Support VectorMachine (SVM) is generalized classifiers used for binary classification
in supervised learning. SVM is originally designed for binary classification problems,
so multiple classifiers need to be built for multi-classification problems. Two com-
mon approaches are “one-to-many” classifier construction and “one-to-one” classifier
construction. In “one-to-many” classifier construction, samples of a certain category
are grouped together during training, while the remaining samples are grouped into
another category. K-SVMs are constructed for K categories, and the unknown category
of samples is identified based on the largest classification function value.

Campbell [7] proposed a kernel function based on generalized linear judgments and
the associated Mean Square Error (MSE) training criterion, achieving an equal error
rate of 3.2% on the 1998 NIST speaker recognition evaluation task dataset. However,
as the number of device classes increases, the computational cost of SVM classifiers
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also increases exponentially, making SVM less feasible for a large number of device
types.

2.3 Deep Neural Network-Based Digital Audio Source Recognition

The traditional GMM-UBMmodel is sensitive to channel noise. To address this issue,
Dehak et al. [10] proposed reducing high-dimensional GSV to a low-dimensional
vector called i-vector. The GMM/i-vector system effectively eliminates internal and
channel variations of the speaker, leading to significant performance improvements.
Inspired by the widespread use of deep learning, Lei et al. [23] introduced a DNN-
based i-vector framework, which employs a DNN acoustic model to generate posterior
probabilities instead of a GMMmodel. The resulting iso-error rate on the 2012 NIST
speaker recognition evaluation task dataset was reduced by 30% compared to the
GMM-UBM/i-vector based approach. Subsequent research in the field of deep embed-
ding introduced the d-vector and x-vector frameworks, which have become seminal
works in this area.

The d-vector framework utilizes the real identity of the speaker as the label during
the training phase. In the testing phase, the d-vector represents the feature embed-
ding of each frame by taking the output of the last hidden layer of the DNN as the
frame’s feature embedding. The average of the frame-level feature embeddings rep-
resents the audio’s feature embedding. The x-vector framework is an extension of
the d-vector framework, incorporating pooling operations to fuse frame-level speech
signal features into speech-level signal features. It extracts frame-level signal features
using a time-delay layer, combines the mean and standard deviation of these features
through a statistical pooling layer to obtain speech-level signal features, and performs
classification using a standard feedforward network.

Variani et al. [33] found that using the d-vector framework alone produced higher
equal error rates than using the i-vector framework alone. However, when both frame-
works were combined, it resulted in improved performance, achieving a 14% and 25%
iso-error rate reduction over the baseline system. Snyder et al. [31] demonstrated that
augmenting the data appropriately led to a 44% equal error rate reduction over the
baseline system on the SITW Core dataset using the noisy corpus case.

DNN-based acousticmodels exhibit superior performance in speech content-related
recognition. These models not only provide more accurate frame-level recognition
but also possess frame alignment capabilities, which are particularly advantageous in
text-based digital audio source recognition. Geng et al. [11] demonstrated an 8.63%
relative decrease in Word Error Rate (WER) compared to the baseline i-vector and
x-vector systems by incorporating novel depth features and adaptively adaptive hybrid
DNN/Time Delay Neural Network (TDNN) networks. Chakroun et al. [8] improved
the i-vector-Probabilistic Linear Discriminant Analysis (PLDA) system by proposing
a novel deep neural network based on Convolutional Neural Network (CNN) and
Recurrent Neural Network (RNN), achieving a recognition accuracy improvement of
approximately 10%. It is worth noting that the computational complexity of DNNs
is higher due to their multilevel network structure and the requirement for a larger
number of labeled training samples, which should be taken into consideration.
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Table 1 Description of symbols used in this paper

Symbols Descriptions

X , Y , Z ,U Represents the overall feature layer

xn , yn , zn Represents the n th channel in a layer

FL Integral convolution kernel

f ln Vector of the nth dimension in the overall convolution kernel

∂() Sigmoid activation function

F1() Convolutional transform

Fgp() Global average pooling operation

F f c() Through the fully connected layer

Wn() Overall matrix of weighted values for the n th fully connected layer

Wi, j () The j th vector in the i th fully connected layer weighting matrix

SA Space exists for pre-trained models for transfer learning

TA The space that exists in the model obtained after fine-tuning transfer learning

DSA Data space for transfer learning to pre-train models

DT A The data space used for transfer learning to train the target network

FSA(·) Source domain prediction function

L(·) Loss function

SummaryGaussianmixturemodel-based, support vectormachine-based, and deep
neural network-based models have been explored for digital audio source recognition.
GMM-based models provide accurate representations of complex data, while SVM-
based models offer good performance for a relatively small number of device classes.
Deep neural network-based models, including the d-vector and x-vector frameworks,
have demonstrated significant improvements in recognition accuracy, particularly in
the presence of channel noise. These models leverage the power of deep learning and
provide more accurate frame-level recognition and frame alignment capabilities, but
at the cost of increased computational complexity and the need for abundant labeled
training data.

3 Preliminaries

In this section, we provide an overview of the problem of digital audio source identi-
fication and introduce relevant definitions. Table1 describes important symbols used
throughout this paper for better understanding the proposed method.

Definition 1: Digital Audio Source Recognition Tasks The problem of digital
audio source identification involves determining the specific recording device used to
capture the digital audio in the input model. We can identify the device from the reg-
istered database

{
Xe
a | a = 1, 2, . . . , A

}
. This problem can be formulated as follows:

a∗ = arg
a

max
{
f
(
xe1, x

n;w
)
, f

(
xe2, x

n;w
)
, . . . , f

(
xeA, xn;w

)}
(1)
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Fig. 1 Framework of the digital audio source identification

Here, xn represents the input digital audio,w denotes the model’s backend parame-
ters, A is the number of registered devices (A > 1), and a∗ corresponds to the identified
device. If the input digital audio always corresponds to one of the A devices regis-
tered in the database, the problem is considered a closed-set identification problem.
Conversely, it is an open-set identification problem.

The overall framework illustrating the digital audio source identification problem
is depicted in Fig. 1. By clarifying the problem statement and introducing relevant
symbols, we have set the foundation for further discussions and analysis in subsequent
sections of this paper.

4 Methods

Previous research has demonstrated that deep neural networks possess excellent
feature learning capabilities and strong representationmodeling capabilities in the field
of digital audio source recognition. Consequently, this study focuses on addressing the
problem of representation modeling. However, practical applications of digital audio
source recognition often encounter two primary challenges:

• The Few-shot Problem: It is impractical to exhaustively enumerate the sample sets
of various digital audio devices, making it impossible to fully characterize the fea-
ture models of all devices. Consequently, when encountering a new audio source,
the original representationmodel becomes inapplicable, requiring significant effort
to retrain the model.

• The Few-shot Sets Problem: While deep neural networks exhibit good feature
extraction and characterization abilities, their performance heavily relies on a large
number of training data sets. When the sample size of the training data set is small,
the model’s performance is significantly impacted.

To address these challenges, this section employs transfer learning [27], a theoretical
approach, to develop a network model based on deep neural networks suitable for
digital audio source recognition.

Considering the significant differences in sparsity among features extracted from
audio signals generated by different types of devices and the lack of additional char-
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Fig. 2 aOverall network architecture based on Squeeze-and-Excitation self-attention mechanism, in which
the number of residual or convolutional blocks can be adjusted; b Schematic diagram of Squeeze-and-
Excitation self-attention mechanism blocks

acterization information available in practical applications, this study enhances the
robustness of the representation model by incorporating a self-attention mechanism
into the construction of deep neural networks. Specifically, this chapter investigates the
performance of the Squeeze-and-Excitation self-attention mechanism [17] for MFCC
feature representation modeling and the impact of transfer learning based on deep
residual networks. The following four aspects are described in this section:

• Squeeze-and-ExcitationSelf-AttentionMechanismModule: Thismodule explores
the effectiveness of the Squeeze-and-Excitation self-attention mechanism for
enhancing MFCC feature representation modeling.

• Residual Module: This module focuses on the application of deep residual net-
works and their role in improving transfer learning performance.

• Transfer Learning Module: This module delves into the utilization of transfer
learning techniques to enhance the digital audio source recognition model.

• Decision Module: This module outlines the decision-making process within the
overall network model.

By addressing these aspects, this section provides a comprehensive overview of
the methods employed in this study, setting the stage for the subsequent analysis and
results.
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4.1 Squeeze-and-Excitation Based Self-AttentionMechanism Block

As illustrated in Fig. 2a, this study uses a deep neural network with a SE self-attention
mechanism to process MFCC features, yielding more representative deep embed-
ding features. These features are subsequently reduced in dimensionality through two
fully connected layers, with classification decisions made via a Softmax classifier.
This paper chooses to perform deep feature extraction on MFCC features rather than
directly processing raw audio data, as MFCCs, being frequency-based features, effec-
tively capture the frequency components of speech. By mapping the spectrum onto
theMel scale, MFCCs simulate the auditory characteristics of the human ear, showing
greater sensitivity to low frequencies and lower resolution for high frequencies. Sub-
sequently, logarithmic operations compress the spectrum, reducing the dynamic range
of amplitude and enhancing noise resistance. Finally, the Mel spectrum is converted
into cepstral coefficients via discrete cosine transform, removing spectral correlations,
which makes the features more compact and facilitates more efficient modeling.

Figure2b presents a schematic diagram of the basic SE-block in the residual
network. The SE-block self-attention mechanism assigns varying weights to each
two-dimensional feature map, amplifying critical features while diminishing less sig-
nificant ones. This mechanism enhances the model’s sensitivity to channel features,
thereby improving the specificity and accuracy of feature extraction.

The implementation of the SE block involves two main parts. Firstly, the convo-
lutional feature extraction transformation (X → Y ) is carried out. Assuming that the
input feature layer X consists of c channels, represented as X = [x1, x2, . . . , xc],
where xn ∈ Rw×h , the convolution kernel FL = [ f l1, f l2, . . . , f lc] is obtained
through m convolution filtering. This process generates the output feature layer
Y = [y1, y2, . . . , yc], where yn ∈ Rw×h , and is computed as follows:

yn = F1(X) = ∂

(
c∑

i=1

f ln ∗ xi

)

, n ∈ [1, c] (2)

Here, ∗ denotes the convolution operation and ∂ denotes the activation function.
f ln represents the two-dimensional convolution kernel acting on the corresponding
channel of X . This convolutional operation extracts edge features from each layer
while also fusing information across feature layers to capture spatial correlation.

The second part of the SE block involves the attention mechanism transformation
(Y → Z ). To obtain global information rather than local information for different
feature layers, the global information of the feature layer Y is compressed into a
vector using global averaging pooling. This operation yields a 1×1× c1-dimensional
weight initialization vector W1 = [

w1,1, w1,2, . . . , w1,c1

]
. The values of w1,c1 are

computed as follows:
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w1,n = Fgp (yn) = 1

h × w

h∑

i=1

w∑

j=1

yn(i, j), n ∈ [1, c1] (3)

Next, the weight initialization vector is transformed through two fully connected
layers, resulting in the final vector of feature layer channel weights, denoted as W3 =[
w3,1, w3,2, . . . , w3,c1

]
, where

W3 = Ff c
(
Ff c (W1)

) = ∂ (a2 × ∂ (a1 × W1 + b1) + b2) (4)

The weights and biases of the fully connected layers are denoted as a1, b1, a2, and
b2, respectively. Specifically, a1 is a weight matrix of size Rc2×c1 , b1 is a bias matrix of
size R1×c2 , a2 is a weight matrix of size Rc1×c2 , and b2 is a bias matrix of size R1×c1 .
In this experiment, to introduce nonlinearity in the weight transformation process, the
activation function ∂ is chosen as the sigmoid function. It should be noted that c2 < c1.

Afterward, the output Z of the SE block is obtained by element-wise multiplication
of each channel of the feature mapping yn with the corresponding weight w3,n , given
by:

zn = w3,n · yn (5)

Here, Z = {z1, z2, . . . , zc}, and zn ∈ Rw×h . The resulting Z represents the output of
the SE block. To provide a clearer overview of the overall workflowof the experimental
network, we summarize the algorithm in Algorithm1.

Algorithm 1 :SE-block self-attention
Require: Input Data: X
Ensure: Layer Outputs: Z
1: Convolution:
2: Y = F1(x);
3: Global Mean Pooling:
4: W1 = Fgp(Y );
5: Fully Connected Neural Network:
6: W2 = F f c(W1);

W3 = F f c(W2);
7: Multiplier:
8: Z = W3 × Y ;
9: Repeat the previous steps to stack the SE-blocks with an output of h;
10: Through two fully connected layers:
11: h1 = F f c(h);

h2 = F f c(h1);
12: The final decision is reached through the Softmax layer:
13: prediction = Sof tmax(h2);
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4.2 Residual Structure Block

In the realm of speech processing, the development of traditional convolutional neu-
ral networks has demonstrated that increasing the network depth generally enhances
the model’s representational power and feature extraction capabilities. However, a
phenomenon known as degradation arises when the network becomes too deep. This
degradation manifests as weakened representational ability and feature extraction as
depth increases. The two main factors contributing to this issue are gradient explo-
sion/vanishing and the loss of informative yet weak characteristics during feature
extraction. While techniques such as normalization layers can alleviate gradient-
related problems, addressing the information loss remains challenging.

To overcome the information loss problem, researchers discovered that mapping
the additional layers of a network with a constant mapping prevents the occurrence of
information loss. Motivated by this insight, Kaiming He and his team introduced the
Residual Network (ResNet) in 2015 [15]. ResNet comprises stacked residual mod-
ules with shortcut connections between them. By incorporating shortcut connections,
ResNet can be viewed as a composition of relatively shallow networks. Veit et al. [34]
further demonstrated that individual residual blocks within ResNet can be removed
without significantly affecting the overall performance, highlighting that deep residual
networks are essentially combinations of shallower residual modules.

The core elements of ResNet are the residual modules and shortcut connections.
Figure3 illustrates the schematic diagram of a residual module in ResNet. The module
is defined as follows:

H(x) = F(x, {Wi }) + x + b (6)

Here, x and H(x) denote the input and output vectors, respectively, and b represents
the bias. The function F(x, {Wi }) denotes the learned residual mapping. The right
side of Fig. 3 depicts the shortcut connection in ResNet, where the constant mapping
x → x is used. Instead of directly learning the target mapping, the residual neural
network learns the residual F(x) = H(x) − x . This residual mapping consists of two
components: a nonlinear mapping F(x) and a linear direct mapping x → x . When
the nonlinear mapping is optimal, the network learning process automatically sets the
weight of the nonlinear mapping to 0 and vice versa. This connection structure allows
the network to build very deep networks by combining the two mapping approaches
as constant transformations when the nonlinear mapping is optimal. Additionally, it
enables the network to selectively learn features during the weight learning process,
discarding redundant features.

There are two design variations for the ResNet module, as shown in Fig. 4a and
b. The structure depicted in Fig. 4a is typically used for shallower networks like
ResNet34, whereas the structure in Fig. 4b is employed for deeper networks such
as ResNet50/101/152. The structure in Fig. 4b replaces two convolutional layers with
a combination of two 1 × 1 convolutional layers and one 3 × 3 convolutional layer.
This modification reduces the number of parameters and makes it more suitable for
deeper networks compared to the structure in Fig. 4a. The structure in Fig. 4b first
reduces dimensionality using a 1 × 1 convolutional layer to reduce computation and



Circuits, Systems, and Signal Processing

Fig. 3 Schematic diagram of the
residual module of ResNet
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then further reduces it using another 1 × 1 convolutional layer to maintain accuracy
while reducing computation.

The learning iteration process in ResNet can be described as follows: F =
W2(σ (W1x)), where σ represents the activation function, often employing the ReLU
function.

The recurrence relation equation of the residual network is given by:

xl+1 = xl + F(xl ,Wl) (7)

xl+2 = xl+1 + F (xl+1,Wl+1) = xl + F (xl ,Wl) + F (xl+1,Wl+1) (8)

Equation (9) represents the general form of the recurrence relation in the residual
network:

xl = xl +
L−1∑

i=l

F(xi ,Wi ) (9)
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When a dimensional change occurs, the linear change in Eq. (10) can address the
input–output mismatch:

xl+1 = Wxl + F(xl ,Wl) (10)

In ResNet, a batch normalization layer is added to the network between the output
of the convolutional layer and the activation layer. Increasing the network depth leads
to changes in the distribution of input values within the hidden layers. This shift
can cause the data to move outside the sensitive interval of the activation function,
resulting in slow gradient changes or gradient disappearance during error propagation.
To counteract this, batch normalization is employed to bring the data back to the
sensitive interval of the activation function, ensuring faster convergence and gradient
preservation. However, applying batch normalization solely within the linear region of
the activation function is not ideal for deep networks. To address this, a scale factor and
offset parameters are introduced in batch normalization. These parameters not only
bring the data back to the linear sensitive region but also shift the overall data slightly
to the left and right, preventing it from adhering strictly to the standard variance. This
adjustment satisfies the requirement for nonlinear variation.

4.3 Transfer Learning Block

In traditional classification learning tasks, a large number of labeled training samples
are typically required to train a model for accurately classifying test data. However,
in real-world scenarios, the availability of labeled samples is often limited or compro-
mised due to environmental noise and other interferences. Consequently, the study of
transfer learning becomes crucial for addressing few-shot learning challenges.

In few-shot learning tasks, a common approach is to employ transfer learning
through model fine-tuning to train classification models. The process begins with
pre-training a model on large-scale data, where a model is constructed in the source
domain SA using the data in the source domain DSA = {

(xS1 , yS1), . . . (xSn , ySn )
}
,

with xSi representing the data sample in the source domain and ySi denoting the
corresponding label.

FSA(·) = arg
·

minL(·) (11)

Following the pre-training phase, the parameters of the fully connected layer or the
top layers of the network are fine-tuned using the target small sample data. In other
words, the prediction model is obtained by training the target domain data DT A ={
(xT1 , yT1), . . . (xTn , yTn )

}
with fewer samples in the target domain TA, where xTi

represents the data sample in the target domain and yTi denotes the corresponding
label. Typically, the learning rate used in the pre-training process is larger than the
learning rate used in the target network. This allows the network to fine-tune at a
slower pace, with the parameters of the pre-training model serving as initial values for
the target network. As a result, the target network is no longer trained from a random
seed starting point. The specific operations and comparisons of the network layers will
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be discussed in detail in Sects. 5.5.4 and 5.5.5 within the context of the experimental
design.

4.4 Decision Block

In traditional regressionmodels, theMSE error function is commonly used to calculate
the model loss and serve as a training objective. The MSE is defined as:

loss = (ŷ − y)2 (12)

Here, ŷ represents the true label of the data, and y is the output of the data set
through the model. Geometrically, this loss measures the spatial distance between the
true labels and the model output, with the goal of minimizing this distance to achieve
accurate regression.

For classification problems, optimizing the true labels and model outputs through
minimizing geometric spatial distance is not feasible. This is because in classification
problems, both the true labels and the model outputs are represented as probability
distributions. Consequently, a loss function that captures the variability of the distri-
bution is needed. Cross-entropy loss is a computational method commonly used to
measure distribution variability in binary classification problems, and it is defined as:

loss = −[ylog ŷ + (1 − y)log(1 − ŷ)] (13)

In the case of multi-classification problems, cross-entropy loss can still be used
to measure distribution variability. However, it is important to note that in multi-
classification problems, the number of classification labels is no longer limited to two,
and there are multiple output distributions. Therefore, the specification of the results
requires multi-classification before optimization. The desired specifications are: (1)
all output distributions should have positive results, and (2) the sum of all output
probability distributions should equal 1. The conventional Sigmoid layer does not
satisfy these requirements. Hence, a Softmax layer is used before the output layer, and
it is calculated as follows:

P(y = i) = ezi
∑K−1

j=0 ezi
, i ∈ {0, . . . , K − 1} (14)

Here, zi ∈ R
K represents the output of the last linear layer. The formula employs

the natural constant as the base of the exponential operation, ensuring positive results
and satisfying condition (1). The denominator represents the summation, ensuring that
the sum of all results equals 1 and satisfies condition (2).

When calculating the cross-entropy loss in multi-classification problems, since the
labels have multiple 0 terms, the loss equation becomes:

loss(ŷ, y) = −ylog ŷ (15)

Minimizing this loss allows for decision-making based on the input model’s data.
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Table 2 Descriptions of controlled-conditions and uncontrolled-conditions datasets

Datasets Time Equipment
Source Type &
Size

Recording
environments

Recording
duration (min-
utes)

Controlled-
Conditions

2018 31 Mobile Phones 4 different locations 318min

Uncontrolled-
Conditions

2018 141 Mobile Phones Same quiet environment 141,100min

5 Experimental Results and Analysis

5.1 Datasets

This study utilized two datasets, Uncontrolled-Conditions Dataset [25] and CCNU
Mobile Dataset [45], in experiments comparing with baseline systems, exploring the
SE attention mechanism, and investigating transfer learning. Luo et al. [25] recorded
both the Controlled-Conditions Dataset and theUncontrolled-Conditions Dataset. The
Controlled-Conditions dataset comprised recordings from 16 different environments
across four settings (two offices, a hall, and a station) and four speakers. Each recording
was 8min in duration, with a sample rate of 44.1 kHz and a quantization rate of 16 bits.
The recordings were conducted using the same speaker playback and involved 31 cell
phones in five separate batches. However, as the research in the field of digital audio
source identification progressed, the original small-scale dataset no longer sufficed for
the study requirements. Consequently, Luo et al. recorded anUncontrolled-Conditions
Dataset that involved 141 devices. Each device was recorded in the same quiet envi-
ronment, resulting in recordings of 10min in duration, a sample rate of 44.1 kHz, and
a quantization rate of 16 bits for the speech data. The relevant datasets are summarized
in Table2.

The speech data from the original CCNU Mobile Dataset1 was recorded using
45 different devices, including eight different brands (including a small number of
tablets). The CCNU Mobile Dataset specifically consists of pure TIMIT data that
was not transcribed from other devices. Due to the limited sample data in the TIMIT
dataset, recording the entire dataset as awholewas not feasible. Instead, all the training
data in the TIMIT dataset were selected and merged in order to form a single long
corpus of approximately 110min in length.

Subsequently, using the active speech detection method, the silent segments before
and after the recorded long speech data were removed. Finally, to facilitate subsequent
studies, the long speech data were split into 642 small sample segments, each approx-
imately 10s in duration. The splitting was done based on the number and duration
of the TIMIT corpus, following the order of the samples at the time of merging. The
brand and model information of the recording devices in the CCNU Mobile Dataset
are presented in Table3.

1 https://github.com/CCNUZFW/CCNU_Mobile_dataset.

https://github.com/CCNUZFW/CCNU_Mobile_dataset
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Table 3 Brand and model of recording devices in CCNU mobile dataset

Brands Models

APPLE iPhone6,iPhone6s,iPhone SE,iPad7,iPhone7p,iPhoneX,air2,air1

HUAWEI tag-a100,nova,novo2s,nova3e,honor7x,honor8,honorV8,honor9,honor10,p10,p20

XIAOMI mi2s,note3,mi5,mi8,mi8se,mix2,redmi-Note4x,redmi-3S

VIVO y11t,x3f,x7

ZTE c880a,g719c

SAMSUNG Sph-d710,s8

OPPO r9s

NUBIA z11

5.2 EvaluationMetrics

5.2.1 Confusion Matrix

In classification tasks, prediction outcomes can be categorized into four distinct types:
a) True Positive (TP); b) False Positive (FP); c) True Negative (TN); and d) False
Negative (FN).

For a multi-class classification model, considering the first class as an example
(denoted by subscript 1), TP refers to the count of instances that genuinely belong to
the first class and are accurately classified as such. FP corresponds to the number of
instances that do not belong to the first class but are incorrectly classified as members
of it. TN represents the count of instances that do not belong to the first class and are
correctly excluded from it. FN indicates the number of instances that truly belong to
the first class but are erroneously classified as not belonging to it.

5.2.2 Four Metrics

This paper adopts relevant evaluationmetrics based on the confusionmatrix tomeasure
model performance, with class 1 as the focus of evaluation. The following metrics are
employed:

(1) Accuracy Rate This metric represents the ratio of correctly predicted results
to the total number of predictions. It is defined as follows:

Acc = All accurate predictions

Number of predictions
(16)

(2) Recall Rate The recall rate calculates the percentage of correct predictions for a
specific class among all samples of that class. This indicator assesses the completeness
of the predictions, regardless of false negatives. It is defined as follows:

Recall(class1) = T P1
T P1 + FN1

(17)
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(3) Precision Rate The precision rate calculates the percentage of correct predic-
tions for a specific class among all samples predicted to belong to that class. This
metric focuses on the accuracy of the predictions, regardless of false positives. It is
defined as follows:

Precision(class1) = T P1
T P1 + FP1

(18)

(4) F-Score The F-score is a weighted combination of precision and recall rates.
It provides an overall measure of model performance, with a higher value indicating
better performance. The F-Score is defined as follows:

Fβ(class1) = (1 + β2) × Precision(class1) × Recall(class1)

β2 × Precision(class1) + Recall(class1)
(19)

Here, β represents the weight given to recall and precision, reflecting their relative
importance. In the context of the digital audio source identification problem, which
involves multi-classification, the maximum probability of correct labeling is achieved
through Softmax with a fully connected layer. When evaluating the overall model, the
scores for all classes are calculated and then averaged. For the F-Score, the F1-score
with β = 1 is selected for this experiment.

5.3 Baselines

To assess the overall performance of the system proposed in this paper, we con-
ducted a comparative experiment against four classic methods: ivector+SVM [30],
Band Energy Difference(BED)+SVM [25], MFCC+SVM [13], and GSV+CNN [4].
The characteristics of these four baseline systems are summarized as follows:

(1) i-vector + SVM [30] The i-vector reduces the dimensionality by obtaining the
speech feature vector of the high-dimensional target device source, projecting it in
the subspace, and using factor analysis to eliminate the factors that put redundancy to
obtain the low-dimensional feature vector.

(2) BED + SVM [25] The method, based on spectral feature extraction, calculates
the baseband energy difference to intuitively describe differences in device sources
while effectively reducing computational overhead. During the BED feature extraction
process, 256 Fourier spectrum sampling points are used. The differential operation
results in a baseband energy difference feature with dimensions of (1, 127).

(3) MFCC + SVM [13] This method utilizes MFCC, widely used in audio recog-
nition, as the input audio features and employs SVM as the classification model.

(4) GSV + CNN [4] This method combines the representative GSV features with
a CNN, exemplifying a deep learning approach.GSV features are represented as a
two-dimensional matrix and are processed using a CNN with a convolutional kernel
size of 33. Batch normalization layers are utilized between convolutional layers to
process the feature maps effectively.



Circuits, Systems, and Signal Processing

Dataset
MATLAB2015b Pycharm

Anaconda

PC
TITAN RTX

CPU: Xeon (R) Gold 5218
RAM:32G

OS: Windows 10(X64)

Feature data

Neural Network 
Model

SVM Model

TensorflowVoicebox
MSR Identity 

Toolkit

Libsvm

Fig. 5 Experimental platform setup

5.4 Experimental Platform Setup

To facilitate the experiments conducted in this study, we established the experimental
platform shown in Fig. 5. The experiments were performed on a desktop computer
running the Win10 operating system. The computer was equipped with a TITAN
RTX GPU, a Xeon (R) Gold 5218 CPU, and 32 GB of RAM. The software used in
the experiments included MATLAB 2015b, PyCharm, and Anaconda. Additionally,
various toolkits such as Voicebox, MSR Identity Toolkit, Libsvm, and TensorFlow
were utilized.

5.5 Experimental Results

In this section, we set two main objectives while investigating digital audio source
identification methods using deep residual network transfer learning. The first objec-
tive was to explore the effectiveness of the SE self-attention mechanism in the digital
audio domain. The second objective was to determine whether transfer learning could
enhance training performance with small sample sizes in this field. To achieve these
goals, we designed experiments comparing our approach with a baseline system and
conducted a detailed study on the SE-Block self-attention mechanism to assess its
practical impact. This study also examined the interplay between the introduced self-
attention mechanism and the chosen network architecture. Additionally, we designed
experiments to validate the effectiveness of the transfer model, examining both global
and partial transfer scenarios. These experiments demonstrated the applicability of
transfer learning in digital audio source identification and explored its effects on train-
ing with small sample datasets.

5.5.1 Comparative Experiments with Four Baseline Methods

The objective of this experiment is to compare the performance of the proposedmethod
with that of the baseline systems. To facilitate a clear comparison of the various
performance metrics, this set of experiments utilized the CCNU Mobile Dataset for a
45-class classification task. The dataset was divided into training and validation sets
in a 3:2 ratio. The experimental results are presented in Table4.
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Table 4 Experimental results of performance comparison with baseline methods

Method Accuracy Recall Precision F1-Score

i-vector+SVM [30] 64.6%±1.2% 64.6%±1.2% 65.9%±1.2% 64.7%±1.2%

MFCC+SVM [13] 86.8%±0.2% 86.8%±0.2% 86.9%±0.2% 86.9%±0.2%

BED+SVM [25] 93.4%±0.5% 93.4%±0.5% 93.7%±0.5% 93.3%±0.5%

GSV+CNN [4] 92.9%±0.5% 92.9%±0.5% 93.6%±0.5% 92.8%±0.5%

Ours 95.2%±0.4% 95.2%±0.4% 95.4%±0.4% 95.1%±0.4%

Best performance for digital audio source recognition are given in bold

As presented in Fig. 6, our method achieved an accuracy rate of 95.2%, represent-
ing an improvement of 1.8% to 30.6% over the baseline methods.The i-vector + SVM
method exhibited lower performancemetrics, indicating limitations in the SVM’s abil-
ity to map complex features. In contrast, the MFCC + SVMmethod showed improved
accuracy and F1-Score, reaching 86.8% and 86.9%, respectively, demonstrating the
effectiveness of MFCC in extracting speech features. However, the BED + SVM
method further enhanced performance, likely due to the stability and accuracy of
BED features in distinguishing speaker characteristics. Nonetheless, this method has
higher computational complexity and sensitivity to specific acoustic environments and
equipment, which may limit the generalization of features. In the specific application
scenario under study, MFCC provided more robust and consistent performance.

For neural network models, the GSV + CNN method demonstrated strong per-
formance, with an accuracy of 92.9% and an F1-Score of 92.8%, highlighting the
advantages of CNN in handling complex features, as in Fig. 6. However, this method
did not achieve the highest performance. In contrast, our proposed method excelled
across all evaluation metrics, indicating that our approach enables more representative
deep embedding ofMFCC features, demonstrating themethod’s feasibility. Compared
to traditional methods, our model more effectively captures and distinguishes com-
plex speech features, underscoring the critical role of selecting appropriate feature
extraction techniques and deep learning architectures in enhancing the accuracy and
reliability of speech recognition.

5.5.2 Hyperparameter Sensitivity Analysis

In this experiment, we deliberately deviated fromoptimal values for three hyperparam-
eters, which are learning rate, dropout rate, and batch size, to evaluate how sensitive
the model is to these changes. Table5 provides a detailed account of the resulting
changes in model performance under each adjustment. This table demonstrates that
hyperparameter tuning was performed to ensure the model’s performance was both
optimized and stable. This process highlights how adjusting different hyperparameters
influences the model’s final performance.

As shown in Fig. 7, the Dropout Rate hyperparameter was varied dynamically
between 0.5 and 0.9, in increments of 0.1, while keeping Batch Size and Learning
Rate constant. According to the results, the optimal Dropout Rate was found to be 0.8,
which we have adopted as the best setting for our method.
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Fig. 6 Comparison with 4 baseline methods. a is the F1 of the baseline methods and the proposed method.
b is the ACC of the baseline methods and the proposed method. c is the Precision of the baseline methods
and the proposed method. d is the Recall of the baseline methods and the proposed method

Figure8 presents a scenario where the Dropout Rate and Learning Rate were fixed
while the Batch Size was varied dynamically between 40 and 120, in increments of
20. The experimental data indicate that a Batch Size of 60 yielded the best results,
which we have selected as the optimal setting.

In Fig. 9, by fixing the Dropout Rate and Batch Size and dynamically adjusting the
Learning Rate from 1e-5 to 3e-4, we identified that a Learning Rate of 1e-4 provided
the best performance. Consequently, we have set this rate as the optimal choice for
our method.

5.5.3 Validation of the Effectiveness of SE Self-Attention Mechanism

To provide a more detailed analysis of the model’s performance on a smaller cate-
gory set while managing experimental complexity, this set of experiments utilized
the Uncontrolled-Conditions Dataset for a 20-class classification task. This design
effectively minimizes the impact of inter-class similarity on the model, enabling
a clearer evaluation of its nuanced capabilities in distinguishing among relatively
fewer categories. Additionally, this approach allows us to assess the differences in
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Table 5 Experimental results of hyperparametric sensitivity analysis

Hyperparameters Adjustment Evaluation Metrics
Accuracy Recall Precision F1-Score

Dropout Rate 0.5 94.8%±0.5% 94.8%±0.5% 95.1%±0.4% 94.8%±0.5%

0.6 92.1%±0.6% 92.1%±0.6% 92.8%±0.5% 92.1%±0.6%

0.7 94.6%±0.5% 94.6%±0.5% 95.0%±0.5% 94.6%±0.5%

0.8 95.2%±0.4% 95.2%±0.4% 95.4%±0.4% 95.1%±0.4%

0.9 95.1%±0.4% 95.1%±0.4% 95.3%±0.4% 95.1%±0.4%

Batch Size 40 93.5%±0.5% 93.5%±0.5% 93.8%±0.5% 93.4%±0.5%

60 95.2%±0.4% 95.2%±0.4% 95.4%±0.4% 95.1%±0.4%

80 94.4%±0.5% 94.4%±0.5% 94.7%±0.5% 94.4%±0.5%

100 94.8%±0.5% 94.8%±0.5% 95.1%±0.4% 94.8%±0.5%

120 94.5%±0.5% 94.5%±0.5% 94.9%±0.5% 94.5%±0.5%

Learning Rate 1e-5 93.9%±0.5% 93.9%±0.5% 94.0%±0.5% 93.9%±0.5%

1e-4 95.2%±0.4% 95.2%±0.4% 95.4%±0.4% 95.1%±0.4%

1.5e−4 94.9%±0.5% 94.9%±0.5% 95.2%±0.4% 94.9%±0.5%

2e-4 93.1%±0.5% 93.1%±0.5% 93.8%±0.5% 93.2%±0.5%

3e-4 93.0%±0.5% 93.0%±0.5% 94.0%±0.5% 93.0%±0.5%

Best performance for digital audio source recognition are given in bold

Fig. 7 The sensitivity analysis experiments based on dropout rate

model performance between more challenging tasks (45-class classification) and sim-
pler tasks (20-class classification), thus offering a comprehensive evaluation of the
model’s robustness and generalization capabilities.In this chapter, we divided the
dataset equally into a training set and a validation set, using a 1:1 ratio, to facilitate
supervised training.
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Fig. 8 The sensitivity analysis experiments based on batch size

Fig. 9 The sensitivity analysis experiments based on learning rate

In this experiment, we introduced the SE-Block self-attention mechanism into our
proposed digital audio source recognition method, which is based on deep residual
network transfer learning.ExperimentGroup I employed the original deep residual net-
work, while Experiment Group II utilized the deep residual networkwith the SE-Block
self-attentionmechanism. Tominimize the influence of irrelevant factors, we designed
the network with the same nodes and layers. The detailed parameters are presented in
Table6. The audio short-time frame length was set to 16ms, with a frameshift of 50%.
We applied the Hamming window, used 12 Mel filters, and obtained 39-dimensional
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Table 6 Network structure design parameters

Output size Resnet Res_SEblock

170 × 20 Conv 4964,stride 2 Conv 4964,stride 2

85 × 10 Maxpool 33,stride 2 Maxpool 33,stride 2

43 × 5

⎡

⎣
1 × 1, 64
3 × 3, 64
1 × 1, 256

⎤

⎦ × 3

⎡

⎣
1 × 1, 64

SEblock
1 × 1, 256

⎤

⎦ × 2 +
⎡

⎣
1 × 1, 64
3 × 3, 64
1 × 1, 256

⎤

⎦ × 1

22 × 3

⎡

⎣
1 × 1, 128
3 × 3 128
1 × 1, 512

⎤

⎦ × 6

⎡

⎣
1 × 1, 128

SEblock
1 × 1, 512

⎤

⎦ × 5 +
⎡

⎣
1 × 1, 128
3 × 3, 128
1 × 1, 512

⎤

⎦ × 1

11 × 2

⎡

⎣
1 × 1, 256
3 × 3 256
1 × 1, 1024

⎤

⎦ × 3

⎡

⎣
1 × 1, 256

SEblock
1 × 1, 1024

⎤

⎦ × 2 +
⎡

⎣
1 × 1, 256
3 × 3, 256
1 × 1, 1024

⎤

⎦ × 1

Global average pool f c 1000-d softmax Global average pool f c 1000-d softmax

accuracy 90.7% 89.1%

inverse spectral coefficients, first-order difference coefficients, second-order differ-
ence coefficients, and logarithmic energy coefficients as the audio features.This paper
chooses to perform deep feature extraction on MFCC features rather than directly
processing raw audio data, as MFCCs, being frequency-based features, effectively
capture the frequency components of speech. By mapping the spectrum onto the
Mel scale, MFCCs simulate the auditory characteristics of the human ear, showing
greater sensitivity to low frequencies and lower resolution for high frequencies. Sub-
sequently, logarithmic operations compress the spectrum, reducing the dynamic range
of amplitude and enhancing noise resistance. Finally, the Mel spectrum is converted
into cepstral coefficients via discrete cosine transform, removing spectral correlations,
which makes the features more compact and facilitates more efficient modeling.

The experimental results in Table6 clearly show that the deep residual network
with the SE self-attention mechanism did not significantly enhance recognition per-
formance under the same number of network layers.

To further investigate this phenomenon, we conducted additional experiments to
determine whether the observed performance decline was solely due to the SE-Block
self-attentionmechanismor its combinationwith the deep residual network. In this sec-
tion, we performed ablation experiments by incorporating the SE-Block self-attention
mechanism into a CNN. Table7 outlines the experimental designs for two sets of
network parameters. To minimize random factors, each experiment was repeated five
times, and the average results for each metric were recorded as the final values in
Table8. Additionally, a 95% confidence interval was calculated using the normal
approximation method. Furthermore, we generated a confusion matrix to provide a
comprehensive comparison of the results.

Table8 presents the experimental results of performance exploration based on the
SE-Block self-attention module. We conducted five experiments on both the CNN and
SE-CNN configurations and calculated the mean values of the five experimental runs.
The evaluation metrics used include Accuracy, Recall, Precision, and F1-Score.
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Table 8 Experimental results of performance analysis based on SE-block self-attention mechanism

Evaluation Metrics
Network Configuration Accuracy Recall Precision F1-Score

CNNNet 86.5% ± 1.1% 86.5% ± 1.1% 87.0% ± 1.0% 86.3% ± 1.1%

SE-CNNNet 88.0% ± 1.0% 88.0% ± 1.0% 88.5% ± 1.0% 87.8% ± 1.0%
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(a) 1 fold (b) 2 fold (c) 3 fold
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Fig. 10 The confusion matrix of the results of the 5 experiments of the CNNNet experimental group

Furthermore, we plotted the confusion matrices to visually compare the results of
the CNNNet and SE-CNNNet experimental groups. Figure10 depicts the confusion
matrix for the CNNNet experiments, while Fig. 11 illustrates the confusion matrix for
the SE-CNNNet experiments.

The experimental results presented in Table8 and the corresponding confusion
matrices in Figs. 10 and 11 provide intuitive evidence regarding the impact of the
SE-Block self-attention mechanism on the recognition performance of the CNN. We
observe that the introduction of the SE-Block self-attention mechanism improves the
recognition effect compared to the original CNN configuration. This finding suggests
that the SE-Block self-attention mechanism enhances the representativeness of the
convolutional neural network.

Based on the above experimental results, it is evident that the selection of an appro-
priate attention mechanism is crucial for different network structures and practical
applications. Failing to choose the appropriate attention mechanism may lead to a
decrease in the recognition performance of the network.
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Fig. 11 The confusion matrix of the 5 experimental results of the SE-CNNNet experimental group

In summary, the experimental results, supported by the evaluation metrics and
visualized through confusion matrices, provide strong evidence for the effectiveness
of the SE-Block self-attention mechanism in enhancing the representativeness of the
convolutional neural network.Despite each data sample being of short duration, all
samples are sequentially fed into the model over multiple iterations during the training
process. The model architecture utilizes a CNN to extract multi-level information
through convolutional operations. As the network depth increases and the SE attention
mechanism is introduced, the model can incrementally extract deep embeddings from
the original data samples. These embeddings capture intricate relationships between
the samples. Consequently, the proposed model can effectively manage information
across various window lengths and scales, ensuring thorough extraction and analysis.

5.5.4 Validation of the Effectiveness of Transfer Learning

In the previous subsection, we demonstrated through experimental validation that
incorporating the SE-Block self-attention mechanism improves the accuracy of dig-
ital audio source recognition by convolutional networks. Building upon this finding,
we now investigate the effectiveness of transfer learning using a convolutional neural
network based on the SE-Block self-attention mechanism. Transfer learning encom-
passes two main approaches in practical applications: feature-based representation
learning and optimization based on initial network performance. In this subsection,
we explore both transfer methods through experiments.
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Table 9 Comparison of experimental results for two transfer learning methods

Evaluation Metrics Non-transferable Partial Global

Accuracy 87.1% ± 1.0% 49.7% ± 1.5% 86.8% ± 1.0%

Recall 87.1% ± 1.0% 49.7% ± 1.5% 86.8% ± 1.0%

Precision 87.7% ± 1.0% 53.5% ± 1.5% 87.1% ± 1.0%

F1-Score 87.0% ± 1.0% 48.5% ± 1.5% 86.6% ± 1.1%

(a) Non-Transfer (b) Partial Transfer

(c) Global Transfer
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Fig. 12 Confusion matrix diagram for experimental results with three transfer levels

To begin the experimental investigation of transfer learning, we first train a base
network model. The dataset selection process is described in Sect. 5.1. For consistency
with the shape of the transferred network input, we extract and label the MFCC fea-
tures from 20 devices in the CCNU Mobile Dataset for base network training. The
experimental results obtained from the two transfer methods are presented in Table9.
The dataset division in this chapter follows the same approach as the experiments in
the previous chapter, using a 1:1 ratio to separate the validation set for supervised
training.

The experimental results in Table9 and the confusion matrix for the three transfer
levels shown in Fig. 12 reveal that using the base network as initial values yields
significantly better results compared to fixing the parameters of the first few layers
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for representation learning. This suggests that transfer learning has the capability of
feature learning in the field of digital audio source recognition research. Moreover, it
demonstrates that initializing the original model outperforms using the initial layers
of the network for feature extraction, indicating that fixing the parameters in the
early layers has a greater impact on recognition performance. However, the global
optimization process of the network is more time-consuming.

From a theoretical perspective, transfer learning allows for a wider exploration of
network parameter values in digital audio source recognition, thereby enhancing the
network’s generalization ability. Subsequently, adaptive learning optimization based
on specific data can yield more accurate feature representation methods and precise
recognition results. Surprisingly, our experimental results show that transfer learning
slightly underperforms compared to non-transfer learning. This suggests that achieving
higher recognition results through transfer learning requires a highly generalizable and
pervasive base network with strong feature representation capabilities across different
device classes in the field of digital audio source recognition. Additionally, the dataset
used to train the base network should possess high generalizability and include various
sources of variation.

5.5.5 Validation of the Effectiveness of Few-Shot Learning

In the previous subsection, we observed the positive effects of transfer learning on
digital audio source recognition research through experiments comparing different
transfer levels. In this section, we delve into the few-shot learning case, which is one
of the practical problems that transfer learning can address.

To accurately represent the experimental data in the few-shot learning scenario,
we made the following changes to the dataset: (1) We expanded the CCNU Mobile
Dataset used for the base network from 20 devices to include all 45 devices. (2)
The Uncontrolled-Conditions Dataset used for the transferable target network was
expanded from20 to 141 devices. (3)We reduced theUncontrolled-ConditionsDataset
used in the transferable target network from 400 to 40 speech clips per device and
divided the training and test sets according to a 3:1 ratio. The validation set in the
training data is still divided using a 1:1 ratio. This setup is suitable for cases where
there are too few samples available for the specified data, but there is another dataset
with a larger amount of information that can be used for transfer training.

Regarding the network architecture, we trained the base network with a large learn-
ing rate and saved it. The transfer target network was fine-tuned by reducing the
learning rate and making the following architecture changes: (1) We removed the
original softmax layer. (2) Two new fully connected layers and a softmax layer were
added to accommodate the 141 devices case. (3) For the unchanged covariates, we used
the values from the trained base network as initial values for training. The experimental
results are presented in Table10.

However, the purpose of this experiment is to investigate the utility of transfer learn-
ing in this case, and further exploration is required to enhance the performance. By
examining the experimental data, we observed that the recognition accuracy improves
when a base network with ample information is used as the baseline for transfer. Addi-
tionally, while the recall rate improves, the accuracy rate decreases. Combining this
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Table 10 Comparison of experimental results between the original network and transfer to target network
using the base network

Evaluation Metrics Original network Add two new FC and Softmax

Accuracy 22.0% ± 1.3% 25.7% ± 1.4%

Recall 22.0% ± 1.3% 25.7% ± 1.4%

Precision 26.5% ± 1.4% 21.5% ± 1.3%

F1-Score 17.9% ± 1.2% 19.2% ± 1.2%

Training time (s) 186 278

Table 11 Experimental results
for further refinement of the
target network

Evaluation metrics Train the original two FCs and softmax

Accuracy 29.2% ± 1.4%

Recall 29.3% ± 1.4%

Precision 30.5% ± 1.4%

F1-Score 23.3% ± 1.3%

Training time (s) 189

observation with the evaluation metrics introduced in Sect. 5.2.2, we can infer that
the transfer network performs better in terms of comprehensive coverage, despite the
possibility of misclassification. In other words, when the number of devices increases
(from 20 to 141) and the number of sample entries decreases (from 400 to 40), trans-
fer and fine-tuning make the network more robust across all categories. Furthermore,
the improved F1 score indicates better performance under the combined metric eval-
uation, which suggests that the decrease in accuracy, i.e., misclassification, is likely
due to factors other than the transfer process. We will discuss this further in the next
experimental group.

Analyzing the training time, we observed a considerable increase. Upon examining
the reasons for this increase, we found that the original network’s last three layers con-
sisted of two Fully Connected (FC) networks and one softmax layer for classification.
In the updated network, we added four FC layers for training based on the previous
experiments, resulting in an excessive number of hyperparameters that affected the
experimental results. To address this issue, we further refined the network by excluding
the initial values for the last three layers of the original network (2 FC + 1 softmax),
treating them as entirely new layers to be trained. The remaining layers still retained
their initial values. The experimental results for the further refinement of the target
network are presented in Table11.

The experimental results demonstrate that the refined network further improves the
model’s performance. Additionally, the decrease in accuracy observed in the previous
experimental group is eliminated, confirming that the accuracy decline resulted from
the excessive number of hyperparameters rather than the transfer process itself.

In conclusion, the experiments conducted in the few-shot learning case indicate
that transfer learning can be beneficial, particularly when using a base network with
abundant information as the source for transfer. Although the accuracy may decrease
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slightly, the overall performance in terms of comprehensive coverage and combined
metric evaluation is enhanced. Moreover, refining the network by carefully managing
the hyperparameters leads to further performance improvements without compromis-
ing accuracy. These findings shed light on the effective application of transfer learning
in scenarios where limited data is available.

6 Conclusions

This study addressed key challenges in representationmodeling of digital audio source
recognition, specifically targeting incremental representation and the limitations of
representation with few training samples. Our approach involved the application of
transfer learning strategies within residual network frameworks and the incorpora-
tion of Squeeze-and-Excitation Blocks to bolster the robustness of the representation
model. Our experimental findings indicate that the benefits of the self-attention
mechanism vary depending on the specific network architecture employed. While
self-attention can enhance model robustness, its effectiveness is not universally guar-
anteed and is highly dependent on the network’s configuration. This highlights the
nuanced impact of self-attention mechanisms within different architectural contexts.
Moreover, our results confirm the viability of using transfer learning to train repre-
sentation models effectively with limited data. By pre-training on similar, large-scale
datasets, the model can be fine-tuned with smaller data sets, albeit requiring additional
time for global network optimization. This approach shows promise in refining data
with limited initial training samples. Despite the progress made, our study identifies
several areas requiring further exploration. The experimental validations, while exten-
sive, did not encompass a sufficient variety of datasets, particularly large batch datasets,
which could further elucidate the dynamics of transfer learning in digital audio source
recognition. Future research will aim to enhance the generalization capabilities of
these models and improve recognition accuracy, particularly through fine-tuning in
few-shot learning scenarios. In summary, our research advances the understanding of
transfer learning’s potential in digital audio source recognition and underscores the
importance of tailored approaches in representation modeling for challenging scenar-
ios. Continued exploration in this field is essential to fully leverage transfer learning
techniques in audio processing, aiming to achieve broader applicability and more
precise outcomes.
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