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Abstract
Computed tomography (CT) stands as a pivotal medical imaging technique, deliver-
ing timely and reliable clinical evaluations. Yet, its dependence on ionizing radiation
raises health concerns. One mitigation strategy involves using reduced radiation for
low-dose CT (LDCT) imaging; however, this often results in noise artifacts that under-
mine diagnostic precision. To address this issue, a distinctive CT image denoising
technique has been introduced that utilizes deep neural networks to suppress image
noise. This advanced CT image denoising network employs an attention mechanism
for the feature extraction stage, facilitating the adaptive fusion of multi-scale local
characteristics and channel-wide dependencies. Furthermore, a novel residual block
has been incorporated, crafted to generate features with superior representational abil-
ities, factoring in diverse spatial scales and eliminating redundant features. A unique
loss function is also developed to optimize network parameters, focusing on preserv-
ing structural information by capturing high-frequency components and perceptually
important details. Experimental results demonstrate the effectiveness of the proposed
network in enhancing the quality of LDCT images.
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1 Introduction

Computed tomography (CT) is a crucial medical imaging technique for visualizing
internal body structures through cross-sectional images, offering several advantages,
including high spatial resolution and fast image acquisition. These attributes enable
clinicians to visualize internal anatomical structures with exquisite detail, facilitating
accurate diagnoses and timely interventions. However, the use of CT imaging comes
with a trade-off as it relies on X-rays, which can alter cellular andmolecular processes.
Hence, the CT imaging always involves the additional health risk specially when
substantial radiation dose is employed [5, 9]. Given these risks, several clinical studies
[13, 34] have been conducted based on the principle of as low as reasonably achievable
(ALARA) to estimate effective dose.

Hence, different dose reduction strategies, such as fixed tube current (technique
charts), tube current (mA) modulation and automatic exposure control (AEC) have
been proposed [32]. However, these strategies lead to a decrease in the signal-to-noise
ratio of the acquired CT images and reduce their visual qualities. In order to alleviate
this issue, researchers have advanced various image denoisingmethods specialized for
CT imaging.While researchers havemade strides in improving the signal-to-noise ratio
in LDCT images through various denoising methods, another pivotal development in
this arena has been the integration of computer-aided diagnosis (CAD) systems [2].
These systems have become an integral part of medical image processing, particularly
in the early detection of various diseases like leukemia and other cancers.

There are three categories of CT image denoising methods: image projection
domain filtration, iterative reconstruction, and post-processing-based schemes. Image
projection domain filtrationmethods initiate by assessing the raw sinogramdata,which
inherently has elevated noise due to the reduced X-ray photon counts in low-dose
images. Subsequently, this data often undergoes a transformation, such as a Fourier or
wavelet transform [25], enabling noise and signal separation in the frequency domain.
Filters, like the Wiener filter, are then strategically applied to attenuate frequencies
predominantly associated with noise, preserving those linked with genuine anatomi-
cal information [46]. Some advanced filtering techniques also employ adaptive filters,
adjusting based on local noise and signal properties [42]. Once filtering concludes, an
inverse transformation returns the sinogram to its spatial domain, but now with dimin-
ished noise. This refined sinogram subsequently undergoes standardCT reconstruction
processes to produce the final image. As further developments in this field, the authors
[30] propose a bilateral filtering method integrated with the CT noise model. In [21],
the authors introduce a closed-form statistical model of sinogram data to address the
statistical bias issue.

Unlike filtering-based methods where raw data are initially filtered out, resulting
in the introduction of diffused noise, iterative reconstruction methods start with an
initial image estimation that is continuously refined. During each iteration, a pro-
jected sinogram from the current image estimate is compared with the acquired noisy
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sinogram. The resulting discrepancy, or residual, informs the subsequent image adjust-
ments. To avoid overfitting and amplify true anatomical details, various regularization
techniques are employed. Total variation (TV) [4, 24, 40], dictionary learning [16,
35, 49] and non-local means [52, 53] are some current popular image priors that have
been implemented in clinical scanners. These regularizations may encompass smooth-
ness constraints, edge preservation, or statistical noise models, which characterize the
inherent noise in low-dose imaging. The iterative process persists until well-defined
convergence criteria are met, ensuring a balance between noise reduction and image
fidelity. The incorporation of machine learning strategies in some advanced iterative
methods further enhances their ability to discriminate between genuine anatomical
features and noise, making them a pivotal tool in the pursuit of improved image qual-
ity in low-dose CT (LDCT) images [50]. However, these algorithms require designing
a set of handcrafted regularization terms, and their complexity leads to longer recon-
struction times.

Unlike the above-mentioned categories of CT image denoising, techniques based
on post-processing, e.g., wavelet filtering [27, 36, 39], non-local means [19, 28],
and total variation-based schemes [8, 37, 55] aim at reducing the noise in LDCT
images after image reconstruction, and therefore, they do not need to process the raw
data. This makes the use of such algorithms suitable for embedding into CT imaging
systems. However, due to the numerous assumptions used in the development of these
techniques, such as estimating the distribution of the noise, the images obtained may
suffer from over-smoothing.

Recent trends in deep learning-basedmethods have led to a proliferation of studies in
computer vision andmedical imaging. The essence of thesemethodologies lies in their
ability tomodel intricate nonlinear relationshipswithin the data, a task that often proves
challenging for traditional algorithms. The continuous evolution and fine-tuning of
neural networks, alongside expandingLDCTdatasets, signify that deep learning-based
denoising techniques are notmerely an incremental advancement, but a paradigm shift,
cementing their place at the forefront of modern LDCT image processing. Building
on this, past research has introduced a variety of supervised [6, 7, 11, 17, 20, 29, 43,
47, 51, 56] and unsupervised [18, 57] deep learning approaches to LDCT denoising.
While unsupervised LDCT denoising methods offer practical advantages, such as not
requiring paired samples, their clinical application remains limited due to less capable
denoising currently.

Deep convolutional neural networks (DCNNs) facilitate the design of low-dose
CT image denoising methods and generate images with high quality. For example,
the authors [7] propose the residual encoder-decoder convolutional neural network
(RED-CNN) that employs convolutional layers and skip connections in order to form
an autoencoder-based CT image denoising model. To take the advantage of using
the larger receptive field for the feature extraction process, the method of denoising
convolutional neural network (DnCNN) [56] uses a deeper CNN that employs 17
convolutional layers. Further, in [11], the dilated residual learning network, referred
to as the DRL, uses dilated convolutional layers and pre-defined Sobel operations to
increase the receptive field and extract intricate details better at the image boundaries.

The utilization of multi-scale feature extraction has recently demonstrated excel-
lent performance in obtaining useful features from CT images. The network proposed
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in [47] extracts the multi-scale features from CT images using a set of convolution
operations with various kernel sizes. Further, the authors [17] modify the RED-CNN
by incorporating the multi-scale convolutional layers into the network architecture. In
addition, the study [43] introduces a domain-adaptive denoising network (DADN) that
leverages a multi-scale noise estimation model and a U-Net network to diminish CT
image noise. It is worth noting that down-sampling operations used in U-Net architec-
ture lead to loss of important image details that adversely impact the image restoration
performance. In order to address this issue, the proposed approach in [51] incorporates
the attention mechanisms within the bottleneck layer of the U-Net network.

The attention mechanism has emerged as a powerful technique for extracting bene-
ficial features from the input images. There exist two forms of attention mechanisms,
namely, channel attention (CA) and spatial attention (SA), which suppress the redun-
dant information from the feature map obtained by the neural network. In [29], the
authors develop a denoising model that utilizes CA-based feature extraction layers,
resulting in the improved visual quality of CT images compared to traditional CNNs.
The authors in [54] utilize the foundational principles of CA by incorporating the
SqueezeNet architecture to augment the capabilities of the Extreme LearningMachine
(SNELM) for enhanced COVID-19 recognition. SqueezeNet offers a level of accuracy
that rivals that of AlexNet [3], yet it achieves this with a fraction of the parameters. A
crucial element of SqueezeNet’s efficiency lies in its fire module, which ingeniously
combines both 1 × 1 and 3 × 3 convolutional kernels.

Moreover, the attention-guided network (Dual-AGNet) [6] embeds three dimen-
sional SA module (SAM) in dual projection and reconstruction domain networks for
capturing the rich and representable sets ofCT image features.Additionally, this frame-
work has been trained using a combination of Structural Similarity Index (SSIM) and
perceptual losses in order tomaintain the structural details andprevent over-smoothing.
The main drawback of these networks is that they only consider channel-wise interac-
tions without extracting the spatial information of the various scales’ feature map to
refine the feature space. The authors [20] integrate the residual attention module into
a Wasserstein distance generative adversarial network [12], referred to as WGAN-
RAM, in which the generator effectively uses both CA and SA mechanisms to extract
useful features. In [48], the novel Multiple-Input Deep Convolutional Attention Net-
work (MIDCAN) is introduced for COVID-19 diagnosis, combining principles of
CA and SA with multi-input strategies. MIDCAN is crafted to process two primary
inputs-CCT and CXR images-simultaneously. Each image set is processed through its
respective convolutional block attention module (CBAM), after which the extracted
features are concatenated. Furthermore, the authors in [31], present a network based
on the ResNet structure [14] for removing noise from CT images by enriched feature
information obtained from CA and SA. However, CA and SA employed by these net-
works can only extract local information and are insufficient in extracting long-range
channel interdependence.

To address these issues, we propose the Multi-Scale Residual Attention Network
(MRAN), which learns powerful low-level and high-level feature representations use-
ful for preserving contextual and structural information of theCT images for denoising.
Specifically, we develop a novel residual block referred to as the Adaptive multi-scale
Feature Fusion Module (AMFFM) that employs a multi-scale pyramid convolution
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structure and channel attention weight operations to capture local attention at different
scales. This allows the model to focus on specific or nearby sets of pixels or features
within each channel, thereby capturing fine-grained details. On the other hand, global
attention is achieved through the softmax operation at the end stage of the AMFFM.
This results in recalibrating the attention weights across all channels, facilitating an
understanding of the broader context within the CT image, which allows richer seman-
tic information to be grasped, and establishes long-range channel dependencies. By
integrating these local and global attention mechanisms, the AMFFM offers a more
comprehensive representation of the CT image’s features.

To further enhance the capability of the MRAN we encapsulate the AMFFM unit
into the Spatial Residual InformationModule (SRIM)which eases the training process
of a deep network by skip connection for efficient information flow. Specifically, this
helps in mitigating the gradient vanishing problem, allowing the network to capture
high-level semantic information. The SRIM also leverages a SA mechanism to focus
on important spatial locations in the feature map, directing the network’s attention to
regions that are more informative for the task at hand. Further, MRAN employs the
U-Net architecture with skip connections between various layers, which each of which
representing unique level of information. This leads to fusing information fromvarious
hierarchical levels of abstractions. It is noteworthy that although the downsampling
operations of U-Net may lead to the omission of essential details, this challenge is
adeptly and adaptively managed in ourMRAN by employing the attention mechanism
and leveraging residual connections.

By integrating AMFFM and SRIM, MRAN effectively captures and emphasizes
a multiple range of features at different scales and levels of abstraction, making it
suitable for complicated task of CT image denoising.While themodel architecture sets
the stage, traditional pre-trained VGG networks, commonly used in training of the CT
image denoisingmodels, have presentedmarked limitations in balancing the SSIMand
PSNR of reconstructed images. Addressing this aspect of training, a PSNR-enhanced
loss function is introduced. This innovative loss approachmeticulously integrates edge
detection with random-weighted convolution layers, markedly boosting the network’s
prowess in capturing high-frequency information.

The main contributions of this paper are summarized as follows:

• The Adaptive multi-scale feature fusionModule (AMFFM) captures image details
by increasing the receptive field of the network using group convolution operations
with kernels of different sizes. This block applies attention in two local and global
stages to process inherent rich semantic information and enhance the long-range
contextual channel-wise interactions of the pixels and consequently providing a
superior CT image denoising performance.

• The Spatial Residual Information Module (SRIM) is introduced to ensure the
MRAN network’s training with larger depth and lower computational complexity
using the residual learning technique and SA module.

• A novel PSNR-enhanced perceptual loss network is introduced to increase PSNR
while simultaneously extracting perceptual features. This loss is used in conjunc-
tion with the mean absolute error (MAE) loss to reduce the difference between
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ground truth and estimated images by focusing on high-frequency information
extraction.

• The MRAN network is proposed based on the U-Net structure for removing noise
at different special resolutions, which emphasizes various types of information at
different scales and levels.

The remainder of the paper is organized as follows: First, Sect. 2 provides a detailed
explanation of our approach. Section3 showcases the effectiveness of our denoising
framework and hybrid loss function, while also conducting ablation studies on the
AMFFMandSRIM.Finally, conclusions on the proposedMRANand the experimental
results are presentedsec1 in Sect. 4.

2 Methodology

2.1 DenoisingModel

The process of suppressing noise in CT images can be viewed as a mapping between
low-dose CT images and their corresponding normal-dose versions. A relationship
between LDCT and NDCT can be expressed as:

xo = g(xi ) (1)

where xi ∈ R
H×W×1 and xo ∈ R

H×W×1 represent the LDCT and normal-dose CT
(NDCT) images, respectively, and g is the degradation function associated with high
quantumnoise, randomnoise and other factors, such as round-off errors. The denoising
problem can be formulated as:

x̂o = argminL
f

( f (xi ), xo) (2)

where the loss function denoted by L is computed by measuring the distance between
the estimated high-dose image (x̂o) and the ground truth image (xo) in each iteration
over all training data. The noise in the LDCT image is intricate and equally allocated
over the whole image in the reconstruction process. A deep CNN can be utilized to
learn a function f for suppressing the LDCTnoise and enhancing their visual qualities.
The quality of image estimated by the model is significantly influenced by the design
of the loss function. A commonly used loss function for training CNNs to perform
low-dose CT image denoising is per-pixel loss, which seeks to minimize the distance
between each pixel in the estimated image and the ground truth image. However, this
approach tends to over-smooth the estimated image, leading to suboptimal results. To
address this issue, in this paper, we design a hybrid loss function of per-pixel loss and
PSNR-enhanced perceptual loss to constrain the generation outcome of our model and
improve the visual quality of the estimated images.
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2.2 AttentionMechanism Processing

Squeeze-and-Excitation (SE) channel attention module [15] is an effective method for
capturing informative features of CT images. The SE module consists of two steps
including, Squeeze and Excitation. In the Squeeze step, global average pooling (GAP)
is applied to the input features to generate channel descriptors, which summarize the
feature maps in a channel-wise manner. As seen in Fig. 1a, this process reduces the
spatial information of input feature map, x , from H × W × C size to 1 × 1 × C by

xgap = GAP(x) = 1

H × W
�H

m=1�
W
n=1x(m, n) (3)

where H , W and C are height, width and the number of channels of feature map (x),
respectively.

In the Excitation step, two linear layers along with Sigmoid operation are used to
process the channel descriptors and estimate channel-wise attention vectors. Mathe-
matically, the channel attention weights are processed with CAW function as,

wse = CAW(x) = σ(W2δ(W1(xgap)) (4)

Fig. 1 The architecture of spatial attention (ESA) and Squeeze-and-Excitation channel attention (SE) mod-
ules
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where W0 ∈ R
C×C

r and W1 ∈ R
C
r ×C and r is the reduction ratio. The functions of

the Sigmoid and RELU are denoted by σ and α, respectively.
The attention vectors are then used to re-calibrate the input features. Specifically,

the re-calibration is carried out by multiplying the input features with the attention
vectors, which emphasizes the informative channels and suppresses redundant ones
as,

xse = x ◦ wse (5)

where ◦ is the element-wise multiplication operation.
In deep residual deep networks, SA plays a vital role by generating a per-pixel atten-

tion map that accentuates informative features by taking inter-spatial interaction into
consideration. This mechanism is particularly significant in the context of very deep
networks, as it enables such networks to prioritize information-rich spatial features.
This approach is complementary to the CA mechanism.

The Enhanced Spatial Attention (ESA) block introduced in [22] employs both
strided convolution and a large window-size max-pooling layer to achieve a wide
receptive field, as shown in Fig. 1b. For performing a such operation in a lightweight
framework, a 1 × 1 convolution is utilized for reducing the channel dimension in the
ESA structure.

2.3 Multi-scale Feature Processing

In order to combine themerits ofmulti-scale feature extraction andCAmechanism,we
design a novel feature extraction module referred to as an Adaptive multi-scale Fea-
ture Fusion Module (AMFFM) which comprises three main parts. Initially, it extracts
multi-scale contextual features at a granular level to expand the receptive fields in a
low-complexity manner. Then, it exploits the CA mechanism for capturing detailed
CT features in each spatial scale that increases the representational ability of fea-
ture representations for CT image denoising. Finally, this module obtains the holistic
interdependencies between multi-scale spatial information.

Figure2a illustrates the overviewofAMFFMwith three different kernel-size feature
extractors. Generally, the J convolutional layers with different kernel sizes can be
implemented in parallel to obtain spatial features. Let x ∈ R

H×W×C be the input
feature map. The proposed AMFFM extracts multi-scale features as,

y j = Conv(k j × k j ,C
′
j = C

N
,G = G j )(x), j = 1, 2, ..., J (6)

where y j ∈ R
H×W×C/J is the obtained features from the j-th convolution layer with

a kernel size of k j = 2 j + 1 and channel size of C j = C/J . For example, the
AMFFM shown in Fig. 2a consists of three convolution layers of 3 × 3, 5 × 5 and
7× 7 kernel sizes, each of which contains 32 channels, given that the preceding layer
has 96 channels. It should be noted that C must be divisible by J. Each convolution
layer is followed by a batch normalization (BN) layer and a ReLU activation function.
The BN layer is employed to accelerate the convergence and prevent issues such as
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Fig. 2 The architectures of proposed multi-scale attention and residual feature extraction modules

gradient vanishing or exploding which are commonly observed in the training of deep
networks.

The computation cost of different kernel size convolution operations is associated
with the increase in the number of network parameters. We employ group convolution
operations in the proposed module’s architecture for performing the multi-scale fea-
ture extraction process without increasing the number of parameters. Further, a novel
rule is employed for determining the group size, G j , without introducing additional
parameters as,

G j =
{
2

k j−1
2 , k j > 3

0, k j = 3
(7)

Each scale features of y j is then input to the WSE module to effectively capture
j-th CA weights (wsej) as,

wsej = CAW(y j ) (8)

This enables the AMFFM to capture information frommultiple scales, and result in
improving the local attention process for high-level feature map. To enhance the inter-
activity of multi-scale channels, the CA weights are subjected to a Softmax operation,
which normalizes the contribution of each of themwithin the long-range channel inter-
dependence (LRCI) block. This enables the adaptive selection of spatial scales and
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facilitates global multi-scale channel-wise interaction. This process can be formulated
as,

Wj = Softmax(wsej) = exp(wsej)

� J
j=1 exp(wsej)

(9)

where Wj is the j-th attention vector after local and global interaction. Finally, the
information-rich features are constructed by multiplication of weight vectors of Wj

with corresponding features of y j and concatenation process as,

ysej = Wj ◦ y j
yo = Cat([yse1, yse2, . . . , yseJ ]) (10)

where ysej and yo are the re-calibrated features of j-th convolution layer and the
output of the AMFFM module, respectively. The proposed AMFFM block obtains
information in different scales and produces fine-grained features with the multi-scale
attention mechanism, which can be used in different medical computer vision tasks.

The cascade of three AMFFM units is now utilized in a residual module, referred
to as Spatial Residual Information Module (SRIM), in order to generate a reacher
set of features. Specifically, the architecture SRIM is shown in Fig. 2b. To strengthen
the residual features, inspired by [26], a 1 × 1 convolution layer and an ESA block
are placed sequentially following stacked AMFFMs. The ESA block enhances the
network’s capability of emphasizing the important spatial features and extractingmore
representative ones. In Particular, this process can be described as follows with Fi and
Fo as the input and output tensors:

Fext1 = hamf(Fi )

Fext2 = hamf(Fext1)

Fext3 = hamf(Fext2)

Fres = Fi + Fext3
Fo = hConvESA(Fres)

(11)

where hamf represents the AMFFM parameters and hConvESA represents the 1 × 1
convolution and ESA operations parameters.

2.4 Network Overall Architecture

Manyof the state-of-the-art image denoising schemes [1] utilize theU-Net structure for
their overall network architectures.U-Net architectures are able to extract the structural
information from the input noisy images, which is useful in predicting the noise. In
view of this, we employ the U-Net as the backbone architecture of our CT image
denoising network. The proposed efficient Multi-Scale Residual Attention Network
(MRAN) that employs the SRIM is formed by three main modules, namely, Shallow
Feature Extraction (SFE), Deep Feature Extraction (DFE), and Image Reconstruction
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Fig. 3 The architecture of the proposed CT image denoising network

(IR), as depicted in Fig. 3. The SFE is composed of three stacked 3 × 3 convolution
layers that are utilized to extract the coarse features from the input image. This process
can be represented as,

F0 = hsfe(xi ) (12)

where hsfe represents the SFE parameters and F0 represents the features of the shallow
layers.

The DFE architecture consists of an encoder and a decoder in seven stages. To
set the feature resolutions, we utilize three 3 x 3 strided convolution layers with a
stride value of 2 after the encoder stages and three transposed convolution layers
with a stride value of 2 before the decoder stages. This U-Net architecture utilizes
mirror skip connections between the peer encoder and decoder layers to facilitate the
flow of information. Each stage of the DFE contains multiple stacked SRIMs, each
of which hierarchically processes informative features. A detailed overview of the
hyperparameters used in the proposed DFE is provided in Table 1. This process can
be formulated as,

Fi = Si (hi (Fi−1)), i = 1, 2, 3

Fi = hi (Fi−1), i = 4

Fi = hi (Ti−4(Fi−1 + F8−i )), i = 5, 6, 7

(13)

where hi is the parameters of i th stage of DFE, Si and Ti represent its corresponding
strided and transposed convolution layer parameters, respectively. Finally, the recon-
struction process is implemented with three 3 × 3 convolution layers as,

x̂o = hir(F0 + F7) (14)

where hir represents the image reconstruction parameters.
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Table 1 Summary of the
hyperparameters utilized in the
proposed DFE module

Stages AMMFM(C,J) SRIM # Output

1 (64,4) 1 64 × 64

2 (96,3) 1 32 × 32

3 (64,2) 2 16 × 16

4 (64,1) 3 8 × 8

5 (64,2) 2 16 × 16

6 (96,3) 1 32 × 32

7 (64,4) 1 64 × 64

2.5 Loss Functions

The selection of an appropriate loss function is crucial in the training of the neural
network. To enhance the training process of the proposed network, a combination
of Mean Absolute Error (MAE) and perceptual losses is proposed. While the MAE
loss function is capable of removing noise on a per-pixel basis by computing the L1
norm difference between the predicted and ground truth images, it may introduce the
over-smoothing artifact in the estimated image. The MAE loss function is defined
as,

LMAE = 1

N

N∑
j=1

‖x̂oj − xoj‖ (15)

On the other hand, perceptual loss is frequently employed in image restoration because
of its ability to capture the details and contents of images. The perceptual loss function
is formulated as follows:

LPerceptual =
N∑
j=1

1

h jw j d j
‖φ j (x̂o) − φ j (xo)‖2 (16)

where h, w, and d are the height, weight and depth of the features extracted by
the feature extractor Q. In recent years, pre-trained VGG networks [38] have been
widely used as feature extractors for CT image processing. For example, WGAN-
VGG [44] employs perceptual features from the 16th layer of VGG19 network, while
DRL [11] utilizes 2nd, 4th, 7th and 10th layers of VGG16 network. However, we
empirically observed that although the perceptual loss extracts structural features and
is effective in improving the SSIM, it leads to decrease in the Peak Signal-to-Noise
Ratio (PSNR) of the reconstructed images. To further investigate, we calculate the
average of the intermediate layers’ features (AIF) of the VGG19 network based on
Eq. 17, and visualize them for the given NDCT image in Fig. 4. As seen from Fig. 4b
to f, the features produced by shallow layers of the VGG network mostly contain high-
frequency information and well-represent the CT image content information, while
the features generated by the deeper layers contain low-frequency information and
lack detailed structures. Therefore, one can conclude that a shallow network could
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(a) LDCT (b) block1 conv1 (c) block2 conv1 (d) block3 conv1 (e) block3 conv3

(f) block4 conv1 (g) block4 conv3 (h) block5 conv1 (i) block5 conv3

Fig. 4 The average of intermediate features of VGG19 network. For better comparison, we display inter-
mediate features with different resolutions at the same size

capture substantial perceptual features.

AIFh,w =
√√√√ Di∑

i=1

1

Di
(φi (xo)h,w,d)2 (17)

Drawing from the aforementioned observations and recent research findings which
indicate that awell-structured random-weightednetwork,without training, canprovide
superior perceptual performance [23, 41], we develop a novel loss for network training
process that not only captures intricate CT details but also enhances the PSNR values
of the predicted image. The set of operations used by our proposed loss is depicted
in Fig. 5. As seen in Fig. 5, the proposed loss function referred to as PSNR-enhanced
employs an edge detection layer, followed by two random-weighted convolution layers
with a ReLU activation layer in between them. The network’s capacity for capturing
high-frequency information is enhanced by incorporating pre-defined Sobel kernels in
the x, y, and diagonal (45◦ and 135◦) coordinates, along with a Laplacian kernel (6).
All these operations are embedded in the Edge detection layer. The extracted high-
frequency features from an NDCT input image are illustrated in Fig. 6. It is seen from
Fig. 6 that the proposed loss term indeed contributes to obtaining useful information
whose employment in the backpropagation process of the network potentially results
in superior performance. To evaluate the performance of the PSNR-enhanced network,
we use the following equation to visualize the detailed image (DI) obtained by the
perceptual loss network.

DIh,w =
√√√√ Di∑

i=1

1

Di
(φi (z)h,w,d − φi (z′)h,w,d)2 (18)
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Fig. 5 The architecture of the
proposed PSNR-enhanced
perceptual loss network

Fig. 6 Detailed images obtained
from PSNR-enhanced and
VGG19 perceptual loss
networks

(a) VGG19

(b) PSNR-enhanced
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Fig. 7 High-frequency features extracted through Sobel and Laplacian operations in the edge detection
layer of the PSNR-enhanced loss network

where z and z′ denote the NDCT images from validation set and their respective
degraded smoothed versions. Figure 7 presents sample detailed images obtained from
both PSNR-enhanced and VGG19 perceptual networks, as seen from this Fig., it
is evident that our PSNR-enhanced network outlines the detailed image with richer
textures than those provided by the pre-trained VGG19 network. Therefore, it is con-
cluded that the utilization of a shallow random-weight loss network, which receives
high-frequency information as input, can effectively extract perceptual features.

The overall hybrid loss function for the proposed MRAN can be expressed as,

Loss = γ1LMAE(xo, x̂o) + γ2LPerceptual(xo, x̂o) (19)

where γ1 and γ2 are the hyperparameters for the loss components. During the training
process, the hyperparameters are determined by selecting the maximum loss value
from each epoch and using it to update the hyperparameter values. The loss function
with the highest loss value is assigned a higher scale compared to the other function.

3 Experiments

3.1 Datasets and Training Settings

In this work, the proposed denoising network is trained with three distinct datasets,
namely, deceased piglet, phantom thoracic and clinical TCIA datasets.

The Piglet dataset [45] comprises 900 CT image pairs with a thickness of 0.625
mm, an X-ray current of 300 mAs for normal-dose images and 15 mAs for low-dose
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images, taken at a peak voltage of 100 KVp. The Thoracic dataset [10] consists of 407
pairs of CT images acquired from an anthropomorphic thoracic phantom. The current
tube used for acquiring the normal-dose and low-dose CT images is 480 mAs and 60
mAs, respectively, with a peak voltage of 120 KVp and a slice thickness of 0.75 mm.

The clinical TCIA dataset [33] is composed of 299 patients utilizing different com-
mercial CT scanners. For this study, we focus on a subset of 150 patients who are
scanned using either the SOMATOMDefinition AS+ or SOMATOMDefinition Flash
Siemens Healthineers CT scanners. Within this subset, there are 1782 non-contrast
head CT images for acute cognitive or motor deficit, 16648 non-contrast chest scans
for high-risk pulmonary nodule screening, and 7380 contrast-enhanced CT images
of the abdomen for detecting metastatic liver lesions. The LDCT images are recon-
structed using the filtered back projection technique after introducing Poisson noise
to the standard clinical protocol-generated normal-dose projection image, obtained
with a 330 mAs X-ray current tube, 120 KVp peak voltage, and 1.25 mm slice thick-
ness. The LDCT images from head and abdomen regions are provided at 25% of the
standard dose, while those from chest regions are provided at 10% of the normal-dose.

All datasets have images with spatial resolution of 512× 512 pixels. The standard
80–10–10% proportion is used for training, validation, and testing. Additionally, each
training dataset is divided into 64 × 64 overlapping patches to increase the number
of training images and reduce the network’s computational burden. We augment the
training datasets with horizontal flip and random rotation operations. During the selec-
tion process, we disregard image patches that predominantly contain air. The predicted
denoised images are evaluated by PSNR and SSIM metrics.

The proposed network in this study is trained with a total of 100 epochs and a mini-
batch size of 16, using the ADAM optimizer with β1 = 0.01 and β2 = 0.999. The
initial learning rate is set to 1× 104 and is decreased by a factor of 10 after 75 epochs.
The network is implemented using the TensorFlow package on a machine equipped
with NVIDIA GeForce GTX 3090 GPU.

3.2 Ablation Study

In this section, we present a set of extensive experiments to demonstrate the efficacy of
the different modules used in our method in which the LDCT dataset is utilized to train
the networks. Firstly,we confirm the effectiveness of theAMFFMdesign by examining
the impact of multi-directional long-range channel re-calibration on learning multi-
scale feature representations. Next, we evaluate the rationale behind increasing the
depth of the network in SRIM. Further, we investigate the effectiveness of SFE and IR
in improving the denoising performance of the proposed RMAN. Finally, we assess
the performance of the network trained with either PSNR-enhanced or VGG-based
perceptual losses.

To confirm the effectiveness of the proposed AMFFM on the network performance,
we conduct the ablation experiment on the basic model of our MRAN, where only one
AMFFM in every seven stages of DFE is implemented. Specifically, we evaluate the
impact of kernel size and group size relations, multi-scale feature extraction, and long-
range channel interdependence on the performance of the task of LDCT denoising.
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Firstly, we set the J to four and made appropriate adjustments to the G j and k j .
The output presented in Table 2 demonstrate that the denoising performance achieves
the highest value when we chooseG j as 1, 4, 8, and 16 for 3×3, 5×5, 7×7, and 9×9
kernel size convolution layers, which also validates Eq. 7. The results in Table 3, where
we keep the G j s constant, demonstrate that employing multi-scale feature extraction
yields superior PSNR and SSIM values compared to using fixed kernel sizes.

To further enhance our network’s performance, we evaluate the impact of using
different kernel sizes of AMFFM at each stage of the denoising process. Table 4
shows that the network significantly enhances its ability to remove noise when dif-
ferent branch sizes of AMFFM are embedded at varying depths within the network.
Specifically, the network reaches the highest PSNR and SSIM values when J is set
to 4, 3, 2, 1, 2, 3, and 4 branches in the seven DFE stages, respectively. The size of
the feature map in each stage where multi-scale convolution is applied is a crucial
factor in achieving this outcome. In particular, in the network’s bottleneck where the
feature resolution is 8× 8, using a small kernel size convolution is more effective for
processing and extracting noise features.

Next,we aim at comprehensively evaluating the performance of our proposedSRIM
architecture for LDCT denoising. Specifically, we conduct experiments to investigate
the impact of our design choices, including the number of AMFFM structures, residual
connections, and spatial attention modules. In this regard, we depict the PSNR curves

Table 2 Effects of Group Size
(G j ) changes on PSNR and
SSIM in AMFFM

Kernel_size Group_size PSNR SSIM

3,5,7,9 16,16,16,16 36.42 0.8312

3,5,7,9 4,8,8,16 36.51 0.8340

3,5,7,9 1,4,8,16 37.04 0.8418

Table 3 Effects of Kernel Size
(k j ) changes on PSNR and
SSIM in AMFFM

Kernel_size Group_size PSNR SSIM

3,5,7,9 1,4,8,16 37.04 0.8418

5,5,7,7 1,4,8,16 36.86 0.8411

5,5,5,5 1,4,8,16 36.89 0.8416

7,7,7,7 1,4,8,16 36.90 0.8417

Table 4 Effects of multi-scale feature extraction at differnt stages of DFE on the denoising performance of
MRAN

AMFFM(C,J) [stages: 1,2,3,4,5,6,7] PSNR SSIM Params

[(64,1),(64,1),(64,1),(96,1),(64,1),(64,1),(64,1)] 36.84 0.8461 7.14 × 105

[(64,2),(64,2),(64,2),(128,2),(64,2),(64,2),(64,2)] 36.91 0.8479 7.60 × 105

[(96,3),(32,2),(96,3),(32,2),(96,3),(32,2),(96,3)] 37.22 0.8513 7.89 × 105

[(64,4),(96,3),(64,2),(64,1),(64,2),(96,3),(64,4)] 37.49 0.8550 7.32 × 105

[(64,4),(64,4),(64,4),(128,4),(64,4),(64,4),(64,4)] 37.11 0.8534 7.18 × 105
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Fig. 8 The study of AMFFM

of the denoising network with varying SRIM architectures. As shown in Fig. 8a, it can
be found that increasing the number of stacked AMFFM structures in SRIM leads to
improving the denoising performance. We also observe that even though the PSNR
of SRIM with four AMFFM units is superior to that of SRIM with three AMFFM
structures in early training epochs, the slope of the green curve is larger and finally
surpasses the former (blue curve). Furthermore,wefind that using standard convolution
or only one AMFFM unit in the RMAN architecture leads to the inferior denoising
performance.

To evaluate the impact of residual connections and spatial attention modules, we
depict the SSIM trends (Fig. 8b) comparing the performance of the proposed SRIM to
versions without these components. Our results indicate that the proposed SRIM can
capture and utilize fused feature information effectively, as confirmed by the superior
SSIM performance compared to the other versions.

We now validate the effectiveness of the SFE and IR modules in LDCT noise
suppression by exploring the impact of the number of stacked standard convolution
layers in each module. We first fix the number of SFE layers at 3 and increase the
number of IR layers from 0 to 5. We then use 3 IR layers and increases the number
of SFE layers from 0 to 5. In both of these experiments, increasing the number of
convolution layers leads to improving denoising performance. As seen in Fig. 9, the
performance improvement plateaus after 3 layers, indicating that 3 layers is the optimal
number of layers for both modules.

Finally, we train the proposed RMAN scheme using per-pixel losses (the mean
squared error (MSE) and mean absolute error (MAE)), and perceptual losses based on
the VGG network and PSNR-enhanced network. Our results from Fig. 10 demonstrate
that these two types of losses have different initial values, with per-pixel losses starting
below 0.2, and perceptual losses starting above 0.2. This observation confirms the need
for hyperparameter tuning to train the network effectively with a hybrid loss function.
Furthermore, we observe that both MAE and MSE losses perform well in denoising
task, while the former exhibited rapid convergence. When comparing the decrease in
the PSNR-enhanced training loss (red curve) with that of the VGG training loss (blue
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Fig. 9 The study of the SFE and
IR modules

Fig. 10 Changing trend of
different loss functions used for
training of MRAN

curve), we find that the former decreases more rapidly, indicating its greater influence
on the network’s convergence speed and noise reduction.

3.3 Denoising Result Comparison

In order to investigate the validity of the proposed methodology, we now perform
comparative quantitative and qualitative analyses with the results obtained from other
state-of-the-art techniques, namely, DnCNN,DRL,WGAN-VGG,WGAN-RAM, and
FAM-DRL.

We analyze the denoising performance of the above-mentioned models for diverse
datasets and calculate the PSNR and SSIM for test images. These models are trained
and tested on each dataset, and the average quantitative results are shown in Table 5.
Notably, for the Piglet dataset, the PSNR values range from 40 to 43, while the SSIM
values range from 0.93 to 0.98 across different models. The average PSNR trend
across experiments is illustrated in Fig. 11a. For the Thoracic dataset, the proposed
model achieves a higher PSNR value (31.17) compared to the other models. These
PSNR values are consistent across the other datasets. Conversely, the FAM-DRL and
WGAN-RAM models exhibit a significant variance in PSNR results compared to the
proposed network across different datasets. Specifically, the FAM-DRL model yields
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Fig. 11 Quantitative results on test images of different datasets utilizing different denoising methods

superior results in the head TCIA dataset, whereas the WGAN-RAM model achieves
higher PSNR values in the abdomen and chest TCIA dataset.

Figure 11b shows the trend of the SSIM, which suggests that the SSIM of the
other models is slightly lower across different datasets than the proposed model. In
the Thoracic dataset, the FAM-DRL model stands out as the second best-performing
method thanks to its objective of minimizing the structural dissimilarity between the
LDCT and NDCT image pairs. Moreover, the WGAN-RAM model achieves compa-
rable results due to its utilization of multi-scale convolution layers. However, when
comparing different datasets, no clear pattern emerges to indicate which model out-
performs the proposed one. This discrepancy can be attributed to the variability of the
structural information and level of noise in different datasets.

In a quantitative evaluation on the Thoracic dataset, our proposed method yields an
SSIM value of 0.6923, surpassing WGAN-RAM’s 0.6821. This shows its heightened
capability in preserving the intricate structural and contextual features of thoracic CT
images. Upon analysis of the Piglet dataset, our model marks an SSIM of 0.9800,
slightly exceeding FAM-DRL’s 0.9789, indicating its adeptness at capturing detailed
piglet anatomy. In the context of the Abdomen dataset, a close correspondence is
observed between our method and WGAN-RAM, with SSIM values of 0.9392 and
0.9374, respectively. This accentuates the efficacy of bothmethodologies in safeguard-
ing essential structural and contextual attributes of abdominal CT images.

Figure 12 illustrates five representative LDCT slices of test images from various
datasets including, Thoracic, Piglet and TCIA (chest, abdomen, and head) datasets.
Blue and red regions of interest (ROIs) highlight structural details and anatomical
parts, especially where the deviations between denoising results are pronounced. The
blue and red LDCT regions are shown in Figs. 13, 14, 15, 16, 17a, and corresponding
NDCT images are presented in Figs. 13, 14, 15, 16, 17h. Further, we show the visual
results of various algorithms in Figs. 13, 14, 15, 16, 17b–g.

To assess the impact of reducing training dataset size and enlarging the testing
dataset, we have divided the dataset into three: 70%, 10%, and 20% for training, vali-
dation, and testing, respectively. This division allows us to assess the generalizability
of our model with a larger number of testing samples. The outcomes of this experi-
ment, presented in Table 6, show that an increased number of testing samples does not
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(a) Thoracic (b) Piglet (c) Abdomen

(d) Head (e) Chest

Fig. 12 Sample LDCT images from test images of different datasets with two blue and red ROIs (Color
figure online)

(a) LDCT (b) DnCNN (c) DRL (d) GAN-VGG (e) GAN-RAM (f) FAM-DRL (g) MRAN (h) NDCT

Fig. 13 Selected ROIs from LDCT sample image (Fig. 12a) and its corresponding NDCT image in the
Thoracic dataset, along with the results of various denoising methods

(a) LDCT (b) DnCNN (c) DRL (d) GAN-VGG (e) GAN-RAM (f) FAM-DRL (g) MRAN (h) NDCT

Fig. 14 Selected ROIs from LDCT sample image (Fig. 12b) and its corresponding NDCT image in the
Piglet dataset, along with the results of various denoising methods
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(a) LDCT (b) DnCNN (c) DRL (d) GAN-VGG (e) GAN-RAM (f) FAM-DRL (g) MRAN (h) NDCT

Fig. 15 Selected ROIs from LDCT sample image (Fig. 12c) and its corresponding NDCT image in the
TCIA dataset (Abdomen), along with the results of various denoising methods

(a) LDCT (b) DnCNN (c) DRL (d) GAN-VGG (e) GAN-RAM (f) FAM-DRL (g) MRAN (h) NDCT

Fig. 16 Selected ROIs from LDCT sample image (Fig. 12d) and its corresponding NDCT image in the
TCIA dataset (Head), along with the results of various denoising methods

(a) LDCT (b) DnCNN (c) DRL (d) GAN-VGG (e) GAN-RAM (f) FAM-DRL (g) MRAN (h) NDCT

Fig. 17 Selected ROIs from LDCT sample image (Fig. 12e) and its corresponding NDCT image in the
TCIA dataset (Chest), along with the results of various denoising methods

Table 6 Average PSNR and SSIM results for different denoising methods applied to test images from
different datasets (70%, 10%, and 20% for training, validation, and test partitions, respectively)

Network TCIA dataset
Thoracic Piglet Abdomen Head Chest
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DnCNN 28.68 0.4461 40.01 0.9372 40.25 0.8762 39.94 0.5105 30.45 0.5070

DRL 27.40 0.4185 41.39 0.9398 38.22 0.7924 39.35 0.5072 30.95 0.4511

WGAN-VGG 28.10 0.4310 40.28 0.9573 40.33 0.8875 39.83 0.5545 31.38 0.5230

WGAN-RAM 30.42 0.6801 42.66 0.9675 41.94 0.9345 42.62 0.7079 34.84 0.6825

FAM-DRL 30.65 0.6301 42.62 0.9775 40.14 0.8865 42.85 0.7010 34.21 0.6971

Proposed 31.14 0.6910 43.01 0.9792 42.13 0.9382 43.15 0.7092 35.02 0.7089
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significantly affect the performance of various networks. Additionally, the table indi-
cates that, with the new testing sample partitioning, our proposed method surpasses
other techniques in terms of PSNR and SSIM metrics.

The presence of noise and artifacts in LDCT images is considerably higher than in
NDCT images across all datasets. Visual inspection of DnCNN results reveals over-
smoothing issue, (as observed in Figs. 13, 14, 15, 16, 17b). This can be attributed
to the use of the MSE loss function, which is known to produce the over-smoothing
issue around the edges. Similarly, the WGAN-VGG model produces checkerboard
artifacts (as observed in Figs. 13, 14, 15, 16, 17d), which is a known effect of using
the VGG perceptual loss. Although the DRL model exhibits superior visual results
compared to DnCNN and WGAN due to its hybrid loss function during training, it is
still susceptible to similar issues, highlighting the importance of network structure as
a key factor in denoising.

Figures13, 14, 15, 16, 17e depict the results of the WGAN-RAM model, which
incorporates a residual attention module into the WGAN architecture to preserve
the textural details of the images. The model achieves this objective with minimal
residual artifacts, resulting in amore natural visual effect. In fact, the proposed network
leverages a combination of PSNR-enhanced andMAE loss functions to produce well-
structured denoised images that closely approximate the quality of the NDCT images,
(as demonstrated in Figs. 13, 14, 15, 16, 17g).

4 Conclusion

In the CT image denoising technique, it is highly desirable to decrease the amount
of radiation used for acquiring images. However, this could lead to noise artifacts
making the low-dose images unreliable for diagnosis. In this paper, an innovative deep
learning-based CT image denoising approach has been developed that has emphasized
multi-scale information in LDCT images. The novel AMFFM, a core component of
MRAN, has utilized multi-scale pyramid convolutions combined with CAW opera-
tions. This combination has allowed the model to effectively discern and capture the
intricate details present across different channels of the CT features. Furthermore, by
integration of AMFFM with SRIM, the network has gained a more profound insight
into the context and nuances of CT images. Additionally, the introduction of the Spatial
Attention (SA) module has not only refined the training process but also significantly
improved the accuracy of feature extraction from the images.

The proposed deepCT image denoising network effectively captures the importance
of the features that contribute to enhancing the denoising performance by employing
both channel-wise and spatial-wise interactions of the pixels. Moreover, the proposed
deep CT image denoising network has been shown to outperform state-of-the-art CT
image denoising networks in the literature on benchmark datasets. To produce high-
quality CT denoised images that are more visually pleasing, we have designed a new
loss function that employs the high-frequency components of the output images to
calculate the loss value. The results of various ablation experiments have shown the
effectiveness of the different techniques utilized in our CT image denoising network
design. This is reflected in the improved PSNR and SSIM values achieved during
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various model comparisons. Visual examination further underscores the network’s
proficiency in generating meticulously structured, high-quality denoised images that
closely approximate the quality of NDCT images.

Funding The funding was provided by NSERC Discovery grant (RGPIN-2020-04441).

Data Availability The datasets of this study are available from https://opg.optica.org/oe/fulltext.cfm?
uri=oe-18-14-15244&id=203597#articleDatasets, https://github.com/xinario/SAGAN and https://wiki.
cancerimagingarchive.net/pages/viewpage.action?pageId=52758026.
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