
Circuits, Systems, and Signal Processing (2024) 43:3139–3159
https://doi.org/10.1007/s00034-024-02598-1

Role of Data Augmentation and Effective Conservation of
High-Frequency Contents in the Context Children’s Speaker
Verification System

Shahid Aziz1 · S. Shahnawazuddin1

Received: 1 June 2023 / Revised: 25 December 2023 / Accepted: 26 December 2023 /
Published online: 5 February 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Developing an automatic speaker verification (ASV) system for children’s speech
presents significant challenges. One major obstacle is the scarcity of domain-specific
data. This issue is exacerbated when dealing with short speech utterances, a relatively
unexplored area in children’sASV.Voice biometric systems struggle during enrollment
and verification phase, when facedwith inadequate speech data, both in volume aswell
as in duration. To address data scarcity, this paper explores various in-domain and out-
of-domain data augmentation techniques. Out-of-domain data from adult speakers,
which have distinct acoustic attributes from children, are modified using techniques
like voice-conversion, prosody and formant modification to make them acoustically
similar to children’s speech. In-domain data augmentation involves perturbing the
speed of children’s speech. This combined data augmentation approach not only
increases training data volume but also captures missing target attributes, resulting
in a significant 43.91% reduction in equal error rate (EER) compared to the baseline
system.Additionally, the paper addresses the challenge of preserving higher-frequency
components in children’s speech. It achieves this by concatenating conventional
Mel-frequency cepstral coefficients (MFCC) with Inverse-Mel-frequency cepstral
coefficient (IMFCC) features at the frame level. The low canonical correlation between
MFCC and IMFCC feature vectors motivates this fusion. The feature concatenation
approach, when combined with proposed data augmentation, results in an appreciable
reduction of 48.51% in the overall EER, demonstrating its effectiveness in improving
the performance of children’s ASV system.
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1 Introduction

The web of cybernated applications in this digital age has fascinated people cutting
across generations. Multimedia technologies and the Internet are fast evolving and has
brought the whole world at our fingertip. In addition to the galore of positive aspects of
cybernated applications is its dreary face. It is also fraught with the dangers of losing
sensitive data and identity theft, if not accessed with caution. People accessing the
online tools should be mindful of the cyber crimes and cyber frauds. To address such
an intimidating issue, the field of biometrics havewitnessed ameteoric rise in the recent
past and is bound to remain at the center stage in the times to come.Voice/ Speech signal
is one such biometric, which falls under the category of behavioral biometrics [9]. Even
though the primary function of speech signal is human communication, it also captures
information about the speaker’s identity, age, emotions, gender, geographical origin
and health. Voice biometrics or Automatic Speaker Verification (ASV) is a technology
that uses algorithms andmachine learning techniques to verify the identity of a speaker
based on their speech characteristics. It is a biometric authenticationmethod that relies
on the unique patterns and traits in an individual’s speech.

The process of speaker verification typically involves four main stages: enrollment,
training, verification and decision making.

– Enrollment: During the enrollment phase, the system captures the speaker’s voice
samples typically through a microphone and extracts relevant acoustic features
that are unique to their speech. These features can include aspects, such as pitch,
frequency, duration, and spectral characteristics. The system then creates a speaker
model or a template or a unique voiceprint based on these extracted features, which
serves as a reference for future verification.

– Training: The extracted acoustic features are then used to train the ASV system.
Machine learning algorithms analyze the acoustic features in the voiceprints and
create a statistical model that captures the speaker-specific patterns. This train-
ing process helps the system learn to distinguish between different speakers and
identify the unique characteristics of each individual.

– Verification:Once the enrollment and training stages are complete, theASVsystem
is ready for verification. In this stage the system compares the test speech sample
of an individual to the stored speaker models. The incoming test speech sample is
processed to extract similar features as those used during enrollment. The system
then applies pattern matching algorithms and statistical models to compare the
extracted features with the reference speaker models.

– Decision Making: The system calculates the similarity between the features of the
test speech signal and the stored voiceprints of enrolled speakers. If the similarity
score exceeds a predetermined threshold, the speaker is verified as the claimed
identity; otherwise, the verification fails and the system rejects the user’s claim.
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As compared to other competing biometrics, voice biometrics is increasingly
becoming popular because of its low cost, ease of use, faster authentication pro-
cess and higher level of security features [9]. These striking features have caught the
attention of researchers across the globe and considerable work has been reported
on the development of ASV systems. But, the majority of the work reported in the
literature deal with the design and development of ASV systems for adults. The fact
that social networking websites and online learning tools are a rage among children
and teenagers, with over half of youngsters in the age bracket of 6-15 obsessively
indulging in internet and maintaining accounts on social media websites [2], cannot
be denied. The children who are oblivious of the lurking perils in the usage of cyber
related activities are the more vulnerable lot as opposed to the adults. This calls for
the need of a robust ASV system for children. The literary works reported on building
an ASV system for children are not vast as compared to adults [26, 29, 35]. Motivated
by this, the authors’ in this paper have focussed their attention on developing robust
ASV systems for child speakers.

Modern ASV systems are found to be highly effective, resulting in a nominal
error when supplied a sufficiently larger quantity and longer duration of speech data.
State-of-the-art ASV systems employ deep learning architectures that necessitate esti-
mation of a vast number of parameters. This, in turn, mandates a substantial quantity
of domain-specific data. The road along the development of a reliable children’s ASV
system hasmany hindrances. Themajority of children’s speech corpora are not readily
accessible. Moreover, these are limited in terms of data hours and the number of lan-
guages in which they are available. Developing an ASV system for languages without
any children’s speech corpus (zero-resource condition) is very demanding. Even if a
small quantity of children’s speech data is available (low-resource condition), design-
ing an effective ASV system for children using deep learning architectures is still a
very challenging task. Some of the earlier works on children’s ASV have investigated
the effect of synthetically generating speech data and then pooling it for training in
order to circumvent the problem posed by low- and zero-resource conditions. It has
been reported that out-of-domain data augmentation and in-domain data augmenta-
tion is effective in this regard [29]. The performance of an ASV system for children is
further dented when there is a reduction in the duration of the speech utterances during
testing, commonly termed as short-utterance situation. Speech segments of duration
5-10 seconds are commonly termed as short-utterances in the literary domain [10, 18].
In the context of an ASV system, it is observed that these systems show a decline in
their performance as a consequence of reduction in the amount of speech, either during
enrollment or verification stage [19, 34]. The primary challenge in achieving better
results with short-utterances is the rise in intra-speaker variability of estimated param-
eters. Short utterances exhibits greater variability, which diminishes as the duration
of utterances increases. The performance of ASV systems significantly deteriorates
when the duration of speech is reduced, primarily because short utterances lack suf-
ficient information to support accurate verification. The unavailability of sufficiently
longer duration of speech data can be tackled during training phase by some data
augmentation techniques. However, it is not feasible to do the same during the testing
phase [18]. The works reported on children’s ASV hardly deal with such short utter-
ances scenario. In [30], the authors’ had developed a children ASV system employing
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in-domain and out-of-domain data augmentation techniques. However, the effect of
formant modification of the adults’ speech data was not studied in that paper. More-
over, the acoustic feature explored in that work was the conventional MFCC features
alone. In addition, the performance of the developed ASV system was not evaluated
on short-utterances of children’s speech. In [1], the authors have looked for solutions
beyond the classical MFCC features and have proposed the feature concatenation
approach to preserve the higher-frequency components in children’s speech. But [1],
have studied and implemented only out-of-domain data augmentation techniques, it
does not explore the scope of any in-domain data augmentation technique to minimize
the equal error rate (EER) of the developed ASV system.

Taking cognizance of the above literary gap, the authors’ have explored the role of
both the in-domain as well as out-of-domain data augmentation techniques in order
to synthetically generate speech more data. The goal of data augmentation is to arti-
ficially increase the size and diversity of the training data-set by applying various
transformations to the original speech data. This technique helps in improving the
generalization and robustness of the ASV system. The in-domain data augmentation
technique used in this paper includes the default three-way speed perturbation of the
original children’s speech using Kaldi pipeline. To address the paucity of the domain-
specific data, the impact of out-of-domain data augmentation techniques in the light
of short-utterance-based children’s ASV system is also explored in this paper. This
includes (i) voice conversion (VC) of adults’ speech data through a cycle-consistent
generative adversarial network (C-GAN) [11], (ii) prosody modification (PM) [27,
28] of adults’ speech, i.e., optimally changing the pitch and duration of the speech
data from adult speakers, and (iii) up-scaling the formant frequencies (FM) [12, 15] of
adults’ speech data. All the explored techniques not only help in increasing the amount
of training data but also in modifying the acoustic attributes of adult’s speech so that
the acoustic mismatch with child’s speech is minimal. The proposed combination of
in-domain and out-of-domain data augmentation technique is observed to be highly
effective as is demonstrated and validated in the experimental evaluation section in
this paper.

Besides data augmentation, this exploration also delves into the role of feature
concatenation of two front end acoustic features namely the Mel-frequency cepstral
coefficients (MFCC) and the inverse-Mel-frequency cepstral coefficients (IMFCC). In
general, theMel-frequency cepstral coefficients (MFCC) are the most commonly used
front-end acoustic features andhavebeenpopular ever since its inception.Theyprovide
a compact and stable representation of the vocal-tract of a speaker, which can capture
speaker-specific characteristics. The MFCC features are extracted by projecting the
power spectra onto Mel-weighted filter-banks. The configuration of this filter-bank
involves a set of nonlinearly placed triangular filters,with each successive filters having
bandwidth greater than the filter preceding it. When it comes to children’s speech,
a significant amount of relevant information is predominantly present in the high-
frequency region [5, 25]. As resolution of Mel-filter-bank decreases with increase in
frequency, the performance of children’s ASV system based solely on MFCC features
will be sub-optimal. In order to effectively preserve the higher-frequency contents
in children’s speech, the other front end acoustic feature explored in this paper is
IMFCC. The IMFCC features are extracted using the inverse-Mel filter-banks, which
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Fig. 1 Block diagram outlining the data augmentation and feature concatenation approaches proposed in
this work in order to enhance the verification performance of a short-utterance-based children ASV system

in turn are obtained by simply flipping the Mel-filter-banks around the midpoint. The
inverse-Mel filter-banks is thus supposed to have better frequency resolution in higher-
frequency rangewhile the lower frequency components are down-sampled. As already
highlighted, the use of Mel-filter-bank down-samples the spectral information in the
higher-frequency range. The IMFCC due to its complementary nature of the filter-
bank are supposed to better capture the acoustic information in the higher-frequency
regions of children’s speech, which are otherwise disregarded by the MFCC features.
The feature fusion model of MFCC and IMFCC is thus expected to outperform the
traditional MFCC, leading to an enhanced performance of children’s ASV system.

The aforementioned proposal of feature concatenation in addition to data augmen-
tation is outlined in Fig. 1 and well validated in the experimental results section of the
paper. The paper also illustrates the age-group wise as well as a gender-wise analysis
of the children’s ASV performance to unravel the effect of data augmentation and
feature concatenation. One of the metrics used for the performance evaluation of the
employedASVsystem is Equal ErrorRate (EER),which quantifies the system’s ability
to simultaneously balance false acceptance (verifying an impostor) and false rejection
(rejecting a legitimate speaker) rates. Lower the value of EER, higher is the accuracy
of the ASV system. The proposed approach also aids in diminishing the other eval-
uation metric called Detection Cost Function (DCF) considerably as opposed to the
baseline system trained exclusively on children’s speech alone using MFCC features.
The ASV system for children’s speech developed in this work for experimental eval-
uations employ x-vector-based speaker representation along with probabilistic linear
discriminant analysis (PLDA)-based scoring.
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The rest of this paper is organized as follows: Sect. 2 deals with an extensive explo-
ration of in-domain data augmentation and various out-of-domain data augmentation
techniques to deal with the scarcity of domain-specific data. In Sect. 2.3, we have
talked about the authors’ motivation to look beyond the traditional Mel-based filter-
bank and delve into the scope of feature concatenation for children’s ASV system.
The experimental evaluations exhibiting the efficacy of our proposed techniques are
presented in Sect. 4. Eventually, conclusion is drawn in Sect. 5.

2 Explored Data Augmentation Techniques

The state-of-the-art ASV systemmakes use of x-vectors-based speaker representation.
For extracting x-vectors, a time-delay neural network (TDNN) [17, 32, 33] is trained.
Deep learningmodels such as a TDNNhave an inherent complexity owing to a number
of hidden layers and hidden nodes per layer. They are resource intensive and require
massive amount of data. The x-vectors are reported to be highly effective when the
training data is in abundance. As already mentioned, one of the hindrances in the
development of a reliable ASV system for children is the paucity of domain-specific
data. Hence, training an x-vector extractor on a limited amount of children’s speech
will result in sub-optimal performance. Data augmentation techniques offer a solution
to these challenges. Data augmentation involves applying various transformations
to the original training data to create new synthetic data samples. These synthetic
samples are then used to augment the original data-set, thereby enhancing diversity of
the captured acoustic attributes, increasing the amount of training data and improving
the trained model’s generalization capabilities. Taking cognizance of these facts, in-
domain and out-of-domain data augmentationwas performed to enhance the reliability
and robustness of the developed children’s ASV system.

2.1 Out-of-Domain Data Augmentation

Out-of-domain data augmentation refers to increasing the amount of training data by
blending adults’ data with children’s speech. Since the acoustic attributes of adults’
speech is in stark contrast to those of children, various modifications are applied to
adults’ speech so that the augmented data have attributes similar to those of children’s
speech. Otherwise, the trained ASV system would fail to generalize well for unseen
child speakers. Driven by this rationale, we present an out-of-domain data augmenta-
tion technique which is observed to be very effective in the context of children’s ASV
task using short utterances.

The proposed out-of-domain data augmentation technique is pictorially outlined
in Fig. 1. This augmentation technique involved using a limited quantity of original
adults’ speech. As noted earlier, we’ve used a variety of ways to adequately alter the
acoustic characteristics of adults’ speech. These are briefly addressed in the following:

In the first method, voice conversion (VC) was applied to the adults’ speech using a
cycle-consistent generative adversarial network (C-GAN) [11]. To train the C-GAN,
about 10minutes of speech samples fromboth adult and child speakerswere employed.
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As seen throughout the hearing tests, VCmakes adult speech utterances sound remark-
ably similar to kid speech. As a result, the problems with acoustic mismatch are much
reduced when the voice-converted data is pooled.

The second method was prosody modification applied to adult speech prior to
augmentation. It is commonly known that children’s speech has a higher pitch and a
slower speaking tempo [15, 24]. As a result, the length of the speech data from the adult
speakers was raised by 1.4 while the pitch was enhanced by a factor of 1.35. These
scaling variables were chosen based on past studies that were published on children’s
speech recognition [27]. The method described in [22] was utilised to accomplish
prosody modification (PM). To perform time-scale modification, the technique of
audio stretching was applied, leveraging the methodology of fuzzy classification of
spectral bins (FCSB) [4]. Again, pooling data that has been prosody-modified helps
keep the acoustic mismatch under control.

Compared to adult speakers, formant frequencies are greater in the case of chil-
dren [15, 24]. As a result, the formant frequencies (FM) of adult speech samples were
scaled-up by a factor of 0.08 in the third approach. The aforementioned scaling fac-
tor was taken from previous publication [14]. Similar to VC and PM, pooling the
data of formant modified adults’ speech increases the training data while substantially
reducing acoustic mismatch.

All the modified versions of adults’ data were then pooled into training along
with the original adults’ data. A more reliable estimate of the model parameters was
achieved as a result of increasing the training data volume. Furthermore, altering the
acoustic characteristics makes sure that the established ASV system does not become
biased towards speakers who are adults.

2.2 In-Domain Data Augmentation

In-domain data augmentation refers to increasing the amount of children’s speech
available for training by synthetically generating more data from children’s speech
itself. In this regard speed perturbation technique was employed. The in-domain data
augmentation technique is also pictorially represented in Fig. 1. Speed perturbation is
one of themost well-known techniques for data augmentation reported in the scientific
literature. In this technique the speaking-rate or speed is modified while preserving the
linguistic content of the speech data. For this, the default three-way speed perturbation
Kaldi pipeline is utilized. The speed of each of the utterances from children is modified
simultaneously by a factor of 1.1 and 0.9, respectively. The speed perturbed data is
then mixed with the unperturbed children’s speech before learning the x-vector-based
speaker representation.

2.3 Proposed Data Augmentation

The authors’ in this paper propose a combination of the out-of-domain data augmen-
tation as well as in-domain data augmentation as discussed in the previous subsections
individually. All the modified versions of adults’ and children’s data are pooled into
training along with original children’s and adults’ speech. Consequently, the proposed
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data augmentation strategy addresses the challenges of acoustic variability posed
by intra-speaker and inter-speaker variability, limited amount of training data, and
potential adversarial attacks. The proposed data augmentation technique is pictorially
summarized in Fig. 1. It is worth mentioning here, that even though the aforemen-
tioned techniques of synthetically generating speech data are well acclaimed in literary
works, their combined effectiveness in the context of children’s ASV systems for short
utterances is relatively uncharted.

3 Motivation for Exploring the Role of Feature Concatenation in
Children ASV

As mentioned in the previous section, in the case of children, there is a considerable
amount of relevant spectral information in the higher-frequency region. Children’s
speech data are represented by a spectrogram in the bottom panel of Fig. 3, which
exhibits substantial power even between 4 and 8 kHz. Moreover, the spectrogram of
children’s speech fairly clearly illustrates the earlier literary works’ assertion that the
formant frequencies are higher in the case of child speakers [8, 13]. For a comparative
study, Fig. 3 also includes the spectrograms for the speech data from adult male (top
panel) and adult female (middle panel).

Mel-scale warping is influenced by the findings of psycho-acoustics. It is based
on the premise that human perception of pitch is linear up to 1000 Hz and then
becomes nonlinear for higher-frequencies [6]. The Mel-filter-bank provides better
resolution to speech signals in the low-frequency range, while its frequency resolution
deteriorates in the high-frequency range, as illustrated by the nature of its filter-bank
in the top panel of Fig. 2. The down-sampling of spectral information in the high-
frequency band is a snag when dealing with children’s speech [8, 24]. The quest for
the preservation of higher-frequency contents in children’s speech led us towards the
exploration of another front-end acoustic feature, namely the Inverse-Mel-Frequency
Cepstral Coefficient.

The IMFCC features are extracted by projecting the power spectra onto inverse-
Mel-weighted filter-banks. The inverse-Mel-filter-bank is realized simply by flipping
around the Mel-weighted filter-banks about the middle point of the frequency axis.
The configuration of inverse-Mel-filter-bank is depicted in the bottom panel of Fig. 2.
The set up of this filter-bank is such that the high-frequency region’s spectral infor-
mation is better resolved and thus the IMFCC features are supposed to possess the
acoustic attributes disregarded by the MFCC features. It is worth highlighting that
due to the inherent nature of inverse-Mel-filter-bank, the spectral information in the
lower frequency range of the children’s speech will be down-sampled. Therefore, we
have conceived the idea of concatenating the MFCC and IMFCC feature vectors in
order to effectively preserve both the low as well as high-frequency components. The
block diagram outlining the extraction process of the concatenatedMFCC and IMFCC
features is shown in Fig. 4.
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Fig. 2 The configuration of a Mel- and Inverse-Mel filter-banks

3.1 Canonical Correlation Analysis (CCA)

Canonical Correlation Analysis (CCA) is a statistical technique used to analyze the
relationship between two sets of variables. The primary goal of CCA is to identify and
maximize the correlations between linear combinations of variables in each set. This is
particularly useful when dealing with multiple variables in two data-sets and trying to
understand the underlying relationships between them [16]. For amore comprehensive
understanding of CCA, the appendix towards the end of this paper summarizes the
procedure to compute CCA.

In order to substantiate the effect of feature concatenation, the CCAwas carried out.
We have computed the canonical correlation among MFCC and IMFCC features and
the same is presented in Fig. 5. TheCCAplot shows that theMFCCand IMFCC feature
vectors are highly uncorrelated or less correlated for most of the coefficients except
the starting few coefficients. Therefore the frame-level concatenation of MFCC and
IMFCC features leads to capturing a wider range of acoustic attributes. The inherently
complementary configuration of filter-banks employed in the extraction of MFCC and
IMFCC features are the main force behind this development. Thus, the CCA plot of
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Fig. 3 Spectrograms corresponding to speech data from adult male (top panel), adult female (middle panel)
and child (bottom panel) speaking the wordHEED. The red speckles are the contours denoting the variation
in formant frequencies, while the blue line denotes the pitch frequency variations (Color figure online)

Fig. 4 Block diagram outlining the process of extracting concatenated MFCC and IMFCC features

MFCC and IMFCC features upholds the complementary characteristic of IMFCCwith
respect to MFCC which assists their feature fusion model in representing a broader
range of acoustic information in children’s speech.
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Fig. 5 Canonical correlation analysis of MFCC and IMFCC feature concatenation explored in the paper

4 Experimental Evaluations

In this section, the relative effectiveness of MFCC, concatenated MFCC and IMFCC
features are explored and the experimentally verified results are presented.

4.1 Employed Speech Corpora

Three different English speech corpora were employed for the development and eval-
uation of speaker verification system for children. These are CSLU kids corpus [31],
CMU kids corpus [7], WSJCAM0 adults’ speech corpus [23] and PF-STAR kids cor-
pus [3]. The details of each data-set are tabulated in Table 1 and enumerated in the
following:

i. CSLU kids corpus: This data set consists of spontaneous and prompted speech
comprising of 100 hours of data having 73, 100 utterances from 1, 100 children.
The speech contribution is from children hailing from kindergarten to grade 10.
Their speech data are sampled at a sampling-rate of 16 kHz. This speech corpus
is used as the training data for the ASV system in this work.

ii. CMU kids corpus: This data-set comprises of 9.1 hour of data having 5, 180
utterances from 76 children. The child speakers are in the age group of 6 to 11
years. The sampling-rate of this speech corpus is also 16 kHz and it serves as
our test set. A total of 423, 388 genuine trails and 26, 403, 832 impostor trails
are present in this data-set. The average duration of the data in this corpus is 6
seconds. Therefore, evaluation on this set represents the short-utterance case.

iii. WSJCAM0 corpus: This adults’ speech data-set is used for out-of-domain data
augmentation. This corpus consists of 15.5h of data with 7, 852 utterances,
132, 778 words from 92 adult speakers (male and female) having age exceed-
ing 18 years. The sampling rate is 16 kHz.

iv. PF-STAR kids corpus: It consists of 8.3h of data containing utterances from 121
child speakers aged between 4 and 14 years. To ensure consistency with the rest of
our dataset, we down-sampled this data to 16 kHz from its original 44.1 kHz rate.
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This down-sampled dataset serves as our test data for longer utterances. It includes
6,664 genuine trials and 995,420 impostor trials. On average, the duration of each
data segment in this corpus is 30 s. Consequently, the evaluation on this set aims to
highlight the contrast and demonstrate the severity of the problem when dealing
with short utterances.

4.2 Experimental Set-Up

The Kaldi toolkit was used to create the entire ASV system configuration and perform
all the experiments [20]. As already stated earlier, two front-end acoustic features,
namely the MFCC and IMFCC are used to represent the speech signal. Both these
featureswere extracted using theKaldi toolkit. Speech datawere passed through a first-
order high pass filter, having pre-emphasis factor of 0.97. To bring stationarity in the
nature of speech signals, the speech signal is examined separately in short time frames
of 25 ms with an overlapping of 10 ms. A 30-channel Mel-filter-bank was utilized
for projecting the power spectrum into Mel-scale, followed by the computation of the
30-dimensional MFCC features. While, for the computation of the IMFCC features,
a 30-channel inverse-Mel filter-bank was employed for warping the power spectra to
inverse-Mel-scale, before computing the 30-dimensional IMFCC features.
Description ofOut-of-domain data augmentation:The out-of-domain training set used
for developing the children’s ASV system was derived from an adult’s speech corpus
called as WSJCAM0 corpus. This training data-set consists of original adult speech
data derived from both male and female speakers and is referred to as ADULT. Three
newer versions of speech data are synthetically generated from this speech corpora
and are enlisted as follows:

i. ADULT-VC: This dataset was generated by applying voice conversion to the
adult data through a cycle-consistent generative adversarial network (C-GAN).
The GAN underwent training using a 10-minute speech data-set encompassing
both adult (source) and child speakers (target). The number of epochs utilized in
training the C-GAN parameters was set at 5000;

ii. ADULT-PM: This data-set was generated by increasing the duration of the speech
data of ADULT by a factor of 1.4 while the pitch of ADULT was enhanced
by a factor of 1.35. To perform time-scale modification, the technique of audio
stretching was applied, leveraging the methodology of fuzzy classification of
spectral bins (FCSB) [4];

iii. ADULT-FM: This data-set was generated by up-scaling the formant frequencies
(FM) of ADULT speech by a factor of 0.08.

After performing the aforementioned data modification techniques namely, voice con-
version (VC), prosody modification (PM) and formant modification (FM), a total of
63 hours of synthetic data is available for training purpose with acoustic attributes
similar to those of children’s speech.
Description of In-domain data augmentation: The in-domain training set used for
developing the children’s ASV system was derived from children’s speech data-set
called the CSLU kids corpus. The default Kaldi pipeline for three-way speed per-
turbation [20] was utilized, wherein variations in speaking rate were introduced.
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Specifically, each utterance of the CSLU kids corpus underwent simultaneous modifi-
cations in speed, accomplished through factors of 1.1 and 0.9, respectively. The speed
perturbed children’s speech is referred as CHILD-SP in this study. As a consequence of
in-domain data augmentation, a total of 300 hours of speech data from child speakers
(CHILD + CHILD-SP) is available for training purpose.
For the extraction of highly discriminative speaker representations, a deep neural net-
work was utilised. These fixed dimensional speaker-embeddings called as x-vectors
were extracted from a time-delay neural network (TDNN) architecture [33], compris-
ing of 7 hidden layers and trained for 6 epochs. The training of network parameters
was conducted utilizing the stochastic natural gradient descent algorithm [21, 33].
Finally, each of the speech utterances was represented as a 512-dimensional x-vector.
The scoring process was executed through the utilization of x-vectors in conjunction
with the trained PLDA model. When provided with two per-utterance embeddings,
denoted as ei and e j , the PLDA computes a log-likelihood ratio (LLR) to quantify
the likelihood associated with the pair of embeddings. The LLR is calculated in the
following manner:

LLR(ei , e j ) = log

⎡
⎣ P

(
ei ,e j
H1

)

P
(
ei ,e j
H0

)
⎤
⎦ (1)

where H1 represents the hypothesis related to the same speaker, while H0 pertains
to the hypothesis associated with different speakers. The PLDA model calculates a
log-likelihood ratio for each speaker pair, representing the level of similarity between
the individuals. In instances where the pair shares the same label, a high score is
anticipated, signifying identical speakers (a genuine claim). Conversely, when the
pair bears different labels, a low score is expected, indicating different speakers (an
imposter).

4.3 Experimental Results

The foregoing sections of this article have dwelt in detail about the training of the ASV
system on speech data comprising a large amount of original as well as perturbed
children’s speech along with an adequate amount of original and modified adults’
speech database. To keep a track on the performance of the aforementioned ASV
system when subjected to short utterances of children’s test data-set, an investigative
study was undertaken.

The first set of experiments were carried out to gauge the effectiveness the
explored/proposed data augmentation techniques on the performance of the ASV
system. The corresponding experimental results in terms of EER and minDCF are
displayed in Table 2. As evident from the table, the performance evaluation metrics
undergo successive improvement with the application of subsequent explored data
augmentation techniques. For instance, with the application of out-of-domain data
augmentation techniques the system records a relative improvement of 33.57% in
EER with respect to the system trained on the child data-set alone. Next, when the
in-domain data augmentation technique is put into action, the relative improvement
in EER is 37.9%. Finally, as mentioned earlier, when the ASV system is trained using
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Table 2 EER and minDCF values for the short-utterances of children’s speech test set demonstrating the
effectiveness of out-of-domain, in-domain as well as the proposed data augmentation technique

Type of Data used Evaluation Metrics
Data augmentation for training EER (%) minDCF

No data augmentation CHILD 21.95 0.9975

Out-of-domain CHILD + ADULT + ADULT-FM 14.58 0.9233

Data augmentation + ADULT-PM + ADULT-VC

In-domain CHILD + CHILD-SP 13.63 0.9031

Data augmentation

In-domain + Out-of-Domain CHILD+CHILD-SP+ADULT+ADULT-FM 12.31 0.8464

Data augmentation(PROPOSED) + ADULT-PM + ADULT-VC

Bold values indicate better performances achieved using the proposed approach in the paper
The out-of-domain data augmentation scheme includes adult voice conversion (ADULT-VC), adult formant
modification (ADULT-FM), adult prosody modification (ADULT-PM). The in-domain data augmentation
scheme includes children’s speech speed perturbation (CHILD-SP)

Table 3 Values of EER and the corresponding relative improvement in EER at each step of successive data
augmentation techniques implemented to the employed ASV system

Dataset EER (%) Relative improvement (%)

CHILD 21.95 –

CHILD + ADULT-FM 19.78 9.88

CHILD + ADULT-VC 17.34 21.00

CHILD + ADULT-PM 16.30 25.74

CHILD + ADULT-FM 14.58 33.57

+ ADULT-PM + ADULT-VC

CHILD + CHILD-SP 13.63 37.90

PROPOSED 12.31 43.91

Bold values indicate better performances achieved using the proposed approach in the paper

both the out-of-domain data augmentation technique and the in-domain data aug-
mentation technique, which is the proposed data augmentation approach used in this
paper, a staggering relative improvement of 43.91%with respect to the baseline system
trained solely on child data-set is achieved. Consequently, the EER for the employed
children’s ASV system comes down to a measly 12.31%, which talks volumes about
the effectiveness of the proposed data augmentation strategy. For more insight and to
get a better feel of the efficacy of each of the consecutive data augmentation techniques,
Table 3 lists the relative improvement in EER at each step of data augmentation.

It was mentioned earlier that the performance of a speaker verification system for
children deteriorates when there is a reduction in the duration of the speech utterances
during testing. The authors’ take this opportunemoment to demonstrate the detrimental
effect of short-utterances on the performance of an ASV system. Table 4 compares the
performance of anASV system trained on the unperturbed child speech data, but tested
on two different duration of children test speech samples: short-utterances and long
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Table 4 Equal error rate and
minimum DCF values with
respect to an x-vector-based
ASV system trained on CHILD
database and when evaluated
using long and short utterances
of children’s speech test set

Duration of test-set EER (%) minDCF

Long utterances 6.38 0.7228

Short Utterances 21.95 0.9975

Table 5 EER and minDCF
values for the
short-utterance-based ASV
system trained on the data-set
obtained using the proposed data
augmentation technique
demonstrating the effectiveness
of feature concatenation

Acoustic Evaluation metric
features EER (%) minDCF

MFCC 12.31 0.8464

MFCC + IMFCC 11.30 0.8351

Bold values indicate better performances achieved using the proposed
approach in the paper

Table 6 Age group wise break up of EER andminimumDCF values highlighting the significance of feature
concatenation approaches

Features Age group (in years) EER (%) minDCF

MFCC Full test set 12.31 0.8464

6–7 14.63 0.9657

8–9 12.12 0.8481

MFCC+IMFCC Full test set 11.30 0.8351

6–7 13.61 0.9221

8–9 10.98 0.8273

Bold values indicate better performances achieved using the proposed approach in the paper
This study was performed on x-vector-based ASV system trained on a mix of children’s speech, adults’
speech along with the modified versions of adults’ and children’s speech

utterances. As can be seen from Table 4, the performance of the x-vector-based system
drops from 6.38% to 21.95%, for the baseline system trained solely on child data-set.
This illustrates the significant difficulty presented by using short test utterances in
ASV performance.

The next round of experiments were carried out to assess the effectiveness of the
proposed frame-level concatenation of the two front-end acoustic features in the light
of the employed short-utterance-based children’s ASV system. The result of the eval-
uation metrics (EER and minDCF) obtained when MFCC features are concatenated
with the IMFCC features for each frame of speech signal are shown in Table 5. It
is to be kept in mind that the proposed data augmentation technique has been imple-
mented prior to training the ASV system. The EER andminDCF values obtained when
MFCC features alone are used to train the ASV system are also enlisted for compar-
ison. Apparently, an absolute improvement of 1.01% is attained by the frame-level
concatenation of MFCC and IMFCC features.

For an exhaustive analysis of the proposed strategy, the effect on the performance of
the ASV system was monitored when subjected to an age-wise as well as gender-wise
split-up of children’s speech test set. For evaluating the effect of age variation, the
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Table 7 Gender-wise break up
of EER and minimum DCF
values highlighting the
significance of feature
concatenation approaches

Features Child gender EER (%) minDCF

MFCC Full test set 12.31 0.8464

Female 14.77 0.9113

Male 9.229 0.7495

MFCC+IMFCC Full test set 11.30 0.8351

Female 13.75 0.8982

Male 8.625 0.7311

Bold values indicate better performances achieved using the proposed
approach in the paper
This study was performed on x-vector-based ASV system trained on
a mix of children’s speech, adults’ speech along with the modified
versions of adults’ and children’s speech

evaluation metric results are noted for the complete test set, as well as with split-up of
the test-set in two subgroups on the basis of age. The corresponding values for EER
and minDCF for this study are exhibited in Table 6. One should be mindful of the
fact that the proposed data augmentation approach has been exercised prior to training
the x-vector extractor. Going by the results of Table 6, it is quite evident that an ASV
system shows a degraded results for children in the lower age bracket as compared
to children in the higher age bracket or for the matter compared to children in the
complete test-set. This can be attributed to the fact that younger children owing to
their shorter vocal-track length have higher pitch frequency and formant frequencies.
Also evident from the Table 6 is that the ASV system when trained exclusively on the
MFCC features produce somewhat poorer results as those down-sample the higher-
frequency contents of children’s speech. On the contrary, the ASV system trained on
the concatenated acoustic features yields superior results and this development can be
attributed to the underlying fact that the feature fusion of MFCC and IMFCC takes
into consideration the spectral information in the lower- as well as higher-frequency
regions. Apart from the age-wise grouping of test set comprising children’s short
utterances, the effect of gender-wise grouping on the performance of the employed
ASV system was also analyzed. The corresponding values for EER and minDCF for
this study are given in Table 7. As noticeable from the table that the ASV system
performance drops when subjected to female speech test-set in contrast to the male
children or as opposed to children in the complete test-set. This deterioration is due
to the higher formant and pitch frequencies of female child in comparison to male
child. Table 7 again echos the superior performance of the ASV system trained on
the concatenated MFCC and IMFCC features as against the system trained solely on
MFCC features.

Moving on from the qualitative analysis towards the quantitative analysis of the
effect of the proposed feature concatenation on the employed children’s ASV system.
The EER for the full test set registers a relative improvement of 8.20% when MFCC
features are concatenated with the IMFCC features, pictorially represented by the first
bar in Fig. 6.When the speech test-set is split on the grounds of age variation, a relative
reduction in EER for the age bracket of 6–7 years is calculated as 6.97% when the
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Fig. 6 Bar graph representation of the relative reduction in EER (%) for various speaker groups (in terms of
age and gender), corresponding to the ASV system trained on the concatenatedMFCC and IMFCC features
as compared to an ASV system trained on the MFCC features alone

proposed feature concatenation is put into action. This is depicted by the second bar in
the Fig. 6. The corresponding relative improvement in EER for the age bracket of 8–9
years is 9.40% portrayed by the third bar in Fig. 6. When the speech test-set is split on
the grounds of gender, a relative reduction in EER for the girl child is calculated as
6.90% upon frame-level concatenation of MFCC with the IMFCC features, depicted
by the fourth bar of the Fig. 6. Finally when the employed ASV system is subjected
to short-utterances from the speech test set of the male child, it results in a relative
reduction of 6.50% in EER. The same has been pictorially represented by the fifth bar
of the Fig. 6.

5 Conclusion

Through the work in this paper, the authors’ have examined the challenges surround-
ing the task of building a children’s speaker verification system and their potential
applications. Firstly, it was evident that the traditional speaker verification techniques
designed for adult speakers are not directly applicable to children due to their phys-
iological and morphological differences. The development of a robust and reliable
children ASV system requires abundance of domain-specific data-set. This require-
ment was met by the proposed data augmentation strategy employed in this paper.
Incorporating both in-domain and out-of-domain data augmentations in the proposed
data augmentation approach, the amount of training data was increased, the diversity
of the captured acoustic attributes was widened which also led to an improvement in
the trained model’s generalization capabilities, while keeping the acoustic mismatch
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in check. A relative improvement of 43.91% in equal error rate (EER) against the
baseline system trained solely on the original child data-set authenticates the potency
of the proposed data augmentation approach. Together with data augmentation, the
effectiveness of frame-level concatenation of MFCC with the IMFCC features, is also
analysed in this paper. The complementary nature of filter-banks employed in the
extraction of IMFCC and MFCC features, helps in preserving spectral information in
the higher-frequency range. The frame-level concatenation of the MFCC and IMFCC
features results in a relative reduction of 8.20% for the complete test-set. Additionally,
age- and gender-wise analyses were carried out to study the combined effect of data
augmentation and feature concatenation on the performance of children’sASV system.
TheASV system incorporating both the proposed data augmentation technique as well
as feature concatenation culminates in an impressive overall relative improvement of
48.51% for equal error rate. The findings of this study will provide a foundation for
future advancements in children speaker verification systems in the context of short
utterances and contribute towards improved security, personalized experiences, and
educational opportunities for children while ensuring their safety and well-being.
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Appendix

Procedure to Compute Canonical Correlation Analysis (CCA)
A brief explanation of the procedure to compute CCA is summarized in the following:

i. Formulation of Hypothesis: CCA starts with the formulation of a hypothesis that
there exist canonical variables (linear combinations of the original variables) in
each dataset that are highly correlated.

ii. Data Collection: Collect two sets of variables, typically denoted as X andY. These
sets may represent different measurements, features, or attributes.

iii. Standardization (Optional): Standardize the variables in both sets if necessary.
This step is optional, but it can be useful to ensure that variables are on a similar
scale.

iv. Construct Covariance Matrices: Create covariance matrices for both sets (Cov(X)
and Cov(Y)).
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v. Compute Cross-Covariance Matrices: Calculate the cross-covariance matrix
between X and Y (Cov(X, Y)).

vi. SolveGeneralizedEigenvalueProblem:Solve the generalized eigenvalue problem
derived from the covariance matrices. This involves finding the eigenvalues and
corresponding eigenvectors of the matrix equation Ax = λBx , where A is the
cross-covariance matrix, and B is the product of the inverse square root of the
covariance matrices of X and Y.

vii. Canonical Variables: The canonical variables are the linear combinations of the
original variables that maximize the correlation. These are obtained from the
eigenvectors of the generalized eigenvalue problem.

viii. Canonical Correlations: The canonical correlations are the square roots of the
eigenvalues obtained in the previous step. These represent the strength of the
relationships between the canonical variables.

ix. Interpretation: Interpret the canonical variables and correlations to understand
the underlying relationships between the two sets of variables. Higher canonical
correlations indicate stronger relationships.
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