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Abstract
Recent advancements in deep learning-based speech enhancement models have exten-
sively used attentionmechanisms to achieve state-of-the-artmethods by demonstrating
their effectiveness. This paper proposes a novel time-frequency attention (TFA) for
speech enhancement that includes a multi-scale subconvolutional U-Net (MSCUNet).
The TFA extracts valuable channels, frequencies, and time information from the fea-
ture sets and improves speech intelligibility and quality. Channel attention is first
performed in TFA to learn weights representing the channels’ importance in the input
feature set, followed by frequency and time attention mechanisms that are performed
simultaneously, using learned weights, to capture both frequency and time attention.
Additionally, aU-Net basedmulti-scale subconvolutional encoder-decodermodel used
different kernel sizes to extract local and contextual features from the noisy speech.
TheMSCUNet uses a feature calibration block acting as a gating network to control the
information flow among the layers. This enables the scaled features to be weighted in
order to retain speech and suppress the noise. Additionally, central layers are employed
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to exploit the interdependency among the past, current, and future frames to improve
predictions. The experimental results show that the proposed TFAMSCUNet mode
outperforms several state-of-the-art methods.

Keywords Speech enhancement · Feature calibration · Time-frequency attention ·
Multi-scale subconvolutional layers

1 Introduction

The background noise and other residual noises reduce the quality and intelligibility of
the speech signal captured in a real acoustic scenario. The goal of speech enhancement
(SE) is to recover the intended speech by eliminating distracting ambient noise and
noisy speech mixtures. Single channel speech enhancement refers to the scenario,
where only a single mix is available, which is an extreme case of the under-determined
problem, i.e. the number of sources is greater than the number of mixtures. This
problem can be found inmany real-world applications, such asmobile communication,
automatic speech recognition, and robotics [21, 25, 32, 33, 42].

There are many different techniques that have been proposed for SE. Conventional
techniques include statistical techniques based on statistical modeling of spatial, spec-
tral, or temporal properties generated from the sensor signals, such as adaptive wiener
filtering [19] and minimal mean square error estimation (MMSE) [5] model. For
instance, by modeling the speech and noise spectral components as statistically inde-
pendent Gaussian randomvariables, theMMSE estimator accomplishes enhancement.

In terms of enhancing speech, deep neural networks (DNNs) are now thought to
be state-of-the-art. In contrast to conventional approaches, DNN-based algorithms [7,
39, 43] seek to learn, through training based on mask or map relationship between the
noisy speech and target speech. Then, using either an ideal binary mask (IBM) or an
ideal ratio mask (IRM) as the training target, the trained model is utilized to predict the
target speech through the T-F mask [14, 26, 31] or mapping [49]. According to recent
findings, mapping-based models perform better than masking-based models [38].

Vanilla DNN and Recurrent neural networks (RNNs) have been employed for
temporal modeling of speech [1], which is different compared to traditional DNNs.
Long short-term memory (LSTM) [10] employed the input, output, and reset gates
to record the interdependence between the past and present frames of noisy speech.
This increases the estimation accuracy for the mask and mapping relations [44]. The
bi-directional LSTM (Bi-LSTM) has been proposed to replace the LSTM. According
to earlier findings, it enhances performance under unseen speakers [1, 38]. Bi-LSTM
considers the future frames into account and preserves the long-term interdependence
between the past, present, and future frames of noisy speech [38].

Convolutional neural networks (CNN) [28] exploitation has been another potential
area of SE research. Convolutional encoder-decoder (CED) is proposed to estimate the
mapping relationship between the noisy and target speech. Multi-resolution convolu-
tional encoders (MRCE) model has been proposed to improve the SE performance
by increasing the receptive fields of the network in Wavenet with extended convolu-
tions and employing a gated mechanism to regulate the information flow among each
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layer [6, 30]. Furthermore, to increase the receptive fields in the time-frequency (T-
F) domain, the gated recurrent network (GRN) approach is applied with 1-D dilated
convolutions [38].

In practice, non-causal systems have predictive algorithms such as machine learn-
ing and deep learning algorithms. They predict future characteristics based on past
input data. Many predictive models are quite complicated to understand and use. Such
models are generally used in complex domains such as quantum computing and com-
putational biology to perform longer computations and analyze the complex results as
quickly as possible. Machine learning serves as a computational engine for data min-
ing and analytics, where it is used for information extraction, data pattern recognition
and prediction.

Convolutional and recurrent models have been combined to enhance SE perfor-
mance even more. Convolutional recurrent network (CRN) [37] is a combination of
the CED and LSTM models, which offers better performance compared to LSTM
models. In CRN, the CED is used to locate the T-F patterns and the LSTM is used to
record long-term interdependence between the past and present frames.

Predictive analysis uses AI algorithms to assess potential delays and bottlenecks.
Taking into account historical data, weather patterns and unforeseen variables, AI
predicts potential disruptions and enables proactive adjustments. Key deep learning
techniques for predictive maintenance anomaly detection and fine-tuning reduce com-
puting time.

Compared to RNN, GRU has promising characteristics in terms of the balance
between fast computation and the ability to map the relationship between time series
data sets. Compared with the LSTM network structure, GRU can solve the problem of
predicting time series with long interval and long delay. GRU can outperform LSTM
units both in terms of convergence in CPU time and in terms of parameter updates and
generalization [3].

In [50], a low-dealy SE method is presented that aims to achieve a single-channel
speech enhancement with minimal delay and complexity in the time-frequency
domain. This method introduces the concept of utilizing the perceptually optimal
magnitude spectrum as the training target, thereby enhancing the quality of the speech
signal. It is well recognized that dimensionality reduction plays a crucial role in opti-
mizing the computational efficiency and accuracy ofmachine learning algorithms [40].
By reducing the number of input features, the authors in [8] specifically concentrate
on mitigating the computational cost associated with the dimensionality of the prob-
lem at hand. Through their research, they explore various techniques and strategies to
effectively reduce the dimensionality of the input space, thereby improving the overall
performance of the system.

In [27], proposed a temporal convolutional neural network (TCNN) to improve the
SE performance in the time domain. TCNN uses a series of 1D causal and dilated
convolutions to capture long-range speech context from past and previous frames.
In [12], proposed a deep complex convolutional recurrent neural network (DCCRN).
It uses a complex convolutional encoder and decoder model that utilizes complex
LSTM and dense layers between the center of the encoder and decoder blocks. A
complex LSTMand dense layer are used to extract the temporal dependencies from the
complex encoder-decoder structure. A multi-scale feature recalibration convolutional
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bidirectional GRU network (MCGN) [46] model for SE. Local and contextual features
can be extracted from the signal using multi-scale recalibration convolutional layers.
In the recalibration network, gating is used to control information flow between layers,
thus retaining speech and suppressing noise by weighting the rescaled features.

The importance weighting (IW) [17] method proposed by the authors is a model
in the form of a U-network containing encoders and decoders. The shared weights
between encoder and decoder and source to target are removed. The model is trained
with worst-case weights and the loss is minimized using themin-maxmethod. Remov-
ing the skip connections between source and target may result in a loss of the original
speech information, speech quality and intelligibility.

The authors proposed the U-transformer model [18] in which a frequency band
aware attention block (FAT block) is used to train the model. The model assumes 4–
8kHz as unvoiced speech and 0–4kHz as voiced speech. The FATuses threemulti-head
attentions for time attention, a higher frequency band and a lower frequency band. The
FAT focuses only on 0–4kHz, but we cannot estimate the noise content in either the
higher or lower frequency bands.

A multi-stage SE framework [13] was proposed in using a multistage structure in
which time-frequency attention (TFA) blocks are followed by stacks of squeezed
temporal convolutional networks (S-TCN) with exponentially increasing dilation
rates. This model is shown to outperform self-attention based temporal convolutional
networks and convolutional recurrent network (CRN) baseline models with less com-
putational complexity. The limitation of the above model is its sequential nature,
i.e., the performance is highly dependent on its previous results. As a result of such
cascaded dependencies, the second stage of the model should be able to correct the
estimation error left over from the previous stage.

Some deep learning-based SE methods have also used attention mechanisms to
control the computation cost and total parameters. Attention networks optimizing
the weights of input features can be accomplished by using a neural attention mod-
ule to minimize loss. Information can be enhanced and interference from irrelevant
information can be reduced in learning-based enhanced frameworks. The squeeze-and-
excitation attention (SEA) model has been proposed in [11]. The algorithm utilizes
2D global pooling to compute channel attention and provides impressive performance
gains. A convolutional block attention module [45] is proposed, which sequentially
improves significant parts of input features through channel attention and spatial
attention. MASENet [47] is a combination of convolutional multi-scale and temporal
convolutional attention (TCA) models to extract local and global feature information
from speech. MASENet encoder block group outputs are recalibrated by the attention
block and emphasize informative details. In SADNUNet [48] model, the encoder and
decoder model uses nested UNet and dense block to extract local and context features
from speech. All encoder group outputs are recalibrated by the self-attention (SA)
block, emphasizing informative details and also reducing the unwanted features.

The above-discussed methods are cutting-edge at this time and show promising
improvement in SE. But, there are still a number of restrictions in those models. These
are fixed kernel (filter) size frequently employed for the CED and CRN approaches.
From the noisy speech, the contextual features must be extracted with a bigger size
kernel, and the local features can be extracted with a small size kernel. It would be
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ideal to have a technique that can extract both local and contextual data. To design the
causal systems LSTM and CRN models used, which is frequently taken into account
only past and present samples of the speech. However, in terms of [30], future data
frames including into account will be helpful for the model’s prediction results much
more. As a result, in our work, the performance of the enhancement is thought to be
improved by the non-causal system.

Further, the LSTM models are used on devices with limited resources, and the
computational loads required to calculate the input, output, forget gates, and cell
memory can occasionally be difficult [4, 10]. It would be preferable to utilize more
memory-efficient RNN models, such as gated recurrent unit (GRU)/ Bidirectional
GRU (Bi-GRU), whose performance is comparable to that of LSTM/ Bi-LSTM. The
properties of various scales are additionally immediately combined and given equal
weight in the Inception network [34]. This implies that features be given equal weight,
which could be difficult, particularly if the features are brought about by noise.

The limitations of the state-of-the-art models lie in the fact that they only extract
important features from the channel-wise perspective and rely on a fixed kernel size to
extract both local and global feature sets. This approach fails to consider the diverse
scales at which features can exist and leads to a loss of information that significantly
impacts the intelligibility and quality of enhanced speech.

To address these drawbacks, the proposed model aims to extract features across
various scales and emphasize the importance of features in channels, time, and fre-
quencies in order to minimize information loss.

The motivation behind this proposed model is to overcome the aforementioned
limitations by introducing a multi-scale subconvolutional U-Net combined with a
time-frequency attention mechanism for speech enhancement.

The novelty of thismodel lies in its combination of themulti-scale subconvolutional
U-Netwith the time-frequency attentionmechanism (TFA). Themulti-scale subconvo-
lutional U-Net employs different kernel sizes to extract both local and global features,
thus capturing information at diverse scales. On the other hand, the time-frequency
attention mechanism is a combination of spatial and channel attention mechanisms.
By incorporating this mechanism, the model is able to reduce information loss by
extracting valuable channels, frequencies, and time information from the feature sets,
resulting in improved speech intelligibility and quality.The Information loss in TFA
is very minimal compared to SEA, TCA, and SA models.

Overall, the proposed model represents a significant advancement in the field of
speech enhancement, as it addresses the limitations of existing models and introduces
a novel approach that combines the benefits of multi-scale feature extraction and
attention mechanisms. The model’s ability to extract features in diverse scales and
highlight important features in channels, time, and frequencies is crucial in reducing
information loss and improving the overall quality of enhanced speech.

Specific contributions of the proposed multi-scale subconvolutional UNet (MSC-
UNet) with TFA mechanism for speech enhancement(TFAMSCUNet) model is
following:

• Basically MSCUNet is a convolutional encoder-decoder model, which uses
different-sized kernels in each convolutional layer to produce features at vari-
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ous scales. This makes it possible to apply a distinct weight to each feature in each
scale, making it possible to keep the speech-related components while suppressing
the noise-related ones, as well as to capture the interdependence between local and
global contextual information within the speech.

• A bottleneck convolutional layer is utilized, which contains a 1-D convolutional
layerwith kernels of size (1,1) to compress the informationflow inside the proposed
model.

• TFA is used to extract valuable channels, frequencies, and times from spectrogram
images and to improve SE performances. Channel attention is first performed to
learn weights representing the channels’ importance in the input feature map,
followed by frequency and time attention mechanisms that are performed simul-
taneously, using learned weights, to capture both frequency and time attention.

• A fully connected (FC) network and two Bi-GRU layers are employed in between
the MSCUNet encoder and decoder. The FC layer is used to minimize the encoder
output dimension. The Bi-GRU layers are capable of capturing the relationships
between the past, present, and future frames. It provides similar results compared
to Bi-LSTM but it requires only a few parameters.

• Finally, the output layer summed multi-scale outputs and accelerate convergence.
Enhanced speech output is estimated by the output layer by providing access
to several scales of convolutional operators, which facilitate the training of the
network.

The remainder of the paper is organized as follows: Section 2 describes the proposed
TFAMSCUNet method. Section 3 describes the experimental result analysis. Section
4 states the conclusions.

2 ProposedModel

2.1 Problem Statement

In the monaural SE model, the noisy speech can be written as:

yt = xt + nt (1)

where yt indicates the mixture of noisy speech, xt and nt indicate the pure speech
signal and additive noise signal respectively. The Short time fourier transform (STFT)
employed on noisy speech is defined as:

Yt, f = Xt, f + Nt, f (2)

where Xt, f and Nt, f indicate the pure speech and additive noise in the T-F domain
respectively. The proposedmodel network discovers the relation(M) between themag-
nitude spectrum of pure speech and the mixture of noisy speech. M estimates the loss
function is defined as:
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Loss = 1
T F

T∑

t=1

F∑

f =1
M

(‖Yt, f ‖ − ‖Xt, f ‖2
)

= 1
T F

T∑

t=1

F∑

f =1

(
‖X̂t, f ‖ − ‖Xt, f ‖2

)
(3)

where the estimated pure speech magnitude spectrum is indicated with X̂t, f , the pure
speech magnitude spectrum is indicated with Xt, f . X̂t, f , is also having the noisy
speech phase values to recover the pure speech.

2.2 Architecture of the ProposedMode

TheproposedTFAMSCUNetmodel is shown inFig. 1.Amulti-scale sub-convolutional
encoder and decoder, central layers, and an output layer comprise the TFAMSCUNet
model.

The proposed model’s input is the magnitude spectrum of noisy speech ‖Yt, f ‖,
which produces enhanced clean speech in the T-F domain ‖St, f ‖. The multi-scale
subconvolutional encoder (MSCE) contains an input layer, a bottleneck layer, a
time-frequency attention block, and a multi-scale convolution block. In a multi-scale
subconvolution block (MSB), there are seven different sub-convolutions with different
kernel sizes to extract the features. A features calibration block (FCB) is followed by
an MSB. It allows the network to be selective when utilizing these rescaled features
by assigning different weights. Each FCB output is passed through the TFA block.
The novel TFA architecture extracts significant frequency, time, and channel infor-
mation from the input. The multi-scale subconvolutional decoder (MSCD) block is a
mirror version of the MSCE block. The output of the MSCE block is fed to the central
layer. The central layer contains an FC layer and two Bi-GRU. After processing is
completed in the central layer, the output is fed into the MSCD block. Additionally,
skip connections are used to improve the flow of information between the MSCE and
MSCD blocks. The stride value is (1,2) in all layers of MSCE and MSCEs, except the
output layer. The stride value i.e., (1,1) is fixed in the output layer.

2.3 Multi-scale Subconvolutional Block

During CNN training, a high-level feature can be affected by the receptive field. Local
information can be extracted from a small receptive field, while contextual information
can be extracted froma large receptivefield [38]. Traditionally,CNNsuse afixedkernel
size, which balances the extraction of local and contextual information. A multi-scale
subconvolutional block (MSB) addresses this limitation by capturing information on
different scales and generating multi-scaled features.

In the top of Fig. 2 shows the MSB architecture. To capture information at varying
scales, MSB uses different convolutional operators of different sizes on the encoder
side. Small kernel sizes of convolutional operators can capture the local dependency
between adjacent T-F points in the short-duration speech. By employing the smallest
kernel size (1,2), two adjacent T-F points can be extracted as features. Feature extrac-
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Fig. 1 Proposed TFAMSCUNet model architecture

tion from the long-duration speech is possible through convolutional operators with
large kernel sizes. In comparison to smaller kernels, these features contain contextual
information. After each convolutional operator, layer normalization and LReLU [22]
operations are performed. Then, as shown in Fig. 2, we concatenate the outputs of
each convolutional operation to produce the input for the next steps. The multi-scale
deconvolutional block is similar to the MSB, but instead of convolutional operators,
it uses deconvolutional ones.
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Fig. 2 Architecture of multi-scale convolutional and features calibration blocks

MSB contains m subconvolutional blocks. Each one has the same amount of chan-
nels but distinct kernel sizes are used to extract the features. X and K represent MSB
input and output, respectively. The output K = [k1, k2, .., km] represents the mth 2-D
subconvolutional block that has different sized kernel.

2.4 Features Calibration Block

At the bottom of Fig. 2, a feature calibration block (FCB) is introduced after the
MSB. The calibration coefficients are extracted by using two criteria: determining
the nonlinear relationship within the multi-scaled features and assigning a relatively
higher weight to speech components and a lower weight to noise components within
the feature. In order to meet these criteria, we use FC layers, sigmoid (σ ), and LReLU
activation units. The work of FCB is

FC1m = W1m � kn + B1m (4)

Am = Max[0, FC1m] (5)

FC2m = W2m � Am + B2m (6)
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Rn = eFC2m

eFC2m + J
(7)

where W and B indicate weight and base parameters. Equations (4) and (6) indicate
the fully connected layers FC1m and FC2m operations. In Eq. (7), we divide FC2m
element-wise as well as apply the exponential function (e). The calibration coefficient
for a mth scaled feature is contained in a vector Rm . The size of J= [1,1,...,1] is the
same as FC2m . Based on empirical evidence, the LReLU [24] function is chosen as
Eq. (5), used to find the non-negative constraint. Sigmoid is a gating function that
is inspired by the success of gating to control the flow of information and assigns
different weights for speech and noise components. As a result of the rescaling, the
nth feature is as follows:

Pm = km � Rm (8)

The rescaled MSB features are indicated with P = [P1, P2, ..., Pm]. The residual
learning [9] takes place inside the FCB layer through a deep skip connection. As a
result of residual learning, no additional parameters are introduced. Mathematically,
the FCB output is equal to P. By using residual learning and activation, the FCB output
is

Output = Max[0, K + P] (9)

2.5 Time-Frequency Attention

The TFA architecture extracts significant frequency, time, and channel information
from the magnitude spectra of input noisy speech. The TFA architecture allows a
much higher degree of computing power to be dedicated to this small but critical part
of the data. Figure3 shows the TFA model architecture. TFA uses the output of the
FCB rescaled feature set as its input, then refines it using the refined features set. Three
sub-modules are included in TFA: the channel attentionmodule (CAM), the frequency
attention module (FAM), and the time attention module (TAM). With CAM, general
information about channel importance is extracted from an input features set based on
the inter-channel relationship between features. The TAM focuses on where the time
information is most relevant to the channel attention refined feature map, while the
FAM focuses on where the frequency information is most relevant.

The input of TFA is F ∈ BH×W×C which is the output of previous convolutional
layers. Here C indicates the channels, W is the width, and H is the height. In TFA,
the input features set is first passed through the CAM, which is indicated with Mc.
CAM produces the refined channel features set Fc. Then, at a time, TAM and FAM are
applied to Fc, which is indicated by Mt and M f , respectively. After performing the
parallel operation, TAM provides the refined time features set Ft and FAM provides
the refined frequency features set Ff . With the concatenation operation, both feature
sets, Ff and Ft are combined. At the final stage, the concatenated features are passed
through a 1 × 1 sized convolutional layer to produce the final refined output features
set F̂ ∈ BH×W×C , which is considered as input to the next layers.
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Figure 3 shows the detailed structure of TAM, FAM, and CAM. The global max
pooling (GMP) and global average pooling (GAP) operations are used in CAM to
generate two distinct feature sets from the input feature set F .The feature sets are fed
into a sharedmulti-layered perceptron (MLP)withC/8 andC hidden connected layers.
The shared MLP network outputs are added with an element-wise addition operation.
In the end, the sigmoid activation function (σ ) is used to produce the channel attention
features set Mc(F) ∈ B1×1×C . By multiplying the Mc by the input features set F , the
refined channel features Fc are obtained. The operation of CAM is defined as:

Mc(Ft ) = σ [MLP(GAP(F)) + MLP(GMP(F))] (10)

The TAM and FAM have similar structures. TAM concentrates on the input spectra
of the time axis, and FAM concentrates on the input spectra of the frequency axis.
The refined channel features set is taken as an input to TAM and FAM. In TAM,
first, perform average pooling (AP) on Fc along the frequency axis to produce the
time features Ft . Next, apply the GAP and GMP to Ff and then concatenate both
outputs. Thereafter using cascaded three convolution layers CNV3×3

3 with kernel size
is 3× 3 and a sigmoid function (σ ) to produce the time attention set features Mt (Fc).
By multiplying the Mt by the input features set F , the refined time features Ft are
obtained. The operation of TAM is defined as:

Mt (Fc) = σ [CNV3×3
3 (GAP(Ft ) + GMP(Ft ))] (11)

Unlike TAM, FAM first performs average pooling on Fc along the time axis to
produce the frequency features Ff , and then performs the same operations like in
TAM to produce the frequency attention feature sets M f . By multiplying the M f by
the input features set F , the refined frequency features Ff are obtained. The operation
of FAM is defined as:

M f (Fc) = σ [CNV3×3
3 (GAP(Ff ) + GMP(Ff ))] (12)

Concatenated the refined time (Ft ) and frequency (Ff ) attention features are passed
through a 1 sized convolutional layer to produce the final refined output features set
F̂ ∈ BH×W×C .

2.6 Bottleneck Convolution Layers

Asper the practical aspect ofmulti-scale subconvolutional encoder anddecoder blocks,
there is a problem with concatenating the multi-scale features, which would increase
the dimension of the features and increase the computational cost. As a result, we
need a structure that can preserve the information while minimizing complexity (such
as dimensions). Based on embedding techniques that provide sufficient information
about relatively large patches in low-dimensional embeddings [34, 35], we incorporate
bottleneck convolution layers in our TFAMSCUNet model. Following layer normal-
ization and LReLU, the bottleneck convolutional layer utilizes (1,1) kernels and 64
channels. According to Fig. 1, it appears before the last convolutional encoder layer
and the first in the decoder layer.



5694 Circuits, Systems, and Signal Processing (2024) 43:5682–5710

2.7 Central Layers

LSTM is used in the CRN method to track long-term temporal interdependency.
According to [20], SE performance is improved by utilizing future frames. As result,
Bi-GRUs are used to represent the long-term interdependency between the past,
present, and future temporal frames in ourwork. In comparison,Bi-GRUperforms sim-
ilarly to Bi-LSTM algorithms [2, 4, 15], but has a parameter efficiency advantage. The
dimension would inevitably increase as a result of the multi-scaled sub-convolutional
blocks being combined. Therefore, a method for keeping the information while also
reducing the size and computing cost must be developed. We chose a fully connected
(FC) layer to solve this because it consists of fewer parameters than an RNN, thereby
reducing the dimension of the FC layer’s output compared to the output of the encoder
layer.

2.8 Output Layer

As shown in Fig. 1, the skip connection is used to add input to the output layer. From the
magnitude of the noisy mixture input and the flow of the previous layer’s information,
the output layer can predict clean speech. There are seven sub-2D deconvolution
layers in the output layer, and each sub-layer has a different kernel size. As a result of
concatenating and summing the scaled features, an output matrix with the same size as
the input matrix is generated. In this way, the output layer utilizes local and contextual
information. In the output layer, the stride size is set to (1,1). Layer normalization and
linear activation are followed.

3 Experimental Result Analysis

3.1 Datasets

Weuse theCommon Voice [23] corpus to test our system,which is a publicly available
voice dataset powered by the voices of volunteer contributors around theworld. People
who want to build voice applications can use the dataset to train machine learning
models. The database contains 1.6 million utterances from 84659 speakers. From that,
we select the English corpus and randomly choose 5000 utterances for the training set
and 1000 utterances for the validation set, respectively. The test set is also taken from
CommonVoice,which consists of 1000utterances.Webuilt training andvalidation sets
using 125 different types of noise and varying signal SNR values from − 5 to +5dB.
Clean words, noise, and SNR are all chosen at random in each mixed procedure. There
are 50,000 training and 4000 validation utterances made in total.

Two test sets are created, one set used for seen noises and the second for unseen
noises, to determine the model’s noise generalization capability. The seen noises are
collected from NOI Z EUS [20], consisting of Street, Restaurant, and Babble noises.
The unseen noises are Train, Airport, and Exhibition hall noise. Three SNR levels are
used to test the noise mixture, i.e., − 5 dB, 0 dB, and 5 dB.
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Speech enhancement performance is measured using the following metrics: signal-
to-distortion ratio (SDR) [41], perceptual evaluation of speech quality (PESQ) [29],
and short-time objective intelligibility (STOI) [36]. The SDR is derived from the
estimated speech SDR value minus the noisy mixture SDR value. A PESQ score
ranges from −0.5 to 4.5, indicating the quality of speech perception. STOI measures
the quality of human speech intelligibility and ranges from 0 to 1. Higher values
indicate better enhancement performance.

3.2 Experimental Setup and Baseline Models

Each utterance is resampled at 16 kHz. In this model, the input is the time frame, with
a hop length is 256 and a rectangle window length is 512. Adam[16] optimizer, trained
over 50 epochs for TFAMSCUNet, has an initialized learning rate of 0.01. The batch
size at the utterance level is set to 16 throughout each epoch.

TFAMSCUNet model performance is compared with eight baseline models:
skip connections with DNN (SDNN) [39], MRCE [6], CRN [37], TCNN [27],
DCCRN [12], MCGN [46], MASENet [47], SADNUNet [48],TFA-S-TCN [13], U-
Transformer+FAT [18], IW-Minimax [17].

3.3 Ablation Study of TFAMSCUNet Model

Table 1 shows an ablation study of the proposed model. The performance of the pro-
posed model is evaluated in terms of SDR, STOI, and PESQ metrics. Here, the U-Net
is used as a baseline model to compare the performance of our proposed TFAMS-
CUNet model. The U-Net is a basic encoder-decoder model, having convolutions and
deconvolutions with the same kernel size. Additionally, we increased the number of
channels in U-Net to match TFAMSCUNet in terms of parameters, and the remaining
configurations are used as before. The SDR, STOI, and PESQ values of U-Net were
significantly improved over the noise mixture.

Table 1 Ablation study of the proposedmodel is shown in terms of averaged SDR, STOI, and PESQmetrics

Model Trainable parame-
ters (Millions)

SDR (dB) STOI PESQ

Noise Mixture – 3.96 54.21 1.37

UNet (N=4) 4.58 4.31 62.29 1.52

MCBNet 15.2 6.45 70.63 1.77

MCBNet+FCB 20.25 7.74 74.47 1.87

MCBNet+FCB+BNC 15.5 7.58 71.26 1.84

MCBNet+FCB+BNC+CL 21.03 7.81 79.64 1.99

MCBNet+FR+CL+BNC+TFA
(Proposed method)

10.12 9.53 81.04 2.39

The proposed model is indicated in the BOLD Italic text. N indicated the depth of UNet
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Next, we replaced the UNet encoder convolutions and decoder deconvolutions
with MCB, which we named MCBNet. The MCB contains seven subconvolutional
layers with the same size and different kernel sizes. MCBNet provides a significant
improvement compared to UNet, i.e., 2.14 in SDR, 8.34 in STOI, and 0.25 in PESQ.
The computational cost is higher because the trainable parameters aremuch larger than
UNet. Next, the FCB is incorporated into MCBNet. FCB acts as a gating function to
control the flow of information. The FCB model assigns different weights to speech
and noise components, which can help in the reconstruction of clean speech from the
noisy mixture. MCBNet+FCB is more effective than MCBNet alone, and it shows
performance improvement, i.e., 1.29 in SDR, 3.84 in STOI, and 0.10 in PESQ. FCB
increases the trainable parameters a little more, which increases the computational
cost.

Next, bottleneck convolution (BNC) layers are incorporated before the last convo-
lutional encoder and the first decoding layer. It compresses the dimensions of features
and retains the required information with a small amount of loss. Using BNC, the
trainable parameters are reduced, and the computational cost is low. By incorporating
BNC, the model’s performance is slightly reduced compared to MCBNet+FCB.

Next, the central layers (CL) are incorporated between the MCBNet encoder and
decoder. The fully connected layer is used to minimize encoder output dimensions.
The bottleneck and FC layers help capture global information from the mixture. The
bidirectional GRU layers are capable of capturing the interdependency relationships
between the past, present, and future frames. As a result, model performance improved
by 0.23 in SDR, 8.38 in STOI, and 0.15 in PESQ.

Next, TFA is incorporated into MSBNet+FCB+BNC+CL. TFA produces the
refined feature set from the multi-scale feature set. TFA extracts useful channels,
frequencies, and times from the multi-scale feature set and improves performance. In
TFA, channel attention is first performed to learn weights representing the channels’
importance in the input feature map. This is followed by frequency and time atten-
tion mechanisms that are performed simultaneously, using learned weights, to capture
both frequency and time attention. By incorporating TFA, the model parameters are
reduced to 10.12 million. The model performance also improves significantly, i.e.,
1.72 in SDR, 1.40 in STOI, and 0.40 in PESQ.

3.4 Objective Comparison of Baseline Models Under Seen Noises

The SDR, STOI and PESQ results are presented in Tables 2, 3 and 4 for both the base-
line and proposed methods in real-world noise. The speakers used in testing are seen
in the training data. The noises used in testing include Babble, Street, and Restaurant.

Based on all compared methods, SDNN produces the lowest enhancement perfor-
mance with an average of 5.06 dB of SDR, 72.72% of STOI, and 1.98 PESQ. As
a result, SDNN is still insufficiently effective. The MRCE outperforms the SDNN
slightly since it uses a multi-resolution convolutional encoder-decoder and shows a
slight increase in SDR, STOI, and PESQ over the SDNN. CRN achieves 5.63 dB SDR,
75.33% STOI, and 2.16 PESQ, all of which are significantly higher than SDNN and
MRCE. Due to its ability to capture local spatial patterns, CRN can make use of the
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T-F structure of magnitude spectra in its input. Additionally, LSTM layers incorporate
past and current temporal frames into the CRN to exploit temporal dependency. The
limitation of CRN is that it has mor e trainable parameters. Each LSTM requires four
linear layers (MLP layer) per cell to run at each time step. Linear layers require large
amounts of memory bandwidth to be computed. During the training, LSTM faces the
“vanishing gradient” problem.

With dilated convolution layers, the TCNN performs better than the CRN. The
TCNN model generates 5.89 dB of SDR, 76.95% of STOI, and 2.32 PESQ values
on average. Because it uses a series of 1D causal and dilated convolutions to capture
long-range speech contexts from the past. This demonstrates that the TCNN model
performs better compared to the SDNN, MRCE, and CRN models. To cover the
more receptive area, TCNN requires more 1D-causal and dilated convolutions, which
increases computation cost and complexity.

The DCCRN model generates 6.3 dB of SDR, 77.62% of STOI, and 2.41 PESQ
values on average. The DCCRN model uses a complex convolutional encoder and
decodermodel with LSTMand dense layers.With a dense layer, the receptive area will
be increased, and the large temporal dependencies will be extracted from the complex
encoder-decoder structure. As a result, when compared to all previous models, the
DCCRN model outperforms them all. The limitation of DCCRN is that kernel sizes
increase exponentially in dense blocks, which can lead to aliasing.

The MCGN model produces an average of 6.69 dB of SDR, 78.41% of STOI, and
2.48 PESQvalues. Local and contextual features can be extracted from the signal using
multi-scale recalibration convolutional layers. In the recalibration network, gating is
used to control information flow between layers, thus improving speech quality. The
limitation ofMCGN is that it hasmore trainable parameters (around 77million), which
require large amounts of memory bandwidth to be computed.

MASENet is a combination of convolutional multi-scale and temporal convolu-
tional attention (TCA) models to extract local and global feature information from
speech. MASENet encoder block group outputs are recalibrated by the attention block
and emphasize informative details. As a result, the model generates 7.05 dB of SDR,
79.25% of STOI, and 2.59 PESQ values on average. The limitation of the model is that
more features are reduced based on temporal channel attention, which affects speech
intelligibility.

The SADNUNet model generates 7.42 dB of SDR, 79.91% of STOI, and 2.74
PESQ values on average. SADNUNet is a nested UNet encoder-decoder model. Each
encoder and decoder use the dense block to extract local and contextual features from
speech. All encoder group outputs are recalibrated by the self-attention (SA) block,
emphasizing informative details as well as reducing unwanted features. A limitation
of this model is that the dense block increases the kernel size exponentially to cover
large receptive areas; as a result, the large kernel size increases, leading to aliasing.

The IWmethod generates 7.92 dB of SDR, 80.18% of STOI, and 2.76 PESQ values
on average. The shared weights between encoder and decoder and source to target are
removed. Themodel is trainedwithworst-caseweights and the loss isminimized using
the min-max method. Removing the skip connections between source and target may
result in a loss of the original speech information, speech quality and intelligibility.
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The U-transformer model generates 8.35 dB of SDR, 80.48% of STOI, and 2.78
PESQvalues on average. Themodel assumes 4–8kHz as unvoiced speech and 0–4kHz
as voiced speech. The FAT uses three multi-head attentions for time attention, a higher
frequency band and a lower frequency band. The FAT focuses only on 0–4kHz, but
we cannot estimate the noise content in either the higher or lower frequency bands.

A multi-stage SE framework generates 8.77 dB of SDR, 80.76% of STOI, and
2.80 PESQ values on average. The model using a multistage structure in which
time-frequency attention (TFA) blocks are followed by stacks of squeezed tempo-
ral convolutional networks (S-TCN) with exponentially increasing dilation rates. This
model is shown to outperform self-attention based temporal convolutional networks
and convolutional recurrent network (CRN) baseline models with less computational
complexity. The limitation of the above model is its sequential nature, i.e., the per-
formance is highly dependent on its previous results. As a result of such cascaded
dependencies, the second stage of the model should be able to correct the estimation
error left over from the previous stage.

In comparison with the baseline methods, the proposed TFAMSCUNet model
achieves, on average, 9.96 dB of SDR, 81.95% of STOI, and 3.05 PESQ, which are 1.2
dB, 1.18%, and 0.25 higher relative to the multi-stage SE framework. The magnitude
spectrum of the input is encoded at different scales by TFAMSCUNet. Small kernel
sizes of sub-convolutional layers capture local interdependency. Sub-convolutional
layers with a large kernel size are employed to determine the interdependency between
larger regions. By using small and large kernel sizes, the receptive field of TFAMS-
CUNet is enlarged, and the different scaled features are assigned different weights.
Additionally, TFA extracts useful channels, frequencies, and times from the multi-
scale feature set, which produces a refined feature set that improves performance.
In TFA, channel attention is first performed to learn weights representing the chan-
nels’ importance in the input feature set, followed by frequency and time attention
mechanisms that are performed simultaneously, with learned weights, to capture both
frequency and time attention. As well, central layers are introduced to link the multi-
scale encoder and decoder, which can exploit the interdependence between the past,
present, and future frames. TFAMSCUNet is also used to learn residual mapping
relationships from the raw data.

3.5 Objective Comparison of Baseline Models Under Unseen Noises

The results are presented in Tables 5, 6 and 7 for both the baseline and proposed
methods in real-world noise. The speakers used in testing are unseen in the training
data. The noises used in testing include Train, Airport, and Exhibition hall.

The skip connection in SDNN boosts enhancement performance over the noisy
mixture. The SDNN produces the enhancement performance with an average of 4.91
dB of SDR, 70.44% of STOI, and 2.02 PESQ. As a result, SDNN is still insufficiently
effective. The MRCE outperforms the SDNN slightly since it uses a multi-resolution
convolutional encoder-decoder and shows a slight increase in SDR, STOI, and PESQ
over the SDNN. MRCE’s performance is limited by shallow structures and small
channel numbers. Moreover, large-sized filters are more expensive to compute. CRN
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achieves 5.76 dB SDR, 73.77% STOI, and 2.27 PESQ, all of which are significantly
higher thanSDNNandMRCE.TheCRNmodel hasmore trainable parameters because
it uses LSTM. During the training, LSTM faces the “vanishing gradient” problem.

With dilated convolution layers, the TCNN performs better than the CRN. The
TCNN model generates 6.12 dB of SDR, 75.11% of STOI, and 2.47 PESQ values
on average. It uses a series of 1D causal and dilated convolutions to capture long-
range speech contexts from the past. TCNN model needs more 1D-causal and dilated
convolutions to cover large receptive, which leads to computation cost and complexity.

The DCCRN model generates 6.49 dB of SDR, 75.76% of STOI, and 2.56 PESQ
values on average. The DCCRN model uses a complex convolutional encoder and
decoder model with LSTM and dense layers. As a result, when compared to all pre-
vious models, the DCCRN model outperforms them all. The dense block in DCCRN
increases the kernel sizes exponentiallywhich leads to increases in the trainable param-
eters and aliasing effect.

The MCGN model produces an average of 6.75 dB of SDR, 76.78% of STOI, and
2.67 PESQvalues. Local and contextual features can be extracted from the signal using
multi-scale recalibration convolutional layers. In the recalibration network, gating is
used to control information flow between layers, thus improving speech quality. The
limitation ofMCGN is that it hasmore trainable parameters (around 77million), which
require large amounts of memory bandwidth to be computed.

MASENet is a combination of convolutional multi-scale and temporal convolu-
tional attention (TCA) models to extract local and global feature information from
speech. As a result, the model generates 7.09 dB of SDR, 77.16% of STOI, and 2.75
PESQ values on average. The limitation of the model is that more features are reduced
based on temporal channel attention, which affects speech enhancement performance.

The SADNUNet model generates 7.35 dB of SDR, 78.26% of STOI, and 2.80
PESQ values on average. SADNUNet is a nested UNet encoder-decoder model. Each
encoder and decoder use the dense block to extract local and contextual features from
speech. A limitation of this model is that the dense block increases the kernel size
exponentially to cover large receptive areas; as a result, the large kernel size increases,
leading to aliasing.

The IWmethod generates 8.27 dB of SDR, 77.81% of STOI, and 2.86 PESQ values
on average. The shared weights between encoder and decoder and source to target are
removed. Themodel is trainedwithworst-caseweights and the loss isminimized using
the min-max method. Removing the skip connections between source and target may
result in a loss of the original speech information, speech quality and intelligibility.

The U-transformer model generates 8.6 dB of SDR, 78.13% of STOI, and 2.91
PESQ values on average. The model assumes 4–8kHz as unvoiced speech and 0–
4kHz as voiced speech. The FAT uses three multi-head attentions for time attention, a
higher frequency band and a lower frequency band. The FAT focuses only on 0–4kHz,
but we cannot estimate the noise content in either the higher or lower frequency bands.

A multi-stage SE framework generates 9.09 dB of SDR, 78.51% of STOI, and
2.97 PESQ values on average. The model using a multistage structure in which
time-frequency attention (TFA) blocks are followed by stacks of squeezed tempo-
ral convolutional networks (S-TCN) with exponentially increasing dilation rates. This
model is shown to outperform self-attention based temporal convolutional networks
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and convolutional recurrent network (CRN) baseline models with less computational
complexity. The limitation of the above model is its sequential nature, i.e., the per-
formance is highly dependent on its previous results. As a result of such cascaded
dependencies, the second stage of the model should be able to correct the estimation
error left over from the previous stage.

In comparison with the baseline methods, the proposed TFAMSCUNet model
achieves, on average, 9.95 dB of SDR, 80.49% of STOI, and 3.26 PESQ, which
are 0.86dB, 1.98%, and 0.29 higher relative to the multi-stage SE framework.
The magnitude spectrum of the input is encoded at different scales by TFAMS-
CUNet. Small kernel sizes of sub-convolutional layers capture local interdependency.
Sub-convolutional layers with a large kernel size are employed to determine the inter-
dependency between larger regions. By using small and large kernel sizes, the receptive
field of TFAMSCUNet is enlarged, and the different scaled features are assigned differ-
ent weights. Additionally, TFA extracts useful channels, frequencies, and times from
the multi-scale feature set, which produces a refined feature set that improves perfor-
mance. In TFA, channel attention is first performed to learn weights representing the
channels’ importance in the input feature set, followed by frequency and time atten-
tion mechanisms that are performed simultaneously, with learned weights, to capture
both frequency and time attention. As well, central layers are incorporated to link the
MSCE and MSCD, which can exploit the interdependence between the past, present,
and future frames. TFAMSCUNet is also used to learn residual mapping relationships
from the raw data (Tables ).

3.6 Convergence Lines of All Models

In Fig. 4, we compare the MSEs of the baseline methods with those of TFAMS-
CUNet. The results show that TFAMSCUNet converges faster compared to other
baseline methods. After 20 epochs of training, the TFAMSCUNet model offers the
lowest MSEs. According to this, a TFA with multi-scale sub-convolution features and
calibration model representation should improve the algorithm’s convergence speed
and enhancement performance.

3.7 Multi-kernel Analysis

Our next experiment analyses how performance is affected by kernel size with unseen
noises. With kernel sizes ranging from 1×1 to 10×10, the experiments exploit dif-
ferent receptive fields in the T-F domain. Detailed experimental results are presented
in Table 8 in terms of SDR, STOI, and PESQ. Performance increases as the kernel
size increases, e.g., from 1×2 to 7×7, but then begins to saturate at 11×11. Despite
this, there is only a small performance difference (Table 8).

A larger kernel size, such as 7×7, can provide a larger receptive field, which gener-
ates the T-F feature map from a larger region (i.e., contextual information), which may
be effective in reducing noise. Conversely, a smaller kernel size, like 1×2 captures
the feature map from a smaller region (i.e., local information), which is thus effective
in maintaining the detailed T-F structure. These results seem consistent with those
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Fig. 4 Convergence plot of all models on the testing set

Table 8 Multi-kernel size
analysis

Kernel size SDR STOI PESQ

1×2 10.43 71.06 1.59

2×2 10.61 71.14 1.61

2×3 10.65 71.48 1.62

3×4 10.76 71.79 1.63

4×5 10.94 72.12 1.65

5×6 11.05 72.67 1.67

6×7 11.14 72.94 1.69

7×7 11.32 73.34 1.75

10×10 11.41 73.16 1.73

Multi-Kernel 12.03 75.32 2.01

described in [15, 22]. Contrary to BGRU layers, which capture time dependency (i.e.,
time domain), 2D-convolutional layers allow for frequency and time expansion.

As shown in Table 8, performance is also dependent on the choice of kernel size.
When the kernel size is larger than 7×7, performance may decrease in terms of STOI
and PESQ. Parallelization of multi-kernel allows the model to capture features at
different scales, thereby exploiting both local and contextual information and, as in our
method, increasing performance with unseen noises. The smoothing effect becomes
strongerwith larger kernel sizes, therebymitigating noise,whereas smaller kernel sizes
preserve finer spectrum structures. With a bank of kernels, the model has a greater
probability of capturing and differentiating features from noise and speech, thereby
enhancing speech enhancement.
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4 Conclusion

In this paper, a novel framework has been proposed for single-channel speech enhance-
ment. Several novel strategies were incorporated into the proposed TFAMSCUNet
model to improve the performance of speech enhancement. First, we incorporated
MSCUNet. The subconvolutional encoder and decoder model uses different-sized
kernels in each convolutional layer and produces features at various scales. Therefore,
it captures the interdependency between local and global contextual informationwithin
the speech. Additionally, a feature calibrationmodel is used after eachmulti-scale sub-
convolution block. It acts as a gating function to control the flow of information. The
feature calibration model assigns different weights to speech and noise components,
which can help in the reconstruction of clean speech from the noisy mixture. Second,
we incorporate bottleneck convolutional and deconvolutional layers. It can reduce
information flow within the proposed model while retaining information. Thirdly, we
incorporated TFA after the feature calibration model. It extracts useful channels, fre-
quencies, and times from the multi-scale feature set and improves performance. IN
TFA,Channel attention is first performed to learnweights that represent the importance
of the channels in the input feature map, followed by frequency and time attention
mechanisms that are performed simultaneously, using learned weights, to capture both
frequency and time attention. Fourthly, we incorporate the central layers. The fully
connected layer is used to minimize encoder output dimensions. The bi-directional
GRU layers are more capable to capture past, present, and future frames relationship.
Finally, we incorporated the output layer. The multi-scale outputs were summed to
accelerate convergence. For evaluating the efficacy of the proposed method, unseen
speakers with seen and unseen noises were used. Compared with state-of-the-art base-
line methods, the proposed method’s performance is significantly improved.
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