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Abstract
In this research paper, we introduce an adaptive block-matching motion estimation
algorithm to improve the accuracy and efficiency of motion estimation (ME). First,
we present a block generation system that creates blocks of varying sizes based on
the detected motion location. Second, we incorporate predictive tools such as early
termination and variable window size to optimize our block-matching algorithm. Fur-
thermore, we propose two distinct search patterns to achieve maximum quality and
efficiency.Weevaluated theproposed algorithmson20videos and compared the results
with known algorithms, including the full search algorithm (FSA), which is a bench-
mark for ME accuracy. Our proposed quality-based algorithm shows an improvement
of 0.27 dB in peak signal-to-noise ratio (PSNR) on average for reconstructed frames
compared to FSA, along with a reduction of 71.66% in searched blocks. Similarly,
our proposed efficiency-based method results in a 0.07 dB increase in PSNR and a
97.93% reduction in searched blocks compared to FSA. These findings suggest that
our proposed method has the potential to improve the performance of ME in video
coding.
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1 Introduction

Video compression is a crucial process that aims to reduce the amount of data required
to store and transmit videos.When sending video data, it ismore efficient to send frame
differences or residuals rather than sending the entire frames. Therefore, reducing
temporal redundancy between frames is critical in optimizing video coding efficiency
[28, 33]. Exploiting temporal redundancies between frames can be accomplished by
leveraging the information that similar pictures often appear in close time intervals,
particularly in frames with limited motion. By estimating the motion between two
consecutive frames, it is possible to create a motion-compensated image by shifting
the second frame by an amount equivalent to the detected displacement. This process
enhances the resemblance between the frames, resulting in a reduction in the amount
of data required to encode them. With the increasing trend towards high-definition
(HD) videos, the need for an efficient ME technique has become critical in order to
reduce the excessive bandwidth required to transfer such videos. Two main methods
for ME are pixel-based and block-based. In pixel-based ME, motion vectors (MVs)
are computed for each pixel using brightness and smoothness constraints [7, 35]. This
method provides detailed pixel-level motion information, making it ideal for scenarios
where precise motion tracking is required, such as in object tracking. However, pixel-
based methods can be computationally intensive, especially for HD videos [5]. On the
other hand, the block-matching algorithm (BMA) is a popular ME technique known
for its ability to provide high-quality motion estimation while keeping computational
complexity low [8, 9]. The conventional approach for BMA involves several steps:
(1) dividing the current frame into non-overlapping blocks; (2) searching for the most
similar block in the reference frame for each block within a defined search window;
and (3) calculating the MV that points from the corresponding block to the best match
in the reference frame (as illustrated in Fig. 1). The sum of absolute differences (SAD)

Fig. 1 Block-matching algorithm (BMA). In BMA, the final goal is to report a motion vector (MV) showing
the block displacement in two consecutive frames
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is a commonly used metric for finding the best match between blocks in ME due to
its simplicity and efficiency in computation. The SAD is calculated by summing the
absolute differences between corresponding pixels in the block in the current frame
and its displaced counterpart in the reference frame. Specifically, for a symmetrical
block with a size of N * N pixels in the (i, j) coordinates of the current frame, denoted
by C(i, j), and its corresponding block in the reference frame with a displacement of
(vx ,vy), indicated by R(i + vx , j + vy), the SAD is defined as:

SAD =
N∑

i=1

N∑

j=1

∣∣C(i, j) − R(i + vx , j + vy)
∣∣ (1)

Other commonly used block distortion measures in block-matching motion estima-
tion includemean absolute difference (MAD) andmean square error (MSE),which aim
to quantify the average and the squared difference between the pixels in the blocks
under analysis. However, these metrics require additional computational resources
compared to SAD and may be more challenging to implement in hardware due to
their more complex calculations.

FSA is an exhaustive block search method that examines all the blocks in the
search window, providing the most accurate results. However, it also incurs a high
computational burden. To overcome this limitation, various techniques have been
proposed to accelerate the search and reach the best block sooner while maintaining
acceptable levels ofMEquality. These techniques fall into several categories, including
fixed-pattern, adaptive, and hierarchical search algorithms, which will be described in
the following section.

In this paper, we present an adaptive method for selecting block sizes in ME. First,
we identify stationary blocks in the video frame to reduce computational complexity,
group moving pixels into variable-sized blocks with three priorities for selecting the
shape of blocks based on the identified motion locations, and investigate the rela-
tionship between motion direction and block structure. Second, we utilize predictive
tools such as early stopping and varying window sizes to create a dynamic block-
matching algorithm. Finally, we introduce two scanning strategies for blocks in the
search window to form our final proposed algorithm.

The remainder of this paper is structured as follows. In Sect. 2, we provide an
overview of related works and clarify our motivation. In Sect. 3, we describe our
proposed algorithm in detail. In Sect. 4, we present and discuss the results of our
approach, and in Sect. 5, we draw conclusions based on our findings.

2 RelatedWorks andMotivation

2.1 Review

This section provides a review of algorithms that researchers use to accelerate the
speed of ME. Based on the assumption of unimodal surface error [21], researchers
have developed a series of fixed patterns, such as diamond, hexagon, square, cross,
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or a combination of these shapes, to limit the number of search points and reduce
computation in ME [10, 17, 22, 30, 49, 51, 52]. The idea behind these methods is that
by following a fixed pattern towards the best block in the search window, the error
decreases continuously. Thus, a directional search towards the block with the lowest
cost function will minimize the number of search points [12]. However, because the
error surface hasmany localminimums, especially in complex and large patterns, these
methods can get stuck in them and fail to track motion accurately [22, 50]. Another
approach is multi-resolution search algorithms, which involve the creation of an image
pyramid with varying sizes [25, 36, 45].ME is performed first on the lowest-resolution
image, and the resultingMVs are then rescaled and used to estimate motion on higher-
resolution images.This approach canhelp to accelerate convergence.However, starting
from low-resolution images means that any mistakes made will carry over to higher-
resolution ones, leading to lower performance. Also, resizing the motion vectors when
moving between resolutions may reduce the level of detail in motion and decrease the
accuracy ofME. Some algorithms use a partial distortion search (PDS) to speed up the
FSA [15, 43, 47]. PDS gradually calculates the distortion measure, such as SAD, pixel
by pixel and stops the search when a partial SAD exceeds the current minimum SAD
found during the search. Various modifications to PDS have been proposed to reduce
the number of pixels needed to reach the minimum SAD sooner. For instance, sorting
the absolute pixel differences in descending order is suggested since the difference
between two blocks mainly depends on a small number of pixels with higher matching
errors [6]. Additionally, selecting the first block to examine either at the center of the
search window or based on a predicted MV can help find a better candidate block with
the minimum SAD [15]. To address non-linear motion like zooming and rotation,
some algorithms generate multiple transformed frames based on affine parameters
and utilize them for ME [41]. However, a drawback of this approach is the high
memory requirement for storing these transformed frames. Different approaches use
interpolated versions of the frame instead of storing transformed frames with affine
parameters to overcome the need for extensive memory storage [42]. Other methods
focus on scaling candidate blocks rather than the entire frame. For example, in [14],
authors introduce a zoom vector to adjust the block size and interpolate the zoomed
block to match the size of the current block, enabling matching based on intensity.
These algorithms face challenges due to the increased complexity of generating image
versions and the increased number of search points required to identify the best match
block. These factors contribute to the development of resource-intensive algorithms
that may not be suitable for practical applications, given their high computational
demands and memory requirements.

Othermethodsmakeuse of the correlationbetween adjacent blocks in the spatial and
corresponding blocks in the temporal domain. The concept is based on the observation
that blocks near each other in time and space often share similar motion characteristics
[13, 22]. Because of this, anMV for a block can be predicted before the search process
even begins [12], and it can be used to adaptively modify the search parameters. For
example, when we observe many blocks with large reported MVs, we can assume
that this pattern will repeat for unexamined blocks. Therefore, we can use a bigger
search window size to increase the scope of the search [16, 20, 32], modify search
patterns to track such motion [1, 2, 18, 19, 24], and start searching from a more distant
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place than the origin of the search [29]. Additionally, correlated blocks can provide
further insights, such as the cost function range. This can help to identify stationary
blocks without searching for the remaining blocks [3, 4], a technique referred to
as zero-motion prejudgment (ZMP). It also allows for the early selection of blocks
with acceptable distortion, thereby leading to the early termination of the search [11].
Notably, all the studiesmentioned herein have utilized fixed-sized blocks duringBMA.

The utilization of fixed-size blocks in video compression has several drawbacks.
When using large fixed block sizes, multiple moving objects can be located within
a single block, leading to increased block residual and reduced ME accuracy due to
the reporting of only one MV for the candidate block. Conversely, selecting a smaller
block size leads to higher-quality ME due to an increased number of MVs that better
capture motion information in a particular frame. However, this approach results in
more MVs requiring additional bandwidth, which can degrade the compression ratio
in both scenarios. Variable-size block-matching (VSBM) can be utilized to overcome
these issues by selecting different block sizes. For instance, in High Efficiency Video
Coding (HEVC), the size of a luma coding tree block (CTB) can be 64 * 64, 32 *
32, or 16 * 16 samples, and each CTB can be further partitioned into smaller blocks
[34]. In Advanced Video Coding (AVC), the macroblock, the analogous structure to
CTB, has a maximum size of 16 * 16 luma samples [23, 33]. This approach allows for
enhanced coding efficiency by selecting larger blocks for stationary parts of frames
and smaller blocks for areas with intricate motion, such as edges, thereby improving
overall quality while minimizing motion information. The decision for selecting block
sizes can vary, and in video coding standards, encoders employ a technique known
as rate-distortion optimization to determine the optimal settings. This technique aims
to minimize distortion while simultaneously satisfying a constraint on the number of
bits required to encode the target frame by minimizing the cost function represented
by Eq. (2). The Lagrange multiplier λ determines the trade-off between rate and
distortion [34, 44]. However, solving this equation for every possible decision mode
is computationally demanding [46].

J = D + λR (2)

Two popular approaches to block size selection are bottom-up and top-downVSBM
algorithms [27]. The primary concept behind these techniques is to merge or split
blocks based on their dissimilarities, resulting in variable block sizes [48]. For exam-
ple, the top-down VSBM method conducts matching on large blocks and calculates
the SAD between each block and its corresponding block in the reference frame.
If the resulting cost exceeds a predetermined threshold, it subdivides the block into
smaller sub-blocks and repeats the ME process for the generated sub-blocks. The
remaining blocks that cannot improve theME accuracy are subsequently merged [38].
Researchers in [30] introduce a recent implementation of this method. Initially, they
resize each frame into a 256 * 256-pixel format. Subsequently, they divide the frame
into 64 * 64 blocks and calculate the SAD between each block and its correspond-
ing block in the reference frame. If the resulting cost exceeds a predefined threshold,
they partition the block into smaller sub-blocks and perform the ME again for the
generated sub-blocks. These methods require an adaptive threshold determined by the
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frame attributes because each region of every frame can display unique motion char-
acteristics. This leads to an increase in computational complexity [40]. Additionally,
resizing MVs to match the original frame resolution can reduce motion precision.

Another approach to selecting block sizes involves considering the texture of the
frame. For example, [31] employs the Sobel operator to compute the image derivative
in both horizontal and vertical directions and subsequently selects block sizes based
on the edge value and direction. However, the high computational cost associated
with calculating the edges can limit the practicality of this method. Furthermore,
this algorithm does not account for motion in the temporal domain. As a result, the
approach may report a smooth texture for a given region, but in the subsequent frame,
a rupture may occur in that uniform area due to pixel movement, leading to a decrease
in the quality of ME.

Another notable effort mentioned in [37] creates a statistical model for the BMA
process, aiming to explain the relationship between various parameters, including
the probability distribution function (PDF) of the MVs. Initially, it applies FSA and
extracts MVs from several video test sequences. The study evaluates three distribution
functions, Gaussian, Laplacian, and Cauchy, for modeling MVs and suggests that the
Cauchy distribution, with some modifications, better models the PDF of the MVS.
Secondly, using an unimodal error surface assumption, it links the number of search
points and search patterns via a weighting function (WF) that sets the minimum search
points needed to find the best match based on using a specific search pattern. It finds
that broader search scopes result in fewer search points for higher motion sequences,
while narrower patterns need fewer points for limited motion sequences. Finally, it
models the average number of search points for a particular search algorithm as a
linear function of the MV distribution and the WF of a specific search pattern.

When evaluating the quality of the proposed methods, it is common to calculate
the mean square error (MSE) between the current and reconstructed frames, denoted
as f and f̂, respectively, as shown in Eq. (3), where M and N are the dimensions of
the image, and f(i,j) and f̂(i,j) represent pixel values at position (i,j). Subsequently,
PSNR is used, as shown in Eq. (4), where fmax represents the maximum possible pixel
value, typically 255 for an 8-bit system. Alternatively, we can calculate MAD to find
the dissimilarity between our reconstructed frame and the original one, as indicated in
Eq. (5). Other commonmeasure for evaluating the accuracy ofmotion estimation is the
Structural Similarity Index (SSIM). It is based on the structural similarity between the
original and reconstructed frames, taking into account the differences in luminance,
contrast, and structural information. The SSIM index ranges from − 1 to 1, where
1 indicates perfect similarity between the two frames, 0 indicates no similarity, and
negative values indicate dissimilarity. The formula for SSIM is given by Eq. (6), where
f and f̂ are original and reconstructed frames,μ f and μ f̂ are the mean pixel values of f

and f̂, σ f
2 and σ f̂

2 are the variance of pixels, σ f f̂ is the covariance of pixels between f

and f̂, andC1 andC2 are constants added to the denominator to avoid division by zero.
To assess the efficiency of an algorithm, we quantified the number of blocks searched
during BMA as a measure of algorithmic performance. A suitable algorithm should
establish a trade-off between the quality and speed of ME.
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MSE = 1

M × N

M∑

i=1

N∑

j=1

( f (i, j) − f̂ (i, j))
2

(3)

PSN R = 10log10(
( fmax )

2

MSE
)dB (4)

MAD = 1

M × N

M∑

i=1

N∑

j=1

∣∣ f (i, j) − f̂ (i, j)
∣∣ (5)

SSI M( f , f̂ ) = (2μ f μ f̂ + C1)(2σ f f̂ + C2)

(μ f
2 + μ f̂

2 + C1)(σ f
2 + σ f̂

2 + C2)
(6)

2.2 Motivation

As discussed earlier, although recent BMAs offer good performance in ME, their
use of fixed-sized blocks ignores a powerful tool for further algorithm enhancement.
Moreover, these methods fall behind the FSA due to their incorrect assumption of
unimodal surface error and limited search points. On the other hand, FSA’s high com-
putational cost limits its practical application. Therefore, our primary objective in this
study was to reduce ME’s computational complexity while maintaining or improv-
ing its quality. To achieve this goal, first, we proposed a system that automatically
detects moving pixels and groups them into blocks of varying forms and sizes. In this
approach, we only perform ME on moving blocks and skip stationary regions. This
block generation mechanism can be integrated into any BMA, making it a flexible tool
for video processing applications. Second, we developed a predictive search algorithm
that uses predictive tools with optimized implementation. This results in a reduction
in computational requirements while maintaining the quality of ME.

3 Proposed Algorithm

In this section, we provide a comprehensive explanation of our proposed algorithm.
To showcase the effectiveness of our approach, we conducted a comparative analysis
with various existingmethods, namely FSA, diamond search (DS) [51], new three-step
search (NTSS) [17], four-step search (FSS) [26], adaptive rood pattern search (ARPS)
[22], fast predictive search (FPS) [18], and an adaptive pattern selection (APS) [24]
algorithm. The FPS method classifies motion types and incorporates different search
patterns, andAPS utilizes amodified version of theDS pattern and leverages predictive
tools such as ZMP and adaptive pattern selection. It is important to note that APS and
FPS employ fixed-size blocks for their computations.
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Fig. 2 Binary mask, without shifting the frame (a), with shifting the frame (b). We see a considerable
reduction in moving pixels and, hence decreasing computational cost in the second setup

3.1 FindingMotion Parts

A widely used method to distinguish between moving and stationary pixels in video
frames involves generating a difference image (DI) by subtracting the reference frame
from the current frame, followed by applying a threshold to produce a binary mask
(BM). In this approach, stationary areas correspond to black pixels (0), while moving
parts correspond to white pixels (1). To improve the accuracy of this technique, we
applied global motion compensation (GMC) to account for camera movements. In
cases where many blocks within a frame have the same MV, we can assume that this
motion corresponds to global motion. By applying this shift before subtraction, the
resulting BMwill have fewer white pixels and areas with different movements will be
highlighted, as shown in Fig. 2. This approach is effective in identifying static blocks,
reducing computational overhead, and accurately capturing areas of movement.

3.2 Extracting Static andMoving Blocks

In the first step of our proposedmethod, we divide our block-matching (BM) algorithm
into large blocks with dimensions of 64 * 64 pixels. We calculate the sum of pixel
values in each block and compare it to a predefined threshold to determine whether
the block is static or not. Identifying stationary blocks allows us to replace them
with corresponding blocks from the reference frame, thereby reducing computational
requirements, especially for videos with slow motion. The larger block sizes used in
this step facilitate better utilization of parallel processing and efficient handling of
higher-resolution frames. In the second step, we further partition the moving blocks
into smaller blocks of size 8 * 8 pixels, and similar to the previous step, we identify
the static blocks (Fig. 3). We also can use an integral image to calculate the sum of
rectangular regions in an image, which can enhance the computational efficiency of
our method [39].
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Fig. 3 Two examples of the proposed method for extracting static and moving blocks. Binary masks (a1,
a2), placing corresponding large static blocks from the reference frame into the reconstructed frame (b1,
b2), all the static blocks have been replaced with corresponding blocks in the reference frame (c1, c2)

3.3 MergingMoving blocks

After identifying all 8 * 8 moving blocks, we propose a method for merging them into
larger blocks with varying sizes. Figure 4 illustrates the specific structures we have
selected for the joined blocks.We choose these arrangements based on their potential to
capture different motion directions; thus, the proposed method can potentially provide
a more comprehensive representation of motion patterns in video frames, leading to
improved accuracy of ME. The proposed method offers three options for prioritizing
the shape of merged blocks: 1-square, 2-vertical, and 3-horizontal. For instance, if
we select the square shape priority, we extract all possible 16 * 16 blocks first. For
the remaining blocks, we choose the block shape with the largest possible size in any
orientation. Choosing block shapes, from the smallest to largest sizes, depends on
several factors. Two significant factors are the resolution of the original frames and
the trade-off between accuracy and efficiency of ME. As the frame size increases, we
can also increase the block sizes to improve algorithm efficiency, but this may result
in some loss of accuracy because we’re sampling less motion in the image. We choose
the described setup specifically for frames with a resolution of 352 * 288 pixels, and
we’ll adjust it accordingly for higher-resolution images. Furthermore, In the results
section, we will analyze the benefits and drawbacks of each structure and present a
solution for selecting the most appropriate setup for ME.
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Fig. 4 Proposed structures and sizes in pixels for blocks, smallest block (a), square shape block (b), vertical
blocks (c1, c2, c3), and horizontal blocks (d1, d2, d3). Three preferences for selecting the shape of blocks:
square (e), vertical (f), and horizontal (g)

3.4 Using Predictive Tools

In the previous section,we constructed abasemodel for generatingblockswith variable
shapes and sizes that can be employed in various block-matching algorithms (BMAs).
In the next step, we will utilize predictive tools to develop an efficient algorithm for
ME.

3.4.1 Variable Window Size

Conventional BMAs typically use a fixed window size. However, we can adapt the
window size based on the type of motion in the video sequence to optimize the per-
formance of the algorithm. We considered two essential factors in determining the
appropriate window size. Firstly, we used the most frequently occurring MV in the
previously coded frame to approximate the direction and type of motion in the subse-
quent frame. Secondly, we compared the PSNR of the previously reconstructed frame
to the mean PSNR of all reconstructed frames up to that point. This comparison helps
estimate the degree of change in motion and determines the need for an increase in
window size accordingly. An illustration of the proposed algorithm’s operation is pre-
sented in Fig. 5 and compared to a BMA with a fixed window size. In this test series,
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Fig. 5 Adaptive window size selection based on motion direction, selected window sizes (a), corresponding
sample frames from five regions of motion, red rectangle shows the enlarged search window (b)

we examine five segments with unique motion patterns and display five frames from
each part. We enlarge it to improve visibility. Regions one and five have significant
horizontalmotion, leading us to focus on this direction and enlarge thewindow accord-
ingly (y_window). Regions two and four exhibit no clear dominant motion direction;
therefore, we utilize a symmetrical window. Lastly, region 3 experiences a sudden
shift to vertical motion, so we increase the window size in that direction (x_window)
to enhance motion tracking.

3.4.2 Search Termination and Starting Point

Prior to initiating the search process for a block (B) in the current frame (CF)within the
reference frame (RF), we evaluate three potential candidate blocks that may provide
a good match for B. These candidate blocks include: (1) the corresponding block to
B in the RF, (2) the block indicated by the MV reported for the identical block to B in
the RF, and (3) the block corresponding to the global motion (GM) vector as shown
Fig. 6. During this evaluation process, we compare the calculated cost function with
the threshold defined in Eq. (7), where B_SADs represent the reported cost functions
for the best matching blocks in the previously coded frame. If the cost is lower than
the threshold, we terminate the search. However, if the search continues, we reposition
the center of the search window to the block with the lowest cost function among the
three mentioned blocks to expedite reaching the minima.

T = Max(Min(B_SADs) + 256, 256) (7)
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Fig. 6 Examining three possible candidate blocks before starting the search

3.4.3 Threshold for BM

The generation of a BM through the subtraction of two consecutive frames and sub-
sequent thresholding is a crucial step in our block generation algorithm. We must
select a suitable threshold value based on the characteristics of the video sequences
under analysis to ensure optimal performance. To choose the optimal configuration
for generalization, we analyze different test sequences with varying levels of motion,
ranging from low to high. Through this examination, we identify a recurring pattern in
the accuracy of ME for videos with similar motion characteristics. Upon examination
of the reconstructed frame PSNR across a range of thresholds, we have observed that,
in instances of slow motion, a high threshold value leads to the exclusion of pertinent
information, thereby resulting in quality degradation. Conversely, for more complex
frames, selecting a low threshold value captures a greater degree of pixel intensity vari-
ation, including noise, and consequently reduces PSNR, as demonstrated in Fig. 7. To
determine the most appropriate threshold value for each video, we analyze our dataset
and categorize videos into five groups based on the sum of pixels in DIs, ranging from
low to high variation. We then select an appropriate threshold value for each group.

Fig. 7 PSNR versus threshold value, slow motion (a), fast motion (b)
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Fig. 8 Using a square pattern for the initial phase in our proposed quality-based BMA (a), scanning the rest
of the blocks after the initial phase (b)

3.4.4 Scanning Patterns

In this section, we introduce two scanning strategies for developing our quality-based
and efficient-based algorithms. Both methods involve examining all blocks within the
respective search pattern until we find a block that satisfies the condition expressed
in Eq. (7), upon which we terminate the search. The quality-based strategy employs a
two-stage search. In the initial stage, we start from a small square pattern and examine
nine blocks to determine the three blocks with the lowest cost function. We then move
the center of the square pattern to the best block from the previous step and repeat the
search. If the best match is in the center of the current square pattern or located on
the border of the search window with no additional blocks to search, we consider the
second or third-best block. If no new block is available after the first stage of searching
and early termination hasn’t stopped the search, we continue scanning the remaining
blocks, as shown in Fig. 8.

In the efficiency-based method, we employ a small diamond search pattern (SDSP)
and consider only the first two blockswith the highest similarity to the candidate block.
Once the initial phase of searching is complete, we terminate the operation and report
the best block found in that stage, as illustrated in Fig. 9.

4 Results and Discussion

In this section, we evaluate the performance of our algorithm by comparing it to other
mentioned algorithms. The BMAs were configured with a window size of ± 7 and a
block size of 16 * 16 with the previous frame as the reference frame. We conducted
evaluations based on PSNR and the total number of searched blocks per frame across
16 CIF videos with a resolution of 352 * 288 pixels. To demonstrate the scalability
of our algorithm, we further tested it on four high-definition (HD) videos with a
resolution of 1280 * 720 pixels, with some necessary adjustments, such as selecting
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Fig. 9 The scanning pattern flowchart in our efficiency-based BMA (a), the SDSP (b)

32 * 32 pixels as the dimensions of the square-shaped block and 16× 16 pixels as the
smallest block size. To enhance the robustness of our comparisons, we have included
MAD and SSIM metrics to further evaluate the performance of our algorithm. We
performed simulations using Python version 3.8.6 on the Windows 10 OS platform,
utilizing an AMD Ryzen 5 1600 at 3.20 GHz CPU with 8 GB RAM.

4.1 Proposed Block Generation Algorithm

To evaluate the impact of different block structures onME, we conducted experiments
by comparing the results of ME for three distinct block shape priorities, as shown in
Table 1. For comparison, we used both the traditional block generation method and
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our proposed generating block system and examined all blocks similar to FSAwithout
any predictive tools.

Based on the results shown in Table 1, our proposed algorithm demonstrates a
significant reduction in computation cost for slow-movement videos (1, 4, 10, 11, 13,
15) due to the efficient selection of moving regions and performing ME only on those
regions. On average, we observe a reduction of 42.54%, 44.90%, and 44.72% in the
number of searched blocks compared to the traditional model for square, vertical, and
horizontal priorities. These results demonstrate the ability of our algorithm to decrease
the computation load. Furthermore, for square and vertical block priorities, we observe
a slight increase in PSNR by 0.09 dB and 0.055 dB, respectively, while we observe a
reduction of 0.26 dB for the horizontal preference.

To investigate the effect of block size on the accuracy of ME, we analyzed frames
with horizontal and vertical movement, respectively, as depicted in Fig. 10. For the
horizontal motion, selecting vertical blocks can sample more MVs along the flat path,
thus improving the quality of ME. Conversely, choosing horizontal blocks captures
fewer MVs along the dominant motion direction, resulting in a decrease in the quality
of the reconstructed frame. Our investigation of the MVs in our dataset revealed that
the principalmotion direction in video frames is left and right. Therefore, the reduction
in the accuracy of ME observed in the horizontal setup can be associated with this
reason. For images with vertical movement, selecting horizontal blocks yields a better
realization of motion in that direction. In conclusion, we have selected the square
block pattern for our algorithm due to its ability to perform well in both horizontal
and vertical directions in terms of accuracy and efficiency.

4.2 Proposed Algorithms Results

In this section, we present a comparative analysis between our proposed quality-based
and efficiency-based algorithms and various block matching algorithms, including
non-adaptive methods such as FSA, DS, NTSS, and FSS, as well as adaptive methods
likeARPS, FPS, andAPS.According to Table 2, we observe a noticeable improvement
in video quality for most of the test sequences for our quality-based algorithm. It con-
sistently achieves the highest PSNR compared to the other algorithms. For instance,
it demonstrates an average improvement of 0.274 dB, 0.6 dB, and 0.59 dB in PSNR
compared to FSA, DS, and APS, respectively. Furthermore, our efficiency-based algo-
rithm also exhibits improvements in PSNR when compared to FSA, DS, and APS,
with an average improvement of 0.07 dB, 0.39 dB, and 0.38 dB, respectively. We also
compare the MAD and SSIM between reconstructed and original frames using our
proposed methods against four high-accuracy algorithms: FSA, DS, ARPS, and APS.
Our results demonstrate consistent reductions inMAD across all comparisons. Specif-
ically, we observed reductions of 0.15 and 0.03 in MAD compared to FSA, reductions
of 0.47 and 0.35 compared to DS, decreases of 0.32 and 0.19 compared to ARPS, and
reductions of 0.4 and 0.28 compared to APS. Similarly, the SSIM improvements were
notable, with increases ranging from 0.5 to 2.2% compared to the aforementioned
algorithms. These findings suggest that our proposed algorithms could be potential
candidates for video coding applications that require high accuracy.
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Fig. 10 Choosing block structures based on motion direction. Selecting vertical blocks (a3) for horizontal
motion (a1, a2) and horizontal blocks (b3) for vertical motion (b1, b2), yellow arrows indicate motion
direction. PSNR for reconstructed frames (c), investigating the quality of ME with consideration to both
the motion direction and block shapes

To compare the bitrate of our proposed blockmatchingmotion estimation algorithm
with the FSA, we entropy encoded key components involved in video compression:
frame residuals, MVs, and keyframes. Our analysis revealed that the proposed algo-
rithm results in a mean bitrate increase of 0.7% compared to FSA. This marginal
increase is attributed to the higher number of MVs generated by our algorithm, which
are crucial for refining the quality ofME. Despite the slight rise in bitrate, this increase
is justifiedby the significant enhancement inMEquality, leading to better visual fidelity
and more accurate frame predictions. Thus, the improved quality ME offered by our
algorithm makes the small increase in bitrate a worthwhile trade-off.
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To evaluate the efficiency of our algorithm, we measured the number of searched
blocks per frame.According toTable 3, comparingour quality-based algorithm toFSA,
we observed a substantial reduction in the examined blocks, ranging from 41.36 to
91.6%,with an average of 71.66%.This indicates that ourmethod achieves comparable
video quality to FSA while significantly reducing the computational cost. Moreover,
our efficiency-based algorithm demonstrated a significant reduction of 97.93% in the
number of searched blocks compared to FSA. Additionally, when compared to DS,
APS, and FPS algorithms, we observed reductions of 74.22%, 20.07%, and 21.74%,
respectively, in the searched blocks. These findings suggest that our proposed BMA
outperforms other algorithms in terms of both video quality and computation costs. It
achieves comparable quality to FSA while considerably reducing the computational
burden. The substantial reduction in searched blocks in our efficiency-based algorithm
highlights its efficiency and suitability for real-time processing applications.

By analyzing the implementation of algorithms such as FSA and fast FSA, we can
find that this improvement comes from various strategies absent in those approaches.
The increased accuracy comes from adjusting the search window based on the motion
type, starting the search from a location closer to the global minimum, and selecting
smaller block sizes for areas with complex motion to sample more MVs and achieve
better accuracy. Improved efficiency arises from disregarding static blocks before ini-
tiating the search process, compensating global motion within frames before starting
ME, starting the search from a position closer to the global minimum through pre-
dictedMVs to accelerate search termination, and choosing larger blocks in low-motion
areas to speed up ME by reducing the overall number of search points required. Sub-
sequently, we provide a numerical analysis of each predictive tool in the following
section.

4.3 Analyzing Predictive Tools

We conducted an analysis of the results obtained by applying each tool to our CIF test
sequences to determine the impact of each predictive tool on the performance of the
quality-based algorithm. As mentioned before, by selecting variable block sizes, we
notice an improvement in PSNR of nearly 0.1 dB and a reduction of 43% in the number
of blocks compared to FSA.We proceeded by integratingmultiple predictive tools and
evaluated the resulting performance against the previous state. For example, choosing
the window size based on the type and direction of predicted motion contributed to
a 0.13 dB improvement in PSNR, while eliminating redundant search points resulted
in a 13% reduction in the count of searched blocks. Combining early stopping with
the scanning pattern and starting search point led to a significant decrease of almost
10% in the examined blocks. Furthermore, by shifting the search window closer to the
minimum location, we achieved a nearly 0.3 dB increase in PSNR compared to the
previous state. We also considered the computational burden imposed by each of these
tools to determine their usefulness, and since they are independent of one another, we
can customize our algorithm (Fig. 11).
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Fig. 11 PSNR gain in comparison with FSA after each step in the CIF test sequences (a), Blocks reduction
percentage in comparison with FSA after each step in the CIF test sequences (b)

Fig. 12 Software implementation of the final algorithm

4.4 Software Implementation of the Final Algorithm

The final outcome of this project is the design and development of a Windows oper-
ating system software. We gather all the capabilities of the proposed algorithm in
this software, and it can be personalized according to specific needs. This software
encompasses features such as running experimental videos, displaying binary images,
constructing and displaying created blocks with the ability to prioritize block shapes,
executing the ME algorithm in terms of speed and quality, and ultimately generating
and storing the reconstructed video after ME (Fig. 12).

4.5 FutureWorks

At the beginning of this algorithm, we mentioned three priorities for selecting the
shape of our blocks. If we plot each constructed frame’s PSNR with respect to the
block shapes, we can see the performance of these shapes changes in every frame
(Fig. 13). Althoughwe can predict the best structure formovements in some directions,
we cannot find a general pattern of how different motions and block shapes affect the
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Fig. 13 How to find the best block structure to yield the best accuracy

resulting PSNR. One way we can solve this is to use deep learning; by using one of the
well-known pre-trained convolutional neural networks (CNN) for feature extraction
and building a classification on top of that model, we can construct a system that
accepts DI as its input, and it will predict the proper shape for our blocks as its output.
We look forward to tackling this problem in our future work.

5 Conclusion

Our goal in this paper was to introduce an adaptive block-matching motion estimation
that utilizes predictive tools to search more efficiently. Therefore, first, we created
variable-size blocks based on the motion. Second, we focused on designing the search
process.We developed a dynamicwindow size selection system based on the predicted
MVs for the next frame. We chose early stopping criteria and starting search points
to converge to the best match sooner. We used two search strategies with different
patterns to achieve the best accuracy and speed. Finally, we showed how each step
affects the overall performance of our system. Our experimental results demonstrate
that our proposed approach successfullymeets the objectives of this study. Specifically,
our approach achieves the precision of FSA while significantly improving the speed
of ME.
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