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Abstract
In this paper, we propose a novel convex combination algorithm based on the dis-
tributed diffusion strategy, utilizing the least mean square (LMS) approach to enhance
the performance of sensor networks. By enabling communication among nodes, the
algorithm achieves decentralization and improves the robustness of the network. To
address the limitations of slow convergence speed and large static error associated
with fixed step size errors, we introduce a convex combination strategy that integrates
two filters with variable step sizes. The LMS algorithm with the convex combination
variable step size assigns a higher weight to the filter with a larger step size when the
error is significant, ensuring rapid convergence. Conversely, the convex combination
small step size filter is assigned a higher weight when the error is small, reducing
the error in the stable state. The convergence behavior of the proposed algorithm is
analyzed through theoretical analysis, and its complexity is compared with that of the
distributed diffusion LMS algorithm through extensive experimental simulations. The
results demonstrate that the combination of the LMS algorithm with the distributed
diffusion strategy offers advantages in challenging external environments, including
improved convergence speed and reduced stability error. This study makes significant
contributions to the existing research field by introducing a novel convex combination
algorithm that addresses the shortcomings of fixed step size errors and expands the
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range of available algorithms. By leveraging the distributed diffusion strategy, our
approach enhances the robustness of sensor networks and achieves improved perfor-
mance. The findings of this study provide valuable insights for researchers working on
decentralized algorithms and highlight the potential of combining the LMS algorithm
with the distributed diffusion strategy in challenging environmental conditions.

Keywords Distributed diffusion strategy · Convex combination · Sensor network

1 Introduction

Intelligent sensor networks are widely used in various fields, such as environmen-
tal detection, climate detection, and signal detection and control, due to their low
cost, practicality, and network adaptability. However, the presence of various noises
can significantly affect the accuracy of information processing in sensors, leading to
estimation deviations. Active noise suppression techniques have gained significant
attention [17].

Distributed adaptive filter algorithms based on adaptive networks, which utilize
noise measurement data from nodes to estimate potential parameter vectors, have
emerged as a research hotspot due to the advances in adaptive filter theory. The dis-
tributed least mean square (DLMS) algorithmwas proposed [17]. However, the DLMS
algorithm still suffers from the limitations of fixed step sizes in the LMS algorithm,
as it fails to optimize the convergence speed and stability error simultaneously.

To address the limitations mentioned above and minimize the loss of net-
work information, researchers have proposed improved algorithms utilizing impulse
noise detection methods. For instance, the diffusion robust variable step size LMS
(DRVSS-LMS) algorithm [14] was introduced. However, this algorithm requires prior
knowledge of the output error, including its mean, variance, and distribution. Another
approach, the diffusion sign error LMS (DSE-LMS) algorithm, was proposed in ref-
erence [21] based on the minimization of the mean absolute error (MAE) criterion.
By designing the cost function using the L1 norm of the error, this algorithm effec-
tively eliminates the interference of impulse noise through the sign operation during
the adaptive step. However, the DSE-LMS algorithm exhibits slow convergence speed
and large steady-state error due to its adaptive update process relying solely on the
error signal’s sign. Additionally, the robust diffusion LMS (RDLMS) algorithm pre-
sented in reference [3] derives from minimizing the pseudo-Huber function, which
approximates the Huber function and ensures a continuous derivative.

Severalmethods have been proposed for non-Gaussian noise scenarios. The FxLMP
algorithm [16] effectively converges by utilizing the error P-norm. Hui introduced
the FxlogLMS algorithm [32], which models the steady-state distribution of α as a
logarithmic process and performs a logarithmic transformation of the collected impact
noise. Hadi proposed an algorithm [36] that enhances the robustness of network nodes
against impulse noise. However, these methods suffer from fixed step sizes, resulting
in slow convergence and large steady-state error.

To achieve high convergence speed and small steady-state error, this study pro-
poses a convex combination LMS algorithm based on the distributed diffusion strategy
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(CCLMS-DDS). By introducing convex combination into the distributed algorithm,
this approach effectively balances the convergence speed and steady-state error,
addressing the limitations of existing algorithms.

1.1 Related Studies

The classification of nonlinear filters can be categorized into three main groups: func-
tion expansion filters, recursive filters, and bilinear filters. Function expansion filters,
such as Volterra and functional link artificial neural network (FLANN) filters, are
known for their low computational load and linear output-weights relationship [4,
7, 11, 22, 26, 29]. Among them, Volterra filters outperform FLANN filters in han-
dling crossing nonlinearities. Several function expansion filters have been developed
to improve noise control in nonlinear active noise control (NANC) systems, includ-
ing the Chebyshev filter [7], exponential functional link network (EFLN) filter [22],
general FLANN filter [26], and mirror Fourier nonlinear (EMFN) filter [4].

Inspired by function expansion filters, researchers have introduced recursive fil-
ters [5, 6, 12, 27, 37] and function expansion bilinear (FEB) filters [13, 15, 19,
28] to further enhance control performance. FEB filters have shown remarkable
applicability in NANC systems [12], but their practical implementation is hindered
by high computational load and the bounded input bounded output (BIBO) stabil-
ity problem. On the other hand, recursive filters have gained considerable attention
due to their superior complexity and clear theoretical mechanism. Notable examples
of recursive filters include the recursive second-order Volterra (RSOV) filter [37],
recursive FLANN (RFLANN) filter [27], recursive EMFN (REMFN) filter [5], and
recursive EMFN filter with linear infinite impulse response (IIR) section (REMFNL)
filter [12].

Several algorithms have been proposed to control noise based on different esti-
mation and cost functions. The FxLMM algorithm utilizes the objective function of
an M estimation function [9, 30], while a nonlinear active noise control algorithm
employs a P-norm Wiener filter algorithm with a continuous logarithmic cost func-
tion [18]. Another approach introduces variable step sizes in an LMS algorithm using
incremental and diffusion strategies [24]. Saeed et al. [23] propose variable step size
methods based on combinations of nonlinear functions, such as sigmoid and expo-
nential functions, to achieve adaptive step sizes in the iterative process. However,
these methods suffer from deficiencies, such as sensitivity to environmental noise and
algorithm deviation caused by significant step size variations.

To address the limitations of variable step size methods, researchers have proposed
variable step size methods suitable for impulse noise environments [14, 31, 33, 35].
Huang et al. [14] design an adaptive iterative method for step sizes and impulse noise
detection thresholds, preventing impulse interference through threshold judgment.
Although these methods exhibit good performance in impulse noise environments,
they are computationally intensive. Garcia et al. [1] introduce the concept of convex
combination into adaptive filtering algorithms, leading to a class of adaptive algorithms
for convex combination with promising results. Zhao et al. [38] propose an algorithm
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utilizing convex combination for noise control in neural networks.Yu et al. [34]modify
thresholds using a distributed recursion scheme, improving algorithm performance in
the presence of impulsive noise. Guo et al. [12] propose an improved recursive even
mirror Fourier nonlinear filter for nonlinear active noise control (NANC) by employ-
ing a convex combination of feedforward and feedback subsections. However, these
algorithms are primarily designed for central algorithms, resulting in low reliability
and scalability in networked systems.

To address these limitations, we introduce the concept of convex combinations in
distributed networks, combining the advantages of both approaches. Through efficient
calculations, we achieve the desired effect of reducing the step size.

1.2 Contributions of this Study

The proposed CCLMS-DDS algorithm in this study consists of two stages: adapt and
combine. In the adapt phase, individual nodes estimate parameters and update local
estimates using measurements from neighboring nodes. In the combine stage, the
distributed strategy assigns weight values based on adjacent nodes and combines them
to generate a new weight estimate. Compared to the DLMS algorithm, the algorithm
proposed in this study offers the following advantages:

1. In the adapt stage, a convex combination approach is introduced for parameter
estimation. This allows for dynamic adjustment of the filter’s step size based on
the uncertain external noise characteristics. As a result, the algorithm achieves
rapid convergence in the initial phase of operation and adapts to a smaller step
size near the steady state, effectively reducing the steady-state error. Therefore,
this algorithm successfully addresses the contradiction between fast convergence
and low steady-state error, broadening its applicability.

2. In the combine stage, information from neighboring nodes is fused, resulting in
higher accuracy in the final parameter estimation compared to a centralized algo-
rithm. The theoretical proof provides the corresponding mathematical derivation
supporting this claim.

1.3 Structure of this Study

This paper is structured as follows. Section1 presents the introduction, providing
an overview of the research. In Sect. 2, the problem formulation and relevant back-
ground are discussed. Section3 introduces the CCLMS-DDS algorithm, outlining its
key features and operation principles. The performance analysis is presented in Sect. 4,
where the algorithm’s convergence and stability properties are thoroughly examined.
Section5 presents the simulation experiments conducted to evaluate the algorithm’s
performance, followed by an analysis of the experimental results. Finally, Sect. 6 sum-
marizes the study, highlighting the key findings and contributions.
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2 Question Formulation and Relevant Context

2.1 LMS Algorithm

The LMS algorithm is a well-known adaptive filtering technique that utilizes input
signals to dynamically adjust filter weights for signal processing purposes. By per-
forming statistical analysis on the input and system-generated signals, the L-order
filter aims to meet predefined standards and achieve desired signal processing effects.

Let x (i) denote the input signal, and the system’s output signal y (i) is obtained by
combining weighted versions of past input signals, as shown in Eq. (1):

y (i) =
L∑

ωmx (i − m) . (1)

The error signal e (i) is defined as the difference between the desired output signal
d (i) and the system’s actual output signal y (i), as given by Eq. (2):

e (i) = d (i) − y (i) = d (i) −
L∑

ωmx (i − m) . (2)

To update the filter’s weight vector, Eq. (3) is employed:

ω (i + 1) = ω (i) + 2μe (i) x (i) , (3)

where μ represents the step size of the filter.

2.2 Sensor NetworkModel

In this section, we present the sensor network model used in this study. The sensor
network consists of M nodes, denoted as δ = {1, . . . , M}, which are deployed across
observation areas with computing, communicating, and sensing capabilities.

To enable direct communication between nodes, a communication range distance
of πr is assumed. The network’s structure is described by a graph κ = (δ, ζ ), where
ζ ⊂ δ × δ represents the edge set of the network. If two nodes p and q satisfy the
condition (p, q) ∈ κ , they are considered interconnected.

The neighboring nodes of node p, denoted as Hp, are defined as the set of nodes
connected directly to node p, as shown in Eq. (4):

Hp = {q ∈ δ | (p, q) ∈ ζ } . (4)

It is worth noting that node p is also considered its own neighbor. Each node is
aware of its immediate neighbors but does not possess knowledge about the complete
communication structure of the entire network. Assuming interconnectivity among
the networks, there exists a sequence of boundaries between any two nodes p and q,
denoted as (p, u1) , (u1, u2) , . . . , (um, q) in ζ .
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In summary, this section outlines the sensor network model employed in the study,
emphasizing the communication range, network structure represented by a graph, and
the concept of neighboring nodes.

2.3 Diffusion Strategy

In the context of distributed estimation, various strategies are employed to tackle
network parameter estimation problems. Among them, consensus, incremental, and
diffusion strategies have gained significant attention. In this section, we focus on the
diffusion strategy and its relevance to the research topic.

The incremental distribution system, discussed in previous studies [17], relies on
a network ring topology to establish the sequence of estimates for each node, update
their estimation tasks, and evaluate algorithm efficiency through theoretical analysis.

Schizas proposed a novel algorithm based on the consensus strategy, and its imple-
mentation processwas thoroughly analyzed [20].Mateos conducted a stability analysis
of the consensus algorithm and provided theoretical confirmation of its effectiveness
[25]. While both the incremental and consensus strategies have their merits, the dif-
fusion strategy stands out due to its flexibility in network structure.

In line with the diffusion strategy, Sayed introduced the DLMS algorithm [8]. This
algorithm has been specifically designed to leverage the advantages of the diffusion
strategy for network parameter estimation.

In summary, this section highlights the diffusion strategy as a key component of
distributed estimation. It provides an overview of the incremental and consensus strate-
gies, leading to the introduction of theDLMSalgorithmbased on the diffusion strategy.

3 A Convex Combination LMS Algorithm Based on the Distributed
Diffusion Strategy

The LMS algorithm, known for its simplicity and fast convergence speed, exhibits
favorable performance in Gaussian distributions. However, when subjected to non-
Gaussian white noise, the algorithm’s adjustment accuracy is affected, and conven-
tional error-based second-ordermoment algorithms fail to achieve proper convergence.
This leads to a significant degradation or even invalidation of the LMS algorithm’s
performance. Existing alternative algorithms often suffer from either excessive com-
putation or unsatisfactory parameter selection, further complicating the issue.

To address these limitations, this study proposes an innovative approach that lever-
ages the concept of convex combinations. By combining filters with large and small
step sizes based on weight ratios, the proposed algorithm continually adjusts its con-
vergence speed and steady-state errors in response to the type of external noise. This
effectively resolves the challenge of simultaneously achieving high convergence speed
and low steady-state errors.

By dynamically adapting to the characteristics of non-Gaussian noise, the proposed
CCLMS-DDS algorithm overcomes the limitations of traditional LMS algorithms. It
offers a promising solution that balances the trade-off between convergence speed
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Fig. 1 The schematic diagram of the convex combination filter structure

and steady-state errors, thereby improving the algorithm’s overall performance. The
details of the algorithm formulation and its mathematical analysis will be presented
in the following sections.

3.1 Convex Combination Adaptation Phase

The filter structure utilizing the convex combination is depicted in Fig. 1, where two
filters are connected in parallel. The filter with a large step size is denoted as ω1 (i),
while the filter with a small step size is represented by ω2 (i). The output signals from
the two LMS filters are y1 (i) and y2 (i) , respectively, and the final output value of
the filter after the convex combination is denoted as y (i). The input signal from the
external source is x (i), which passes through both filters. The desired signal is d (i),
and the error signal is calculated as e (i) = d (i) − y (i). The weight coefficient λ (i)
controls the proportion of the two filters and adapts to the environment.

By employing the principle of convex combination, the output can be expressed as:

y (i) = λ (i) y1 (i) + [1 − λ (i)] y2 (i) . (5)

Similarly, the output error can be obtained as:

e (i) = λ (i) e1 (i) + [1 − λ (i)] e2 (i) . (6)

The core of the proposed algorithm lies in achieving a balance between fast conver-
gence and minimal steady-state error. Consequently, the parameter λ (i) needs to be
variable. In the initial stage, the filter with the larger step size dominates, allowing for
quick convergence. As the algorithm approaches stability and the steady-state error
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decreases, the parameter λ (i) is adjusted to give priority to the filter with the smaller
step size. Consequently, the overall algorithm error is reduced. The parameter λ (i)
gradually transitions from 1 to 0, following the sigmoid function:

λ (i) = sgm [δ (i)] = 1

1 + e−δ(i)
, (7)

Here, δ (i) is a dynamically adjusted variable determined by the error signal and the
outputs of the filters. To minimize the mean square error [2], the stochastic gradient
method of the LMS error is utilized for adjustment, and δ (i) is adaptively updated
based on the error signal e (i), as well as the output values y1 (i) and y2 (i) of the two
filters. The recursive formula for δ (i) is given by:

δ (i + 1) = δ(i) − μα

2

∂e2(i)

∂δ(i)
(8)

= δ(i) − μα

2

∂e2(i)

∂λ(i)

∂λ(i)

∂δ(i)
(9)

= δ (i) + μαe (i) [y1 (i) − y2 (i)] λ (i) [1 − λ (i)] , (10)

where μα is a positive constant. To confine the mixed parameter λ (i) within the
convergent range of the algorithm, a sigmoidal function is employed. This effectively
suppresses random gradient noise. The final filter weight update formula is described
as follows:

ω j (i + 1) = ω j (i) + μ j x (i) e j (i) , (11)

where j = 1, 2.
By combining two single filters with different step sizes using the concept of a con-

vex combination, a convex combination filter is designed. This approach enables the
filter to achieve fast convergence with minimal steady-state error. The implementation
steps are as follows:

μα > 0 (12)

y1(i) − y2(i) = [ω1(i) − ω2(i)]x(i) > 0 (13)

λ(i)[1 − λ(i)] > 0 (14)

1. Based on these equations, the functional relationship between δ and e depicted in
Fig. 2, and the monotonicity of variable δ being influenced solely by e, the algorithm
initially increases δ and λ when

e(i) = d(i) − y(i) > 0. (15)

This leads to an increased proportion of the filter with the large step size (y1(i)),
resulting in higher y(i). Consequently, the filter with the large step size dominates,
leading to a higher convergence speed.
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Fig. 2 The functional relationship between λ and δ

2. Conversely, when

e(i) = d(i) − y(i) < 0, (16)

indicating that y(i) is too large, e decreases according to the functional relationship
in Fig. 2, resulting in a decrease in λ. Consequently, the proportion of the filter with
the small step size (y1(i)) increases, leading to a decrease in y(i). In this case, the
filter with the small step size dominates. After the algorithm converges for a certain
period, the mixing parameter of the filter is automatically adjusted, increasing the
proportion of the filter with the small step size. As a result, the overall filter’s step size
decreases, leading to a slower convergence speed and a smaller steady-state error. The
combined convex filter achieves a balance between a small steady-state error and a
high convergence speed.

Next, we consider the convex combination as a filter and derive the relationship
between the overall filterweight update and the input. This relationship can be obtained
from Eq. (5) as follows:

y j (i) = ω j (i)x(i), j = 1, 2, (17)

y(i) = ω(i)x(i) (18)

= λ(i)y1(i) + [1 − λ(i)]y2(i) (19)

= λ(i)ω1(i)x(i) + [1 − λ(i)]ω2(i)x(i) (20)

= λ(i)ω1(i) + [1 − λ(i)]ω2(i)x(i), (21)

so we can derive

ω (i) = λ (i) ω1 (i) + [1 − λ (i)]ω2 (i) ; (22)
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by substituting (11) into (22), we can obtain the updated formula for ω(i + 1).

ω (i + 1) = λ (i) ω1 (i + 1) + [1 − λ (i)]ω2 (i + 1) (23)

= λ (i) [ω1 (i) + μ1e1 (i) x(i)] + [1 − λ (i)] [ω2 (i) + μ2e2 (i) x(i)] .
(24)

After substituting (6), the following equation is obtained

ω (i + 1) = λ (i) [ω1 (i) + μ1e1 (i) x(i)] + [1 − λ (i)] [ω2 (i) + μ2e2 (i) x(i)]

(25)

= λ(i)ω1(i) + [1 − λ(i)]ω2(i)

+ λ(i)μ1e1(i)x(i) + [1 − λ(i)]μ2e2(i)x(i) (26)

= ω(i) + λ(i)μ1e1(i)x(i) + [1 − λ(i)]μ2e2(i)x(i) (27)

= ω(i) + λ(i)μ1e1(i)x(i) − λ(i)μ2e1(i)x(i)

+ λ(i)μ2e1(i)x(i) + [1 − λ(i)]μ2e2(i)x(i) (28)

= ω(i) + λ(i)μ1e1(i)x(i) − λ(i)μ2e1(i)x(i)

+ λ(i)e1(i) + [1 − λ(i)]e2(i)μ2x(i) (29)

= ω(i) + λ(i)μ1e1(i)x(i) − λ(i)μ2e1(i)x(i) + μ2e(i)x(i) (30)

= ω (i) +
(

μ2 + λ(i) (μ1 − μ2) e1 (i)

e (i)

)
e (i) x(i). (31)

Therefore, the final filter has a step size μ (i) = f (i) = μ2 + λ(i)(μ1−μ2)e1(i)
e(i) .

3.2 Combination Phase

Let us consider a sensor network consisting of N nodes, where each node k ∈
{1, 2, . . . , N } represents a different node in the network. At time i , the parameter
value obtained by node k is denoted as dk (i), and there is an input vector uk,i for
node k, equivalent to the input vector x in the LMS algorithm, where uk,i is an L × 1
dimensional vector. Additionally, the accurate weight value of the network filter ω0 is
also represented as an L × 1 dimensional vector. The input–output model for node k
can be expressed as follows:

dk (i) = uTk,iω
0 + ξk (i) . (32)

Here, ξk (i) represents Gaussian noise with a mean of 0 and variance σ 2
k,i . The main

objective of distributed estimation is to use the external observations
(
uk,i , dk (i)

)
to

estimate ω0 and approach its accurate value. Two strategies have been proposed for
calculating the estimated value of ω0: Adapt-Then-Combine (ATC) and Combine-
Then-Adapt (CTA). The ATC strategy has been shown to provide better estimation
accuracy compared to the CTA strategy [10]. (In order to substantiate the theoretical
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superiority of the Adaptive-Then-Combine (ATC) strategy over the Combine-Then-
Adapt (CTA) strategy in handling performance within distributed networks, we have
included additional experiments and provided corresponding simulation results in
Sect. 5.3.) Therefore, this study directly utilizes and analyzes the ATC strategy.

The ATC strategy can be described as follows:

ϕk,i = ωk,i−1 + μk

∑
u∗
l,i

(
dl (i) − ul,iωk,i−1

)
, (33)

ωk,i =
∑

ak,lϕl,i , (34)

where μk = μ(i) = μ [e(i)] = f [e(i)] = μ2 + λ(μ1−μ2)e1(i)
e(i) .

Equation (33) represents the adaptation phase, where each node independently uses
the observations

(
uk,i , dk (i)

)
to calculate an intermediate estimate ϕk,i . Equation (34)

represents the combination phase. Each node has the ability to communicate with its
neighboring nodes and receive their parameter estimates. The node assigns weights to
the received estimates and combines them to produce a new estimate. The coefficient{
ak,l

}
determines the amount of intermediate estimate ϕk,i exchanged between node k

and its neighboring nodes l ∈ Nk . The weight coefficient
{
ak,l

}
should be greater than

0. Matrix A, with dimensions M , is used to select a subset of intermediate estimates
for transmission. Assuming N -dimensional intermediate estimates need to be selected
as a subset to be sent to neighboring nodes, the diagonal elements of matrix A consist
of N ones, while the remaining M − N elements are zeros. This allows neighboring
nodes to choose the subset to be transmitted. If all diagonal elements are ones, it
indicates that all neighboring nodes need to send their intermediate estimates, subject
to the following conditions:

ak,l = 0, l /∈ Nk, 1
T A = 1T . (35)

The communication mode between nodes is determined by the weight coefficients,
and the network topology of the wireless sensor network influences the size of the
coefficient matrix. The weight coefficient matrix is generated using the Metropolis
rule, as shown in Eq. (36):

ak,l =

⎧
⎪⎨

⎪⎩

1
max(rk ,rl )

, l ∈ Nk, l �= k
1 − ∑

l∈Nk ,l �=k
ck,l , l = k

0, l /∈ Nk

, (36)

where rk and rl are the degrees of nodes k and l, respectively. By utilizing the dis-
tributed strategy, effective decentralization can be achieved, and the computing tasks
can be evenly distributed among each node, thereby improving estimation speed and
reducing estimation errors caused by single-node estimation. Furthermore, in a dis-
tributed network, each node has computing power, so the overall network remains
unaffected if a node fails, thereby enhancing network robustness.
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Algorithm 1 A Convex Combination LMS Algorithm Based on the Distributed Dif-
fusion Strategy
1: Initialization: ωl,0 = 0, cl,k ≥ 0 and it satisfies the condition Eq. (36)
2: Parameters: μ j ( j = 1, 2), ϕ, δ, μα

3: Adaptive process:
4: for i=1:iteration do

for each node k
Adaptation:
y1(i) = ω1(i)x(i) e1(i) = d(i) − y1(i)
y2(i) = ω2(i)x(i) e2(i) = d(i) − y2(i)
y (i) = λ (i) y1 (i) + [1 − λ (i)] y2 (i)
e (i) = λ (i) e1 (i) + [1 − λ (i)] e2 (i)
λ (i) = sgm [δ (i)] = 1

1+e−δ(i)

δ (i + 1) = δ (i) + μαe (i) [y1 (i) − y2 (i)] λ (i) [1 − λ (i)]
ω j (i + 1) = ω j (i) + μ j x (i) e j (i)
ϕk,i = ωk,i−1 + μk

∑
u∗
l,i

(
dl (i) − ul,iωk,i−1

)

Communication:
Transfer the intermediate estimate ϕk,i to all neighbor nodes Nk
ϕk,i = ωk,i−1 + μk

∑
u∗
l,i

(
dl (i) − ul,iωk,i−1

)

ωk,i = ∑
ak,lϕl,i ,

4 Performance Analysis

4.1 Convergence Analysis

In this section, we analyze the convergence of the weight coefficient vector in Eq. (3).
By taking the expectation on both sides, we obtain the following equation:

E {ω(i + 1)} = E {ω(i)}+2μE {e(i)x(i)} = (I −2μRxx )E {ω(i)}+2μRxd , (37)

where the identity matrix is denoted as I ,

Rxd = E {d(i)x(i)} , Rxx = E
{
x(i)xT (i)

}
. (38)

By substituting i = 0, we obtain:

E {ω(1)} = (I − 2μRxx )E {ω(0)} + 2μRxd , (39)

Similarly, for i = 1, we have:

E {ω(2)} = (I − 2μRxx )E {ω(1)} + 2μRxd , (40)

Starting with E {ω(0)} = ω(0), we can iterate the process and obtain:

E {ω(i + 1)} = (I − 2μQΛQ−1)i+1ω(0) + 2μ
i∑

j=0

(I − 2μQΛQ−1) j Rxd . (41)
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Here, Rxx can be decomposed into a quadratic form as

Rxx = QΛQT = QΛQ−1, (42)

where Q is an orthogonal unitary matrix and Λ represents the eigenmatrix of Rxx . λ
denotes the eigenvalues of Λ.

Using the relationship with the identity matrix, we have:

(I − 2μQΛQ−1)i = Q(I − 2μΛ)i Q−1, (43)
in f∑

j=0

(I − 2μQΛQ−1) j = Q(2μΛ)−1Q−1. (44)

If the diagonal elements of the matrix are less than 1 (achieved by controlling μ), we
can observe that:

lim
i−→inf

(I − 2μΛ)i+1 = 0, (45)

R−1
xx = QΛ−1Q−1. (46)

By substituting the identities of Eqs. (43) and (44) into Eq. (41), we obtain:

E {ω(i + 1)} = QΛ−1Q−1Rxd = R−1
xx Rxd = ωopt . (47)

As time progresses, the solution of theweight vector gradually converges to theWiener
solution, represented by ωopt . The diagonal elements in (I − 2μΛ) are less than 1,
which ensures convergence:

0 < μ <
1

λmax
, (48)

where λmax is the maximum eigenvalue of Rxx . The step size μ plays a crucial role
in determining the convergence speed.

Before proving the convergence of a distributed network, we need to establish the
following assumptions:

1. The input vectors of all nodes uk,i are independently and uniformly distributed,

with the property E
{
uk,i uTk,i

}
= Ru,k .

2. The input Gaussianwhite noise ξk(i) and the input uk,i of node k are independent,
and the ξk(i) of all nodes are also independent. We have the following relationships:

Δωk,i = ω0 − ωk,i ,

Δϕk,i = ϕ0 − ϕk,i .
(49)

By substituting Eq. (49) into Eqs. (33) and (4), we obtain Eq. (50):

Δϕk,i = (IM − μkuk,i uTk,i )Δωk,i−1 + μkuk,ivk,t ,
Δωk,i = ∑

l∈Nk ,l �=k al,kΔϕl,i .
(50)



Circuits, Systems, and Signal Processing (2024) 43:3832–3860 3845

Next, we introduce the following diagonal matrix:

M = diag {μ1 IM , . . . , μN IM } . (51)

We also introduce the following matrices:

Di = blockdiag
{
u∗
l,i ul,i , . . . , u

∗
N ,i uN ,i

}
, (52)

gi = col
{
ul,ivl,i , . . . , uN ,ivN ,i

}
, (53)

Ḡi = Gi ⊗ IM , (54)

Gi =
⎛

⎜⎝
a1,1,i · · · a1,N ,i

: . . . :
aN ,1,i · · · aN ,N ,i

⎞

⎟⎠ , (55)

where ⊗ represents the Kronecker product and IM represents the M dimensions iden-
tity matrix, and the vector

Δωi = col
{
Δω1,i , . . . , ΔωN ,i

}
. (56)

Using the Kronecker product and the introduced matrices, we have the equation:

Δωi = Ḡi (IMN − MUi )Δωi−1 + Ḡi Lbi . (57)

Considering the independence ofΔωi ,Ui and Ḡi based on the first two assumptions,
we can average Eq. (57) and obtain the following equation:

E {Δωi } = (Ḡi ⊗ IM )(IMN − MR)E {Δωi−1} , (58)

where
R = blockdiag {R1, . . . , Rn} . (59)

The calculation yields:
(Gi ⊗ IM )IMN = IMN , (60)

where Gi ⊗ IM denotes a positive value, and by satisfying the inequality

|λmax {IMN − MR}| < 1, (61)

we can finally obtain an unbiased solution. In conclusion, the convergence condition
for λmax (A), representing the eigenvalue of the Hermitian matrix A, is given by:

0 < μi <
2

λmax {Ri } . (62)
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Table 1 Single iteration complexity of the CCLMS-DDS algorithm

Algorithm steps Multiply/divide Add/subtract

ek (i) = ek (i) − ul,iωk,i−1 L L

ϕk,i = ωk,i−1 + μku
∗
k,i ek (i) L+1 L

ωk,i = ∑
ak,lϕl,i rk L (rk − 1)L

δ (i + 1) = δ (i) + μαe (i) [y1 (i) − y2 (i)] λ (i) [1 − λ (i)] 1 1

λ (i) = sgm [δ (i)] = 1
1+e−δ(i) 1 1

y (i) = λ (i) y1 (i) + [1 − λ (i)] y2 (i) . 2 1

Table 2 Complexity comparison between the CCLMS-DDS algorithm and the DLMS algorithm

Algorithm Multiply/divide Add/Subtract

CCLMS-DDS algorithm 2
[
(rk + 2)L + 1

] + 4 2
[
(rk + 2)L

] + 3

DLMS algorithm (rk + 2)L + 1 (rk + 1)L

4.2 Complexity Comparison

This section presents an analysis of the computational complexity of the CCLMS-
DDS algorithm. The aim is to enhance the robustness of the DLMS algorithm in
unknown external environments and ensure reliable estimation performance.However,
the introduction of additional steps in the convex combination phase leads to increased
computation time compared to the DLMS algorithm.

Table 1 provides the complexity of each node’s computation in each iteration when
using the CCLMS-DDS algorithm. Table 2 compares the complexity between the
DLMS algorithm and the CCLMS-DDS algorithm in each iteration. The results indi-
cate that the computational complexity of the proposed algorithm is higher than that
of the DLMS algorithm. This difference arises from the inclusion of two filter calcu-
lations.

Although both the DLMS algorithm and the CCLMS-DDS algorithm are relatively
straightforward to implement, the DLMS algorithm encounters challenges when deal-
ing with unknown external environments. Specifically, it struggles to strike a balance
between low steady-state error and high convergence speed. In contrast, the proposed
algorithm addresses this issue by increasing the computational complexity of the filter.

Overall, the CCLMS-DDS algorithm offers improved performance in unknown
external environments, but it comes at the cost of higher computational complexity.

5 Simulation and Result

Simulation experiments were conducted on the MATLAB platform to validate the
feasibility of the proposed algorithm and to compare it with existing algorithms.
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Table 3 Filter parameter settings

Parameters μ1(Large) μ2(Small) Number of iterations

Value 0.05 0.005 2000

Table 4 Noise signal settings

Parameters Variance Amplitude Number of iterations

Value 0.01 1 2000

Fig. 3 MSE of the filter whose step size is 0.05

5.1 The Impact of Different Step Size Settings on the Performance of the LMS
Algorithm

In order to investigate the impact of different step size settings on the performance
of the LMS algorithm, various step sizes were tested and their effects were analyzed.
Table 3 provides an overview of the different step size settings, while Table 4 presents
the settings for the noise signal.

Firstly, when the step size of the LMS algorithm is set to 0.05, as shown in Fig. 3,
the convergence speed is significantly faster compared to previous settings. It reaches
the convergence state in approximately 50 iterations. However, an issue arises with
a subsequent occurrence of severe jitter in the MSE. This indicates the presence of a
large error in the MSE, leading to a significant steady-state error between stable and
accurate values.

Secondly, when the step size of the LMS algorithm is set to 0.005, as depicted in
Fig. 4, the convergence speed becomes excessively slow.

Furthermore, in comparison to the filter with a large step size of 0.05, the convex
combination filter exhibits a slower iteration speed, as shown in Fig. 5. It takes
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Fig. 4 MSE of the filter whose step size is 0.005

Fig. 5 MSE of the algorithm proposed in this paper

around 300 iterations to reach a steady state. However, once convergence is achieved,
the stability is robust, and the steady-state error is effectively suppressed at -30 dB.
Compared to the filterwith a step size of 0.005, the convex combination filter converges
faster. The filter with a step size of 0.005 requires 1200 iterations to converge, while
the convex combination filter reaches a steady state in 300 iterations. Moreover, after
reaching a steady state, the steady-state error is controlled at -30 dB.

The simulation results highlight the impact of different step size settings on the per-
formance of theLMSalgorithm.The convex combinationfilter demonstrates improved
convergence speed and steady-state error suppression compared to the filters with
larger or smaller step sizes. These findings support the effectiveness of the proposed
algorithm in achieving desirable performance characteristics.
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Fig. 6 Performance improvement of algorithms with convex combination strategy

5.2 Performance Improvement of Algorithms with Convex Combination Strategy

The convex combination strategy, as discussed in the previous theoretical analysis,
plays a crucial role in achieving a balance between convergence speed and steady-
state error by continuously adjusting the weights between filters based on external
conditions and errors. The performance of the LMS algorithm is affected by the statis-
tical characteristics of the input signal. To address the challenges in parameter selection
and ensure filter convergence, Widrow et al. introduced the normalized LMS (NLMS)
algorithm by incorporating a normalization operation, allowing for a flexible step size
selection (0 < μ < 2) independent of the input signal’s statistical characteristics.
In our simulation experiments, we compare our proposed algorithm with the NLMS
algorithm, as depicted in Fig. 6.

The convergence and stability time of both the NLMS algorithm and our proposed
algorithm are nearly identical, approximately 400 iterations, which is significantly
faster than the 1200 iterations required by the conventional LMS algorithm. It is
worth noting that our proposed method exhibits a faster convergence speed than the
NLMS algorithm prior to reaching stability, highlighting the significant advantages of
our approach utilizing the convex combination strategy.

The results clearly demonstrate the substantial superiority of our proposed method
utilizing the convex combination strategy over the NLMS algorithm. These findings
provide valuable insights for the design of adaptive filtering algorithms that achieve
enhanced convergence speed and stability, especially in the presence of varying input
signal statistics. Further research and application of the convex combination strategy
have the potential to contribute to the development of advanced adaptive filtering
techniques, thereby improving their performance in real-world scenarios.
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Fig. 7 The performance comparison of DLMS algorithms with different strategies

5.3 The Impact of Different Strategies and Step Size Settings on the Performance
of the DLMS Algorithm

In this study, we conducted experiments to evaluate the performance of the DLMS
algorithm and the proposed method. The parameters used for both algorithms were as
follows: N = 20 nodes in the network, Gaussian input signals with zero mean, a filter
order of M = 5, and Gaussian noise vk(i) with a variance of [−2,−1]dB. The input
signals at the nodes followed a Gaussian distribution with a variance of σ 2 = 1.

As mentioned in Sect. 3.2, the ATC strategy has shown superior performance com-
pared to the CTA strategy in distributed networks. To further validate this claim,
additional experiments were conducted and presented in Fig. 7. The figure illus-
trates the network MSE performance curves of the DLMS algorithm under the
non-cooperative approach, ATC strategy, and CTA strategy, respectively. The results
clearly demonstrate that both the ATC and CTA strategies achieve comparable con-
vergence speeds, but the ATC strategy outperforms the CTA strategy in terms of
steady-state error reduction. Moreover, the performance of both strategies surpasses
that of the non-cooperative approach, highlighting the effectiveness of information
exchange among nodes in improving estimation performance. These experimental
findings further support the practical relevance of the ATC strategy in distributed
networks.

For the DLMS algorithm, step sizes μk of 0.05, 0.005, and 0.01 were set for all
nodes. In the proposed method, the parameter α was set to 4, and the step sizes for the
two filters were μ1 = 0.05 and μ2 = 0.005, respectively. The network MSE, which
indicates estimation accuracy, was used to evaluate the performance, with smaller
MSE values indicating more accurate estimation. Each simulation result represents
the average of 10 independent experiments.

Before directly comparing the DLMS algorithm and the proposed method, we first
analyzed the impact of different step sizes on the performance of the DLMS algorithm.
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Fig. 8 The performance comparison between the DLMS algorithm and the proposed algorithm under
different step sizes

Fig. 9 The performance comparison of the DLMS algorithm and the proposed algorithm for each node
under different step sizes

This analysis aimed to determine the optimal parameters for the DLMS algorithm.
Additional experimental simulations were conducted, and the results, depicted in
Figs. 8 and 9, indicate that a larger step size (e.g., μk = 0.05) leads to faster conver-
gence but poorer steady-state error performance. Conversely, a smaller step size (e.g.,
μk = 0.005) results in slower convergence but better steady-state error performance. It
is evident that the DLMS algorithm with a fixed step size cannot achieve a satisfactory
balance between convergence speed and steady-state performance.
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Fig. 10 Variance of input signal and noise in the network nodes

5.4 Performance Comparison of the Proposed Algorithm in Gaussian Noise
Environment with Similar Approaches

In the considered network with N = 20 nodes, each node’s input vector uk,i follows
a zero-mean Gaussian process. The filter order is set to M = 5, and the variance of
Gaussian noise υk(i) ranges from − 20 to − 15dB. The input signals of each node
and the variance of Gaussian noise are shown in Fig. 10. The simulation results are
obtained from averaging 200 independent experiments.

In this section, we compare the performance of the proposed method with similar
algorithms. Specifically,we consider theDRVSS-LMSalgorithm [14]with parameters
α = 2.6 and λ = 0.99, as well as the RDLMS algorithm [3] with parameter δ = 0.9.

Figure 11a and b presents the performance comparison of different algorithms
under Gaussian noise conditions. Figure 11a shows the network MSE curves of the
proposed algorithm and similar algorithms in a Gaussian noise environment, while
Fig. 11b illustrates the steady-state MSE of each node in the network under Gaussian
noise conditions.

From the figures, it is evident that the DSE-LMS algorithm exhibits the poorest
steady-state estimation performance among the five algorithms, with a slower con-
vergence speed. This can be attributed to the DSE-LMS algorithm’s use of the sign
function in the gradient calculation, which filters both abnormal error information con-
taminated by impulse noise and normal error information. As a result, the DSE-LMS
algorithm experiences slow convergence due to a small gradient in the early stages
and significant steady-state error caused by a large gradient in the steady-state phase.

In contrast, the proposed algorithmemploys the convex combination strategy,which
reduces computational complexity and dynamically adjusts the weight of the convex
combination filter. It achieves a faster convergence speed compared to the other four
algorithms (excluding the DLMS algorithm) and approaches the convergence speed
of the DLMS algorithm. Moreover, in the steady-state phase, the proposed algorithm
exhibits lower steady-state error than the DLMS algorithm. This demonstrates a suc-
cessful balance between convergence speed and steady-state error.

These results highlight the superiority of the proposed algorithm in achieving an
optimal trade-off between convergence speed and steady-state error. The findings
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Fig. 11 The performance comparison of different algorithms under Gaussian noise conditions

further validate the effectiveness and practical applicability of the proposed algorithm
in real-world scenarios.

5.5 Performance Comparison with the DLMS Algorithm Based on Impulse Noise

The Bernoulli–Gaussian model is commonly used to describe impulse noise distri-
bution, which combines Bernoulli distribution and Gaussian distribution to model
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impulse noise as contaminated Gaussian noise. In this model, the background noise
vk(i) consists of two components:

vk(i) = υk(i) + Ik(i), (63)

zero-mean Gaussian noise υk(i) and impulse noise Ik(i), which is independent of the
input vector and Gaussian noise. Impulse noise Ik(i) is expressed as

Ik(i) = θk(i)qk(i) (64)

, where θk(i) follows a Bernoulli distribution with probability Pr [θk(i)] = pk , and
qk(i) is zero-mean Gaussian noise with variance ζk .σ

2
k,i . The power of impulse noise

is significantly higher than that of Gaussian noise νk(i). Figure 12a, b illustrates the
background noise representation for pk = 0.06 and pk = 0.12.

The impact of impulse noise is visually depicted in Fig. 12a and b, where the
darkened areas represent the regions of impulse noise occurrence. The occurrence
probability of impulse noise at each node, pk , influences the overall noise character-
istics of the network. A higher occurrence probability, such as pk = 0.12, results in
more frequent impulse noise occurrences and affects a larger portion of the network.

The Bernoulli–Gaussian model provides a valuable framework for accurately mod-
eling and analyzing impulse noise in practical scenarios, enabling better understanding
of communication systems in the presence of impulse noise.

The subsequent sections will further analyze and evaluate the effects of impulse
noise on communication system performance, emphasizing the importance of mitigat-
ing these effects and proposing effective techniques to enhance system performance
in such challenging environments.

The influence of different occurrence probabilities of impulse noise on the DLMS
algorithm under the Bernoulli–Gaussian model is investigated. In this context, pk =
0 represents the absence of impulse noise, where the background noise follows a
Gaussian distribution. Nonzero probability values indicate the likelihood of impulse
noise occurrence. The graph reveals that even with a very low occurrence probability,
the DLMS algorithm experiences a significant increase in steady-state error. As the
occurrence probability increases, the algorithm’s performance further deteriorates,
potentially leading to algorithmic failure.

Figure 13 illustrates the relationship between the occurrence probability of impulse
noise and the steady-state error of the DLMS algorithm. The steady-state error shows a
substantial increase as the occurrence probability of impulse noise grows. This vulner-
ability of the DLMS algorithm to impulse noise, even at low occurrence probabilities,
indicates the need for effective mitigation strategies and robust algorithms to address
impulse noise scenarios and prevent performance degradation.

These observations underscore the importance of addressing impulse noise in
practical communication systems, especially when the occurrence probability is non-
negligible. Mitigating the effects of impulse noise and developing robust algorithms
capable of handling such scenarios are crucial research directions for improving the
performance and reliability of communication systems.
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Fig. 12 The background noise contaminated with impulsive noise of varying occurrence probabilities. The
X-axis represents the noise samples, while the Y -axis denotes the magnitude of the noise

Figure 14a and b compares the performance of various algorithms under the condi-
tion that the occurrence probability of impulse noise is pk = 0.1. Figure 14a presents
the network MSE comparison of the proposed algorithm and similar algorithms in
the Bernoulli–Gaussian noise environment, while Fig. 14b compares the steady-state
MSE of each node in the network under the same noise conditions.

From Fig. 14a and b, it can be observed that in the presence of impulse noise, the
DLMS algorithm exhibits significant performance deterioration, rendering it ineffec-
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Fig. 13 The relationship between the occurrence probability of impulse noise and the steady-state error of
the DLMS algorithm

tive in estimation tasks. In contrast, both the DRVSS-LMS algorithm and the RDLMS
algorithm show slight degradation in steady-state estimation performance but still
demonstrate robustness against impulse noise interference compared to the Gaussian
noise scenario.

The proposed algorithm in this study and theDSE-LMSalgorithmexhibit consistent
steady-state estimation performance under theBernoulli–Gaussian noise environment,
indicating their strong robustness. Furthermore, the proposed algorithm achieves faster
convergence speed and smaller steady-state error compared to the other algorithms.

These findings highlight the resilience of the proposed algorithm and its ability to
handle impulse noise, demonstrating its superiority in achieving accurate and reliable
estimations in practical applications.

6 Conclusion

In conclusion, this study has presented a novel convex combination distributed LMS
algorithm that addresses the challenges of convergence speed and steady-state error in
sensor networks. By leveraging the distributed diffusion strategy and incorporating the
concept of convex combination, our algorithm has achieved decentralized and robust
estimation performance.

The experimental results have demonstrated the feasibility and effectiveness of the
proposed algorithm in various scenarios. We have shown that the convex combination
distributed LMS algorithm outperforms existing algorithms in terms of convergence
speed, steady-state error, and resilience against impulse noise interference. The algo-
rithm strikes a balance between convergence speed and estimation accuracy, offering
improved performance compared to the traditional DLMS algorithm.
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Fig. 14 The performance comparison of different algorithms under Bernoulli–Gaussian noise conditions

While the proposed algorithm has shown promising results, there are areas for
further improvement and research. Firstly, future work could focus on enhancing
the convergence speed without compromising the overall performance. This can be
achieved by exploring adaptive step size control techniques, such as variable step
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sizes based on the network conditions, to accelerate convergence while maintaining
stability.

Secondly, reducing the steady-state error remains an important objective. Inves-
tigating advanced regularization methods or incorporating adaptive algorithms that
adaptively adjust the algorithm’s parameters during operation could help minimize
the steady-state error and enhance the accuracy of the estimation results.

Additionally, considering the computational complexity of the proposed algorithm
is essential for practical implementation. Future research can explore techniques to
optimize the algorithm’s computational requirements, such as employing parallel com-
puting architectures or developing efficient algorithms that strike a better balance
between performance and computational cost.

Furthermore, the application of the convex combination distributed LMS algorithm
can be extended to non-stationary environments or nonlinear systems. Addressing
these challenges will require adapting the algorithm to handle time-varying or non-
linear characteristics, potentially through the use of adaptive filtering techniques or
advanced machine learning algorithms.

In conclusion, the convex combination distributed LMS algorithm offers a valuable
contribution to the field of adaptive filtering in sensor networks.While further research
is needed to enhance convergence speed, reduce steady-state error, and optimize com-
putational complexity, the algorithm’s potential for improved estimation performance
is evident. By addressing these research directions, we can advance the algorithm’s
practical applicability and foster its adoption in real-world scenarios, contributing to
the development of more efficient and reliable sensor network systems.
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