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Abstract
Model order reduction technique provides an effective way to reduce computational
complexity in large-scale circuit simulations. This paper proposes a new model order
reductionmethod for delay circuit systems based onHermite expansion technique. The
presented method consists of three steps i.e., first the delay elements are approximated
using the recursive relation of Hermite polynomials, then in the second step, the
reduced order is estimated for the delay circuit system using a delay truncation in the
Hermite domain and in the third step, a multi-order Arnoldi process is computed for
obtaining the projectionmatrix. In the following, the reduced order delay circuit model
is obtained by the projection matrix. Moment matching and passivity properties of the
reduced circuit system are also analyzed. Two circuit examples with delay components
are performed to verify the effectiveness of the proposed MOR approach.
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1 Introduction

The development of ElectronicDesignAutomation (EDA) techniques has had a signif-
icant impact on the design of integrated circuits (ICs) [10], enabling their progress and
advancement. However, modern IC simulations which become increasingly complex
bring significant challenges to EDA tools. As is known to all, mathematical models
of ICs need to consider the dynamical processes and interactions of circuit devices,
especially with the reduction in IC structure sizes and increase in packing density and
driving frequency. This requires refined mathematical models that account for sec-
ondary and parasitic effects [2]. The complexity of modern IC mathematical models
is enormous, with small portions of a chip alone requiring millions of linear, non-
linear, and time-delay differential equations for accurate modeling. Verification of
IC behavior through solving these large-scale model equations in the time or fre-
quency domain is crucial, but the high-dimensional mathematical problems involved
may not be solvable within a reasonable amount of time using available computa-
tional resources. Naturally, this surge in demand for IC simulation places a substantial
burden on computational science and engineering researchers.

Model order reduction (MOR) is a powerful technique that can significantly reduce
the computational cost of simulating complex circuits. It involves creating a simplified
model of the circuit that accurately captures its behavior while using fewer computa-
tional resources and the important properties of the original circuit must be preserved
in themodel reduction process. By this means, redundancies are resolved, less relevant
quantities are replaced by the most significant ones. Then, the high dimension math-
ematical problem’s complexity is reduced, keeping the main characteristics. Solving
lower dimensional problems one can get statements on the circuit’s behaviours more
quickly. Based on these theoretical results, Wil H. A. discussed the future needs of the
electronics industry with regard to model order reduction [39].

Early in 1990, model reduction method which based on explicit moment matching
was applied to circuit simulation in [30]. In [7], the technique based on coefficient
comparison is proposed to obtain reduced order system from a linear time invariant
SISO system. Since then, MOR methods for linear circuit systems were extensively
researched over the past several decades, mainly consist of moments matching and
balanced truncation MOR methods. However, explicit moment matching technique
suffers from numerical instability as elaborated in [16]. To eliminate this drawback,
implicit moment matching based MOR methods were presented, of which PVL [16]
and algorithm proposed in [19] were examples. Later, structure and passivity preser-
vation model reduction processes were developed. For example, PRIMA [28] and
SPRIM [18] methods could meet passivity preservation requirement for RLC cir-
cuits. Balanced truncation methods were also developed, of which PABTEC [32] and
PMTBR [29] were examples. These methods could preserve the stability property of
the original circuit systems and provided a global computable error bound. Besides,
Laguerre type algorithms [11, 25], general orthogonal polynomial based MOR [22]
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and other moment matching based MOR methods [20, 23, 24] were also presented.
The paper [9] discussed the reduction of large-scale circuit equations withmany termi-
nals and applied it to the design process of integrated circuit power supply networks.
This work emphasized the necessity of model order reduction for such systems within
the context of integrated circuit design and simulation.

It is essential to consider the delay phenomena caused by propagation delays in
high-speed interconnect circuits and this is particularly important when modeling
and designing interconnects in circuit packaging and printed circuit boards [1, 35].
In recent years, there have been significant efforts to accelerate the simulation of
delay circuit systems. In [10], the authors formulated a compact delayed-differential
macromodel through approximating each response partition with a low order sum of
exponentials. In [13], the delay macromodel was obtained by iterative weighted least
squares process. Both of the method proposed in [10, 13] were tabulated data driven.
That is to say, it is necessary to pre-calculate the response data of the circuit system
at certain points in the frequency domain or time domain. Projection based MOR
method can directly address the mathematical model of the circuit system without
pre-calculating the system response. Considering the special structure of the time-
delay mathematical model, model reduction algorithms for linear systems can not be
directly used. So, researchers proposed various approximation strategies to deal with
the delay elements. Such as Padé approximation [26], Taylor expansion [14] and
Laguerre expansion techniques [33]. However, Taylor expansion based MOR method
proposed in [14] may lose the delay structure of the original system and the physical
informations can not be preserved. In [33], the authors using the Laguerre expansion
technique to approximate the delay elements and then Krylov subspace technique
is used to formulated the reduced system. Although this method can preserve the
structure of the original system, the passivity property of the reduced system is not
considered. Lombardi, etc. [27] adapted Padé approximation technique to model
reduction of parameterized time-delay circuits while the stability of reduced circuit
system was not analyzed. In [17], the authors construct the projection matrices by
iterative interpolation method and the the interpolation points are selected by a new
greedy algorithm. This interpolation based MOR method achieved a excellent results
both in reduction accuracy and stability. Additionally, model reduction methods for
the delay system which based on balanced truncation [15] and Hermite expansion in
time domain [38] techniques are also researched.

Some novel model reduction approaches based on optimization techniques have
also been proposed. For example, in [6], an optimal reduced order H-infinity con-
troller, based on Hankel singular values (HSV), has been proposed using genetic
algorithm. Sikander and Prasad [34] propose a new method for order reduction of
higher-order linear time invariant systems based on stability equation and particle
swarm optimization algorithm, this MOR method preserves the stability property of
the original system. In [21], the authors combine the modified Big bang big crunch
optimization algorithm and Pade approximation technique to reduced the order of the
power systems. In [3], the authors propose a hybrid order reduction technique based on
time moment matching method and salp swarm optimization technique. Other model
reduction methods based on Cuckoo search [4] and Routh Criterion [8] are also pro-



5490 Circuits, Systems, and Signal Processing (2024) 43:5487–5506

posed. It is worth noting that [5] contributes a order reduction technique based on Salp
Swarm Optimization and the proposed method is also applied to time-delay systems.

Although the existing delay circuit model reduction methods provide a powerful
computational simplification tool, they leave some problems as follows:

(1) Are there any other high-precision approximation methods for handling delay
elements?

(2) Does the stability of the reduced-order system remain consistent with the original
system?

(3) Can the reduced order system maintain the structural properties of the original
system?

Motivated by these issues, this paper proposes a Hermite expansion based MOR
method for delay circuit systems in frequency domain. The primary contributions of
this article are outlined as follows. Firstly, we innovatively adapt the Hermite expan-
sion technique to approximate the delay elements. Secondly, we theoretically prove
that the passive property of the reduced order system is consistent with that of the
original system. Finally, the structure of the original circuit system is maintained and
the physical informations can also be preserved. The MOR process in this paper is
summarized as follows. The delay elements are approximated byHermite polynomials
after a reasonable transformation. Then, the relationship between the moments of the
original delay circuit is formulated. By applying multi-order Arnoldi orthogonaliza-
tion technique to the moments, the projection matrix V is formulated. Based on the
projection matrix V , the compact circuit model is obtained.

The paper is organized as follows. In Sect. 2, some basic backgrounds on Hermite
polynomials are reviewed. In Sect. 3, a practical transformation is found to approx-
imate the delay element using Hermite polynomials. Based on the new approximate
strategy, a newMORprocess is proposed for delay circuit systems and some important
properties of the reduced circuit system are also analyzed. Two numerical time-delay
circuit examples are computed in Sect. 4 to verify the effectiveness of the proposed
MOR method. Some conclusions are drawn in Sect. 5.

2 Preliminary

2.1 Hermite Polynomials

Hermite polynomials ensure that the interpolating polynomial function has the same
value as the original function at the interpolation node, as well as the same derivative
value at that point. Based on this property, the delay element can be approximated
effectively by fewer Hermite interpolation term. However, the generation function
should be modified to approximate the delay element and this will be illustrated in
Sect. 3. In this section, we briefly introduce the Hermite polynomials used in this
paper. Hermite polynomials hi (x) are defined by the following formulas explicitly
over (−∞,+∞)

hi (x) = (−1)i ex
2/2 di

dxi
e−x2/2, i = 0, 1, . . . .
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Alternatively, they can also be formulated by the recursion

hi+1(x) = xhi (x) − d

dx
hi (x)

and the first two Hermite polynomials are h0(x) = 1, h1(x) = x . Besides, Hermite
polynomials satisfy the orthogonal condition

〈hi (x), h j (x)〉 =
∫ +∞

−∞
hi (x)h j (x)ω(x)dx = 0 i �= j,

where ω(x) = e−x2/2 is the weight function. Further, an orthogonal basis functions
of the Hilbert space formed by Hermite polynomials satisfying

∫ +∞

−∞
| f (x)|2ω(x)dx < ∞,

where f (x) can be expanded as f (x) = ∑∞
i=0 fi hi (x) and the coefficients fi satisfy

fi = 〈hi (x), f (x)〉
〈hi (x), hi (x)〉 = 〈hi (x), f (x)〉/√2π i !.

The generation function of Hermite polynomials is given by

e−u2+2ux =
∞∑
n=0

hn(x)
un

n! . (1)

In this paper, the generate function of Hermite polynomials is used to approximate
the delay elements in frequency domain and it plays an important role in the proposed
MOR method.

2.2 Mathematical Formulation

SPICE uses the modified nodal analysis (MNA) technique for formulating circuit
equations. This subsection focuses on SPICE’s circuit modeling principle for transient
simulation [12]. In such simulations, the MNA-generated equation adopts a standard
format, represented by a differential algebraic equation (DAE).

f (x(t)) + d

dt
q(x(t)) = u(t),

where t denotes time, with x(t) as the unknown variable array including node voltages
and branch currents. The term f (x(t)) represents a nonlinear vector function that
reflects the impact of static devices in the circuit, while q(x(t)) signifies another
nonlinear vector function, indicating the influence of dynamic devices. Additionally,
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u(t) describes the circuit’s input. The equation can be modified according to the
practical circuit. Let the incidence matrix A = [AR, AC , AL , AV , AI ] be partitioned
accordingly, where the subscripts R, C, L, V and I stand for resistors, capacitors,
inductors, voltage sources and current sources, respectively. Then Kirchhoffs current
and voltage laws can be expressed in the compact form as [36]

Ai = 0, AT η = v,

respectively, where η denotes the vector of potentials of all nodes excepting the refer-
ence node. The branch constitutive relations for the capacitors, inductors and resistors
are given by

C
d

dt
vc(t) = ic(t), L

d

dt
il(t) = vl(t), vR(t) = RiR(t),

The behaviour of a linear RLC circuit can be described as following based onMNA
technique,

E
dx(t)

dt
= Ax(t) + Bu(t),

y(t) = Cx(t),

where

E =
⎡
⎣ AcC Ac

T 0 0
0 L 0
0 0 0

⎤
⎦ , A =

⎡
⎣−ARGAR

T −AL −Av

AL
T 0 0

Av
T 0 0

⎤
⎦ ,

C =
[−AI

T 0 0
0 0 −I

]
= BT .

3 MORMethod for Time-Delay Differential Algebra Systems

In this section, an efficient frequency domain model reduction method is proposed
for delay circuit systems based on Hermite expansion technique. Firstly, we present a
new approximation sketch to approximate the time-delay elements. Secondly, based
on the transfer function in u domain, the MOR precess for delay circuit systems is
elaborately described. In the following, moment matching and passivity properties of
the reduced system are analyzed.

3.1 Moments of the Parametric System

Basedon the circuitmodeling procedure presented inSect. 2.2,mathematicalmodeling
of delay circuit system can be summarized as following. The lumped element part of
the delay circuit system can be formulated as

Cẋ(t) + Gx(t) = bu(t),
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where C is formulated by inductance and capacitance. In general, the elements of
matrix C are non-negative and it is a symmetric matrix, so matrix C is a non-negative
definite matrix [37]. G is the incidence matrix, x(t) is the node voltage or the branch
current. u(t) represents the input and b is the input matrix. The mathematical model
of the time-delay part of the circuit system is

Aξ(t) +
m∑

k=1

Akξ(t − αk) + Bi(t) = 0,

where A is formulated by characteristic impedance of the transmission lines, Ak rep-
resents the relationship between the transmission lines and i(t) represents the port
current. The entire delay circuit system can be constructed through the following
relationship

PT x(t) = BT ξ(t),

where matrices P and B map the relationship between the lumped element circuit part
and the delay circuit part. Further, the delay circuit system can be represented as

⎡
⎣C 0 0

0 0 0
0 0 0

⎤
⎦ ·

˙⎡
⎣ x(t)

ξ(t)
i(t)

⎤
⎦ +

⎡
⎣ G 0 P

0 −A −B
PT −BT 0

⎤
⎦ ·

⎡
⎣ x(t)

ξ(t)
i(t)

⎤
⎦

+
m∑

k=1

⎡
⎣0 0 0
0 Ak 0
0 0 0

⎤
⎦ ·

⎡
⎣ x(t − αk)

ξ(t − αk)

i(t − αk)

⎤
⎦ =

⎡
⎣b
0
0

⎤
⎦ u(t).

Then, it can be rewritten as

⎧⎪⎪⎨
⎪⎪⎩
E Ẋ (t) = AX (t) +

m∑
k=1

AkX (t − αk) + Bu(t),

y = BTX (t).

(2)

whereX (t) is the state variable, represents the node voltage or the branch current,αk is
the delay element. E ∈ R

n×n , A ∈ R
n×n and Ak ∈ R

n×n . B ∈ R
n×p, BT ∈ R

p×n

are input and output matrices respectively, u(t) is the input. Besides, we also set
X (0) = X0 and X (t) = g(t), t ∈ [−h, 0) to determine the state solution. Directly
solving the aforementioned differential-algebraic equations is quite challenging [40].
Researchers have proposed model order reduction methods to address this issue.

Next, we propose a new approximation strategy for the delay elements arising in
system (2). Applying Laplace transformation to system (2), we can obtain its transfer
function

H(s) = BT

(
sE − A −

m∑
k=1

Ake
−sαk

)−1

B. (3)
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Traditional MORmethods, such as Krylov subspace methods and Balance Trunca-
tion methods, can not be directly used to this kind of systems. Researchers proposed
various strategies to deal with the delay elements e−sαk , such as Taylor expansion
[37] and Laguerre expansion [33] techniques. Here, we proposed a new strategy to
approximate the delay element e−sαk based on the recursive relation of Hermite poly-
nomials. Apparently, generate function (1) can not be directly used to approximate
e−sαk . Considering the mathematical expressions of Eq. (1), we present a transforma-
tion s = u2 − 2u. Substitute it into e−sαk , we get

e−sαk = e−(u2−2u)αk

= e2αku−αku2

= e2
√

αk
√

αku−(
√

αku)2 .

According to Eq. (1), one obtains

e2
√

αk
√

αku−(
√

αku)2 =
∞∑
n=0

hn(
√

αk)
(
√

αku)n

n! (4)

where hn(x) are the Hermite polynomials, i.e.,

h0(x) = 1, h1(x) = 2x, h2(x) = 4x2 − 2,

h3(x) = 8x3 − 12x, h4(x) = 16x4 − 48x2 + 12

· · · · · ·

Thus, the delay element e−sαk can be approximated by Eq. (4). We give an example
to illustrate the effectiveness of this approximation. Figure1 shows the approximation
curves considering n = 3 and n = 7 with α = 0.3 ns.

Naturally, delay elements of the transfer function (3) can be approximated by the
generation function of Hermite polynomials. Using the transformation s = u2 − 2u,
we can obtain a new transfer function in u domain which is equivalent to the original
transfer function.

3.2 MORThroughMoment Matching

In this subsection, we present the MOR process for delay circuit systems in Hermite
domain. Consider the transfer function of the delay circuit system

H(s) = BT

(
sE − A −

m∑
k=1

Ake
−sαk

)−1

B.
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Fig. 1 Delay elements approximated by Hermite polynomial

Using the transformation s = u2 − 2u, the original transfer function can be rewritten
as

H(u) = BT

(
(u2 − 2u)E − A −

m∑
k=1

Ake
−(u2−2u)αk

)−1

B. (5)

Expanding the delay elements using Eq. (4), it has

e−(u2−2u)αk =
∞∑
n=0

hn(
√

αk)
(
√

αku)n

n! .

Further, H(u) can be represented as

H(u) = BT

(
(u2 − 2u)E − A −

m∑
k=1

Ak

∞∑
n=0

hn(
√

αk)
(
√

αku)n

n!

)−1

B.

We choose the first l items to approximate the delay element

e−(u2−2u)αk ≈
l∑

n=0

hn(
√

αk)
(
√

αku)n

n! .

Then, the transfer function of the delay system can be approximated as

H(u) ≈ BT

(
(u2 − 2u)E − A −

m∑
k=1

Ak

l∑
n=0

hn(
√

αk)
(
√

αku)n

n!

)−1

B.

It should be noted that one can select different items to approximate the delay element
according to the required accuracy. In this paper, we set l = 3. The moments Mi of
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the transfer function are given by

BT

(
(u2 − 2u)E − A −

m∑
k=1

Ak

3∑
n=0

hn(
√

αk)
(
√

αku)n

n!

)−1

B

= BT
∞∑
i=0

Miu
i .

Directly calculating Mi is complicated. Fortunately, we can find the relationship
between the moments and the iterative formulas for computing Mi are given by

M0 = φ−1
0 B, M1 = −φ−1

0 φ1M0,

M2 = −φ−1
0 φ2M0 − φ−1

0 φ1M1,

M3 = −φ−1
0 φ1M2 − φ−1

0 φ2M1 − φ−1
0 φ3M0,

M4 = −φ−1
0 φ1M3 − φ−1

0 φ2M2 − φ−1
0 φ3M1,

M5 = −φ−1
0 φ1M4 − φ−1

0 φ2M3 − φ−1
0 φ3M2,

...

Mi = −φ−1
0 φ1Mi−1 − φ−1

0 φ2Mi−2 − φ−1
0 φ3Mi−3.

where

φ0 = −A −
m∑

k=1

Akh0(
√

α),

φ1 = −2E −
m∑

k=1

Akh1(
√

α)
√

α,

φ2 = E −
m∑

k=1

Akh2(
√

α)
(
√

α)2

2! ,

φ3 = −
m∑

k=1

Akh3(
√

α)
(
√

α)3

3! .

The relationship between the Mi satisfies a high-order Krylov subspace condition.
The three order Krylov subspace can be constructed as

Kr

(
−φ−1

0 φ1, − φ−1
0 φ2, − φ−1

0 φ3; φ−1
0 B

)

= span{M0, M1, . . . , Mq}.

By orthogonalizing the Krylov subspace, the projection matrix V can be obtained.
Here, we use a stable multi-order Arnoldi orthogonalization technique to formulated
V . The process is summarized as following.
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Algorithm 1Multi-order Arnoldi based MORmethod for delay circuit systems based
on l-th Hermite approximation

INPUT: E , A , Ak ,B, BT ;
Step 1. Compute U : φ0U = B;
Step 2. QR factorization of U , v0 = QR(U );
Step 3. for i = 1, 2, . . . , q do;

Step 4. v(0)
i = ∑min{l,q}

ω=1 (−φ−1
0 φω)vi−ω;

Step 5. for j = 1, 2, . . . , i , do;

Step 6. H = vTi− j v
( j−1)
i , v( j)

i = v
( j−1)
i − vi− j H ,

Step 7. end for;
Step 8. vi = QR(v

(i)
i );

Step 9. end for;
Step 10. V = [v0, v1, . . . , vq ];
OUTPUT: V

By projecting the original delay circuit system into the mathematics space spanned
by Mi (i = 0, . . . , q), i.e., V , it obtains a reduced order circuit system

⎧⎪⎪⎨
⎪⎪⎩
Ẽ ˙̃X (t) = ˜A X̃ (t) +

m∑
i=1

˜AkX̃ (t − αk) + B̃u(t),

ỹ = B̃T X̃ (t),

(6)

where X = V X̃ , Ẽ = V TE V ∈ R
(q+1)×(q+1), ˜A = V TA V ∈ R

(q+1)×(q+1),
˜Ak = V TAkV ∈ R

(q+1)×(q+1), B̃ = V TB ∈ R
(q+1)×p, B̃T = BT V ∈ R

p×(q+1)

and (q+1) 	 n. Thus, we obtain a compact delay circuit model which can effectively
approximate the original one. Benefiting from the sparsity of the coefficient matrices,
the order of the original delay circuit system can be greatly reduced. In the following,
we analyze some important properties of the reduced system.

3.3 Structure-PreservingMORMethod

In this subsection,we present amomentmatching theorembetween the original system
and the reduced one. Considering the transfer function of the reduced circuit system
(6)

H̃(u) = B̃T

(
(u2 − 2u)Ẽ − ˜A −

m∑
k=1

˜Ake
−(u2−2u)αk

)−1

B̃. (7)

Further, the moments can be computed by

B̃T

(
(u2 − 2u)Ẽ − ˜A −

m∑
k=1

˜Ake
−(u2−2u)αk

)−1

B̃

= B̃T
∞∑
i=0

M̃i u
i .
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Since we use projection matrix V to generate the reduces circuit system as shown
in system(6), the MOR method is a one-side projection method. In the following we
present a theorem and prove that the reduced system and the original system match
the first q + 1 moments.

Theorem 1 Given the reduced system (6), if the projection matrix V is obtained by
Algorithm 1 and the delay elements are approximated by the first l elements in Eq. (4),
the transfer functions of the reduced system (6) and the original system (2) match the
first q + 1 moments, i.e., BT Mi = B̃T M̃i , i = 0, 1, . . . , q.

Proof If q ≤ l, we have

⎡
⎢⎢⎢⎣

φ0
φ1 φ0
...

...
. . .

φq φq−1 · · · φ0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

M0
M1
...

Mq

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

B
0
...

0

⎤
⎥⎥⎥⎦ .

Since the projection matrix V is formulated by

colspan{V } = colspan{M0, M1, M2, . . . , Mq},

there exists ξi ∈ R
n×p that satisfies Mi = V ξi for all Mi , where i = 0, 1, . . . , q.

Further, we have

⎡
⎢⎢⎢⎣

φ̃0

φ̃1 φ̃0
...

...
. . .

φ̃q φ̃q−1 · · · φ̃0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ξ0
ξ1
...

ξq

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

B̃
0
...

0

⎤
⎥⎥⎥⎦ .

This system of linear equations has a unique solution, then it obtains M̃i = ξi and
BT Mi = BT V ξi = B̃T M̃i .

If q > l, it has

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ0
φ1 φ0
...

...
. . .

φl φl−1 · · · φ0
0 φl · · · φ1 φ0
...

...
. . . · · · . . .

. . .

0 0 · · · φl · · · · · · φ0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M0
M1
...

Ml

Ml+1
...

Mq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B
0
...

0
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Similarly, we can prove M̃i = ξi and BT Mi = BT V ξi = B̃T M̃i . So the first q + 1
moments of the original circuit system and the reduced circuit system matched. This
concludes the proof. ��
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4 Property Analysis

Passivity is an important property of the circuit systems. The preservation of the
passivity of the original system is essential for MOR method. Next we prove that the
proposed MOR method can preserve the passivity property.

Firstly, we give a definition that define the passivity of the delay system.

Definition 1 [37] If the transfer function H(s) of the delay system (3) satisfy the
following conditions,

(1) H(s∗) = H∗(s), where ∗ represents complex conjugate operator;
(2) H(s) is a positive-realmatrix in the right-half plane of the s domain, which satisfies

[H(s) + HT (s∗)] ≥ 0, i.e., [H(s) + HT (s∗)] is nonnegative definite;
(3) H(s) is analytic for all values of s with Re(s) > 0. Then, the delay system (3) is

passive.

According to Definition 1, we know that if the transfer function H(u) in u domain
satisfies the following three conditions

(1) H(u∗) = H∗(u) where (∗) is the complex conjugate operator,
(2) [H(u) + HT (u∗)] ≥ 0, which means [H(u) + HT (u∗)] is nonnegative definite,
(3) H(u) is analytic for all values of u with R(u) > 0, the corresponding delay system

is passive.

In the following, we present a theorem about the passivity of the reduced circuit
system.

Theorem 2 Given the time-delay circuit system (2), if the matrix [(−A − ∑m
i=1

Ake−(u2−2u)αk )+ (−AT −∑m
i=1 A

T
k e

−(u2−2u)∗αk )] in the transfer function (5) is non-
negative definite, the corresponding reduced system obtained(6) is passivity.

Proof For the original transfer function in u domain

H(u) = BT

(
(u2 − 2u)E − A −

m∑
k=1

Ake
−(u2−2u)αk

)−1

B,

the corresponding reduced transfer function is

H̃(u) = B̃T

(
(u2 − 2u)Ẽ − ˜A −

m∑
k=1

˜Ake
−(u2−2u)αk

)−1

B̃.

It is easy to know that if the coefficient matrices of the original circuit system is a
real matrix, the coefficient matrices of the reduced circuit system is also a real matrix.
Further, we know that H̃(u∗) = H̃∗(u). The first condition of passivity is satisfied.

In the following, we prove that for z ∈ R
n and Re(u) > 0, the transfer function of

the reduced system H̃(u) satisfies z∗T [H̃(u) + H̃ T (u∗)]z ≥ 0.
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Based on the transfer function of the reduced system and z∗T [H̃(u) + H̃ T (u∗)]z,
we can obtain

z∗T
⎡
⎣B̃T

(
(u2 − 2u)Ẽ − ˜A −

m∑
k=1

˜Ake
−(u2−2u)αk

)−1

B̃

+
⎛
⎝B̃T

(
(u2 − 2u)∗Ẽ − ˜A −

m∑
k=1

˜Ake
−(u2−2u)∗αk

)−1

B̃

⎞
⎠

T
⎤
⎥⎦ z.

Then, it has

z∗T
⎡
⎣B̃T

(
(u2 − 2u)Ẽ − ˜A −

m∑
k=1

˜Ake
−(u2−2u)αk

)−1

B̃

+B̃T

(
(u2 − 2u)∗Ẽ T − ˜A T −

m∑
k=1

˜A T
k e−(u2−2u)∗αk

)−1

B̃

⎤
⎦ z

By extracting V and V T , we get

z∗TBT

(
(u2 − 2u)E − A −

m∑
k=1

Ake
−(u2−2u)αk

)−1

[
(u2 − 2u)E − A −

m∑
k=1

Ake
−(u2−2u)αk + (u2 − 2u)∗E T

−A T −
m∑

k=1

A T
k e−(u2−2u)∗αk

]
((u2 − 2u)∗E T

− A T −
m∑

k=1

A T
k e−(u2−2u)∗αk )−1Bz.

Finally, it obtains

Q∗T
[
(u2 − 2u)E − A −

m∑
k=1

Ake
−(u2−2u)αk + (u2 − 2u)∗

E T − A T −
m∑

k=1

A T
k e−(u2−2u)∗αk

]
Q

(8)

where Q = V [(u2 − 2u)∗Ẽ T − ˜A T −∑m
k=1

˜A T
k e−(u2−2u)∗αk ]−1B̃z. It should prove

Eq. (8) is non negative definite.
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We only should prove equation

[
(u2 − 2u)E − A −

m∑
k=1

Ake
−(u2−2u)αk + (u2 − 2u)∗E T−

A T −
m∑

k=1

A T
k e−(u2−2u)∗αk

]

is non-negative definite.
Given the matrix

E =
⎡
⎣C 0 0

0 0 0
0 0 0

⎤
⎦

and circuit coefficient matrix C is a non-negative definite matrix, for Re(u) > 0, it is
easy to know that (u2 − 2u)E + (u2 − 2u)∗E T is non-negative definite. Considering
the structures of A and Ak , and let H = −A − ∑m

k=1 Ake−(u2−2u)αk − AT −∑m
k=1 A

T
k e

−(u2−2u)∗αk , we have

− A −
m∑

k=1

Ake
−(u2−2u)αk − A T −

m∑
k=1

A T
k e−(u2−2u)∗αk

=
⎡
⎣G + GT 0 0

0 H 0
0 0 0

⎤
⎦

In the circuit model, matrix G + GT is non-negative definite and the expression
H = −A−∑m

k=1 Ake−(u2−2u)αk − AT −∑m
k=1 A

T
k e

−(u2−2u)∗αk is also non-negative
definite. So [H̃(u) + H̃ T (u∗)] is non-negative definite.

If H(u) is nonsingular in a certain region in u domain, then H(u) is also analytic in
the certain region. Since H(u) is nonsingular in the right half plane, H(u) is analytic
in Re(u) > 0.

So far, we prove that the transfer function of the reduced circuit system satisfies the
three passivity conditions. This concludes the proof. ��

5 Numerical Examples

In this section, two numerical circuit examples are performed to demonstrate the
effectiveness of this proposed algorithm. We compare the proposed method with the
widely used time-delay MORmethod presented in [33]. Relative errors which defined
as ‖yr − y‖2/‖y‖2, where yr represents the output of the reduced circuit system and
y represents the output of the original circuit system, are also analyzed to illustrate
the accuracy of the new MOR method.
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Fig. 2 Time-delay circuit systems

Example 4.1 We first consider a delay circuit model shown in Fig. 2 [37]. The circuit
model is composed of three RLC circuit networks and two lossless multiconductor
interconnect lines. For the circuit network, the mathematical model are obtained by
lumped circuit modeling method, and for the interconnect circuit parts, we use the
method introduced in Sect. 3.1 to model it. Then, we merge the two circuit models
through the port connection relationship of the circuit system. The order of this time-
delay circuit system is 2625 with the delay element αk = 0.1 ns and the parameters
for interconnect lines are

L =
⎡
⎣494.6 63.3 7.8

63.3 494.6 63.3
7.8 63.3 494.6

⎤
⎦ nH/m,

C =
⎡
⎣ 63.8 −4.9 −0.3

−4.9 63.8 −4.9
−0.3 −4.9 63.8

⎤
⎦ pF/m.

We reduce the order of the original circuit system from 2625 to 52 through the method
proposed in this paper and the reference MOR algorithms proposed in [33]. Rumge–
kutta algorithm is used to solve the large circuit model and the two compact circuit
models. Figure3 plots the outputs of the two reduced circuit systems and the original
circuit system. Figure4 presents the corresponding relative errors. The solution time
for the original circuit system is 50.082 s, while the solution time for the reduced
system is 13.684 s.

With the same input u(t) = π
4 (sin(2π t) + 1

3 sin(6π t)) applied to the three circuit
models, we observe the output waveforms of the circuit systems. As shown in Fig. 3,
both the outputs of the reduced order circuit models can approximate the output of
the original system well, indicating the effectiveness of the proposed algorithm. Then
we analyze the relative error between the outputs of reduced circuit models and the
original circuit model. From Fig. 4, we can see that the relative error corresponding
to the proposed method is around 10−4 while the relative error corresponding to the
reference method is around 10−3. Relative errors demonstrate that the new MOR
method for time-delay system can achieve a better model reduction accuracy.

Example 4.2 We investigate another circuit system containing a single transmission
line presented in [31]. In the circuit system, for simplicity, we set r = 10Ω ,C = 1 pF,
L = 1 nH and αk = 0.01 ns. The new MOR method and the reference MOR method
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Fig. 3 Outputs of the original circuit system and the circuit reduced systems

Fig. 4 Relative error

are used to reduce the order of the original delay circuit system from 1630 to 36.
We investigate the outputs of the circuits models. Figure5 compared the outputs of
the original circuit system with the outputs of the compact circuit models obtained
by the proposed method and the reference method. Figure6 shows the corresponding
relative errors. The original circuit model’s simulation time is 38.466 s, while the
reduced circuit’s simulation time is 7.854 s.

Figure 5 illustrates that the outputs of the reduced order delay circuit system for-
mulated by our newmethod can approximate the outputs of the original circuit system
effectively. From Fig. 6, we observe that the relative error of the proposed method
remains at a low value and it shows a higher accuracy than the reference algorithm.

6 Conclusion

This paper proposes a new MOR method for delay circuit systems. By transforming
the transfer function of the original circuit system into u domain, the delay elements



5504 Circuits, Systems, and Signal Processing (2024) 43:5487–5506

Fig. 5 Outputs of the original circuit system and the reduced circuit systems

Fig. 6 Relative errors

are approximated by Hermite polynomials. Then, we found the iterative formulas of
the moments of the delay circuit system. Projection matrix V is formulated through
multi-order Arnoldi orthogonalization technique and then the order of the delay cir-
cuit system is reduced. The compact circuit model obtained by the proposed MOR
method can approximate the original circuit more precisely than the compact model
constructed by the referencemethod.Momentmatching and passivity preserving prop-
erty of this MOR method are also analyzed. Finally, the effectiveness of the proposed
MOR algorithm is verified by time-delay circuit models.

Data availability Data sharing is applicable to this article and the authors will supply the relevant data in
response to reasonable requests.

Declarations

Conflict of interest The authors declare that they have no Conflict of interest.



Circuits, Systems, and Signal Processing (2024) 43:5487–5506 5505

References

1. R. Achar, Modeling of high-speed interconnects for signal integrity analysis: Part I. IEEE Microw.
Mag. 12(5), 61–74 (2011)

2. R. Achar, M.S. Nakhla, Simulation of high-speed interconnects. Proc. IEEE 89(5), 693–728 (2001)
3. N. Ahamad, A. Sikander, A novel approach of order diminution using time moment concept with

Routharray and salp swarm algorithm. Turk. J. Electr. Eng. Comput. Sci. 29(2), 1077–1091 (2021)
4. N. Ahamad, A. Sikander, G. Singh, Substructure preservation based approach for discrete time system

approximation. Microsyst. Technol. 25, 641–649 (2019)
5. N. Ahamad, A. Sikander, G. Singh, Order diminution and its application in controller design using

salp swarm optimization technique. Int. J. Syst. Assur. Eng. Manag. 13(2), 933–943 (2022)
6. N. Ahamad, G. Singh, S. Khan, A. Sikander, Design and performance analysis of optimal reduced

order H-infinity controller: L1 norm based genetic algorithm technique. In International Conference
on Power and Embedded Drive Control (2017), pp. 8–13

7. N. Ahamad, G. Singh, A. Sikander, A new approach for order reduction of linear SISO system
Coefficient Comparison method with one free variable. https://www.researchgate.net/profile/Nafees-
Ahamad-2/publication

8. N. Ahmed, G. Singh, M. Samir, H. Ahmad, Performance analysis of reduced order aircraft bank angle
control system. In Conference on Advances in Communication and Control Systems (CAC2S 2013)
(2013), pp. 518–520

9. P. Benner, A. Schneider, Reduced representation of power grid models. Syst. Reduct. Nanoscale IC
Des. 87–134 (2017)

10. A. Charest, D. Saraswat, M. Nakhla, R. Achar, N. Soveiko, Compact macromodeling of high-speed
circuits via delayed rational functions. IEEE Microw. Wirel. Compon. Lett. 17(12), 828–830 (2007)

11. Y. Chen, V. Balakrishnan, C.K. Koh, K. Roy, Model reduction in the time-domain using Laguerre
polynomials and Krylov methods. In Proceedings of the Conference on Design, Automation and Test,
Europe (2002), pp. 931–935

12. X. Chen, Y. Wang, H. Yang, Parallel Sparse Direct Solver for Integrated Circuit Simulation (Springer
International Publishing, 2017), pp. 3–4

13. A. Chinea, P. Triverio, S. Grivet-Talocia, Delay-based macromodeling of long interconnects from
frequency-domain terminal responses. IEEE Trans. Adv. Packag. 33(1), 246–256 (2010)

14. J. Cullum, A. Ruehli, T. Zhang, A method for reduced-order modeling and simulation of large inter-
connect circuits and its application to PEEC models with retardation. IEEE Trans. Circuits Syst. II
Analog Digit. Signal Process. 47(4), 261–273 (2000)

15. J. Elias, T. Damm, W. Michiels, Model reduction of time-delay systems using position balancing and
delay Lyapunov equations. Math. Control Signals Syst. 25(2), 147–166 (2013)

16. P. Feldmann,R. Freund, Efficient linear circuit analysis by Padé approximation via the Lanczos process.
IEEE Trans. Comput Aided Des. Integr. Circuits Syst. 14, 639–649 (1995)

17. L. Feng, L. Lombardi, P. Benner, D. Romano, G. Antonini, Model order reduction for delayed PEEC
models with guaranteed accuracy and observed stability. IEEE Trans. Circuits Syst. I Regul. Pap.
69(10), 4177–4190 (2022)

18. R.W. Freund, SPRIM: structure-preserving reduced-order interconnect macromodeling. In Proceed-
ings of the IEEE/ACM International Conference on Computer Aided Design, CA, USA (2004), pp.
80–87

19. P.K. Gunupudi,M. Nakhia, R. Achar, Simulation of high-speed distributed interconnects usingKrylov-
space techniques. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 19(7), 799–808 (2000)

20. Y. Huang, Y.L. Jiang, K.L. Xu, Model order reduction of RLC circuit system modeled by Port-
Hamiltonian structure. IEEE Trans. Circuits Syst. II Express Briefs 69(3), 1542–1546 (2022)

21. S. Jain, Y.V. Hote, Order diminution of LTI systems using modified big bang big crunch algorithm and
Pade approximation with fractional order controller design. Int. J. Control Autom. Syst. 19, 2105–2121
(2021)

22. Y.L. Jiang, H.B. Chen, Time domain model order reduction of general orthogonal polynomials for
linear input–output systems. IEEE Trans. Automat. Contr. 57(2), 330–343 (2012)

23. Y.L. Jiang, K.L. Xu, Frequency-limited reduced models for linear and bilinear systems on the Rieman-
nian manifold. IEEE Trans. Automat. Contr. 66(9), 3938–3951 (2021)

24. Y.L. Jiang, J.M. Yang, Asymptotic waveform evaluation with higher order poles. IEEE Trans. Circuits
Syst. I Regul. Pap. 68(4), 1681–1692 (2021)

https://www.researchgate.net/profile/Nafees-Ahamad-2/publication
https://www.researchgate.net/profile/Nafees-Ahamad-2/publication


5506 Circuits, Systems, and Signal Processing (2024) 43:5487–5506

25. L. Knockaert, D. De Zutter, Laguerre-SVD reduced-order modeling. IEEE Trans. Microw. Theory
Tech. 48(9), 1469–1475 (2000)

26. J. Lam, Model reduction of delay systems using Pad approximants. Int. J. Control 57(2), 377–391
(2012)

27. L. Lombardi, Y. Tao, B. Nouri, F. Ferranti, G. Antonini, M.S. Nakhla, Parameterized model order
reduction of delayed PEEC circuits. IEEE Trans. Electromagn. Compat. 62(3), 859–869 (2020)

28. A. Odabasioglu, M. Celik, L.T. Pileggi, PRIMA: Passive reduced-order interconnect macromodeling
algorithm. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 17(8), 645–654 (1998)

29. J.R. Phillips, L.M. Silveira, Poor man’s TBR: a simple model reduction scheme. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 24(1), 43–55 (2005)

30. L.T. Pillage, R.A. Rohrer, Asymptotic waveform evaluation for timing analysis. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 9, 352–366 (1990)

31. Z.Y. Qiu, Y.L. Jiang, ε—Embedding model reduction method for time-delay differential algebra sys-
tems. Circuits Syst. Signal Process. 39(11), 5390–5405 (2020)

32. T. Reis, T. Stykel, PABTEC: passivity-preserving balanced truncation for electrical circuits. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 29(9), 1354–367 (2010)

33. E.R. Samuel, L. Knockaert, T. Dhaene, Model order reduction of time-delay systems using a Laguerre
expansion technique. IEEE Trans. Circuits Syst. I Regul. Pap. 61(6), 1815–1823 (2014)

34. A. Sikander, R. Prasad, Soft computing approach for model order reduction of linear time invariant
systems. Circuits Syst. Signal Process. 34, 3471–3487 (2015)

35. H. P. Singh, G.S. Virdi, RLC modeled interconnect delay analysis for high-speed on-chip VLSI inter-
connects. In 2017 International Conference on Energy, Communication, Data Analytics and Soft
Computing (2017), pp. 2199–2203

36. T. Stykel, Balancing-relatedmodel reduction of circuit equations using topological structure. In:Model
Reduction For Circuit Simulation (2011), pp. 53–83

37. W. Tseng, C. Chen, E. Gad, M. Nakhla, R. Achar, Passive order reduction for RLC circuits with delay
elements. IEEE Trans. Adv. Packag. 30(4), 830–840 (2007)

38. X.L. Wang, Y.L. Jiang, An efficient hybrid reduction method for time-delay systems using Hermite
expansions. Int. J. Control 92(5), 1033–1043 (2019)

39. S. Wil, The need for novel model order reduction techniques in the electronics industry. In: Model
Reduction for Circuit Simulation (Springer Netherlands, Dordrecht, 2011), pp. 3–23

40. H. Yang, Y. Zhang, X. Huang, S. Hong, Positivity and exponential stability of coupled homogeneous
time-delay differential-difference equations of degree one. Circuits Syst. Signal Process. 41(2), 762–
788 (2022)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.


	Hermite Expansion Technique for Model Reduction of Circuit Systems with Delay Components
	Abstract
	1 Introduction
	2 Preliminary
	2.1 Hermite Polynomials
	2.2 Mathematical Formulation

	3 MOR Method for Time-Delay Differential Algebra Systems
	3.1 Moments of the Parametric System
	3.2 MOR Through Moment Matching
	3.3 Structure-Preserving MOR Method

	4 Property Analysis
	5 Numerical Examples
	6 Conclusion
	References




