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Abstract
Anchored neighborhood regression (ANR) single-image super-resolution (SISR)
method demonstrates great superiority in speed and performance. However, ridge
regression adopted by ANR didn’t take the prior knowledge of regression parameters
into account, which easily leads to over-fitting and is not robust to noise. To mitigate
this problem, a Bayesian ANR method is proposed for SISR, called B-ANR. B-ANR
uses sparse Bayesian regression model to build the mapping relationship between
the low resolution (LR) image patch and its neighbors. The parameters of Bayesian
regression model as well as its variance are estimated using maximum a posterior.
Since our proposed B-ANR is deduced in the probabilistic framework, it has stronger
generalization performance and robustness to noise. Experimental results verify that
our method is superior to ANR in performance.

Keywords Image super-resolution · Neighbor embedding · Bayesian regression ·
Marginal likelihood maximization

1 Introduction

The primary purpose of single image super-resolution (SISR) is to restore a high-
resolution (HR) image from a single low-resolution (LR) image. Since HR image
contain abundant high-frequency detailed information, it can facilitate many com-
putervision tasks. Image SR techniques has been extensively adopted to enhance the
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image’s resolution to overcome the limitation of low-quality imaging devices [24, 27,
29]. For example, the LR images such as positron emission tomography (PET) images
[16], magnetic resonance images (MRI) [3], can be reconstructed using image SR
technique to improve its resolution, leading to an improved diagnosis accuracy.

Due to it’s ill-posed characteristic, image SR still remains a challenging problem.
Over the past few decades, many researchers have conducted extensive studies on SR
and a large amount of methods have been proposed in the literature. These approaches
can be categorized into two broad categories, interpolation-based SR methods and
learning-based SR methods.

Interpolation-based SR methods [15, 20, 23, 35] use different interpolation
approaches, such as nearest neighbor interpolation, bilinear and bicubic interpola-
tion, to approximate the unknown pixels in the HR grid. Interpolation-based methods
are difficult to recover lost high-frequency details due to their low-pass filtering char-
acteristics, resulting in excessively smooth HR images. Even more, jagged artifacts
tend to arise at the edges of the reconstructed HR image.

Freeman et al. [11] believed that it is possible to recover lost details in the LR
image by learning from an external training set and proposed an example-based
SR method. The basic idea of example-based SR method is to establish a mapping
relationship between HR and LR image patches. Following Freeman’s idea, many
learning-based SR methods had been proposed, which can be divided into three cate-
gories: neighborhood embedding (NE) based methods, sparse coding based methods
and regression-based methods. NE SR method was presented by Chang et al. in [1],
which assumes that the two manifolds in the HR and LR space have the same geomet-
ric structure, and the target LR patch can be represented by a linear combination of its
neighborhood patches. NE SRmethod can recover a HR imagewith less complexity of
computation, however it’s SR performance still remains great room for improvement.
Li et al. [21] proposed an neighbor embedding SR method based on local preserva-
tion constraints (LPC), which explicitly emphasize the local consistency on the two
manifolds, resulting in reduced blurring and artifacts. Gao et al. [12] divided the entire
training set into several subsets using histogram of gradient clustering (HOG), and
then, the method finds neighbors for a given patch in the corresponding subset using
Robust-SL0 algorithm. Chen et al. [2] use kernel trick to learn the nonlinear mapping
between LR and HR image patches. Yu et al. [38] presented an improved NE method
by enlarging neighborhood range to all neighbors.

Another class of learning-based SRmethods is sparse coding basedmethods, which
was originally proposed by Yang et al. [36]. The sparse coding based SR (ScSR)
method encodes the LR or HR image patches in the training set as a linear combi-
nation of a LR or HR dictionary, respectively. Under the premise that the LR and
HR patches have the same sparse representation coefficients, the target HR patch
for a given LR patch can be reconstructed by linearly combining the sparse repre-
sentation coefficients of the given LR patch and HR dictionary. ScSR method has
demonstrated it’s excellent performance and possesses robustness to noise. However,
several disadvantages are still associated with ScSR. The sparse coding of LR patch
is time-consuming. To speed up the sparse coding process, Zeyde et al. [39] proposed
to use principal component analysis (PCA) and orthogonal matching pursuit (OMP)
for LR patches sparse coding. As well, a coupled dictionary method [37], Bayesian



Circuits, Systems, and Signal Processing (2024) 43:5309–5327 5311

dictionary [14] learning method had also been proposed for addressing this problem.
In addition, the hypothesis that the LR and HR patches have the same sparse rep-
resentation coefficients is not fully reasonable, which leads to performance drop. In
[6], Dong et al. incorporate the difference of sparse coefficients between LR and HR
features into the sparse coding of process LR patches.

Regression-based methods also play an essential role in learning-based methods.
Kim et al. [18] first adopted the kernel ridge regression to learn the mapping relation-
ship between LR and HR patches. The sparse solution is derived by combining kernel
matching pursuit with gradient descent. To acquire sharper edge information in recon-
structed HR image, Tang et al. [28] utilized multiple matrix-valued kernel regression
for nonlinearmapping. In [22], the linear kernel regression is employed to establish the
regression relationship between HR image and fuzzy HR image patches. Furthermore,
a kernel regression method with an adaptive Gaussian kernel was proposed in [26]. To
overcome over-fitting problem, Ogawa et al. [25] presented a new SR method which
combines Gaussian mixture model (GMM) and partial least squares (PLS) regression.
The Gaussian process regression (GPR) [13] is introduced into image SR to improve
the generalization ability of regression models.

Apart from the those learning-based SR methods mentioned above, Timoft et al.
[31] proposed ANR for image SR. This method combines NE method with sparse
coding method, which exhibits outstanding SR performance. So far, many improved
ANRvariants have been proposed.With the aimof exploring the nonlinear relationship
between the LR and HR spaces, Jiang et al. [17] exploited the local geometric prior to
regularize the neighborhood regression, and meanwhile, the quality of reconstructed
HR image is further enhanced using non-local self-similarity. In [40], MI-KSVD
method is introduced into dictionary training, and the neighborhoods of a given LR
patch is found according to the coherence between dictionary atoms and training sam-
ples. In [41], a modified ANRmethod was proposed using clustering and collaborative
representation, in which the whole training set is divided into 1024 clusters using k-
means clustering algorithm and each center of clustering represents an atom. In [42],
Zhang et al. introduced a collaborative representation cascade (CRC) method to learn
the multilayered mapping model between the LR and HR feature space.

With the continuous development of deep learning, more and more researchers
have started to apply deep learning to SR reconstruction. Deep learning-based SR
methods extract the high-level abstract features from LR/HR images in the train set
through multiple-layer convolutional operation and nonlinear transformations, and
then reconstruct a HR image by aggregating the extracted features. In 2014, Dong
et al. proposed an image SR method based on deep convolutional networks (called
SRCNN) [4]. After SRCNN, many deep learning models for image SR had been
proposed. To speed up the convergence of SRCNN and obtain global optimal solution,
Wang et al. introduced deep and shallow convolution networks [34] for image SR.
Tian et al. proposed a lightweight enhanced SRCNN (LESRCNN) [30], which is
more computationally frugal than SRCNN. Esmaeilzehi et al. [9] described image
SR reconstruction as a three-priority optimization problem and developed an ultra-
lightweight convolutional neural network for image SR. In [7], a new residual depth
network called ComNet was proposed to solve image SR problem. In [8], Esmaeilzehi
et al. proposed a new image restoration network, using pixel by pixel feature attention
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to calibrate the featuremaps extracted by the network.Comparedwithmost existingSR
methods, deep learning-based image SR methods have demonstrated great advantage
in performance. Though it is, the deep learning-based SR methods have a great deal
of demanding on computational resource and power. In addition, the training of deep
learning models are time-consuming.

Though ANR and its variants have demonstrated excellent performance, however,
there sill has certain disadvantages. In ANR and it’s variants, the ridge regression is
adopted to establish the relationship between the target patch and its neighbors in the
LR/HR feature space. The coefficients of the ridge regressionmodel are obtained by the
least square method. The least square is not the optimal estimator because it does not
take the prior distribution of the coefficients into account, which make it less robust to
noise and lead to over-fitting. To address the above issues, we propose a new image SR
method called B-ANR. B-ANR uses sparse Bayesian regressionmodel to establish the
mapping relationship between the LR image patch and its neighbors. The parameter’s
of Bayesian regression model and its variance are obtained by maximum a posterior,
which is more accurate than the least square. Since our B-ANR is derived in the
probabilistic framework, it performs better in terms of generalization and robustness
to noise. Experimental results verify that our approach is superior to ANR.

The remainder of this paper is organized as follows. Section 2 characterizes the
details our proposed B-ANR method, Sect. 3 presents the experimental results and
analysis, Sect. 4 discusses the advantages and disadvantages of the proposed method
and deep learning methods, and Sect. 5 derives conclusions to conclude.

2 The ProposedMethod

In this section, the proposed method is detailed explained. For the convenience of
narration, we first recall the fundamentals of ANR and then explain our proposed
B-ANR model.

2.1 Anchored Neighborhood Regression(ANR)

In [31], Timofte et al. introduced an ANR based SR method, which can be viewed
as a combination of sparse coding method and NE SR method. ANR starts from a
learned LR and HR sparse dictionary pair. ANR takes each atom d j in the learned
LR dictionary (via the method of [39]) as an anchor point. Then, one finds K nearest
neighbors Nl for anchor d j in the LR dictionary based on the correlation between the
dictionary atoms. Denotes Nl as

Nl =
{
d1l , d2l , ..., dK

l

}
(1)

Using the sameassumptions as [1], the inputLR imagepatch xt canbe approximated
as a linear combination of its neighbors Nl and the weight coefficients w, which can



Circuits, Systems, and Signal Processing (2024) 43:5309–5327 5313

be mathematically expressed as

xt = Nlw + ε. (2)

In Eq. (2), the optimal coefficients w are found by using ridge regression, that is,

min
w

‖ xt − Nlw ‖22 + λ‖w‖2 (3)

where λ is a regularization parameter controlling the balance between the reconstruc-
tion error of xt and the smoothness of w. The closed algebraic solution for ridge
regression problem (3) is

w = (NT
l Nl + λI)−1NT

l xt (4)

Then, the HR output patch can be calculated using the same weight coefficients on
HR neighborhood Nh as

yt = Nhw (5)

where yt is the HR output patch and Nh is the HR neighborhood corresponding to Nl .
Once the neighborhood is defined, an individual projection matrix P j is calculated
based on the neighborhood for each anchor d j as

P j = Nh(NT
l Nl + λI)−1NT

l . (6)

After building the projection matrix for each anchor d j , one can use the projection
matrices to super-resolve a LR image. The process is described as following. First, for
each input LR patch xi , we calculate the correlation between xi and all the atoms in
the LR dictionary as

corr j = 〈xi , d j 〉. (7)

Let

m = max
j

corr j ,

then, the m-th atom in the LR dictionary is selected as the neighbor atom of the input
LR patch xi . Then, the corresponding HR output yi patch is reconstructed using the
m-th projection matrix as

yi = Pmxi . (8)

2.2 Bayesian Anchored Neighborhood Regression

In ANR [31], ridge regression is adopted to build the relationship between the target
patch and its neighbors. The coefficients of the ridge regressionmodel are calculated by
the least squares method. From a probabilistic perspective, the least squares method is
equal to maximum likelihood estimation when the regression error follows a Gaussian
distribution. Maximum likelihood estimation does not take the parameter prior into
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Fig. 1 The block diagram of SR algorithm proposed in this paper

account, leading to less robustness to noise and over-fitting. To build an accuratemodel
to characterize the relationship between the input image patch and its neighbors,
we propose B-ANR, which introduces the prior of the weight coefficients into the
regression process. Meanwhile, we estimate the model weight coefficients and it’s
variance using maximum a posterior estimate method. The overall framework of the
proposed B-ANR algorithm is shown in Fig. 1. The following will provide a detailed
introduction to our proposed method.

Given a target LR patch xt and it’s nearest neighbors Nl , in the ANR framework,
xt can be represented as

xt =
K∑

k=1

wkdk
l + ε (9)

where ε represents mean-zero Gaussian with variance σ 2. Let w = (w1, ...wK )T

denote weight the coefficient matrix associated with the target patch, then, xt can be
written in matrix form as

xt = Nlw + ε. (10)

The likelihood function of the target vector xt could be expressed as

p(xt |w, σ 2) = (2π)−N/2σ−N exp

{
−‖ xt − Nlw ‖2

2σ 2

}
(11)

Directly estimating the weight coefficients w and variance σ 2 using maximum
likelihood easily leads to over-fitting. To solve this issue, the prior distribution of w is
incorporated into the estimation of w. The prior distribution of w is assumed to be a
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zero-mean Gaussian distribution with variance of α−1
k as

p(w|α) = (2π)−K/2
K∏

k=1

√
αk exp

(
−αkw

2
k

2

)
(12)

Using the Bayesian formula, the weight coefficients posterior p(w|xt ,α, σ 2) can
be written as

p(w|xt ,α, σ 2) = p(xt |w, σ 2)p(w|α)

p(xt |α, σ 2)
(13)

Substituting Eqs. (11) and (12) into (13), and after some manipulations, one can
get

p(w|xt ,α, σ 2) = (2π)−N/2 |�|− 1
2 exp

{
−‖ w − μ ‖2

2�

}
(14)

by ignoring the denominator of Eq. (13). In Eq. (14)

� = (A + σ−2NT
l Nl)

−1

μ = σ−2�NT
l xt (15)

with A=diag(α1, α2, ...αk). The optimal weight coefficients w∗ would be one that
maximizes p(w|xt ,α, σ 2), i.e.,

w∗ = argmax
w

p(w|xt ,α, σ 2) (16)

The optimal solution of problem (15) can be obtained by taking derivation of
p(w|xt ,α, σ 2) with w setting it to zero. Since p(w|xt ,α, σ 2) is a Gaussian func-
tion, therefore, the optimal solution of (15) is

w∗ = μ. (17)

However, in Eq. (17), the hyper-parameter α and σ are unknown. Therefore, one
shouldmake an estimation for them.This can be done using type-IImaximummarginal
likelihood procedure. The marginal likelihood is

p(xt |α, σ 2) =
∫

p(xt |w, σ 2)p(w|α)dw (18)

or its logarithm

L(α) = ln p(xt |α, σ 2) = −1

2

[
N ln(2π) + ln |C| + xT

t C−1xt

]
(19)
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where
C = σ 2 I + Nl A−1NT

l (20)

To improve sparsity and reduce computational requirements, we simplify Eq. (20)
using the samemethod as in [33], updating only a single αi rather than the entire vector
α per iteration. Rewritten C as

C = σ 2 I +
∑
k �=i

α−1
k dk

l d
kT
l + α−1

i di
l d

iT
l

= C−i + α−1
i di

l d
iT
l

(21)

where C−i is C after removing the contribution of the basis vector i . Using the Wood-
bury identity for Eq. (21), it is possible to obtain

C−1 = C−1
−i − C−1

−i N
i
l N

iT
l C−1

−i

αi + N iT
l C−1

−i N
i
l

(22)

and using the determinant identity, we get

|C| = |C−i ||1 + α−1
i N iT

l C−1
−i N

i
l | (23)

Substituting Eqs. (22) and (23) into (19), then L(α) can be written as

L(α) = L(α−i ) + 1

2

[
logαi − log(αi + si ) + q2

i

αi + si

]

= L(α−i ) + �(αi )

(24)

For the convenience of simplicity, let

si = diT
l C−1

−i d
i
l , qi = diT

l C−1
−i xt (25)

Then, the objective functionL(α) function is decomposed intoL(α−i ) and �(αi ), in
which the terms in αi are now conveniently isolated. Obviously, the unique maximum
value of L(α) is [10]

αi = s2i
q2

i − si
i f q2

i > si

αi = ∞ i f q2
i ≤ si (26)

FromEq. (26)we can determinewhich basis vectors should be included in themodel
and which ones should be excluded. Once hyper-parameters αi is updated using Eq.
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(26), the parameters qi , si μ and � are updated efficiently. As in [33], qi , si can be
updated as the following formula

Si = diT
l Bdi

l − diT
l BNl�NT

l Bdi
l (27)

Qi = diT
l Bxt − diT

l BNl�NT
l Bxt (28)

si = αi Si

αi − Si
(29)

qi = αi Qi

αi − Si
(30)

where B = σ−2 I . Here Nl and � contain only the feature vectors currently included
in the model, which is normally a very minor part of the whole K , thus reducing the
computational effort considerably.

According to the nature of the marginal likelihood function, we use Eq. (26) as the
decision criteria to add or delete the candidate nearest-neighbor features for maximiz-
ing themarginal likelihood objective function. In summary, the process of determining
the weight coefficients w is shown in Algorithm 1.

In the reconstruction phase, we assume that LR space and HR space have the same
geometry, so the resultingweight coefficientsw can be used to construct theHR image.
The HR image patch is calculated by using the HR neighborhood Nh corresponding
to the LR neighborhood Nl and the weight coefficients w. The SR reconstruction of
the image is carried out as follows:

yt = Nhw (31)

where yt is the HR output patch and Nh = (d1h , ...dK
h ) is the HR neighborhood.

Algorithm 1Maximum a posterior estimation of w

Require: target vector xt , a set of neighbors Nl .
Ensure: the weight coefficients w.
1: Initialize α and σ 2, explicitly calculate� andμ using (15), and initialize si and qi for all K basic vector

in Nl using (29), (30);
2: while not converged do
3: Select a candidate basis vector di

l from the set of all K ;

4: Define θi = q2i − si ;
5: if θ ≥ 0 then
6: αi ≤ ∞, re-estimate αi ;
7: αi = ∞, add di

l to the model with updated αi ;
8: else
9: αi ≤ ∞, delete di

l from the model and set αi = ∞;
10: end if

11: Update σ 2 according to ‖xt −Nlw‖2
(N−K+∑

i αi �i i )
(�i i is the i-th diagonal element of �)[32];

12: Compute �, μ using (15);
13: Compute sk and qk using (29), (30).
14: end while
15: Output the weight coefficients w∗ = μ.
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3 Experimental Results and Analyses

To verify the validity of the proposed method, super-resolution experiments on several
datasets are conducted. Meanwhile, the experimental results obtained by the method
of this paper are compared with those obtained by several most advanced SR methods
SR methods like Yang et al. [36], Zeyde et al. [39], ANR [31] , NE + LS, NE +
LLE [1]. We use peak signal-to-noise ratio (PSNR) and structural similarity (SSIM)
as evaluation criteria for measuring the performance of image reconstruction. PSNR
represents the ratio of the maximum possible power of a signal to the power of the
destructive noise that affects the accuracy of its representation. SSIM is a measure of
similarity between two images.

3.1 Experimental Settings

Training Set Learning-based method requires a large amount of image patch pairs for
training. In this paper, we use the same training set as Yang et al. [36], Zeyde et al. [39],
ANR [31]. We use the images in the training set as HR images and the corresponding
LR images are acquired by bicubic interpolation. We divide the HR images into HR
image patches of 9 × 9 pixel size with an overlap of 6 pixels between neighboring
patches. The size of the corresponding LR image patches is set to 3 × 3 pixels with
an overlap of 2 pixels.

Testing Set To better compare with other methods, we uniformly use Set5 , Set14
and BSD100 as test sets, including 5, 14 and 100 common images, respectively. We
perform bicubically interpolation on the images in the test set to obtain LR images for
testing and segment the LR images into LR image patches of the same size as in the
training set.

Features As the human eye is more susceptible to luminance constituents, we extract
features from the luminance channel of the image patches.Weuse the identical features
as Zeyde et al. [39] and Yang et al. [36], who started from the first- and second-order
gradients of luminance and performed PCA to reduce the dimension and project the
features into a low-dimensional subspace.

Since the features used in the LR patches are not reflective of absolute luminance,
we subtract the mean from the luminance-based feature vector for each HR patch.
When constructing the target HR image, the patches generated by the SR process are
added to the average luminance value of the corresponding LR patches.

Dictionaries In our experiments, We train the dictionaries using the same external
images as in Zeyde et al. [39]. For dictionary learning, we use the K-SVD/OMP
learning method of Zeyde et al. [39]. To facilitate qualitative comparison with other
methods, we uniformly use a dictionary of size 1024.

Neighborhoods As we are calculating weights and reconstructing them based on the
neighborhood of the input patch in the dictionary, the method of neighborhood selec-



Circuits, Systems, and Signal Processing (2024) 43:5309–5327 5319

Table 1 Performance of different methods in terms of PSNR and SSIM per image on Set5 dateset with
magnification factor ×3

Images Bicubic Yang et al. Zeyde et al. ANR NE + LS NE + LLE Ours

baby 33.91 34.29 35.08 35.13 34.95 35.06 35.22

0.9040 0.9046 0.9211 0.9226 0.9195 0.9210 0.9218

bird 32.57 34.10 34.56 34.59 34.36 34.56 34.83

0.9262 0.9399 0.9428 0.9494 0.9466 0.9482 0.9463

butterfly 24.04 25.58 25.94 25.90 25.83 25.75 26.17

0.8217 0.8620 0.8771 0.9718 0.8762 0.8706 0.8824

head 32.88 33.17 33.56 33.63 33.53 33.60 33.72

0.8004 0.8026 0.8205 0.8241 0.8201 0.8228 0.8238

woman 28.56 29.93 30.36 30.32 30.20 30.21 30.56

0.8897 0.9043 0.9177 0.9170 0.9165 0.9162 0.9152

average 30.39 31.42 31.90 31.92 31.78 31.60 32.09

0.8684 0.8827 0.8969 0.8970 0.8958 0.8958 0.8979

All methods were trained on the same images, except for Bicubic interpolation and Yang et al. [39]. (1022
atoms), which share a dictionary of 1024 atoms

tion is important. For neighborhood selection,we choose neighborhoods on the basis of
the correlation between dictionary atoms and image patches. Different sizes of neigh-
borhoods also have different effects on performance, and when comparing methods,
we choose the best neighborhood value for each method. In the learning dictionary,
the best neighborhood for NN + LS is 12, for NE + LLE [1] and ANR [31] is 40, the
best neighborhood chosen for our method is 80.

3.2 Experimental Results

Timofte et al. [31] demonstrate that for the proper set of parameters, such as feature
representation, neighborhood size, most current neighborhood embedding methods
are capable of achieving a certain quality of performance. Tables 1 and 2 display the
PSNR and the SSIM values for each test image at magnification factor ×3 for the
Set5, Set14 and BSD100 dateset. In addition to deep learning-based SR method, it is
evident that our results obtain the highest PSNR and SSIM values compared to other
methods, both PSNR and SSIM have different degrees of improvement. In Table 3,
we show the average PSNR and SSIM values for the amplification factors ×2,×3,×4
on the Set5, Set14, BSD100 datasets. With the exception of TPCNN [4], our proposed
method is the best among the others in terms of quality, with an average improvement
PSNR of 0.14 dB (BSD100, ×2) to 0.09 dB (Set5, ×2) over the ANR [31] method.
Different amplification factors of SSIM on Set5, Set14 and BSD100 data sets have an
average increase of 0.0023 compared to ANR [31].

In order to demonstrate the superior visual quality of our method compared to other
methods, we compare our method with others from a visual perspective in Figs. 2, 3,
4, 5 and 6. We select ‘butterfly’ in Set 5 and ‘baboon’, ‘zebra’, ‘foreman’ and ‘pep-



5320 Circuits, Systems, and Signal Processing (2024) 43:5309–5327

Table 2 Performance of different methods in terms of PSNR and SSIM per image on Set14 dataset with
magnification factor ×3

Images Bicubic Yang et al. Zeyde et al. ANR NE + LS NE + LLE Ours

baboon 23.21 23.47 23.52 23.56 23.51 23.55 23.62

0.5443 0.5882 0.5902 0.5994 0.5910 0.5973 0.5983

barbara 26.25 26.39 26.76 26.69 26.71 26.74 26.81

0.7531 0.7633 0.7816 0.7811 0.7794 0.7813 0.7850

bridge 24.40 24.82 25.02 25.01 24.92 24.98 25.10

0.6675 0.7088 0.7126 0.7169 0.7089 0.7149 0.7195

coastguard 26.55 27.01 27.15 27.07 27.05 27.07 27.18

0.6150 0.6396 0.65411 0.6570 0.6514 0.6557 0.6588

comic 23.12 23.90 23.90 24.04 23.92 23.98 24.11

0.6999 0.7576 0.7561 0.7621 0.7543 0.7584 0.7633

face 32.82 33.11 33.53 33.61 33.50 33.57 33.59

0.7985 0.8013 0.8197 0.8234 0.8189 0.8217 0.8237

flowers 27.23 28.25 28.43 28.49 28.35 28.38 28.52

0.8027 0.8312 0.8388 0.8416 0.8365 0.8390 0.8429

foreman 31.16 32.00 33.18 33.21 33.18 33.19 33.46

0.9059 0.9131 0.9294 0.9302 0.9297 0.9294 0.9333

lenna 31.68 32.64 33.00 33.08 33.98 33.01 33.23

0.8583 0.8650 0.8782 0.8805 0.8778 0.8791 0.8815

man 27.01 27.76 27.90 27.92 27.85 27.87 28.01

0.7500 0.7760 0.7868 0.7900 0.7855 0.7881 0.7918

monarch 29.43 30.71 31.10 31.09 30.94 30.95 31.26

0.9198 0.9292 0.9383 0.9377 0.9365 0.9362 0.9369

pepper 32.38 33.31 34.06 33.81 33.91 33.80 34.21

0.8721 0.8692 0.8882 0.8872 0.8868 0.8865 0.8901

ppt3 23.71 24.98 25.23 25.03 25.15 24.94 25.29

0.8838 0.9078 0.9210 0.9146 0.9195 0.9136 0.9225

zebra 26.63 27.95 28.49 28.43 28.25 28.31 28.63

0.7961 0.8298 0.8427 0.8449 0.8387 0.8447 0.8482

average 27.54 28.31 28.67 28.65 28.59 28.60 28.77

0.7762 0.7986 0.8098 0.8120 0.8082 0.8103 0.8142

All methods were trained on the same images, except for Bicubic interpolation and Yang et al. [39]. (1022
atoms), which share a dictionary of 1024 atoms

per’ in Set 14 with the magnified ×3. From the figure it can be seen that the Bicubic
interpolation method has the worst visual results, producing blurred edge information.
Yang et al. [36] reconstructed HR images based on dictionary learning, which also
resulted in some ringing and artefact effects. Zeyde et al. [39] used PCA dimensional-
ity reduction to greatly reduce the computational complexity, but it did not have good
information about the details of the recovered. NE+LS produces serrated edge infor-
mation and annoying texture details irritating texture details. NE+LLE method can
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Table 3 Performance of different methods in terms of PSNR and SSIM at different magnifications for Set5,
Set14 and BSD100 dateset

Dataset Scale Bicubic Zeyde et al. ANR NE + LS NE + LLE TPCNN [9] Ours

Set5 ×2 33.66 35.78 35.83 35.66 35.77 37.18 36.02

0.9299 0.9494 0.9500 0.9487 0.9491 0.9589 0.9514

×3 30.39 31.90 31.92 31.78 31.84 33.41 32.09

0.8684 0.8969 0.8970 0.8958 0.8958 0.9189 0.8979

×4 28.42 29.69 29.69 29.55 29.61 31.15 29.85

0.8108 0.8433 0.8426 0.8401 0.8408 0.880 0.8468

Set14 ×2 30.23 31.81 31.80 31.69 31.76 32.98 31.96

0.8700 0.8998 0.9016 0.8986 0.9005 0.9135 0.9030

×3 27.54 28.67 28.65 28.59 28.60 29.88 28.79

0.7762 0.8098 0.8120 0.8082 0.8103 0.8336 0.8142

×4 26.00 26.88 26.85 26.81 26.81 28.12 26.98

0.7054 0.7379 0.7393 0.7354 0.7371 0.7707 0.7420

BSD100 ×2 29.56 30.77 30.80 30.68 30.59 31.67 30.89

0.8431 8773 0.8782 0.8758 0.8743 0.8950 0.8811

×3 27.21 27.98 27.96 27.91 27.84 28.68 27.96

0.7388 0.7728 0.7743 0.7707 0.7685 0.7956 0.7770

×4 25.96 16.57 26.58 26.51 26.38 27.18 26.62

0.6674 0.6979 0.6990 0.6954 0.6900 0.7247 0.7017

All algorithms are trained on the same image and use a dictionary of size 1024, each algorithm uses the
best neighborhood size

Table 4 Comparison of training time and parameter amount between deep learningmethods and ourmethod

Methods Training Set Parameters Training time

SRCNN[4] Set91 8K > 48h

FSRCNN[5] General-100 13K > 48h

TPCNN[9] DIV2K 52K > 24h

ComNet[7] Set91,BSD200 67K > 24h

RFDN[19] DIV2K 534K > 24h

Ours Set91 – 404s

mitigate the fuzzy edges produced in [36] and [39] by the neighborhood embedding
reconstruction method, but it also produces a ringing effect at the edges. ANR [31]
combinedwith neighborhood embedding and sparse coding produced favorable image
SR performance, but also did not reconstruct edge information well. In contrast, our
method recovers the detail information well and yields sharp edges.
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Fig. 2 The visual qualitative assessment of the ‘baboon’ image is from Set5 magnified ×3

4 Discussion

In the example-based image SR framework, ANRmethod achieves the best SR perfor-
mance compared with other methods using traditional machine-learning techniques.
ANR method combines the advantage of sparse coding theory and neighborhood
embedding. In ANR, the sparse coding is adopted to extract the feature of image
patches and neighborhood embedding to build the relationship among the features.
In this paper, we further improved ANR method using Bayesian regression. From
theoretic viewpoint and experimental results, one can see that the SR performance of
the proposed method indeed has certain improvement.

Though it is, ANR and our proposed method are still associated with some disad-
vantages compared with deep learning based SR methods. For example, the feature
extraction ability of ANR and our proposed method is still weak in a certain extent
because only the sparse representation features are utilized. However, the deep learn-
ing based methods show powerful ability in extracting the shallow and deep features
of images by utilizing a series of convolutional layers. Full utilization of the shal-
low features and semantic features are helpful for SR performance improvement and
enhancement of robustness. This is the essential reason that the deep learning based
methods can achieve the breakthrough SR performance.

On the other, the model complexity and computations of deep learning based meth-
ods are very large. Because a large number of convolutional layers are involved in
deep learning based models, the computation burden in model training and test is
huge, therefore, massive computing power are required for most of the deep learn-
ing based SR methods. Table 4 lists the rough time required for model training and
parameter amount of several deep learning based models and our proposed method.
The large computations hampers the application of deep learning based SR methods
in the devices with limited computing power such as smart phone and edge-devices.
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Fig. 4 The visual qualitative assessment of the ‘zebra’ image is from Set14 magnified ×3

Fig. 5 The visual qualitative assessment of the ‘foreman’ image is from Set5 magnified ×3

Fig. 6 The visual qualitative assessment of the ‘pepper’ image is from Set14 magnified ×3
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If we comprehensively take the SR performance and computations into account,
ANR and our proposed method are competitive to deep learning based methods.

5 Conclusions

This paper presents an image SR algorithm based Bayesian anchored neighborhood
regression. So as to better suppress the noise and increase the generalization per-
formance of SR, we consider the prior distribution of the weight coefficients, using
sparse Bayesian regression model to model the mapping relationship between LR
image patch and its neighbors. Qualitative comparisons with several state-of-the-art
SISR methods are performed to verify the effectiveness and stability of the proposed
algorithm. Additionally, we assume that the parameters obey a Gaussian prior distri-
bution, and other probability distributions can also be assumed to verify the validity
of the algorithm, which we will investigate in more detail in future work.
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