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Abstract
This paper presents a novel approach for automated dysarthria detection and sever-
ity assessment using a variable short-time Fourier transform layered convolutional
neural networks (CNN) model. Dysarthria is a speech disorder characterized by
difficulties in articulation, resulting in unclear speech. The model is evaluated on
two datasets, TORGO and UA-Speech, consisting of individuals with dysarthria and
healthy controls. Various variations of the CNN’s first layer, including spectrogram,
log spectrogram, and pre-emphasis filtering (PEF) with and without learnables, are
investigated. Notably, the PEF with 5 learnables achieves the highest accuracy in
detecting dysarthria and assessing its severity. The study highlights the significance of
dataset size, with UA-Speech dataset showing superior performance due to its larger
size, enabling better capture of dysarthria severity variations. This research contributes
to the advancement of objective dysarthria assessment, aiding in early diagnosis and
personalized treatment for individuals with speech disorders.
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1 Introduction

Effective communication through speech is a fundamental aspect of human interac-
tion that can significantly impact one’s quality of life. However, some individuals may
experience difficulty with speech production due to neurological causes, resulting in
motor speech disorders such as dysarthria [31, 32, 36]. Dysarthria is characterized
by weakness, paralysis, or lack of coordination of the motor-speech system, leading
to reduced intelligibility, audibility, naturalness, and efficiency of vocal communi-
cation [3, 20]. In recent years, there has been an increased interest in developing
automated methods for the detection and severity assessment of dysarthria using raw
speech, which could potentially improve the diagnosis and treatment of this disorder
[39]. Raw waveform models in the classification of dysarthric speech offer several
advantages. Raw waveforms capture a more complete representation of the speech
signal, including subtle variations in time and frequency, which can help distinguish
between healthy and dysarthric speech [35]. By eliminating the need for manual fea-
ture extraction, raw waveform models save time and reduce the risk of biased feature
selection [25]. Additionally, these models allow for the use of end-to-end approaches,
such as convolutional neural networks (CNNs), which can learn complex representa-
tions directly from the rawwaveform, leading to improved classification accuracy [21].
Rawwaveformmodels provide a practical and straightforward approach for dysarthria
assessment by requiringminimal preprocessing of the speech signal [22]. Unlike other
methods that involve complex feature extraction [24], these models directly analyze
the raw waveform itself, making them easier to implement and interpret [11]. This
approach has the potential to enable accurate and efficient dysarthria assessment in
both clinical and research settings. A novelmodel architecture is the short-time Fourier
transform (STFT) layered CNN model, which combines the power of CNNs with the
STFT representation of the input signal. By extracting meaningful features from both
the temporal and spectral domains, the STFT layered CNNmodel effectively captures
essential patterns and variations in dysarthric speech [4, 34]. The model’s primary
objective is to advance the automation of dysarthria analysis and contribute to the
development of more precise and efficient systems for assessing speech disorders.

The subsequent sections of the article are arranged as: Sect. 2 presents the existing
literature on dysarthria detection. Section3 describes the proposed methodology used
in the study. Section4 reports the datasets and experimental results of dysarthria detec-
tion and severity assessment using the proposed methodology, showing high accuracy
in both tasks. Finally, Sect. 5 concludes the key findings of the suggested work and
discusses their implications for future research in the field.

2 Motivation and RelatedWork

Automated detection and severity assessment of dysarthria using raw speech poses sig-
nificant challenges in the field of speech processing and healthcare [18]. Dysarthria,
characterized by impaired articulation due to muscle weakness or paralysis, is associ-
ated with various neurological disorders like Parkinson’s disease, stroke, or cerebral
palsy [6]. Accurate detection and assessment of dysarthria are crucial for diagnosing
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and treating these conditions effectively [19, 33, 38]. Nevertheless, a multitude of
methodologies have been employed in recent studies to detect dysarthria and assess
its severity across two benchmark datasets: TORGO and UA-Speech.

Raw waveform modeling presents a promising approach for automated dysarthria
detection and severity assessment [4, 21]. Upon examining the TORGO dataset, Mil-
let et al. [21] utilized raw waveforms and applied per channel energy normalization
(PCEN), long-short-term memory networks (LSTM), and an attention model, achiev-
ing an accuracy of 82.4% for dysarthria detection. Similarly, Narendra et al. [22]
employed raw glottal flow waveforms, implementing CNN and multi-layered percep-
tron (MLP), resulting in an accuracy of 81.12%. In contrast, Hernandez et al. [10]
employed mel frequency cepstral coefficients (MFCC) coupled with voice quality or
prosody, using random forest (RF), support vectormachine (SVM), and neural network
(NN) models, achieving an accuracy of 75.63% using NN for dysarthria detection.
Additionally, Schu et al. [30] used handcrafted features likeMFCCs,Mel spectrogram,
and sparsity-based features, integrating speech representation learning (SRL) andMel
spectrogram, yielding accuracies ranging from 71.1% to 100.0% for dysarthria detec-
tion. Moreover, recent advancements by Joshy et al. [12] using MFCC and constant-Q
cepstral coefficients (CQCC)with deepneural network (DNN)models likeCNN, gated
recurrent unit (GRU), and LSTM achieved a notable accuracy of 96.18% using CNN
for dysarthria detection. Radha et al. [23] showcased the effectiveness of employing
standard CNN and SincNet on raw waveforms, achieving an accuracy of 95.7% for
dysarthria detection. Shifting the focus to the UA-Speech dataset, Gupta et al. [9] uti-
lized onset-offset detection and time-frequency (T-F) representations with CNN and
ResNet, achieving an accuracy of 98.9% for severity assessment using short-duration
segments. Kachhi et al. [15] employed continuous wavelet transformed (CWT) scalo-
gramswithCNN, respectively, achieving accuracies of 87.93% for dysarthria detection
and 95.17% for severity assessment.

Compared to traditional feature-based methods, raw waveforms provide a more
comprehensive representation of the speech signal, enabling the capture of detailed
temporal and spectral characteristics necessary for accurate assessment. Recent tech-
nological advancements have facilitated the development of automatic assessment
methods utilizing deep learning frameworks. Researchers have introduced innovative
approaches for measuring dysarthria severity using sound descriptors [2]. By classify-
ing speech into different severity levels within datasets like the UA-Speech corpus and
the TORGOdatabase, they have explored novel avenues in dysarthria assessment. Fur-
thermore, amachine learning-based approach employing bidirectional LSTMhas been
proposed to classify dysarthric speech as intelligible or non-intelligible [1]. Studies
have utilized rawwaveform-based CNNmodels to classify individuals with dysarthria
and healthy subjects using the UA-Speech dataset [7, 14, 17, 22]. These models utilize
the intricate details found in raw speech waveforms to achieve accurate classification.
Through the application of deep learning techniques, the objective is to enhance the
recognition of dysarthric individuals within the UA-Speech dataset. Current methods
in this field predominantly rely on either feature-based models or complex deep-
learning algorithms. To offer straightforward yet effective models that bypass the
feature extraction process and enable direct learning by the model, the proposed work
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Fig. 1 Flow chart of automated dysarthria detection and dysarthria severity level assessment using STFT
layered CNN

introduces a variable STFT layered CNNmodel. The main contributions of the article
are three fold:

• Developed an automated system for dysarthria detection and severity assessment
using variable STFT layered CNN model.

• Investigated various variations of the CNN’s first layer to enhance accuracy.
• Utilized two datasets, TORGO and UA-Speech, to validate the effectiveness of the
proposed approach.

3 ProposedMethodology

3.1 STFT Layered CNN Architecture

This study introduces a novel approach by employing diverse variations in the STFT
layer as the initial component of the CNN model. The innovative aspect lies in
exploring different configurations of the STFT layer, both with and without learnable
parameters. This unique adaptation of the STFT layer within the CNN architecture
aims to efficiently capture temporal and spectral information from raw speech wave-
forms for automated dysarthria detection and severity assessment. The choice of a
Hamming window with a length of 1280 and 900 overlap was deliberate to capture
specific temporal and spectral features relevant to the raw waveform-based STFT
layered CNN. This configuration optimally balances time-frequency resolution while
maintaining computational efficiency. The 70% overlap was chosen for a better trade-
off between frequency resolution and data redundancy.

3.2 Customized Initial Layers

The representation capabilities of the STFT layered CNN architecture are enhanced by
incorporating customized initial layers. These layers are designed to focus on specific
aspects of raw waveform modeling, as illustrated in Fig. 1. The architecture includes
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image or sequence input layers that have been tailored to suit the task. Additionally,
the presence or absence of learnable parameters in these layers allows us to observe
the efficiency and performance of the proposed architecture.

3.2.1 Spectrogram-Based STFT Layer

The spectrogram layer is a vital component in converting raw speech waveforms
into spectrogram images. It operates without learnable parameters, simplifying the
architecture and reducing computational complexity. During the forward pass, the
spectrogram layer applies the STFT algorithm to divide the waveform into frames and
compute the Fourier transform for each frame [27]. One advantage is its support for
automatic differentiation, enabling efficient learning from labeled data. In the predic-
tion phase, the same forward pass is used, seamlessly generating spectrogram images
without additional computations. This ensures efficient and accurate predictions on
new speech signals.

The equation represents the spectrogram computation using the STFT for a given
speech waveform x(t),

spec(t, f ) = STFT(x(t))[ f ] (1)

where, spec(t, f ) denotes the spectrogram value at time index t and frequency bin
index f . The STFT takes the speech waveform x(t) and decomposes it into short
overlapping frames.

3.2.2 Log Spectrogram-Based STFT Layer

The log spectrogram layer is a useful tool that improves the representation of speech
signals. It does this by applying a logarithmic scaling to the spectrogram values, which
helps to compress the range of the spectrogram. This compression makes it easier to
capture fine details in both soft and loud parts of the speech. It also enhances weak and
subtle features in the speech,making themeasier to identify [5, 8]. The log spectrogram
operation is represented by the equation:

�Spec(t, f ) = log(|spec(t, f )| + ε) (2)

Here, �Spec(t, f ) represents the log spectrogramvalue at time frame t and frequency
bin f , and spec(t, f ) denotes the corresponding spectrogram value. The term ε is
a small constant added to ensure numerical stability. Additionally, the logarithmic
scaling aids in reducing the impact of background noise and other interfering factors
by enhancing the contrast between the desired dysarthric speech components and
the noise. Compared to the spectrogram layer, the log spectrogram layer provides a
perceptually relevant representation of dysarthric speech [28]. The logarithmic scaling
aligns with human auditory perception, as our perception of sound intensity follows a
logarithmic nature.By incorporating this perceptual characteristic, the log spectrogram
layer effectively captures the important acoustic patterns and structures in dysarthric
speech.
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3.2.3 Pre-emphasis Filtering (PEF) with andWithout Learnables

The STFT layered CNN architecture, when combined with a PEF, incorporates a
sequence input layer followed by a 1-D convolution layer. The purpose of the convo-
lution layer is to apply a finite impulse response (FIR) filter with five coefficients. This
filtering operation is aimed at extracting relevant features from the input speech sig-
nals related to dysarthria. Themodel leverages these features to automate the detection
of dysarthria and assess its severity levels. The inclusion of the pre-emphasis filter is
crucial for enhancing the representation of raw audio in the architecture. The inclusion
of a PEF in the STFT layered CNN model is motivated by its ability to emphasize
higher frequencies and attenuate lower frequencies of speech signals. This adjustment
is beneficial because dysarthric speech signals often contain important information
in the higher frequency range. By boosting the higher frequencies and reducing the
influence of lower frequencies, the PEF enhances the model’s ability to capture these
significant features and patterns in dysarthric speech [5]. To ensure a linear filtering
operation, the bias initializer is set to ‘zeros’ and the bias learn rate factor is set to 0,
keeping the bias fixed during training. The filter weights are initialized using the scaled
Kronecker delta sequence [37], resulting in an all-pass filter that does not modify the
input signal.

The PEF operation is represented by the equation:

y(t) = x(t) − α · x(t − 1) (3)

where y(t) is the output signal, x(t) is the input signal, and α is the filter coefficient. In
the case of PEF without learnables, a fixed filter coefficient is used throughout training
and prediction. This approach improves the performance of dysarthria detection and
severity assessment tasks by emphasizing high-frequency components in the input
signal. Both the approaches with and without learnables of PEF contribute to the
enhanced performance of the STFT layered CNN architecture in these tasks.

3.3 CNN Layers

TheCNNlayers in theSTFT-based architecture play a crucial role in extracting features
from the initial layers [26]. These layers consist of a sequence of convolutional oper-
ations, batch normalization, and ReLU activation functions. This hierarchical design
allows the network to learn intricate patterns and representations from the input spec-
trogram images or PEF coefficients. The convolutional layers carry out operations
that focus on small local regions of the input data. They accomplish this by applying
filters that convolve over the data, enabling them to capture spatial relationships and
extract important features from the input. Batch normalization is applied after each
convolutional layer, normalizing the outputs and improving the stability and speed of
training. ReLU activation functions introduce non-linearity, enabling the network to
learn complex relationships between the input data and the target output.

In addition to convolution and activation, max-pooling layers are utilized for spatial
downsampling. These layers reduce the spatial dimensions of the feature maps, retain-
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Table 1 Network configuration of PEF-based CNN model with learnables

Layer index Layer type Layer parameters Learnable parameters

1 Sequence input layer Name: ‘input’, Min.
length: 8192,
Normalization: ‘none’

–

2 Conv1d layer Filter size: 5, No. of
filters: 1, Name:
‘pre-emphasis-filter’,
Weights initializer:
Kronecker delta, Bias
learn rate factor: 0

Filter weights

3 STFT layer Window: Hamming
(1280), Overlap length:
900

–

4 (x1) Conv2d layer Filter size: 5, No. of
filters: 12

Weights, bias

Batch norm – Offset, scale

ReLu layer – –

Max pool Pool size: 3, Stride: 2 –

5 (x2) Conv2d layer Filter size: 3, No. of
filters: 24

Weights, bias

Batch norm – Offset, scale

ReLu layer – –

Max pool Pool size: 3, Stride: 2 –

6 (x4) Conv2d layer Filter Size: 3, No. of
filters: 48

Weights, bias

Batch norm – Offset, scale

ReLu layer – –

Max pool Pool size: 3, Stride: 2 –

– Drop-out layer Rate: 20% –

– Fully connected layer Size: Number of output
classes

Weights, bias

– Soft-max layer – –

ing themost salient informationwhile discarding redundant details. Tomitigate the risk
of overfitting, a dropout layer is incorporated into the architecture. Dropout randomly
deactivates a fraction of neurons during each training iteration, forcing the network
to learn more robust and generalized representations. This regularization technique
prevents the network from relying too heavily on specific features and encourages
the exploration of different paths in the network. The output of the dropout layer is
then connected to a fully connected layer. This layer establishes connections between
all neurons and subsequent layers, enabling comprehensive information propagation
throughout the network. The details of the network architecture are clearly provided
in Table 1.
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3.4 Classification Layers

The classification layers in the STFT-based CNN architecture are responsible for
making the final predictions. The output of the fully connected layer is passed through
a softmax layer, which computes the probabilities of each class. The softmax layer
ensures that the predicted probabilities sum up to 1. Finally, the network utilizes a
classification layer, which plays a crucial role in identifying the classes within the
dataset. This layer enables the network to assign accurate labels to the input samples
by leveraging the learned representations and probabilities obtained from the previous
layers.

4 Experimental Results

This section presents an evaluation of an automated system designed to detect and
assess the severity of dysarthria using raw speech data from two distinct datasets:
TORGO and UA-Speech. Two separate experiments were conducted to achieve the
objectives of this evaluation. In the first experiment, the system aimed to classify
dysarthric speech from healthy control speech, essentially distinguishing between
two binary classes. The second experiment focused on classifying the severity level
of dysarthria into four distinct categories: very low, low, moderate, and high. This
entailed a multi-class classification task. The system utilized the STFT layered CNN.
Specifically, four different variations of the CNN’s first layer were trained and evalu-
ated for both dysarthria detection experiments. To perform the evaluation, the TORGO
and UA-Speech datasets were divided into training sets (80%) and test sets (20%).
The trained variants of the STFT layered CNN were then utilized to classify new or
unseen speech signals as either dysarthric or healthy control. The performance of the
classifiers was assessed using overall accuracy as the evaluation metric.

4.1 Dataset

The study incorporates two datasets to comprehensively evaluate the severity and
detection of dysarthria. The inclusion of both moderate and large datasets enables a
thorough examination of the performance of the proposed methods. Neural networks,
being data-hungry models, benefit greatly from larger datasets as they capture a wider
range of patterns and variations within the speech data. Consequently, training the
neural networks on larger datasets enhances their ability to provide accurate predictions
and robustly generalize to unseen data.

4.1.1 TORGO

The TORGO database [29] is a popular database for investigating dysarthria, a speech
disorder that affects articulation. It contains audio recordings and detailed measure-
ments of speech movements from individuals with dysarthria and a control group
of healthy individuals. The database includes data from 8 dysarthric speakers and 7
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Fig. 2 Investigating STFT layeredCNNvariants for differentiating high-level dysarthria and healthy control
speech on the word “Command"

healthy control speakers, all aged between 16 to 50 years as shown in Table 2. The
recordings in the database provide rich information on speech production, including
both sound data and detailed measurements of speech movements.

4.1.2 UA-Speech

The UA Speech corpus comprises recordings from 13 healthy control speakers and 15
dysarthric speakers with cerebral palsy [16]. The dataset consists of 455 diverse words,
including digits, international radio alphabets, computer commands, common words,
and uncommon words. The words were recorded in three blocks, ensuring coverage of
all categories for each speaker. In total, each speaker recorded 765 isolated words. The
corpus also includes speech intelligibility ratings provided by five impartial listeners
for each dysarthric speaker. These ratings serve as an objective assessment of the
speakers’ ability to be understood. Based on these ratings, the speakers were classified
into four distinct groups: high, moderate, low, and very low, representing varying
levels of speech intelligibility as shown in Table 2. Figure2 shows that individuals
with dysarthria struggle to produce speech due to a diminished ability to control their
articulatory movements. This is due to existing issues like prosodic abnormalities and
resonance changes, which can cause slurred or mumbled speech. On the other hand,
healthy individuals do not experience these difficulties and are able to produce clear
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Fig. 3 Confusion matrices of dysarthria detection and severity assessment using learned PEF-based STFT
layered CNN

speech. This valuable information regarding the speakers’ intelligibility and severity
levels is utilized to classify and assess the severity of dysarthria.

4.2 InvestigatingVariations of STFT Layered CNNModel

This study focuses on exploring different variations of STFT layered CNN models
for the analysis of raw waveform data, specifically in automatic dysarthria detection
and severity level assessment. The goal of this research is to advance the development
of automated systems for analyzing speech disorders. To illustrate the differences
between dysarthric and healthy speech, Fig. 2 is included. This figure presents T-F
representations of the word “command" for both dysarthric and healthy speakers.
It is observed that the high-level dysarthric subject took approximately 8 s to utter
the word, while a healthy subject took only 1.4 s for the same word. Furthermore,
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the spectrograms, log spectrograms, and T-F representations with and without PEF
were extracted from the first layer of the CNN. These representations highlight the
variations between dysarthric and healthy speech, allowing for a visual comparison of
the differences in the T-F domain.

4.2.1 Automatic Dysarthria Detection

Initially, the first layer of the CNNwas modified as a spectrogram layer without learn-
ables, resulting in an accuracy of 88.39% for the TORGO dataset and 94.97% for
the UA-Speech dataset. Subsequently, by utilizing the log spectrogram, there was a
noticeable improvement of 92.53% and 97.12% respectively for both datasets in the
detection accuracy. This improvement can be attributed to the logarithmic scaling
of the spectrogram, which enhances the representation of lower-intensity frequency
components and improves the discrimination between dysarthric and healthy speech
signals. Furthermore, PEFwithout learnables in the STFT-based CNN yielded compa-
rable accuracy to the log spectrogram representation. This is because PEF enhances the
high-frequency components of the speech signal, enabling the CNN model to capture
discriminative features effectively for dysarthria detection. The highest accuracy in
dysarthria detection of UA-Speech was achieved using PEF with 5 learnables, specif-
ically with values of 0.4714, −0.0431, −0.0247, 0.0015, and −0.0076. The accuracy
achieved for the TORGO dataset was 94.08%, while for the UA-Speech dataset it was
99.89%. Examining the confusion matrix in Figs. 3a and c, we observed that in the
TORGO dataset, 17 dysarthria classes were misclassified as healthy subjects. How-
ever, in the UA-Speech dataset, due to its larger size, even when 15 dysarthria subjects
were misclassified as healthy, it did not significantly affect the overall accuracy of the
model. Consequently, with the inclusion of learnable PEF, the final accuracy reached
99.89%, as shown in Table 3. Figure4 also demonstrates the effectiveness of incorpo-
rating learnable parameters in PEF for improving dysarthria detection performance.

4.2.2 Automatic Severity Level Assessment

The accuracy of dysarthria severity level assessment varied across different techniques
and datasets. In the TORGOdataset, consisting of three severity levels, the initial spec-
trogram layer achieved an accuracy of 84.10%,which increased to 85.16%with the log
spectrogram layer without learnables. To enhance the model’s performance, we incor-
porated PEF without learnables, which further improved the accuracy to 87.34% for
TORGO. In the UA-Speech dataset, with four severity levels, the accuracy improved
from 90.35% (spectrogram layer) to 91.63% (log spectrogram layer). With the inclu-
sion of PEF utilizing 5 learnable parameters, the accuracy rates further improved to
90.5% for the TORGOdataset and 94.67% for theUA-Speech dataset. An examination
of the results revealed that within the TORGO dataset, a notable proportion of misclas-
sifications occurred specifically at the moderate and very low levels of dysarthria. This
trend is visually depicted in Fig. 3b, illustrating the distribution of misclassifications
across different severity levels. One possible reason for this observation could be the
similarity in acoustic characteristics between these two severity levels, which poses
challenges in accurately distinguishing between them.
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Fig. 4 Performance analysis of STFT layered CNN variants for both datasets

Fig. 5 Frequency response analysis of learned pre-emphasis filtering with 5 learnables

The UA-Speech dataset exhibited a distinct pattern in which the majority of
misclassifications were concentrated within specific severity levels. Particularly, mis-
classifications occurred in the moderate and low levels of dysarthria, accounting for
9.2% and 7.7% respectively. This observation is visually presented in Fig. 3d, which
illustrates the distribution of misclassifications across different severity levels in the
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Table 4 Comparison of proposed model performance with previous approaches on TORGO dataset

Year/author Dataset Front-end
approach

Model Accuracy

2020 Millet et al.
[21]

TORGO Raw waveforms PCEN, LSTM and
attention model

82.4% for
dysarthria
detection

2020 Narendra et
al. [22]

TORGO Raw glottal flow
waveforms

CNN and MLP 81.12% for
dysarthria
detection

2020 Hernandez
et al. [10]

TORGO MFCCs with
voice quality or
prosody

RF, SVM, NN 75.63% using NN
for dysarthria
detection

2022 Schu et al.
[30]

TORGO Handcrafted
features like
MFCCs, Mel
spectrogram,
Sparsity-based
features

Speech
representation
learning (SRL)
+ Mel
spectrogram

71.1% to 100.0%
for dysarthria
detection

2022 Joshy et al.
[12]

TORGO MFCC and CQCC DNN models like
CNN, GRU,
LSTM

96.18% using
CNN for
dysarthria
detection

2023 Radha et al.
[23]

TORGO Raw waveforms Standard CNN
and SincNet

95.7% for
dysarthria
detection

Proposed Method TORGO Raw waveforms Learnable PEF
based STFT
layered CNN

94.62% for
dysarthria
detection and
90.15% for
severity level
assessment

UA-Speech dataset. Additionally, to ensure accurate frequency response, we initial-
ized the filter to a scaled Kronecker delta sequence, acting as an all-pass filter as shown
in Fig. 5. The observed higher accuracy in the UA-Speech dataset can be attributed to
its larger size, allowing for better capturing of variations in dysarthria severity levels
and patterns.

4.3 Comparative Analysis with Previous Approaches

In this section, a comparative analysis is presented, highlighting the proposed sys-
tem’s performance in dysarthria detection and severity level assessment within the
domain. The system’s evaluation is conducted using two datasets, namely TORGO
and UA-Speech, to compare its outcomes against existing approaches. Notably, the
proposed system integrates a novel approach, combining a learned PEF technique
with STFT layered CNN. This integration showcases substantial advancements in
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Table 5 Comparison of proposed model performance with previous approaches on UA-Speech dataset

Year/author Dataset Front-end
approach

Model Accuracy

2020 Gupta et al.
[9]

UA-Speech Onset-offset
detection, T-F
representations

CNN and ResNet 98.9% for severity
assessment
using short
duration
segments

2021 Narendra et
al. [22]

UA-Speech Raw glottal flow
waveforms

CNN and MLP 87.93% for
dysarthria
detection

2021 Kachhi et al.
[15]

UA-Speech CWT Scalograms CNN 95.17% for
severity
assessment

2023 Joshy et al.
[13]

UA-Speech Mel-spectrograms Squeeze &
Excitation (SE)
CNN

97.58% for
dysarthria
detection

2023 Joshy et al.
[14]

UA-Speech Raw waveform Multi-head
attention based
CNN

95.75% for
dysarthria
detection

Proposed Method UA-Speech Raw waveforms Learnable PEF
based STFT
layered CNN

99.89% For
dysarthria
detection and
94.67% For
severity level
assessment

dysarthria detection and severity level assessment, as indicated in the respective results
presented in Tables4 and 5 for TORGO and UA-Speech datasets, respectively.

5 Conclusion

This article demonstrated the effectiveness of different variants of the STFT layered
CNN model for dysarthria detection and severity assessment. The spectrogram layer
provided insights into the frequency content of speech, while the log spectrogram layer
enhanced detection accuracy by highlighting subtle acoustic details. The inclusion of
PEF variants, with and without learnables, amplified relevant speech components and
contributed to accurate analysis. Overall, these variants optimized dysarthria detection
and severity assessment,with thePEFvariant achieving thehighest accuracyof 99.89%
on the UA-Speech dataset. This research contributes to the development of advanced
techniques for objective dysarthria analysis, enabling early diagnosis and personalized
treatment for individuals affected by this speech disorder.
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