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Abstract
The task of developing an automatic speaker verification (ASV) system for children’s
speech is extremely challenging due to the dearth of domain-specific data. The chal-
lenges are further exacerbated in the case of short utterances of speech, a relatively
unexplored domain in the case of children’s ASV. Voice-based biometric systems
require an adequate amount of speech data for enrollment and verification; otherwise,
the performance considerably degrades. It is for this reason that the trade-off between
convenience and security is gruelling to maintain in practical scenarios. In this paper,
we have focused on data paucity and preservation of the higher-frequency contents
in order to enhance the performance of a short utterance-based children’s speaker
verification system. To deal with data scarcity, an out-of-domain data augmentation
approach has been proposed. Since the out-of-domain data used are from adult speak-
ers which are acoustically very different from children’s speech, we have made use of
techniques like prosody modification, formant modification, and voice conversion in
order to render it acoustically similar to children’s speech prior to augmentation. This
helps in not only increasing the amount of training data but also in effectively capturing
the missing target attributes which helps in boosting the verification. Further to that,
we have resorted to concatenation of the classical Mel-frequency cepstral coefficients
(MFCC) features with the Gamma-tone frequency cepstral coefficient (GTF-CC) or
with the Inverse Gamma-tone frequency cepstral coefficient (IGTF-CC) features. The
feature concatenation of MFCC and IGTF-CC is employed with the sole intention
of effectively modeling the human auditory system along with the preservation of
higher-frequency contents in the children’s speech data. This feature concatenation
approach, when combined with data augmentation, helps in further improvement in
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the verification performance. The experimental results testify our claims, wherein we
have achieved an overall relative reduction of 38.5% for equal error rate.

Keywords Automatic speaker verification · Out-of-domain data augmentation ·
Gamma-tone frequency cepstral coefficient · Inverse Gamma-tone frequency cepstral
coefficient

1 Introduction

Automatic speaker verification (ASV) is a biometric task of verifying the claimed iden-
tity of a speaker. It uses the characteristics of human voice/speech for authentication
of the claimant. If the test speech sample, given at the time of verification, is closer to
the target model (template), then the ASV system pronounces the claim to be genuine,
else the speaker is declared an impostor. As compared to the other competing bio-
metric technologies, voice biometrics stands strong due to its prompt, hassle-free, and
error-free authentication. It revamps the surveillance by minimizing security breaches
caused by compromised or stolen passwords, phishing, fraudsters, etc. Needless to
say, these cyber scams and frauds can play havoc with anyone accessing online appli-
cation tools ignorantly. Voice biometrics enables the system to spend less time in
authenticating users and resetting passwords. ASV technology provides a low-cost
biometric solution [18] and is, thus, increasingly gaining acceptance in remote access
to applications including but not limited to banking and financial services, websites
and networks, telephone and internet transaction authentication, audio signatures for
digital documents, hands-freemobile authentication, authentication during a customer
support call, biometric login, payment gateways, merchandising, forensics, healthcare
and mobile workforces, social networking websites, e-games and e-learning tools.
With the ever-growing need for surveillance and secured systems, ASV systems are
destined to be ubiquitously present and a provisioner of a much-needed security shield
to adults and children alike. Dismally, a major chunk of the works reported in the lit-
erature deals with the task of building an ASV system for the adult population. The
literary works reported on building an ASV system for the more vulnerable lot, i.e.,
children, are regrettably unsubstantial [25, 28, 32].

State-of-the-art ASV systems are found to be very effective, incurring minimal
error when they are fed with an adequately larger amount and longer duration of
speech data. Apprehensively, most of the children’s speech corpora are not easily
available. Moreover, these are available in only a handful of languages spoken across
the globe and limited in terms of hours of data. For the languages in which children’s
speech corpus is unavailable (zero-resource condition), developing an ASV system
is quite a formidable task. Even if a limited amount of children’s speech data is
on offer (low-resource condition), developing an effective children’s ASV system
employing deep learning architectures is still very challenging. State-of-the-art ASV
systems incorporate deep learning architectures that require estimating a huge number
of parameters. This, in turn, requires a large amount of domain-specific data. To
overcome with the issue arising with the low- and zero-resource conditions, a few
earlier works on children’s ASV have studied the impact of synthetically generating
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speech data and then pooling it into training. Out-of-domain data augmentation has
been reported to be effective in this regard [28].

An ASV system, in real-world applications, is also marred by constrained duration
of speech utterances. Though this requirement can be fulfilled during training phase by
some data augmentation techniques, it is not feasible to do the same during the testing
phase. In forensics applications for instance, the employedASV system is less likely to
get sufficient data even for enrollment. In access control type cases, average utterance
length is restricted to a few seconds only [17]. To the best of the authors’ knowledge,
there is hardly any work reported on children’s ASV task using short utterances.
Motivated by this gap in the research arena, the role of out-of-data augmentation
techniques in the context of short utterance-based children’s ASV task is explored
in this paper. The effect of synthetically generating speech data from the available
adults’ speech corpus, which is acoustically similar to that of children’s speech prior
to augmentation, is analyzed in this study. The techniques used to address the dearth of
domain-specific data explored in this paper include (i) voice conversion (VC) of adults’
speech data using cycle-consistent generative adversarial network (C-GAN) [10], (ii)
prosody modification (PM) [26, 27] of adults’ speech, and (iii) up-scaling the formant
frequencies (FM) [11, 14] of adults’ speech data. All the explored techniques modify
the attributes of adults’ speech in order to render it acoustically similar to children’s
speech. The explored out-of-domain data augmentation technique is observed to be
very effective as demonstrated through the experimental studies presented in this paper.

In addition to data augmentation, the effectiveness of frame-level concatenation
of the most popular front-end acoustic feature, namely the MFCC with the GTF-CC
or with the IGTF-CC, is also examined in this paper. In general, the MFCC are the
most commonly used front-end acoustic features, which can capture speaker-specific
characteristics. However, ASV systems based solely on MFCC features show suscep-
tibility in a number of scenarios. Firstly, the performance of MFCC-based systems
degrades drastically in the presence of background noise [6]. Secondly, the mel-scale
in the standard MFCC is not the optimal auditory model [6]. Lastly, since the reso-
lution of Mel-filter-bank decreases as the frequency is increased, the performance of
MFCC-based ASV systems degrades in case of high-pitched speakers. The aforemen-
tioned facts have fuelled the authors’ of this paper to delve into the role of another
well-acclaimed front-end speech parameterization technique, namely the GTF-CC.
Prior literary works have demonstrated that GTF-CC performs robustly in speaker
verification tasks in the presence of additive noise over a wide range of signal-to-noise
ratios [6]. Further, Gamma-tone filter-banks employed in the extraction of GTF-CC
features exploit the advantages of human auditory system [22] as it is more subtle
and similar to human auditory model. The Gamma-tone filter-bank is very similar to
the rounded exponential function used in representing the magnitude response of the
human auditory filters [8]. The Mel-filter-bank on the other hand is designed to model
the human pitch perception mechanism [9]. The feature fusion model of MFCC and
GTF-CC is thus expected to enhance the ASV performance. The authors in this back-
drop have also explored a variant of the GTF-CC, namely the IGTF-CC. In this case,
the employed filter-bank is obtained simply by flipping the Gamma-tone filter-bank
around themidpoint. The InverseGamma-tone filter-bank is thus supposed to have bet-
ter frequency resolution in higher-frequency range. The lower-frequency components
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Fig. 1 Block diagram outlining the data augmentation and feature concatenation approaches proposed in
this work in order to enhance the verification performance of a short utterance-based children ASV system

are down-sampled. As already highlighted, the use of Mel-filter-bank down-samples
the spectral information in the higher-frequency range. The IGTF-CC due to its com-
plementary nature of filter-bank is supposed to better capture the acoustic information
in children’s speech, which are otherwise averaged out by the MFCC features. The
feature fusion model of MFCC and IGTF-CC is thus expected to outperform the tradi-
tional MFCC, leading to an enhanced children’s ASV system. It is worth mentioning
here to the best of the authors’ knowledge that the role of IGTF-CC has not yet been
explored in the context of children’s speaker verification.

The aforementioned proposal of feature concatenation in addition to data augmen-
tation is outlined in Fig. 1 and well validated in the experimental results section of
the paper. The paper also illustrates the age group-wise as well as a gender-wise
analysis of the children ASV performance to unravel the effect of data augmenta-
tion and feature concatenation. The proposed approach aids in diminishing the Equal
Error Rate (EER) and Detection Cost Function (DCF) considerably as opposed to our
baseline system trained exclusively on children’s speech using MFCC features. The
ASV systems for children’s speech developed in this work for experimental evalu-
ations employ x-vector-based speaker representation along with probabilistic linear
discriminant analysis (PLDA)-based scoring.

The noteworthy contributions of this study are delineated as follows:

– A comprehensive examination of the children’s speaker verification task using
short utterances under low-resource conditions. As emphasized, there is a notable
scarcity of research addressing the children’s ASV task centered on short utter-
ances;

– The efficacy of the suggested data augmentation strategy in mitigating the adverse
impact resulting from the scarcity of domain-specific data is illustrated;
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– The significance of the proposed frame-level concatenation of front-end acoustic
features in preserving higher-frequency contents within children’s speech data is
emphasized and substantiated;

– An exhaustive examination of the children’s ASV system is conducted, catego-
rizing subjects by age group and gender, to assess the cumulative effects of data
augmentation and feature concatenation.

The rest of this paper is organized as follows: Sect. 2 describes the proposed out-of-
domain data augmentation techniques to dealwith the scarcity of domain-specific data.
In Sect. 3, we have talked about the authors’ motivation to look beyond the traditional
Mel-based filter-bank and delve into the scope of feature concatenation for children’s
ASV system. The experimental evaluations exhibiting the efficacy of our proposed
technique are presented in Sect. 4. Eventually, conclusion and the future scope of the
research work done in this paper are mentioned in Sect. 5.

2 Proposed Out-of-Domain Data Augmentation Technique

The state-of-the-art ASV systemmakes use of x-vectors-based speaker representation.
For extracting x-vectors, a time-delay neural network (TDNN) [16, 30, 31] comprising
a large number of hidden layers and hidden nodes per layer is trained. As already
mentioned, one of the hurdles in the development of a reliableASV system for children
is the scarcity of domain-specific data. Hence, training an x-vector extractor on a
limited amount of children’s speech will result in sub-optimal performance. Out-of-
domain data augmentation techniques can help mitigate this obstacle. However, it is
worth highlighting here that the augmented data must have attributes similar to those
of children’s speech. Otherwise, the trained ASV system would fail to generalize
well for unseen child speakers. Driven by this rationale, we present an out-of-domain
data augmentation technique which is observed to be very effective in the context of
children’s ASV task using short utterances.

The proposed out-of-domain data augmentation technique is pictorially summa-
rized in Fig. 1. In our approach, we use a limited amount of adults’ speech for
augmentation.As alreadymentioned,we have employed different techniques bywhich
the acoustic attributes of adults’ speech can be suitably modified and those are briefly
discussed in the following:
In the first technique, the adults’ speech was subjected to voice conversion (VC) using
a cycle-consistent generative adversarial network (C-GAN) [10]. Nearly 10 min of
speech data from each speaker group (adult and child speakers) was used to train the
C-GAN. As a result of VC, adults’ speech utterances sound very similar to children’s
speech as noted during the listening tests. Therefore, on pooling the voice-converted
data, the issues of acoustic mismatch reduce to a large extent.
In the second technique, adults’ speech was subjected to prosody modification prior
to augmentation. It is well known that the pitch for children’s speech is higher while
the speaking rate is slower [14, 24]. Therefore, pitch of the speech data from the adult
speakers was increased by a factor of 1.35 while the duration was increased by a
factor of 1.4. These scaling factors were determined from earlier reported works on
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children’s speech recognition [26]. In order to perform prosody modification (PM),
the technique reported in [21] was used. Again, pooling prosody-modified data ensure
that the acoustic mismatch remains in check.
In the case of child speakers, the formant frequencies are higher as compared to
adult speakers [14, 24]. Hence, in the third technique, the formant frequencies (FM)
of adults’ speech data were up-scaled by a factor of 0.08. At the same time, the
speaking rate of adults’ speech data was decreased by a factor of 1.4 through time-
scale modification (TSM) [21]. This was done to compensate for the differences in
speaking rates as discussed earlier. The mentioned scaling factors were adopted from
the earlier works [13, 26]. Like in the case of VC and PM, pooling formant modified
adults’ data help in increasing the amount of training data while keeping acoustic
mismatch in check to a large extent.

All the modified versions of adults’ data are then pooled into training along with
children’s speech as well as the original adults’ data. Consequently, the amount of
training data is increased leading to a more robust estimation of model parameters.
Moreover, modifying the acoustic attributes ensures that the developed ASV system
does not get biased toward adult speakers. It is worth mentioning here that even
though the aforementioned techniques of synthetically generating speech data are well
acclaimed in literary works, their combined effectiveness in the context of children’s
ASV systems for short utterances is relatively uncharted.

3 Exploring the Role of Different Acoustic Features in Children ASV

3.1 Prior Art

As mentioned earlier, the MFCC features are one of the most popular and commonly
used front-end acoustic features in the context of an ASV system. It is the first feature
among the three front-end features explored in this paper. The step-wise process of
extracting MFCC features is briefly described as follows:

– The speech signal is first high-pass filtered through a pre-emphasis filter in order
to emphasize the higher-frequency components;

– Next, each of the speech utterances is analyzed into short-time frames using over-
lapping Hamming windows, followed by the computation of short-time Fourier
transform (STFT);

– Spectral warping is then carried out using a set of non-linearly spaced filters, called
Melody(Mel)-filter-bank.Mel-filter-bank is a set of triangularMel-weighted filters
as depicted in the top panel of Fig. 2;

– Logarithmic compression of the filtered power spectrum is then performed;
– The decorrelated real cepstrum (RC) is then obtained by applying discrete cosine
transform (DCT);

– Finally, by low-time liftering of the real cepstrum, MFCC features are extracted
which will eventually be fed as input for training any classifier.
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Fig. 2 Configuration of a Mel-, Gamma-tone and Inverse Gamma-tone filter-banks

3.2 Motivation for Exploring the Role of Feature Concatenation in Children ASV

MFCC features are the most conventional front-end acoustic features and have been
the state of the art ever since its inception. They provide a compact and stable repre-
sentation of the vocal tract of a speaker, significantly reducing the computational cost.
The limitations of the MFCC features discussed in the previous section provide the



Circuits, Systems, and Signal Processing (2024) 43:3020–3041 3027

Fig. 3 Block diagram outlining the process of extracting concatenated MFCC features with either GTF-CC
or IGTF-CC features

Fig. 4 Spectrograms corresponding to speech data from adult male (top panel), adult female (middle panel),
and child (bottom panel) speaking the wordHEED. The red speckles are the contours denoting the variation
in formant frequencies, while the blue line denotes the pitch frequency variations (Color figure online)
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necessary impetus toward the exploration for alternative front end acoustic features,
namely the GTF-CC and the IGTF-CC.

3.2.1 Frame-Level Concatenation of MFCC and GTF-CC Feature Vectors

The Gamma-tone filter-banks are well known to better model the human auditory
system [6, 15]. The Gamma-tone filter has a more smooth form and are placed in
equal distance in frequency, in stark contrast with the Mel-filter-banks, as shown in
the middle panel of Fig. 2. Moreover, the amount of overlap of a Mel-filter-bank is
fixed, so if the number of filters increases, the bandwidth of each triangular filter will
decrease. On the other hand, the bandwidth of a Gamma-tone filter is determined by
its center frequency. So, if the number of filters increases, the overlap also increases.
Theoretical and experimental results in [4] demonstrate that the filter bandwidth is
one of the vital factors affecting speaker recognition performance in noise. Further the
authors in [6], with the help of spectrograms, have analyzed the performance of ASV
system subjected to a noisy speech utterance. The MFCC spectrogram is found to
show robustness only at low frequencies. The GTF-CC spectrogram on the other hand
showed robustness in both low and high frequencies, suggesting that GTF-CC features
can play an influential role while dealing with child speakers. This has paved the idea
of concatenating the MFCC and GTF-CC feature vectors to analyze the performance
of short utterance-based children’s ASV system.

The block diagram outlining the extraction process of the concatenated MFCC and
GTF-CC features is shown in Fig. 3. The GTF-CC features are extracted in just the
same way as the MFCC features discussed earlier, the only replacement being the
Gamma-tone filter-bank in place of Mel-filter-bank. Both the MFCC features and the
GTF-CC features are extracted using the Kaldi toolkit. Given the speech signal, first,
we extract the MFCC and GTF-CC features. Next, for each of the short-time frames,
the corresponding MFCC and GTF-CC features are appended. The resulting feature
vectors (concatenated MFCC+GTF-CC feature vectors at the frame level) are then
used as the input to the x -vector extraction process instead of the MFCC features. The
experimental evaluations in the later portion of this paper demonstrate that an ASV
system trained after concatenating GTF-CC features with MFCC features performs
better than the one trained on MFCC features alone. However, it is worth highlighting
that due to the inherent nature of filter-banks used in the feature concatenation of
MFCC and GTF-CC, the spectral information in the higher-frequency range of the
children’s speech will be down-sampled. The quest for the preservation of higher-
frequency contents in children’s speech led us toward the exploration of another front-
end acoustic feature, namely the IGTF-CC.

3.2.2 Frame-Level Concatenation of MFCC and IGTF-CC Feature Vectors

As already mentioned earlier, a significant amount of germane spectral information
is present in the higher-frequency region in case of children. The spectrogram corre-
sponding to speech data from children, in the bottom panel of Fig. 4, shows significant
power even in the 4–8 kHz. Further to that, earlier literary works suggest that the
formant frequencies are up-scaled in the case of child speakers [7, 12], which is also
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quite prominently visible in the spectrogram of children speech in the bottom panel
of Fig. 4. The spectrogram corresponding to speech data from adult male (top panel)
and adult female (middle panel) is also plotted for comparison in Fig. 4. Mel-scale
warping is inspired from the findings of psychoacoustics; it is based on the premise
that human perception of pitch is linear up to 1000 Hz and then becomes nonlinear for
higher frequencies (somewhat logarithmic) [3]. The Mel-filter-bank provides better
resolution to speech signals in the low-frequency range, while its frequency resolution
deteriorates in the high-frequency range, as illustrated by the nature of its filter-bank
in the top panel of Fig. 2.When dealing with speech from children, the down-sampling
of spectral information in the high-frequency range is a pitfall [7, 24]. Thus, preser-
vation of spectral information in the higher-frequency range as well as the pursuit for
filter-banks which best describes the human auditory system becomes our top-notch
priority and persuades us to look for solutions beyond the traditional Mel-based filter-
bank and Gamma-tone filter-bank for our high-pitched speakers. Motivated by this
cognizance, the role of Inverse Gamma-tone filter-bank is delved into in this paper for
the development of a robust children’s ASV system.

The Inverse Gamma-tone filter-bank is realized simply by flipping around the
Gamma-tone filters about the middle point of the frequency axis, as depicted in the
bottom panel of Fig. 2. The front-end acoustic features achieved by replacing the Mel-
filter-bank with Inverse Gamma-tone filter-bank are referred to as IGTF-CC features.
This configuration of the filter-bank results in a better resolution of the spectral infor-
mation in the high-frequency region, and thus, the Inverse Gamma-tone filter-bank
is supposed to capture the acoustic information missed by the MFCC features. It is
worth highlighting here that the Inverse Gamma-tone filter-bank is just a variant of
Gamma-tone filter-bank, implying that it’s filter-bank has the same smooth structure
and whose bandwidth is decided by its center frequency just the same. So, if the
number of filters increases, the overlap also increases. The Inverse Gamma-tone filter-
bank though results in poor resolution to the lower-frequency components. Therefore,
we have conceived the idea of concatenating the MFCC and IGTF-CC feature vec-
tors in order to effectively preserve both the low- and high-frequency components.
The block diagram outlining the extraction process of the concatenated MFCC and
IGTF-CC features is also represented in Fig. 3. The IGTF-CC features are extracted
in just the same way as the MFCC features discussed earlier, the only replacement
being the Inverse Gamma-tone filter-bank in place of Mel-filter-bank. Both theMFCC
features and the IGTF-CC features are extracted using the Kaldi toolkit. Given the
fully augmented speech signal (employing the proposed out-of-domain augmentation
technique), we firstly extract the MFCC and IGTF-CC features. Next, for each of the
short-time frames, the correspondingMFCC and IGTF-CC features are appended. The
resulting feature vectors (concatenated MFCC+IGTF-CC feature vectors at the frame
level) are then used as the input to the x-vector extraction process instead of theMFCC
features. The experimental evaluations in the later portion of this paper demonstrate
that an ASV system trained after concatenating IGTF-CC features with MFCC fea-
tures outperforms not only the ASV system trained on MFCC features alone, but also
the one trained on the frame level fusion of MFCC and GTF-CC feature vectors.
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Fig. 5 Canonical correlation analysis of various feature concatenation explored in the paper

3.3 Canonical Correlation Analysis (CCA)

In order to substantiate the effect of feature concatenation, the canonical correlation
analysis (CCA) was carried out. We have computed the canonical correlation among
MFCC, GTF-CC, and IGTF-CC features as shown in Fig. 5. The CCA plot in the top
panel of Fig. 5 shows how closely the MFCC and GTF-CC feature vectors are corre-
lated for majority of the coefficients barring the last few coefficients. This explains for
the inability of the concatenatedMFCC and GTF-CC features to be able to capture the
diverse range of acoustic attributes in children’s speech. The CCA plot in the bottom
panel of Fig. 5 shows that theMFCC and IGTF-CC feature vectors are highly uncorre-
lated or less correlated for most of the coefficients barring the starting few coefficients.
Therefore, the frame-level concatenation of MFCC and IGTF-CC features leads to a
wider range of acoustic attributes being captured. The inherently different configu-
ration of filter-banks employed in the extraction of MFCC and IGTF-CC features is
the main force behind this development. Thus, the CCA plot of IGTF-CC and MFCC
reinforces the complementary characteristic of IGTF-CCwith respect toMFCCwhich
helps the duo in better capturing the acoustic information in children’s speech.

4 Experimental Evaluations

In this section, the relative effectiveness of MFCC, concatenated MFCC and GTF-
CC, concatenated MFCC and IGTF-CC features is explored and the experimentally
verified results are presented.
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4.1 The Speech Corpora

Four different speech corpora were employed for the development and evaluation of
speaker verification system for children. These English-based speech corpus includes
CSLU kids corpus [29], CMU kids corpus [5], PF-STAR kids corpus [1], and WSJ-
CAM0 corpus [23].The details of each of these data sets are succinctly summarized
as under, and a figurative tabulation of it is shown in Table 1:

1. CSLU kids corpus: This data set consists of spontaneous and prompted speech
comprising of 100 h of data having 73, 100 utterances from 1100 children. The
speech contribution is from children hailing from kindergarten to grade 10. Their
speech data are sampled at a sampling rate of 16 kHz. This speech corpus is used
as the training data for the ASV system in this work.

2. CMU kids corpus: This data set comprises of 9.1 h of data having 5180 utterances
from 76 children. The child speakers are in the age group of 6–11 years. The
sampling rate of this speech corpus is also 16 kHz, and it serves as our test set.
A total of 423, 388 genuine trails and 26, 403, 832 impostor trails are present in
this data set. The average duration of the data in this corpus is 6 s. Therefore,
evaluation on this set represents the short utterance case.

3. PF-STAR kids corpus: It is an 8.3 h of data with utterances from 121 children
speakers. The age group varies from 4 to 14 years. To maintain the uniformity
of sampling rate with rest of our corpus, this data set has been down-sampled
to 16 kHz from 44.1 kHz rate. This is our test data set for long utterances. It
comprises 6, 664 genuine trails and 995, 420 impostor trails, respectively. The
average duration of the data in this corpus is 30 s. Therefore, the evaluation on this
set is for contrast in order to demonstrate the severity of the problem when short
utterances are used.

4. WSJCAM0 corpus: It is an adults’ speech corpus used for the out-of-domain data
augmentation. This speech corpus comprises of 15.5 h of unperturbed data having
7852 utterances and 132, 778 words from 92 adult speakers (male and female).
The sampling rate is 16 kHz.

4.2 Experimental Setup

The entire setup of the ASV system was developed and examined using the Kaldi
toolkit [19]. In the process to extract the three kinds of aforementioned front-end fea-
tures, speech data were first high-pass filtered having pre-emphasis factor of 0.97.
It is a well-known fact that speech data are non-stationary in nature, so each of the
speech utterances was first analyzed into short-time frames using overlapping Ham-
ming windows. The duration of these overlapping Hamming windows was chosen to
be 25 ms with a frame shift of 10 ms. For each of the three front-end features, a 30-
channel filter-bank was employed to extract 30-dimensional base features. For MFCC
features, a 30-channel Mel-filter-bank was engaged for warping the power spectra to
Mel-scale, before computing the 30-dimensional MFCC features. For extracting the
GTF-CC features, a 30-channel Gamma-tone filter-bank was engaged for warping the
power spectra, before computing the 30-dimensional GTF-CC features. Finally, for the
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computation of the IGTF-CC features, a 30-channel Inverse Gamma-tone filter-bank
was superimposed over the power spectrum, before computing the 30-dimensional
IGTF-CC features.
Description of out-of-domain data augmentation:The out-of-domain training set used
for developing the children’s ASV system was derived from an adult’s speech corpus
called as WSJCAM0 corpus. This training data set consists of original adult speech
data derived from both male and female speakers and is referred to as ADULT. Three
newer versions of speech data are synthetically generated from this speech corpora
and are enlisted as follows:

i. ADULT-VC: This data set was generated by applying voice conversion to the
adult data through a cycle-consistent generative adversarial network (C-GAN).
The GAN underwent training using a 10-min speech data set encompassing both
adult (source) and child speakers (target). The number of epochs utilized in training
the C-GAN parameters was set at 5000;

ii. ADULT-PM: This data set was generated by increasing the duration of the speech
data of ADULT by a factor of 1.4 while the pitch of ADULT was enhanced by a
factor of 1.35. To perform time-scale modification, the technique of audio stretch-
ing was applied, leveraging the methodology of fuzzy classification of spectral
bins (FCSB) [2];

iii. ADULT-FM-TSM: This data set was generated by up-scaling the formant fre-
quencies of ADULT speech by a factor of 0.08. At the same time, the speaking
rate of adults’ speech data was decreased by a factor of 1.4 through time-scale
modification.

After performing the aforementioned data modification techniques namely, voice
conversion (VC), prosody modification (PM), formant and time-scale modification
(FM-TSM), a total of 63 h of synthetic data was available for training purpose with
acoustic attributes similar to those of children’s speech.

For the extraction of highly discriminative speaker representations, a deep neural
networkwas utilized. These fixed-dimensional speaker embeddings called as x-vectors
were extracted from a time-delay neural network (TDNN) architecture [16, 30, 31].
This architecture consists of 7 hidden layers and undergoes training for 6 epochs.
The TDNN architecture is structured into three integral components: the frame-level,
statistics-level, and segment-level components. Within the frame-level component,
spanning layers 1–5, input features sequentially traverse these layers, effectively
capturing temporal information and enhancing the temporal context of the frames
under consideration. The statistics-level component serves the purpose of converting
variable-length speech inputs into a singular, fixed-dimensional vector. This compo-
nent consists of a single layer, called the statistics pooling, which amalgamates the
output vectors from the TDNN’s frame-level and computes their mean and standard
deviation. Concurrently, the segment-level component is responsible for attributing
speaker identities to the segment-level vector. The mean and standard deviation, post-
concatenation, are transmitted to two additional hidden layers, subsequently leading
to a softmax output layer. Layer 6 operates as the speaker embedding, which trans-
forms the information from the preceding layer into a low-dimensional representation.
This intricate arrangement of components and layers underscores the comprehensive
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design of the TDNN architecture and its efficacy in processing speech inputs at vary-
ing levels of abstraction. The training of network parameters was conducted utilizing
the stochastic natural gradient descent algorithm [20, 31]. Finally, each of the speech
utterances was represented as a 512-dimensional x-vector. The scoring process was
executed through the utilization of x-vectors in conjunction with the trained PLDA
model. When provided with two per-utterance embeddings, denoted as ei and e j , the
PLDA computes a log-likelihood ratio (LLR) to quantify the likelihood associated
with the pair of embeddings. The LLR is calculated in the following manner:

LLR(ei , e j ) = log

⎡
⎣ P

(
ei ,e j
H1

)

P
(
ei ,e j
H0

)
⎤
⎦ (1)

where H1 represents the hypothesis related to the same speaker, while H0 pertains
to the hypothesis associated with different speakers. The PLDA model calculates a
log-likelihood ratio for each speaker pair, representing the level of similarity between
the individuals. In instances where the pair shares the same label, a high score is
anticipated, signifying identical speakers (a genuine claim). Conversely, when the
pair bears different labels, a low score is expected, indicating different speakers (an
imposter). The metrics used for performance measure were equal error rate (EER) and
minimum decision cost function (minDCF).

4.3 Experimental Results

This study was carried out to monitor how the performance of an ASV system, trained
on amix of a large amount of children’s speech data and an adequate amount of original
aswell asmodified adult’s speech corpus, is affectedwhen subjected to short utterances
of children’s speech. The EER and minDCF values for the employed ASV system are
given in Table 2. When subjected to short utterances, a relative improvement of 33.6%
with respect to the baseline system trained solely on child data set is achieved when
the proposed data augmentation techniques are applied. This shows that the proposed
data augmentation technique is very effective. The EER and minDCF values, when
the employed ASV system is tested with long utterances of children’s speech test
set, are also enlisted for comparison. As can be seen from Table 2, the EER of the
baseline system climbs from 6.38% (for long test utterances) to 21.95% (for short test
utterances). Further, when the proposed out-of-domain data augmentation has been
employed, the EER of ASV system climbs from 3.824% (for long test utterances) to
14.58% (for short test utterances). This shows the magnanimity of the challenge posed
by short test utterances on the ASV performance. At the same time, it is imperative to
realize and appreciate that the proposed data augmentation approach takes the edge
off the detrimental effect of short utterance speech test set.

Next, the effectiveness of the frame-level concatenation of the front-end acoustic
features in the light of the employed short utterance-based ASV systemwas examined.
The EER and minDCF values obtained when MFCC and GTF-CC features are con-
catenated, as well as for MFCC and IGTF-CC feature fusion given in Table 3. In this
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Table 2 EERandminDCFvalues for the short and longutterances of children’s speech test set demonstrating
the effectiveness of out-of-domain data augmentation techniques

Data used Short utterances Long utterances

for training EER(%) minDCF EER(%) minDCF

CHILD (Baseline) 21.95 0.9975 6.38 0.7228

CHILD + ADULT + ADULT-FM-TSM 14.58 0.9233 3.82 0.4062

+ ADULT-PM + ADULT-VC (Proposed)

Bold values indicate the lower values of EER obtained for the proposed data augmentation technique and
proposed feature concatenation approach respectively
The out-of-domain data augmentation scheme includes adult voice conversion (ADULT-VC), adult formant
and time-scale modification (ADULT-FM-TSM), adult prosody modification (ADULT-PM)

Table 3 EER and minDCF
values for the short
utterance-based ASV system
trained on the data set obtained
using the proposed
out-of-domain data
augmentation technique
demonstrating the effectiveness
of feature concatenation

Acoustic Evaluation metric

features EER (%) minDCF

MFCC 14.58 0.9233

MFCC + GTF-CC 13.96 0.9617

MFCC + IGTF-CC 13.50 0.9041

Bold values indicate the lower values of EER obtained for the proposed
data augmentation technique and proposed feature concatenation
approach respectively

case, the proposed data augmentation technique has been employed prior to training
theASV system. TheEERandminDCFvalues obtainedwhenMFCC features are used
alone are also enlisted for comparison. As evident, an absolute reduction of 0.62% in
EER is achieved by concatenation of MFCC with GTF-CC features, while the con-
catenation of MFCC and IGTF-CC features yields an absolute reduction in EER of
1.08%. The detection error trade-off (DET) plot summarizing these results is shown in
Fig. 6. In this plot, baseline refers to the ASV trained exclusively on children’s speech
using MFCC features.

To access the effectiveness of the proposed approach in a more comprehensive
manner, an age-wise analysis as well as gender-wise analysis of children’s speech was
performed. For evaluating the effect of age variation, the evaluation metric results are
reported for the entire test set, as well as after doing the age-wise break-up of the test
set in two subgroups. The EER and minDCF values for this experimental study are
given in Table 4. In this case as well, the proposed out-of-domain data augmentation
has been employed before training the x-vector extractor. The first subgroup comprised
speech utterances from speakers belonging to the age-group 6–7 yearswhile the second
subgroup comprised of speech utterances of speakers hailing from the age-group 8–9
years. As evident from the enlisted results, a significant degradation (reflected in the
poor values of EER) is noted for children in the lower age-group (6–7 years) compared
to the children in the higher age-group (8–9 years) or against the children in the full
test set. This degradation is due to higher formant frequency and pitch frequency of
children’s speech due to their inherent shorter vocal tract length. As the children grow,
the formant frequencies decrease as well as the speaking rate tends to stabilize.
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Fig. 6 Detection error trade-off plot demonstrating the effectiveness of proposed feature concatenation

Table 4 Age group-wise break up of EER andminimumDCF values highlighting the significance of feature
concatenation approaches

Features Age group(in years) EER (%) minDCF

MFCC Full test set 14.58 0.9233

6–7 17.39 0.9657

8–9 14.04 0.9203

MFCC+GTF-CC Full test set 13.96 0.9617

6–7 16.21 0.9915

8–9 13.22 0.9552

MFCC+IGTF-CC Full test set 13.50 0.9041

6–7 15.42 0.9547

8–9 12.88 0.9035

This study was performed on x-vector-based ASV system trained on a mix of children’s speech and adults’
speech along with the modified versions of adults’ speech

Further, it is noteworthy that the ASV system trained solely on the MFCC features
performs poorly in terms of evaluation metrics as it down-samples the higher-
frequency contents of children’s speech. The children’s ASV system trained on the
concatenated acoustic features yields better results, and this improvement is more pro-
found in the lower age-group as the concatenation of GTF-CC/IGTF-CC features with
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Fig. 7 Bar graph representation of the relative reduction in EER(%) for various speaker groups(in terms
of age and gender) corresponding to the ASV system trained on the concatenated MFCC and IGTF-CC
features as compared to an ASV system trained on the MFCC features alone. The bar depicted in red shows
the greatest relative improvement in EER

the MFCC features takes into account the spectral information in the lower- as well
as higher-frequency regions. The EER for the full test set shows a relative reduction
of 7.41% when MFCC and IGTF-CC features are concatenated, pictorially depicted
by the first bar in Fig. 7. The corresponding relative reduction in error of the same
concatenated features for the age group 6–7 years is 11.32%, pictorially depicted by
the second bar in Fig. 7. For the age group between 8 and 9 years, the relative reduction
in EER is 8.26%, pictorially depicted by the third bar in Fig. 7.

Finally, the effect on the performance of the employed ASV system was evaluated
due to gender-wise grouping of the children’s speech test set. The EER and minDCF
values for this experimental study are given in Table 5. As evident from the enlisted
results, a significant degradation (reflected in the poor values of EER) is noted for
the female children as compared to the male children or when compared with the
children in the full test set. This degradation is due to higher formant frequencies of
female children’s speech compared to their male counterparts. Further, as evident from
the table, the EER considerably reduces when either GTF-CC features or IGTF-CC
features are concatenated with MFCC features. The EER for the full test set shows
a relative reduction of 7.41% when MFCC and IGTF-CC features are concatenated,
pictorially depicted by the first bar in Fig. 7. The corresponding relative reduction
in error of the same concatenated features for the female child is 7.13%, pictorially
depicted by the fourth bar in Fig. 7. For the male child, the relative reduction in EER
is 7.66% as compared to the baseline, pictorially depicted by the fifth bar in Fig. 7.
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Table 5 Gender-wise breakup of
EER and minimum DCF values
highlighting the significance of
feature concatenation
approaches

Features Child Gender EER (%) minDCF

MFCC Full test set 14.58 0.9233

Female 17.68 0.9585

Male 10.05 0.8534

MFCC+GTF-CC Full test set 13.96 0.9617

Female 17.12 0.9929

Male 9.18 0.8548

MFCC+IGTF-CC Full test set 13.50 0.9041

Female 16.42 0.9466

Male 9.28 0.8055

This study was performed on x-vector-based ASV system trained on
a mix of children’s speech and adults’ speech along with the modified
versions of adults’ speech

5 Conclusion and Future Research Direction

Thework in this paper sets forth our endeavor toward the development of a robust chil-
dren’s ASV system using short utterances under low-resource conditions. To address
the inevitable problem of speech data paucity, an out-of-domain data augmentation
technique is proposed to synthetically generate more data for training. Out-of-domain
data augmentation approach helps in widening the diversity of the captured acoustic
attributes, by introducing missing desirable characteristics while keeping the acoustic
mismatch in check. Together with data augmentation, the effectiveness of frame-level
concatenation of MFCCwith the GTF-CC/ IGTF-CC is also analyzed in this paper. In
GTF-CCor its variant, the IGTF-CC features arewell known to bettermodel the human
auditory system and are more resilient to additive noise compared to the traditional
MFCC features. Additionally, the complementary nature of filter-bank in the IGTF-CC
with respect toMFCC helps in preserving spectral information in the higher-frequency
range. Thus, MFCC features in tandem with the IGTF-CC features help not only in
modeling the human auditory model in a more competent manner, but also in preserv-
ing the spectral information in low- as well as high- frequency range. Furthermore,
age- and gender-wise analyses were carried out to study the combined effect of data
augmentation and feature concatenation on the ASV system performance. Children in
the lower age bracket exhibit more pronounced inter-speaker variability, resulting in a
degraded performance in terms of EER and minDCF compared to the children in the
higher age bracket. At the same time, the employed ASV system incorporating both
the proposed data augmentation technique and feature concatenation is found to be
more impactful for children in the lower age group, resulting in a significant reduction
in EER and minDCF compared to the baseline.

As a future extension of this work, in addition to the out-of-domain data derived
from adults’ speech, we would like to explore the effectuality of in-domain data aug-
mentation techniques for the purpose of increasing the amount and diversity of the
captured acoustic attributes of children’s speech for training. In-domain data aug-
mentation refers to increasing the amount of children’s speech available for training
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by synthetically generating more data from children’s speech itself. In this regard,
we would like to implement speed perturbation and pitch perturbation of the origi-
nal children’s speech. In addition, we would also like to explore and incorporate the
vocal tract length perturbation (VTLP) technique. VTLP approach explicitly models
and compensates for the ill-effects of variations in vocal tract length by introducing
diversity into the complete children speech data set by creating numerous sets of data
with varying linear warping factors. The out-of-domain data augmentation techniques
in tandem with the in-domain data augmentation techniques are anticipated to reduce
the EER and minDCF values, which will eventually help in the realization of a more
robust and dependable children’s ASV system.
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