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Abstract
This article focuses on the fixed-time stability of a class of nonlinear systems with
uncertain disturbances and time-varying delays. Different from other papers, the
second-order sliding mode control algorithm (SOSMCA) is developed in this article
to study the fixed-time stability of nonlinear systems for the first time. Additionally,
the novel sliding mode surface (SMC) and second-order SMC are presented. And the
stability and reachability of the sliding-mode dynamics under a faster settling time
are demonstrated. Finally, the applicability and validity of the obtained SOSMCA are
demonstrated by a simulation example with the F-404 aircraft engine model.

Keywords Nonlinear systems · Second-order sliding mode control · Fixed-time
stability · Sliding mode surface

1 Introduction

A variety of dynamical systems can be modeled using equations based on linearity.
Nevertheless, it frequently runs into the problem that the linear framework is inad-
equate or erroneous for analyzing dynamical systems. Naturally, non-linear systems
(NSs) are employed to characterize this type of dynamical system [33]. To date, the
controlling of NSs has attracted significant concern from investigators on account of
the wide range of applications they have in a variety of domains, including neural net-
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works [35], repetitive control systems [52, 53], offshore platforms [44, 46], industrial
manipulator [26], Kuramoto-oscillator systems [29], and bioreactors [8]. Meanwhile,
several kinds of NSs have been thoroughly studied [3, 28, 30, 45], such as switched
NSs, stochastic NSs, uncertain NSs, and others.

The stability, robustness, and performance of the actual systems tend to be damaged
by uncertainties introduced to them. To fight off structural disturbances and uncertain-
ties, investigators adopt sliding mode control (SMC) owing to its robust performance
or unchanging behavior property. On the other hand, it is a reality that we usually ask
for error convergence within a finite time for nonlinear systems. Until now, numerous
findings have been made regarding the finite-time control of nonlinear systems, but
they still have certain limitations. For example, the time delay is not considered for
non-linear systems containing complete state restrictions in some works [36, 40, 45].
In the works [18, 22, 49], the controller makes use of the bound of uncertainty. In [6,
38], intergral sliding surfaces to support SMC are employed. Recently, a number of
additional articles have focused on this topic, just as noted in [12, 47, 48]. The writers
in [47, 48] impliedly used the disturbance’s bounds, and this reflects the shortcom-
ing in their efforts. Also, the simulation work results from [12] demonstrate that the
approach they recommend performs not very well. Another piece of work described in
[42] focuses on the strategies for control associated with quadrotor dynamics involv-
ing time-varying disturbances as well as unidentified dynamics, where the terminal
sliding method is the foundation of the proposed strategy. Some papers, including [10,
51], are concerned with linear systems. In [10], an approach based on LMI is presented
for linear systems. From another perspective, none of the above works considered the
fixed-time control issue associated with nonlinear systems, which is a great pity.

Unfortunately, one critical shortcomingofSMCis chattering,which is characterized
by little-amplitude oscillationswith finite aswell as high frequencies. Chattering could
cause certain damage to themechanical or electrical components of systems. However,
the majority of the literature ignores this problem. For example, the chattering is not
taken away since the sign function is straight away built into the input signal for control
[11, 14, 50]. In addition, although the adaptive control law is applied in the controller
in [54], the controller still contains the sign function, which leads to the chattering.
To address this issue, A. Levant put forward the idea of “sliding order” and offered
a number of second-order sliding mode (SOSM) control strategies [2]. In contrast to
the first-order SMC algorithms, the SOSM control technology not only broadens the
benefits of conventional SMC to systems with greater relative degrees successfully
but can also be utilized to reduce chattering effects and increase control precision
[15]. So far, remarkable advances in SOSM control have been made [4, 5, 19, 25, 34].
However, the closed-loop systems’ convergence at a fixed time cannot be guaranteed
by the proposed SOSM controller [5, 19]. In [4, 25], the authors did not consider the
impact of the time delay, which constitutes a limitation in their works. In [34], the
restriction on the bound of the perturbation derivative is relaxed to be unbounded;
however, the proposed control input with discontinuity causes the chattering.

Inspired by the discussion above, this study will concentrate on SOSM control for
the fixed-time stability of nonlinear systems in the face of uncertain disturbances and
time-varying delays. The following are the key novelties of our contribution:



Circuits, Systems, and Signal Processing (2024) 43:5507–5531 5509

Fig. 1 Block diagram of SOSM control for the non-linear system with uncertain disturbances and time-
varying delays

(1) A newfixed-time control scheme combinedwith second-order SMC is put forward
to stabilize a class of nonlinear systems containing uncertain disturbances as well
as time-varying delays.

(2) The real, predetermined settling time of sliding modules that meet performance
requirements can be adjusted in advance in the most direct way.

(3) With the increase in slidingmode order, themagnitude of chattering is diminished,
and the precision of control is enhanced.

Notations: �+,�p, and �p×p represent the positive real number, real vector
of dimension p, and real square matrix of dimension p, respectively. Define the
upper right-hand Dini derivative of a continuous function as follows: D+V (t) =
limh→+0 sup

V (t+h)−V (t)
h .

2 Model Description and Preliminaries

As shown in the block diagram in Fig. 1, a nonlinear system under slidingmode control
is represented as follows, where external disturbances and time-varying delays are
included to extend the generality of the system.

ẏ(t) =By(t) + Bd y(t − d(t)) + £(t, y(t), y(t − d(t)) + v(t) + u(t),

y(t) =κ(t),∀t ∈ [−�, 0], (1)

where y(t) ∈ �p is the system’s state. B ∈ �p×p and Bd ∈ �p×p denote constant
matrices. £(·) ∈ �p represents the non-linear function. v(t) ∈ �p is the uncertain
disturbance. u(t) ∈ �p represents the input signal. d(t) represents the time-varying
delay satisfying the condition listed below:

0 ≤ d(t) ≤ � for the real constant � > 0, ḋ(t) exists. (2)

κ(t) corresponds to the initial value on [−�, 0].
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Remark 1 To infer the stability of time-delay systems with Lyapunov stability theory,
it is crucial to comprehend the derivative information of the delay [9]. However, the
assumption with respect to it is restricted in the documents [16, 27, 37, 43], where
[16, 37, 43] require the derivative of the delay to be less than 1 and [27] requires
the derivative of the delay to be bounded, all of which require the existence of an
upper bound for the derivative. Unlike these documents, the more general and valid
hypothesis (2) is given, in which the derivative of the delay is relaxed to unbounded.
This allows our results to be applied more widely.

Let £(t, y(t), y(t −d(t))) = £(t) for convenience, system (1) is therefore represented
as

ẏ(t) =By(t) + Bd y(t − d(t)) + £(t) + v(t) + u(t),

y(t) =κ(t),∀t ∈ [−�, 0], (3)

which is transformed to be

ẏ�(t) =B�y(t) + Bd�y(t − d(t)) + £�(t) + v�(t) + u�(t),

y�(t) =κ�(t), ∀t ∈ [−�, 0], � = 1, 2, . . . , p,
(4)

in which y�(t) corresponds to the �th element in vector y(t). B� and Bd� denote the
�th row of matrices B, Bd , respectively. £�(t), v�(t), and u�(t), respectively, denote
the �th element in vectors £(t), v(t), and u(t).

Assumption 1 The uncertain disturbance vector v(t) fulfills

|v̇�(t)| ≤ δ�,

in which δ� > 0, � = 1, 2, . . . , p, are known constants representing the boundedness
of the uncertain of system (1).

Definition 1 ([14, 24]) The system (1) is deemed to be globally finite-time stable
once any solution y(t, y0) reaches its equilibria in finite time, namely, y(t, y0) =
0, for t > �(y0), y0 ∈ �p in which � : �p → �+ ∪ {0} is referred to as the
settling-time function.

For instance, any solution y(y0) to the system

ẏ = −y1/3, y ∈ �

arrives at the zero equilibrium point in the finite period �(y0) := 3
2

3
√|y0|2.

Definition 2 ([14, 24]) System (1) is deemed to be globally fixed-time stable once the
settling-time function �(y0) is bounded, namely, ∃ �max > 0 : �(y0) ≤ �max ,∀ y0 ∈
�p.

For example, the zero equilibrium of the system

ẏ = −y1/3 − y3, y ∈ �,
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is stable in a fixed period with the settling-time function satisfying�(y0) ≤ 2.5,∀y0 ∈
�.

Remark 2 To obtain the stability of the nonlinear system (1) in a fixed period through
slidingmode control, it’s necessary to transform system (1) to system (4). Additionally,
a single equilibriumpoint (or simple solution) y(t, κ(t))of system (1) could be verified
in accordance with [9, 17] if Assumption 1 is satisfied.

This paper focuses on the following issue:
developing a feedback controller u = u(y) that ensures the fixed-time stability of

the system (1) for a specified global settling-time estimate �max .

3 Retrofit Fixed-Time Stability Theorem

Before developing a SOSM controller, we first give the following novel fixed-time
theorem:

Theorem 1 Take into account the non-negative scalar system

ẏ = −(a0y
α + b0y

β)γ , y(0) = y0, (5)

where a0, b0, α, β, γ are positive numbers satisfying αγ < 1, βγ > 1. Then, System
(5) is globally stable in a fixed time, with the upper bound on the settling period
determined as

�(y0) < b−γ
0

(
a0
b0

) 1−βγ
β−α

(
1

1 − αγ
+ 1

βγ − 1

)
. (6)

Proof Suppose C (y) = y2 ≥ 0. Then, the differentiation of C (y) along system (5) is

Ċ (y) = −2y

(
a0y

α + b0y
β

)γ

= −2(C (y))
1
2

(
a0(C (y))

α
2 + b0(C (y))

β
2

)γ

.

For C (y) 
= 0, we have
1
2C

− 1
2 dC

(
a0C

α
2 + b0C

β
2
)γ

= −dt . (7)

Let z = C
1
2 , Eq. (7) could be rewritten as

dz
(
a0zα + b0zβ

)γ = −dt . (8)

From the differential formula and the definition of z, Eq. (8) yields

d

(∫ z

0

1
(
a0τα + b0τβ

)γ dτ

)
= 1

(
a0zα + b0zβ

)γ dz = −dt .
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Integrate each side of the aforementioned formula from 0 to t and consider z = C
1
2 ,

∫ z(t)

0

1
(
a0τα + b0τβ

)γ dτ =
∫ z(0)

0

1
(
a0τα + b0τβ

)γ dτ −
∫ t

0
dτ. (9)

Since z = 0 could be guaranteed as if
∫ z(t)
0

1(
a0τα+b0τβ

)γ dτ = 0, the following

settling-time function is determined according to Eq. (9)

�(y0) =
∫ z(0)

0

1
(
a0τα + b0τβ

)γ dτ

=
∫ k

0

1
(
a0τα + b0τβ

)γ dτ +
∫ z(0)

k

1
(
a0τα + b0τβ

)γ dτ

≤
∫ k

0

1

aγ
0 ταγ

dτ +
∫ +∞

k

1

bγ
0 τβγ

dτ = k1−αγ

(1 − αγ )aγ
0

+ k1−βγ

(βγ − 1)bγ
0

(10)

where k is a non-negative real number. Define the function h(·) = k1−αγ

(1−αγ )aγ
0

+
k1−βγ

(βγ−1)bγ
0
with the variable k. Take the derivative of h(·), one knows:

d(h)

d(k)
= k−αγ

aγ
0

− k−βγ

bγ
0

= bγ
0 k

−αγ − aγ
0 k

−βγ

(a0b0)γ

�⇒ d(h)

d(k)
= 0, when k =

(
a0
b0

) 1
β−α

.

Since limk→0 h(·) = limk→+∞ h(·) = +∞, the function h(·) has aminimumvalue

at k =
(

a0
b0

) 1
β−α

, which is

a
1−βγ
β−α

0

b
1−αγ
β−α

0

(
1

1 − αγ
+ 1

βγ − 1

)
= b−γ

0

(
a0
b0

) 1−βγ
β−α

(
1

1 − αγ
+ 1

βγ − 1

)
.

Based on (10), there is

�(y0) ≤ in f {h(·)} = min {h(·)} . (11)

The evidence is finished. ��
Remark 3 This note will emphasize the advantages of Theorem 1. Consider the clas-
sical works [13, 24, 34], where the global settling-time estimate for system (5) takes
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the following size:

�(y0) ≤ 1

(1 − αγ )aγ
0

+ 1

(βγ − 1)bγ
0

f or ∀y0 ∈ �. (12)

Note that it is a more conservative upper-bound calculation than inequality (6). This
is because the value of its right end equals to h(k)

∣∣
k=1, which is bigger than the right

end in (6)(based on the inequality (11)). On the other hand, the system (5) turns into
the widely studied and applied system model in [21, 31, 41, 55] when γ = 1. They
give the following best-known estimate for the settlement time of this system:

�(y0) ≤ 1

(1 − α)a0
+ 1

(β − 1)b0
f or ∀y0 ∈ �, γ = 1.

Also, it is a special case of the right side of (12). Overall, the inequality (6) expands
the existing research [13, 21, 24, 31, 34, 41, 55] by providing a faster estimate for the
rate of convergence.

4 Second-Order Integral SlidingMode Control

The contents of this section are separated as follows: In Sect. 4.1, a SOSM controller
is designed. In Part 4.2, the fixed-time stability of SMS is demonstrated. In Part 4.3,
it is proved that the system (4) will first reach the second-order SMS ��(t) = 0 in a
fixed period and then slide to the SMS 	�(t) = 0 in a fixed period.

For simplicity, the following notations that will be used later is first given:

ג
[m] = ,(ג)msign|ג| F(ג) = e|ג|, ג ∈ �,m ∈ �+

which present the involution process without the sign of the number being lost and
the compound function with the even function property, respectively. For any ג ∈
�, r , m ∈ �+, the following properties hold:

i). [m](ג−) = ג−
[m],

i i).
(
ג
[m])[r ]=

(
ג
[r ])[m]

,

i i i).
∫ +∞

0

1

F(t)
dt = 1.

(13)
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Fig. 2 Two stages of the
second-order SMC

Proof Based on the definition of the symbols [·] and F(·), properties 1 and 3 are
obvious. On the other hand,

i i).
(
ג
[m])[r ] =

[m]ג∣∣∣
∣∣∣
r
sign(ג[m]) =

(
m|ג|

)r
sign(ג) =

(
r|ג|

)m
sign(ג)

=
r]ג∣∣∣ ]

∣∣∣
m
sign(ג[r ])

=
(
ג
[r ])[m]

.

(14)

The proof is finished. ��
Remark 4 The goal of SMC is to implement sliding-mode motion in the system.
Additionally, the sliding action completely determines how the system behaves. The
arriving stage (y�(0) ��� C) and the sliding stage (C ��� D ��� o) make up the
second-order SMC’s whole control process (refer to Fig. 2).

4.1 SMS Design

The sliding mode surface (SMS) designed in this study is as follows:

	�(t) = y�(t) + r�
�
s
�m�

∫ t

0
y
[1−m�

r�
]

� (�)F
(
y
[m�
r�

]
� (�)

)
d�, (15)

where the sclar�s
� > 0, r� andm� are positive integers satisfying 0 <

m�

r�
< 1, and � =

1, . . . , p.
The derivative of 	�(t) with regard to t is

	̇�(t) = ẏ�(t) + r�
�
s
�m�

y
[1−m�

r�
]

� (t)F
(
y
[m�
r�

]
� (t)

)
. (16)
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Replace ẏ�(t) with the right band of (4) to get

	̇�(t) = B�y(t) + Bd�y(t − d(t)) + £�(t) + v�(t) + u�(t)

+ r�
�
s
�m�

y
[1−m�

r�
]

� (t)F
(
y
[m�
r�

]
� (t)

)
.

(17)

Construct the following second-order SMS utilizing 	�(t) and 	̇�(t)

��(t) = 	̇�(t) + 1

�
r
�

((
�
r
�

)2
	̇

[2]
� (t) + 72sign(	�(t)) + 72	 [3]

� (t)

)[ 12 ]
(18)

where �
r
� is a positive sclar.

Set up the controller u�(t) as shown below:

u�(t) = −B�y(t) − Bd�y(t − d(t)) − £�(t) − r�
�
s
�m�

y
[1−m�

r�
]

� (t)F
(
y
[m�
r�

]
� (t)

)

−
∫ t

0

(
108

(
�
r
�

)2	 2
� (�)sign(��(�)) + δ�sign(��(�))

+ 2π

�
r
�

(
�

[ 12 ]
� (�) + �

[ 32 ]
� (�)

)[1])
d � .

(19)

Substituting (19) into (4) gives the following closed-loop system:

ẏ�(t) = v�(t) − r�
�
s
�m�

y
[1−m�

r�
]

� (t)F
(
y
[m�
r�

]
� (t)

)

−
∫ t

0

(
108

(
�
r
�

)2	 2
� (�)sign(��(�)) + δ�sign(��(�))

+ 2π

�
r
�

(
�

[ 12 ]
� (�) + �

[ 32 ]
� (�)

)[1])
d � .

(20)

4.2 Stability of Sliding-Mode Dynamics

Next, the stability of sliding-mode dynamics in a fixed period will be checked in this
subsection.
The following equation holds when the SMS 	�(t) = 0 is reached [32]:

	�(t) = 	̇�(t) = 	̈�(t) = 0.

Based on (16), the sliding-mode dynamic is thus established as
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ẏ�(t) = − r�
�
s
�m�

y
[1−m�

r�
]

� (t)F
(
y
[m�
r�

]
� (t)

)
. (21)

Theorem 2 For � = 1, . . . , p, the sliding mode (21) attains stability at a preset con-
vergence time �

s
�.

Proof Choose the radially unbounded Lyaponuv function as C1(t) = |y�(t)| and
obtain the time derivative of C1(t) following the track of (21) to be:

Ċ1(t) = ẏ�(t)sign(y�(t))

= − r�
�
s
�m�

|y�(t)|1−
m�
r� F

(
|y�(t)|

m�
r�

)

= − r�
�
s
�m�

C
1−m�

r�
1 (t)F

(
C

m�
r�

1 (t)

)
≤ 0.

This guarantees that system (21) is asymptotically stable. Rewrite the above expression
as

dC1(t)

dt
= − r�

�
s
�m�

C
1−m�

r�
1 (t)F

(
C

m�
r�

1 (t)

)
.

According to the above equation, we have

m�

r�

dC1(t)

C
1−m�

r�
1 (t)F

(
C

m�
r�

1 (t)

) = − 1

�
s
�

dt .

This is equivalent to

m�

r�

C
m�
r�

−1

1 (t)dC1(t)

F

(
C

m�
r�

1 (t)

) = − 1

�
s
�

dt . (22)

Denoting the new variable E (t) = C
m�
r�

1 (t), whose derivative with respect to C1(t) is

dE (t) = m�

r�
C

m�
r�

−1

1 (t)dC1(t), the following simple form can be obtained by using the
variable substitution for (22):

dE (t)

F(E (t))
= − 1

�
s
�

dt . (23)

Through the aid of the definition of F(·) and the differential formula under integral,
we can know

d

(∫ y

0

1

F(�)
d �

)
= 1

F(y)
dy. (24)
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As a consequence, Eq. (23) can be rewritten as:

d

(∫ E

0

1

F(�)
d �

)
= − 1

�
s
�

dt .

For now, assume that the arrival time for the �th slidingmodule is γ r (the existence and
boundedness of the arrival time can be guaranteed from Sect. 4.3). Then, if each side of

the aforementioned formula is integrated from γ r to t while considering E = C
m�
r�

1 (t)
and C1 = |y�(t)|, one knows:

∫ |y�(t)|
m�
r�

0

1

F(�)
d� = − 1

�
s
�

(t − γ r ) +
∫ |y�(γ r )|

m�
r�

0

1

F(�)
d � .

Obviously, the inference that y�(t) = 0 is true if and only if
∫ |y�(t)|

m�
r�

0
1

F(�)
d� = 0.

Consequently, the settling-time function is determined below:

�(y�(γ
r )) = γ r + �

s
�

∫ |y�(γ r )|
m�
r�

0

1

F(�)
d � .

This derives the stability of system (21) in a finite time. In addition, it holds that

0 ≤ ∫ |y�(γ r )|
m�
r�

0
1

F(�)
d� ≤ 1 in accordance with (13). Utilizing this property, there is

�(y�(γ
r )) ≤ γ r + �

s
�.

Thus, an upper bound for the setting-time function that is unaffected by the state value
at the arrival time is established. This means that the definition of fixed-time stability
for the sliding-mode dynamic (21) is satisfied. The evidence is finished. ��
Remark 5 In accordance with the stability theorem in [7], the existence of

∫ +∞
0

1
F(t)dt

is one sufficient condition for the fixed-time stability of the SMS (15). To satisfy this
condition, the F(t) that occurred in the existing research [14, 43] was respectively
selected as the Gudermannian function and the double exponential function. As a
result, the integral sliding modes in these works have a more complex structure than
(15) and contain the irrational number π . This is not conducive to the realization of
the design of the sliding-mode surface. Therefore, our result extends the study in these
references.

4.3 Reachability Analysis

In this subsection, the state y�(t) in (4) is successfully driven to the second-order SMS
��(t) = 0 and the SMS 	�(t) = 0 at a predetermined moment by SOSM controller
(19).



5518 Circuits, Systems, and Signal Processing (2024) 43:5507–5531

Calculate the derivative of u�(t) (19) as

u̇�(t) = −B� ẏ(t) − Bd�(1 − ḋ(t))ẏ(t − d(t)) − £̇�(t)

−
(
r� − m�

�
s
�m�

|y�(t)|−
m�
r� + 1

�
s
�

)
ẏ�(t)F

(
y
[m�
r�

]
� (t)

)

−
(

108
(
�
r
�

)2	 2
� (t)sign(��(t)) + δ�sign(��(t)) + 2π

�
r
�

(
�

[ 12 ]
� (t) + �

[ 32 ]
� (t)

)[1])
.

(25)
Also, the second-order derivative of 	�(t) in (15) is calculated to be

	̈�(t) = B� ẏ(t) + Bd�(1 − ḋ(t))ẏ(t − d(t)) + £̇�(t) + v̇�(t) + u̇�(t)

+ r� − m�

�
s
�m�

|y�(t)|−
m�
r� ẏ�(t)F

(
y
[m�
r�

]
� (t)

)

+ 1

�
s
�

y
[1−m�

r�
]

� (t)y
[m�
r�

−1]
� (t)ẏ�(t)F

(
y
[m�
r�

]
� (t)

)

= B� ẏ(t) + Bd�(1 − ḋ(t))ẏ(t − d(t)) + £̇�(t) + v̇�(t) + u̇�(t)

+
(
r� − m�

�
s
�m�

|y�(t)|−
m�
r� + 1

�
s
�

)
ẏ�(t)F

(
y
[m�
r�

]
� (t)

)
.

(26)

Based on (18), we get the following upper-right derivative with respect to ��(t):

D+�� = 	̈�(t) + 1

2�
r
�

2(�r
�)

2|	̇�(t)|	̈�(t) + 216	 2
� (t)	̇�(t)

∣∣(�r
�)

2	̇
[2]
� (t) + 72sign(	�(t)) + 72	 [3]

� (t)
∣∣
1
2

. (27)

Theorem 3 Suppose that Assumption 1 holds. For � = 1, . . . , p, the track of state
y�(t) of the closed-loop system (20) is successfully forced onto the relevant sliding
manifolds 	�(t) = 0 and 	̇�(t) = 0 in the period �

r
�.

Proof Construct the Lyapunov function below:

C1(t) = |��(t)|.

The upper right-hand Dini derivative of C1(t) for ��(t) 
= 0 is calculated as

D+C1(t) = 	̈�(t)sign(��(t))

+ 1

2�
r
�

2(�r
�)

2|	̇�(t)|	̈�(t)sign(��(t)) + 216	 2
� (t)	̇�(t)sign(��(t))

∣∣(�r
�)

2	̇
[2]
� (t) + 72sign(	�(t)) + 72	 [3]

� (t)
∣∣
1
2

.

Import u̇�(t) (25) into (26) to obtain

	̈�(t) = − 108

(�r
�)

2	 2
� (t)sign(��(t)) − δ�sign(��(t)) − 2π

�
r
�

(
�

[ 12 ]
� (t) + �

[ 32 ]
� (t)

)[1]
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+ v̇�(t).

Multiply the above equation by sign(��(t))

	̈�(t)sign(��(t)) = − 108

(�r
�)

2	 2
� (t) − δ� − 2π

�
r
�

(
|��(t)| 12

+ |��(t)| 32
)

+v̇�(t)sign(��(t)).

Then, the following estimate for the derivative of the functionC1(t) is attained utilizing
Assumption 1 and the above expression:

D+C1(t) =	̈�(t)sign(��(t)) + 1

2�
r
�

−216|	̇�(t)|	 2
� (t)(1 − sign(��(t)	̇�(t)))

∣∣(�r
�)

2	̇
[2]
� (t) + 72sign(	�(t)) + 72	 [3]

� (t)
∣∣
1
2

+ π

2�
r
�

−4�
r
�|	̇�(t)|

(
|��(t)| 12 + |��(t)| 32

)

∣∣(�r
�)

2	̇
[2]
� (t) + 72sign(	�(t)) + 72	 [3]

� (t)
∣∣
1
2

+ 1

2�
r
�

−2(�r
�)

2|	̇�(t)|(δ� − v̇�(t)sign(��(t)))
∣∣(�r

�)
2	̇

[2]
� (t) + 72sign(	�(t)) + 72	 [3]

� (t)
∣∣
1
2

≤	̈�(t)sign(��(t))

≤ − 2π

�
r
�

(
C

1
2
1 (t) + C

3
2
1 (t)

)
.

Use the notation D+C1(t) = dC1(t)
dt to convert the above expression to

dC1(t)

C
1
2
1 (t) + C

3
2
1 (t)

≤ −2π

�
r
�

dt . (28)

This is equivalent to

C
− 1

2
1 (t)dC1(t)

1 +
(
C

1
2
1 (t)

)2 ≤ −2π

�
r
�

dt . (29)

Introduce another new variable E1(t) = C
1
2
1 (t) and calculate its derivative as dE1(t) =

1
2C

− 1
2

1 (t)dC1(t). Then, using the variable substitution for (29), the following simple
form can be obtained:

dE1(t)

1 + E 2
1 (t)

≤ − π

�
r
�

dt . (30)
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Integrate each side of (30) from the initial time 0 to t

∫ t

0

dE1(�)

1 + E 2
1 (�)

d� ≤
∫ t

0
− π

�
r
�

d � . (31)

By (31), it’s easy to deduce that

arctan
(
|��(t)| 12

)
≤ arctan

(
|��(0)| 12

)
− π

�
r
�

t .

From the above expression, it’s simple to confirm that

��(t) = 0

if and only if

arctan
(
|��(t)| 12

)
= 0

is true. Therefore, we derive the settling-time function as

�(��(0)) = �
r
�

π
arctan

(
|��(0)| 12

)
. (32)

Considering the fact that 0 ≤ arctan
(
|��(0)| 12

)
< π

2 , it follows that

��(t) = 0, ∀t ≥ 1

2
�
r
�.

This shows that the second-order SMS ��(t) = 0 is reachable in the predetermined
period 1

2�
r
�.

When the trajectory of the system (4) reaches the second-order SMS ��(t) = 0, it
can be seen that the following equation is true according to Eq. (18)

	̇�(t) + 1

�
r
�

((
�
r
�

)2
	̇

[2]
� (t) + 72sign(	�(t)) + 72	 [3]

� (t)

)[ 12 ]
= 0.

This is rewritten as

	̇�(t) = − 1

�
r
�

(
(�r

�)
2	̇

[2]
� (t) + 72sign(	�(t)) + 72	 [3]

� (t)

)[ 12 ]
. (33)

From the properties i) and i i) (13), taking (·)[2] on each side of (33) yields

(	̇�(t))
[2] = − 36

(
�
r
�

)2

(
sign(	�(t)) + 	

[3]
� (t)

)
. (34)
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Taking (·)[ 12 ] on both sides of (34) leads to

	̇�(t) = − 6

�
r
�

(
sign(	�(t)) + 	

[3]
� (t)

)[ 12 ]
. (35)

The Lyapunov function candidate is selected below:

C1(t) = |	�(t)|.

Derive the upper right-hand Dini derivative of C1(t) following the state track of (35)
to be

D+C1(t) = 	̇�(t)sign(	�(t))

= − 6

�
r
�

(
1 + |	�(t)|3

) 1
2

= − 6

�
r
�

(
1 + C 3

1 (t)
) 1

2
.

Assuming that γ r
1 is the arrival period for the second-order SMS��(t) = 0, one knows:

|	�(t)| = 0 for all t ≥ �
r
� ≥ γ r

1 + 2
6�

r
� + 1

6�
r
� and any solution 	�(t) of (35) in

accordance with Theorem 1. Naturally, the following is true according to (35):

	̇�(t) = 0, ∀t ≥ �
r
�.

As a result, the fixed-time stability at themoment�r
� for slidingmode surfaces	�(t) =

0 and 	̇�(t) = 0 could be realized. The evidence is finished. ��

Remark 6 Consider the equation �̃�(t) = 	̇�(t)+ 1
�r

�

((
�
r
�

)2
	̇

[2]
� (t)+72sign(	�(t))

)[ 12 ]
.

Then, the state trajectories of the equations �̃�(t) = 0 and ��(t) = 0, respectively,
confirm the finite-time and fixed-time reachability of the SMS (15) (Fig. 3 displays

the details). On the other hand, the new polynomial, �
[ 32 ]
� (t), is crucial in ensuring the

reachability in a fixed time for the sliding manifold (18).

Theorem 4 If Assumption 1 holds, then the global stability of the nonlinear system
(1) is accomplished at a fixed period through controller (19). Furthermore, an upper
bound on the estimated settling period is

�max = max
{
�
r
�

} + max
{
�
s
�

}
, (36)

where � = 1, . . . , p.

Proof For l = 1, 2, . . . , p, the global stability of system (4) at the moment �
r
� + �

s
�

can be verified from Theorems 2 and 3, namely, the system (4) is globally stable at a
fixed time under controller (19). Therefore, the global stability of system (1) could be
realized at the settling period �max . The evidence is finished. ��
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Fig. 3 The finite-time and
fixed-time reachability for the
sliding manifold (15) when
�
r
�

= 7

To clearly reflect the second-order SMC for system (1), the SOSMCA is developed
below:

Algorithm 1 � Step 1. From the actual demand, the positive δ� satisfing Assumption
1, positive integers r� and m� satisfing 0 <

m�

r�
< 1, and positive �

s
� and �

r
� are

selected.
� Step 2. Produce the SMC law according to equations (15), (18), and (19).
� Step 3. Apply the generated SMC law to the nonlinear system (4).

Next, using the specialization of the aforementioned control scheme, the stability of
nonlinear systems without time delays and linear systems with time delays at a fixed
time is determined.
The nonlinear system without time delays is described as follows in this article:

ẏ(t) =By(t) + £(t, y(t)) + v(t) + u(t),

y(0) =κ,
(37)

in which y(t) ∈ �p denotes the system’s state. B ∈ �p×p denotes the constant matrix.
£(·) ∈ �p represents the non-linear function. v(t) ∈ �p represents the uncertain
disturbance. u(t) ∈ �p denotes the input signal. κ corresponds to the initial value of
the system.
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Corollary 1 If Assumption 1 holds, then the following sliding mode controller can sta-
bilize the nonlinear system (37) within a fixed time �max = max�

{
�
r
�

} +max�

{
�
s
�

}
,

u�(t) = −B�y(t) − £�(t) − r�
�
s
�m�

y
[1−m�

r�
]

� (t)F
(
y
[m�
r�

]
� (t)

)

−
∫ t

0

(
108

(
�
r
�

)2	 2
� (�)sign(��(�)) + δ�sign(��(�))

+ 2π

�
r
�

(
�

[ 12 ]
� (�) + �

[ 32 ]
� (�)

)[1])
d�

(38)

where� = 1, . . . , p. B� represents the�th rowof thematrix B. y�(t), £�(t), as well asu�(t),
respectively, represent the �th element in vectors y(t), £(t), and u(t). The sliding
mode surface (SMS) and the second-order SMS, respectively, are

	�(t) = y�(t) + r�
�
s
�m�

∫ t

0
y
[1−m�

r�
]

� (�)F
(
y
[m�
r�

]
� (�)

)
d� (39)

and

��(t) = 	̇�(t) + 1

�
r
�

((
�
r
�

)2
	̇

[2]
� (t) + 72sign(	�(t)) + 72	 [3]

� (t)

)[ 12 ]
. (40)

Additionally, take into account the following linear system with time delays in this
article:

ẏ(t) =By(t) + Bd y(t − d(t)) + v(t) + u(t),

y(t) =κ(t), ∀t ∈ [−�, 0], (41)

in which all of the above symbols are defined in the same way as in system (1).

Corollary 2 If Assumption 1 is satisfied, then the sliding mode controller shown below
could stabilize the nonlinear system (41) within a fixed time �max = max�

{
�
r
�

} +
max�

{
�
s
�

}
,

u�(t) = −B�y(t) − Bd�y(t − d(t)) − r�
�
s
�m�

y
[1−m�

r�
]

� (t)F
(
y
[m�
r�

]
� (t)

)

−
∫ t

0

(
108

(
�
r
�

)2	 2
� (�)sign(��(�)) + δ�sign(��(�))

+ 2π

�
r
�

(
�

[ 12 ]
� (�) + �

[ 32 ]
� (�)

)[1])
d�

(42)

where � = 1, . . . , p. B� and Bd� denote the �th row ofmatrices B and Bd, respectively.
y�(t) as well as u�(t), respectively, represent the �th element in y(t) and u(t). The
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sliding mode surface (SMS)

	�(t) = y�(t) + r�
�
s
�m�

∫ t

0
y
[1−m�

r�
]

� (�)F
(
y
[m�
r�

]
� (�)

)
d � . (43)

The second-order SMS

��(t) = 	̇�(t) + 1

�
r
�

((
�
r
�

)2
	̇

[2]
� (t) + 72sign(	�(t)) + 72	 [3]

� (t)

)[ 12 ]
. (44)

Remark 7 The advantage of the proposed sliding variable (15) and second-order SMS
(18) is that the real predetermined convergence period is a standalone construction
value. It is directly displayed in the sliding mode equations as the sum of �

s
� and �

r
�.

This allows us to adjust the setting time in advance based on performance requirements
and, particularly, in themost apparentmanner. In addition, every sliding-mode variable
has an independent settling period. This property makes it possible for the setting
period of the selected state in the closed-loop system to be adjustedwithout dependence
on other states.

Remark 8 Be aware that the SOSMcontroller (19) reduces the chattering phenomenon
to some extent but does not completely eliminate it. This is because the sign function
adopted in controllers inevitably introduces the chattering phenomenon to control
signals, and the system states [14, 23, 39, 54]. To solve this issue, the authors try to
generate a suitable continuous control from the discontinuous control [1, 27]. One
typical method is to substitute y�(t)|y�(t)|+η

for sign(y�(t)), in which η > 0 represents
a tiny constant. In this manner, the robustness of the SOSM control is going to be
impacted.

5 Simulation

The subsequent numerical experiment is utilized to examine the efficacy of the sug-
gested SMC technique. The SMC problem for the specified nonlinear system is what
we are trying to verify.

Example 1 Take into account the system (1), in which the matrix B is derived from
the widely used F-404 airplane’s engine system [20]

B =
⎡

⎣
−1.46 0 2.428
0.1643 −0.4 −0.3788
0.3107 0 −2.23

⎤

⎦ ,
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Fig. 4 The tracks of system (1) without as well as with the controller (19)

and the other parameters for the system are set as

Bd =
⎡

⎣
−0.1 0 0.2
0.1 −0.01 −0.03
0.04 0.5 −0.3

⎤

⎦ ,

£(t) =
⎡

⎣
sin(t)(y1(t) + y1(t − d(t)))
1
2 sin(t)(y2(t) + y2(t − d(t)))
cos(t)(y3(t) + y3(t − d(t)))

⎤

⎦ , v(t) =
⎡

⎣
sin(t)
cos(t)
1
2 sin(t)

⎤

⎦ ,

d(t) = 0.1 + 0.1sin(t2), � = 0.2.
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It should be noted that, when the matrix Bd equals the matrix 0, the system (1) as
defined above becomes a class of the F-404 airplane’s engine system in [20]. As shown
in the meaning of symbols in the formula (1), details related to the F-404 airplane’s
engine system can be obtained from it, such as inputs, outputs, and measurements.
Additionally, it’s worth pointing out that d(t) is bounded, but the derivative of d(t) is
unbounded. Next, we design a SOSM controller based on Algorithm 1 to stabilize the
above nonlinear system.Given the performance parameters�

s
1 = �

s
2 = �

s
3 = 2, �

r
1 =

�
r
2 = �

r
3 = 2, r1 = r2 = r3 = 2, m1 = m2 = m3 = 1, δ1 = δ2 = 1, and δ3 = 1

2 ,
the SMS function (15) and the second-order SMS (18) are, respectively, computed as

	�(t) =y�(t) +
∫ t

0
y
[ 12 ]
� (�)F

(
y
[ 12 ]
� (�)

)
d�,

�� = 	̇�(t) + 1

2

(
4	̇ [2]

� (t) + 72sign(	�(t)) + 72	 [3]
� (t)

)[ 12 ]
.

As a result, the intended SOSM controller (19) could be derived as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇1(t) =1.46y1(t) − 2.4283y3(t) + 0.1y1(t − d(t)) − 0.2y3(t − d(t)) − sin(t)(y1(t) + y1(t − d(t)))

− y
[ 12 ]
1 (t)F

(
y
[ 12 ]
1 (t)

)
−

∫ t

0

(
27	 2

1 (�)sign(�1(�)) + sign(�1(�))

+ π

(
�

[ 12 ]
1 (�) + �

[ 32 ]
1 (�)

)[1])
d�,

u̇2(t) = − 0.1643y1(t) + 0.4y2(t) + 0.3788y3(t) − 0.1y1(t − d(t)) + 0.01y2(t − d(t)) + 0.03y3(t − d(t))

− 1

2
sin(t)(y2(t) + y2(t − d(t)))

− y
[ 12 ]
2 (t)F

(
y
[ 12 ]
2 (t)

)
−

∫ t

0

(
27	 2

2 (�)sign(�2(�)) + sign(�2(�))

+ π

(
�

[ 12 ]
2 (�) + �

[ 32 ]
2 (�)

)[1])
d�,

u̇3(t) = − 0.3107y1(t) + 2.23y3(t) − 0.04y1(t − d(t)) − 0.5y2(t − d(t)) + 0.3y3(t − d(t))

− cos(t)(y3(t) + y3(t − d(t)))

− y
[ 12 ]
3 (t)F

(
y
[ 12 ]
3 (t)

)
−

∫ t

0

(
27	 2

3 (�)sign(�3(�)) + 1

2
sign(�3(�))

+ π

(
�

[ 12 ]
3 (�) + σ

[ 32 ]
3 (�)

)[1])
d � .

(45)
According to Theorem 4, the global fixed-time stability of the nonlinear system

(1) is realized through controller (19), where the initial value is assumed as y(0) =
[−4 5 3]T and the estimated predetermined period is calculated to be �max = 4.

To display the viability of the suggested SMC technique, simulation outcomes
are provided in Figs. 4, 5, 6 and 7. Figure4 depicts the states y(t) of the system
(1) without as well as with a controller. Figures5, 6 and 7, respectively, display the
derivative of the SMS function (15), the SMS function (15) and the second-order
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Fig. 5 The derivative of the SMS function (15)

SMS (18), and the SOSM controller (19). It is apparent that the nonlinear system
(1) with disturbances is stabilized by the controller (19) within 2 time units before
�max = max

{
�
r
�

} +max
{
�
s
�

} = 4, which is demonstrated in Fig. 4a, b. In addition,
Fig. 7 shows that the chattering of the control signal (19) is slight. Therefore, the
simulation results validate the advantages and limitations of the proposed control
scheme, as indicated in Remarks 7 and 8.

6 Conclusion

In this paper, the second-order SMC theory is successfully extended for the first time to
accomplish the stability of a class of nonlinear systems in a fixed time. In this process,
novel sliding module surfaces and an improved result for stability are developed to
realize the stability and reachability of the sliding module in a fixed period. The
outstanding advantage of the SOSMCA obtained in this article is that it reduces the
tremor phenomenon. Considering that the tremor has not been completely eliminated,
we will extend this control algorithm to neural sliding mode control to remedy this
deficiency in the future. As is known to all, the integrator proposed in neural sliding
mode control can filter the high-frequency switch generated by SMC.
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Fig. 6 The SMS function (15) and the second-order SMS (18)



Circuits, Systems, and Signal Processing (2024) 43:5507–5531 5529

Fig. 7 The SOSM controller (19)
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