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Abstract
Based on the criterion ofminimum error entropy, this paper proposes a novel conjugate
gradient algorithm, called MEE-CG. This algorithm has robust performance under
non-Gaussian interference. Theoretical analysis and experimental results demonstrate
that the proposed algorithm displays more robust performance than the conventional
conjugate gradient methods on the basis of the mean square error and the maximum
correntropy criterion. Compared with the stochastic gradient minimum error entropy
algorithm and the recursive minimum error entropy algorithm, the proposed algorithm
provides a trade-off between computational complexity and convergence speed.
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1 Introduction

Over the past decades, the rapid development in adaptive filtering (AF) algorithms
is regarded as a significance for practical applications [20]. The AF algorithms have
been widely adopted in the field of signal processing including noise cancellation
[11], channel equalization [8] and system identification [30]. The fundamental AF
algorithms cover the famous least mean squares (LMS) [9], recursive least squares
(RLS) [22] and conjugate gradient (CG) algorithm [29]. The LMS with the fixed step
size always presents slow convergent speed [19]. Although the conventional RLS algo-
rithm has a faster convergent speed, it suffers from higher computation complexity
and numerical instability [25]. Comparing with the well-known RLS and LMS algo-
rithms, the CG algorithm provides a trade-off between computational complexity and
convergence speed [31]. Because of the variable step length according to the real-time
input and the avoidance for calculating matrix inversion during derivation, the CG
algorithm exhibits comparable performance in convergence with a smaller burden in
computational complexity than the RLS algorithm [7].

The mean square error (MSE) acts as one of the most popular criteria in AF algo-
rithms, which works well under Gaussian noises. However, signals will be most likely
contaminated by non-Gaussian noise in various physical applications, including wire-
less channel tracking [18], multipath estimation [12] and acoustic echo cancellation
[15]. Under these circumstances, the performance of the adaptive filter under theMSE
criterion may work poorly [3, 5]. Therefore, combining with the Information Theo-
retic Learning (ITL) [23], various AF algorithms have been proposed to cope with
inference from the non-Gaussian noise. The maximum correntropy criterion (MCC)
[17, 24, 27] and minimum error entropy (MEE) [2, 4, 14], acting as the two typi-
cal examples for ITL, are insensitive to larger outliers, and improve the performance
under impulsive noise. Several algorithms based on the MCC criterion have been pro-
posed, such as the LMS-type algorithm [16, 21, 26], the RLS-type algorithm named
the recursive maximum correntropy (RMC) [32] and the CG-type algorithm called the
q-Gaussian MCC-CG [6]. Recent research has shown that the MEE criterion presents
more robust performance than the MCC [10], and has been effectively utilized in the
LMS-type algorithm [26], RLS-type algorithm named the recursive minimum error
entropy (RMEE) [23] and the Kalman filter called the MEE-KF [2]. To the best of our
knowledge, the CG has not been applied to the MEE criterion.

Under the MEE criterion, the LMS-type algorithm has slow convergent speed or
poor steady-state error [14], and the RLS-type algorithm, or the RMEE, has improved
both the convergent speed and the steady state error at the cost of a high computational
complexity [23]. In this paper, we derive an CG-typed algorithm based on the MEE
criterion, calledMEE-CG. It can be expected that theMEE-CG algorithmwill achieve
a trade-off between computational complexity and convergence speed, compared with
the LMS-type and RLS-type algorithms based on the MEE criterion.

For comparison, the LMS-type, CG-type [6] and RLS-type [32] algorithm under
the MCC criterion are called MCC-LMS, MCC-CG andMCC-RLS, respectively. The
LMS-type, CG-type and RLS-type [23] algorithm under the MEE criterion are called
MEE-LMS, MEE-CG (proposed in this paper) and MEE-RLS, respectively.
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The organization of the paper is structured as follows: in Sect. 2, the problem is
addressed; in the following Sect. 3, we derive the MEE-CG algorithm; the analyses on
the convergence and computational complexity are given in Sect. 4 and then experi-
mental simulations for system identification are provided in Sect. 5; in the final Sect. 6,
we summarize the paper and obtain the conclusion.

2 Problem Statement

2.1 Adaptive Filtering Theory

The block diagram of the basic adaptive filter is shown in Fig. 1. When taking the
adaptive filtering theory into consideration, the desired response d ∈ R1 are generated
via an input u ∈ RM at instant n

d (n) = wT
o u (n) + v (n) , (1)

where wo ∈ RM denotes the unknown coefficient, and v(n) represents the zero-mean
observation noise with variance σ 2

v . The estimation error can be represented as

e (n) = d (n) − wT (n − 1)u (n)

= d (n) − y(n), (2)

where y(n) = wT (n − 1) u (n), and w(n − 1) accounts for the estimation of wo at
instant n−1. For simplification, we make the assumptions as follows: 1) The additive
noise is white, and we have

E {v (m) v (n) } = 0,m �= n. (3)

2) The inputs u(n) is composed of a zero-mean white sequence

E
{
uT (m)u (n)

}
= E

{
u (m)uT (n)

}
= 0,m �= n. (4)

3) The inputs are uncorrelated with the additive noise at moments (m, n)

E
{
uH (m) v (n)

}
= 0,m �= n. (5)

2.2 Minimum Error Entropy (MEE) Criterion

From the Information Theoretic Learning (ITL), we can obtain the empirical version
of the quadratic information potential [14, 26] for filters with sliding window in length
L
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Fig. 1 Block diagram of the
basic adaptive filter

V (e) = 1

L2

L∑
i=1

L∑
j=1

λi+ j Gσ (e(i) − e( j)), (6)

whereGσ stands for theGaussiankernel functionwith bandwidthσ , andλ (0 < λ ≤ 1)
denotes the forgetting factor

Gσ (x) = 1√
2πσ

exp

(
− x2

2σ 2

)
. (7)

Assume that the error is a random variable with probability density function and an
estimator of Renyi’s quadratic entropy [14] for the error can be written as

Rq(e) = log
1

V (e)
. (8)

According to ITL, minimizing the error entropy is equivalent to maximizing the for-
mula (8). Therefore, based on the MEE [2, 4, 14], the cost function can be obtained
as

JMEE (w) = 1

L2

L∑
i=1

L∑
j=1

λi+ j Gσ (e(i) − e( j)). (9)

We get the gradient of (9) as

∇ JMEE (w)

= 1

L2σ 2

L∑
i=1

L∑
j=1

λi+ j (u(i) − u( j))Gσ (e(i) − e( j)) (e(i) − e( j)). (10)
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For each instant n, we simplify the following expressions

⎧
⎨
⎩
ui = u (n − i) ,

di = d (n − i) ,

ei = e (n − i) , i = 0, 1, · · · , L − 1.
(11)

Thus, we are able to change the form of the following expressions

⎧⎪⎨
⎪⎩

UL = [
u0,u1, . . . ,uL−1

] = [
u0,UL−1

]
,

DL = [
d0, d1, . . . , dL−1

]T = [
d0,DL−1

]T
,

εL = [
e0, e1, . . . , eL−1

]T = [
e0, εL−1

]T
.

(12)

So (10) can be rewritten as

∇ JMEE (w)

= 1

L2σ 2

L−1∑
i=0

L−1∑
j=0

λi+ j (ui − u j
)
Gσ

(
ei − e j

) (
ei − e j

)

= 2

L2σ 2UL(PL − QL)εL

= 2

L2σ 2UL�LεL . (13)

Then we obtain
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[Q](i+1)( j+1) = λi+ j Gσ

(
ei − e j

)
, i, j = 0, 1, . . . , L − 1

[P](i+1)( j+1) =
⎧⎨
⎩

L−1∑
k=0

λi+kGσ (ei − ek), i = j

0, i �= j
[ϕ]i = λi Gσ (ei − e0) , i = 1, . . . , L − 1

φ0 =
L−1∑
k=1

λkGσ [e0 − ek].

(14)

Through expressions (12–14), we can obtain the �L (see the formula (11) in [26] for
details) of the objective function under the MEE criterion and its recursive method.

3 ProposedMinimum Error Entropy Conjugate Gradient

Through the derivations in Sect. 2, we have

{
RL = UL�LUT

L ,

rL = UL�LDL .
(15)
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From (12), (14) and (15), we have

⎧⎪⎪⎨
⎪⎪⎩

RL = λ2UL−1�L−1UT
L−1

+ [
u0φ0uT0 + UL−1ϕuT0 + u0ϕTUT

L−1

]
,

rL = λ2UL−1�L−1DT
L−1

+ [
u0φ0dT0 + UL−1ϕdT0 + u0ϕTDT

L−1

]
.

(16)

After applying the attenuation window to the correlation function for the data matrix
in the CG, we achieve the same expressions as the RLS-type algorithm [1, 23]

{
RL = λ2RL−1 + u0φ0uT0 ,

rL = λ2rL−1 + u0φ0d0.
(17)

The online CG method aims to minimize the following cost function [7]

min F
(
wL

) = min

(
1

2
wT

LRLwL − rTLwL

)
, (18)

and the solution of (18) is

RLwL = rL . (19)

The weight vector wL and the direction vector pL can be updated as

wL = wL−1 + αLpL , (20)

pL+1 = gL + βLpL , (21)

where step factor αL and direction factor βL will update for each iteration and gL
denotes residual vector.

Substituting (17) into (20) and (21), the residual vector gL for the online CGmethod
is

gL = rL − RLwL

= λ2gL−1 − αLRLpL + u0φ0(d0 − uH
0 wL−1). (22)

According to the conjugate properties for pL of the CG, we can get

pTL+1RLpL = (gL + βLpL)TRLpL

= gTLRLpL + βLpTLRLpL
= 0, (23)
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and then the expression of βL can be derived as [1]

βL = −gTLRLpL
pTLRLpL

. (24)

According to the definition of the step factor αL in (20), substituting (20) into the
objective function F(wL) in (18) yields

F(wL) = F(wL−1 + αLpL). (25)

Setting the derivative of (18) to zero, αL in (25) becomes

αL = rTLpL − wT
L−1RLpL

pTLRLpL
. (26)

According to the derivations above, the detailed description for theMEE-CGalgorithm
is given in Algorithm 1.

Algorithm 1 Proposed MEE-CG algorithm.
Initialize: w(0) = 0, p(1) = g(0) = r(0) = u(1)φ(1)d(1).
Iterate:
1: e (n) = d (n) − wT (n − 1)u (n) ,

2: φ(n) =
L−1∑
k=1

λkGσ [e(n) − e(n − k)],

3: R(n) = λ2R(n − 1) + u(n)φ(n)u(n)T ,

4: r(n) = λ2r(n − 1) + u(n)φ(n)d(n),

5: q(n) = R(n)p(n),

6: α(n) = (r(n)T p(n) − w(n − 1)T q(n))
/
p(n)T q(n),

7: w(n) = w(n − 1)+α(n)p(n),

8: g(n) = λ2g(n − 1) − α(n)q(n) + u(n)φ(n)e(n),

9: β(n) = −(g(n)T q(n))/(p(n)T q(n)),

10: p(n + 1) = g(n) + β(n)p(n).

4 Performance Analyses

4.1 MeanValue Behavior

Assuming the input signal to be ergodic and wide-sense stationary, α (n), β (n), p (n),
w (n), g (n) , r (n) and R (n) are independent with each other, and then we have
E [α (n)] = ᾱ, E [β (n)] = β̄, E [r (n)] = r , and E [R (n)] = R for simplicity.
After applying Z-transform to the proposed MEE-CG, to ensure the stability of the
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described system, we obtain the same conclusion about the range of αL and β̄ in [1]

⎧
⎨
⎩

−1 ≤ β̄ + ᾱλi − β̄ − 1,
−1 ≤ β̄ − ᾱλi + β̄ + 1,
−1 ≤ β̄ ≤ 1.

⇒ 0 ≤ ᾱ ≤ 2β̄ + 2

λmax
. (27)

where λi is the i th eigenvalue of R. When β̄ → 0, we have 0 ≤ ᾱ ≤ 2λ−1
max, which

also supports the steepest descent algorithm in [9].
Besides, after M iterations, we have R̃(n)w̃(n) ≈ r̃(n), where x̃ represents the

estimation for x. Hence, the norm of g(M) satisfies

‖ g(M) ‖=‖ r̃(n) − R̃(n)w̃(M) ‖< ε, (28)

where ε can be an arbitrary small value. According to [1], we get the bound for the
norm of ‖ wo − w(n) ‖ as follows

‖ wo − w(n) ‖R1≤ 2 ‖ wo − w(0) ‖R1

(√
κ − 1√
κ + 1

)n

(29)

where R1 = R̃(n) is positive define, ‖w‖R1 =
√
wTR1w, and the condition number

is defined as κ = ‖R‖2
∥∥R−1

∥∥
2. After taking the expectations on both side of (29),

we can reach the conclusion that MEE-CG is convergent in mean value.

4.2 Mean Square Behavior

After reaching the steady state, we have w(n) ≈ w(n − 1). From (20), we have
α(n)p(n) ≈ 0. Then multiplying α(n) with (26), we can have α(n) ≈ 0, and thus
g(n) ≈ g(n − 1). According to (24), β(n) ≈ 0, we can obtain p(n + 1) ≈ g(n)

from (21). Taking this equation into (26), one can obtain g(n) ≈ 0. Since g(n) =
r(n) − R(n)w(n) ≈ r(n) − R(n)w(n − 1), we can easily get w(n) ≈ R(n)−1r(n),
which is the same as the MEE-RLS algorithm. Therefore, it can be concluded that
the steady state behavior for both CG and RLS algorithms are equivalent [7]. Then,
according to [23], the total weighted error in steady state for the proposed MEE-CG
is the same as the RMEE algorithm

lim
n→∞ E

∥∥w̃(n)
∥∥2
2 ≈ 1 − λ2

1+λ2
Mσ−2

u E
{
v2(n)φ(n)2

}
E−2 {φ(n)} . (30)

The following numerical simulations also verify the correctness of the theoretical
values.

4.3 Computational Complexity

Table 1 displays the computational complexities of the MSE-RLS, MSE-CG, MCC-
RLS, MCC-CG, MEE-RLS and MEE-CG per iteration. Table 1 shows that the
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Table 1 Computational complexities of the MSE-RLS,MSE-CG, MCC-RLS, MCC-CG, MEE-RLS and
MEE-CG per iteration

Algorithms ×/÷ ± Exponents

MSE-RLS 4M2 + 3M + 2 4M2 0

MSE-CG 3M2 + 13M + 2 2M2 + 10M − 4 0

MCC-RLS 4M2 + 3M + 5 4M2 1

MCC-CG 3M2+15M+2 2M2 + 10M − 4 1

MEE-RLS 4M2+3M+5 4M2 + 2L − 3 L − 1

+(L + 4)(L − 1)/2

MEE-CG 3M2+15M+2 2M2 + 10M L − 1

+(L + 4)(L − 1)/2 +2L − 7

Fig. 2 Transient MSDs (dB) of
the MCC-CG for different
parameters values of λ2 when σ

= 1
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computational complexity of the MSE-CG, MCC-CG, and MEE-CG is lower than
that of the MSE-RLS, MCC-RLS, and MEE-RLS, respectively.

Sections 4.2 and 4.3 show that the proposed MEE-CG algorithm are capable of
achieving the same steady error as the MEE-RLS with lower burden in computation
than the MEE-RLS.

5 Experimental Results

In this section, the simulations will be carried out to prove the theoretical analysis and
verify the superiority of the proposedMEE-CG algorithm.We gain all the simulations
from the average of independent 100 Monte Carlo trials and the performances of the
algorithms are evaluated by the steady-state mean-square deviation (MSD)

MSD = lim
n→∞ E

{
‖wo − w(n)‖22

}
. (31)
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Fig. 3 Transient MSDs (dB) of the MEE-CG algorithm for different parameters values of λ2 when σ = 1

Fig. 4 Transient MSDs (dB) of
MEE-CG and other MEE-based
algorithms
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In the simulations, the unknown parameterwo is chosen to be a vector with the size
12 × 1, and we set the sliding window in the length of L=15. We choose the white
Gaussian random sequences as inputs u where the covariance matrix E{uuT }=I5 and
E{uTu}=5. The additive impulsive noise is v(n) ∼ 0.94N (0, 0.01)+ 0.06N (0, 225).
Figure 1 compares the proposed MEE-CG under σ=1. The λ2 parameters for
MEE-CG1, MEE-CG2, MEE-CG3, MEE-CG4 and MEE-CG5 denote 0.942, 0.965,
0.980, 0.990 and 0.995 respectively. The corresponding theoretical values (30) are
TH-MEE-CG1, TH-MEE-CG2, TH-MEE-CG3, TH-MEE-CG4 and TH-MEE-CG5
respectively.

Figure 2 shows that the convergence rate of the MCC-CG algorithm of these five
sets of parameters has proportional to the value of λ, and their steady-state errors are
inversely proportional to the value of λ. The theoretical values for steady-state error
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will be increased under the decrease of the forgetting factor λ as well as the increase
of the bandwidth σ .

Figure 3 shows that the convergence rate of the MEE-CG algorithm of these five
sets of parameters has proportional to the value of λ, and their steady-state errors are
inversely proportional to the value of λ. The theoretical values for steady-state error
will be increased when decreasing the forgetting factor λ or increasing the bandwidth
σ . And, the convergence rates of the MCC-CG and MEE-CG can be found from
Figs. 2 and 3, respectively. One can see that the MEE-CG1 reaches the same MSD
for about 800 iterations than the MCC-CG1 and the MEE-CG4 is 400 iterations faster
than the MCC-CG4 in Figs. 2 and 3. Thus, the proposed MEE-CG algorithm achieves
faster convergence speed than the MCC-CG. When the kernel width sets within an
appropriate range through the experimental results and related researches, the MEE-
type algorithms can have good filtering performance and the kernel width can be
chosen by cross-validation or trial and error methods in practical applications [2, 4,
14, 26]. In this paper, σ = 1 is a good choice to ensure the performance of the proposed
algorithm by trial and error methods.

Then, the comparison between MEE-LMS1 (μ = 0.2), MEE-LMS2 (μ = 0.4),
MEE-RLS1 [23]

(
λ2 = 0.990

)
, MEE-RLS2 [23]

(
λ2 = 0.965

)
, MEE-CG1(

λ2 = 0.990
)
and MEE-CG2

(
λ2 = 0.965

)
are given in Fig. 4. The proposed MEE-

CG has a smaller MSD value and a faster convergence rate thanMEE-LMS algorithm.
Under the same λ2 values, it has the same MSD as MEE-RLS, and the convergence
rate of MEE-CG becomes slightly slower than the MEE-RLS.

6 Conclusion

Wehaveproposed a newMEE-CGmethodbasedonMEEcriterion,which has the same
theoretical steady state error as that of theMEE-RLS.The numerical simulations reveal
that when coping with non-Gaussian noise, theMEE-CG has faster convergence speed
than MEE-LMS algorithm and smaller steady state error than MCC-CG algorithm.
In addition, the MEE-CG has comparable performance with the MEE-RLS, and its
computational complexity is lower than the MEE-RLS.
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