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Abstract
In this paper, a stochastic model is presented for the nonparametric variable step-
size normalized least-mean-square (NP-VSS-NLMS) algorithm. This algorithm has
demonstrated potential in practical applications and hence a deeper understanding
of its behavior becomes crucial. In this context, model expressions are obtained for
characterizing the algorithm behavior in the transient phase as well as in the steady
state, considering a system identification problem and Gaussian input data. Such
expressions reveal interesting algorithm characteristics that are useful for establishing
design guidelines and for the advancement of more refined algorithms. Simulation
results for various operating scenarios ratified both the model’s accuracy and the
algorithm’s superior performance relative to other recent and relevant algorithms
from the literature.
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1 Introduction

Nowadays, adaptive filtering techniques have been used in a large variety of real-world
applications such as adaptive control, noise and echo cancelation, channel equaliza-
tion, and adaptive beamforming [4, 6, 7, 13–15, 34]. These applications often require
the use of an adaptive filter to obtain (in real-time) an approximate input–output rela-
tionship representation of an unknown system (to be identified). Such adaptive filter
uses an algorithm responsible for adjusting the weights of a filtering structure in order
to optimize a given performance measure [13–15, 34]. Among the existing adaptive
algorithms, the least-mean-square (LMS) [40, 41] and normalized LMS (NLMS) [3,
20, 30] are well-established and have been extensively used in practical applications,
due mainly to their low computational complexity and numerical robustness. Never-
theless, the adjustment of the step-size parameter in these algorithms raises a crucial
tradeoff between convergence speed and steady-state performance.

Aiming to address this tradeoff, an approach from the practical point-of-view is
given by variable step-size algorithms [2, 9, 11, 17, 24, 25, 28, 35, 37, 39, 42, 43].
These algorithms make use of strategies for adjusting the step-size value during adap-
tation, by starting with a large step size (within the stability conditions) that allows
for faster initial convergence, and then gradually reducing it (slowing down the con-
vergence speed) for achieving smaller error in steady state. Among such algorithms,
the nonparametric variable step-size NLMS (NP-VSS-NLMS) [9] exhibits interesting
convergence and steady-state characteristics when compared to others from the litera-
ture [10], which makes it suitable for different practical applications. However, to the
best of our knowledge, the performance and robustness of this algorithm have been
assessed only through Monte Carlo (MC) simulations and through model expressions
derived under very strong simplifying assumptions.

In this context, a stochastic model serves as a convenient tool for supporting a more
rigorous and comprehensive theoretical analysis of an adaptive algorithm. Based on
such a model, the behavior of an algorithm can be predicted (through model expres-
sions) under different operating conditions, facilitating the identification of anomalous
behavior, cause-and-effect relationships between parameters and performancemetrics,
as well as design guidelines for parameter tuning (for further details, see [1, 21–23,
26, 27, 32, 33]). So, focusing on the NP-VSS-NLMS [9] algorithm, the goals of this
research work are:

(i) to derive a stochastic model for the algorithm, considering a system identification
problem and Gaussian input data;

(ii) to obtain expressions for predicting the mean weight behavior, the evolution of
the variable step-size parameter, learning curves, as well as some correlation-like
matrices;

(iii) to investigate the algorithm behavior in steady state based on the model
expressions derived;
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Fig. 1 Block diagram of a
system identification problem

(iv) to assess the model’s accuracy and algorithm characteristics for different
operating conditions; and

(v) to provide performance comparisons against other recent and relevant variable
step-size algorithms from the literature.

The remainder of this paper is organized as follows. Section2 introduces the prob-
lem formulation, revisiting the NP-VSS-NLMS algorithm and the operating scenario
considered. Section3 presents the proposed model, including assumptions, mathemat-
ical development, and design guidelines. Section4 shows simulation results assessing
the model’s accuracy and the algorithm’s performance. Section 5 presents concluding
remarks and suggestions for future research works.

Throughout this paper, the adopted mathematical notation follows the standard
practice of using lower-case boldface letters for vectors, upper-case boldface letters
for matrices, and both italic Roman and Greek letters for scalar quantities. Superscript
( · )T stands for the transpose operator, Tr( · ) characterizes the trace operator, while
E( · ) denotes the expected value, and P( · ) represents the probability of a random
event.

2 Problem Formulation

Considering a system identification problem (see the block diagram shown in Fig. 1)
[13–15, 34], let us assume that the output signal y(n) of the system to be identified,
which is corrupted by the measurement noise v(n), can be expressed as

d(n) = y(n) + v(n)

= hTx(n) + v(n)
(1)

where h denotes an L-dimensional (unknown) system impulse response, and

x(n) = [x(n) x(n − 1) · · · x(n − L + 1)]T (2)

is a vector containing the L most recent time samples of the input signal x(n). Then,
consider that the NP-VSS-NLMS [9] algorithm is used to update the adaptive filter
weight vector̂h(n) (of length L), through

̂h(n) = ̂h(n − 1) + μ(n)
x(n)e(n)

δ + xT(n)x(n)
(3)
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with the error signal given by

e(n) = d(n) −̂hT(n − 1)x(n) (4)

and the step-size adjustment rule by

μ(n) =
⎧

⎨

⎩

1 − σ̂v

ζ + σ̂e(n)
, σ̂e(n) ≥ σ̂v

0, otherwise
(5)

where σ̂ 2
v denotes an estimate of the measurement noise variance, while

σ̂ 2
e (n) = κσ̂ 2

e (n − 1) + (1 − κ)e2(n) (6)

is an estimate of the error signal variance with parameter 0 � κ < 1 representing a
forgetting factor. Note, in (3) and (6), that δ and ζ are the regularization parameters.
Therefore, based on the setup described here, the proposed stochastic model can now
be developed.

3 ProposedModel

Here, the proposed model describing the behavior of the NP-VSS-NLMS [9] algo-
rithm is derived, which includes expressions for predicting the mean weight behavior,
the evolution of the variable step-size parameter, learning curves, some correlation-
like matrices related to the input data and weight-error vector, as well as analytical
expressions characterizing the variable step size and MSE in steady state. Based on
such expressions, some interesting characteristics of the algorithm behavior are further
discussed, aiming to provide useful design guidelines. To this end, one considers the
following commonly used assumptions and approximations to make the mathematical
development tractable [13–15, 22, 23, 26, 27, 33, 34]:

(A1) The input data are obtained through a real-valued Gaussian process with zero
mean, variance σ 2

x , and autocorrelation matrix R = E[x(n)xT(n)].
(A2) The measurement noise v(n) is obtained through a white Gaussian process of

zero mean and variance σ 2
v .

(A3) The adaptive weight vector̂h(n) is considered independent of any other variable
in the system.

(A4) The variable step-size parameter μ(n) is considered independent of any other
variable in the system.

(A5) The parameters δ and ζ are considered small, so their effect can be neglected.

These assumptions and approximations yield satisfactory results as shown later in
Sect. 4.
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3.1 MeanWeight Behavior

Substituting (1) and (4) into (3), applying the expected value, and using Assump-
tions (A2)–(A5) to simplify the resulting expression, we get

E[̂h(n)] = {I − E[μ(n)]R1}E[̂h(n − 1)] + E[μ(n)]R1h (7)

where I is an L × L identity matrix, E[μ(n)] characterizes the mean behavior of the
variable step size, and [32]

R1 = E

[

x(n)xT(n)

xT(n)x(n)

]

. (8)

So, using the results presented in [23, Appendix A] for computing the normalized
correlation-like matrixR1 vis-à-vis (uncorrelated and correlated) Gaussian input data,
the mean weight behavior of the adaptive filter can be predicted through (7) if E[μ(n)]
is known.

3.2 Learning Curves

Rewriting (4) in terms of the weight-error vector:

v(n) = h −̂h(n) (9)

as

e(n) = vT(n − 1)x(n) + v(n) (10)

calculating e2(n), applying the expected value, and using Assumption (A3), the fol-
lowing expression is obtained for predicting the evolution of the mean-square error
(MSE) [13–15, 34]:

J (n) = Jmin + Jex(n) (11)

with the minimum MSE given by

Jmin = σ 2
v (12)

and the excess MSE (EMSE) by

Jex(n) = Tr[RK(n − 1)]
= λTk′(n − 1)

(13)
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where vector λ contains the eigenvalues arising from the eigendecomposition R =
Q�QT [13–15, 34],

K(n) = E[v(n)vT(n)] (14)

denotes the autocorrelation matrix of the weight-error vector, while k′(n) represents
a vector containing the diagonal elements ofK′(n) = QTK(n)Q. Note that the mean-
square deviation (MSD) [13–15, 34] can be straightforwardly determined [from (9)]
as

m(n) = Tr[K(n)]. (15)

Therefore, based on (11)–(13) and (15), the (MSE, EMSE, and MSD) learning curves
can be predicted if k′(n) is known.

3.3 Weight-Error AutocorrelationMatrix

Subtracting h from both sides of (3), considering (9) and (10), determining v(n)vT(n),
taking the expectedvalue, using (14), and applyingAssumptions (A2)–(A5) to simplify
both sides of the resulting expression, one gets

K(n) = K(n − 1) − E[μ(n)][K(n − 1)R1 + R1K(n − 1)]
+ E[μ2(n)]R2(n) + E[μ2(n)]R3σ

2
v

(16)

with the normalized correlation-like matrices R2(n) and R3(n) [32] given as

R2(n) = E

{

x(n)xT(n)K(n − 1)x(n)xT(n)

[xT(n)x(n)]2
}

(17)

and

R3 = E

{

x(n)xT(n)

[xT(n)x(n)]2
}

. (18)

Then, pre- and post-multiplying (16) by QT and Q, respectively, taking the diagonal
elements, and considering the results presented in [22] for computingR1,R2, andR3,
we obtain

k′(n) = {I − 2E[μ(n)]H + E[μ2(n)](2T + P)}k′(n − 1) + E[μ2(n)]sσ 2
v (19)

where the diagonal matrices H and T, the full matrix P, as well as the vector s are
determined as in [23, Appendix A] for (uncorrelated and correlated) Gaussian input
data. Therefore, the evolution of k′(n) can be computed if E[μ(n)] and E[μ2(n)]
are known, thus making it possible to predict (in a recursive way) the mean-square
behavior of the algorithm.
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3.4 Variable Step-Size Behavior

Using Assumption (A5) and introducing the quantity:

δe(n) = σ̂ 2
e (n) − E[̂σ 2

e (n)] (20)

to rewrite the nonzero part of (5) as

μ̃(n) ∼= 1 − σ̂v
√

E[̂σ 2
e (n)] + δe(n)

(21)

one can write the expected value of the variable step size and its squared version as
[31, 36]

E[μi (n)|μ(n) > 0] =
∫ ∞

−∞
μi (n) f [δe(n)]dδe(n)

=
∫ ∞

σ̂ 2
v −E[̂σ 2

e (n)]
μ̃i (n) f [δe(n)]dδe(n)

(22)

for i = 1, 2where the probability density function (PDF) of δe(n) is assumed to follow
a Gaussian distribution, i.e.,

f [δe(n)] ∼= 1
√

2πE[δ2e (n)]exp
{ −δ2e (n)

2E[δ2e (n)]
}

(23)

due to the central limit theorem [31, 36]. Next, we resort to second-order Taylor
polynomials [38] to approximate μ̃i (n) for i = 1, 2 [given by (21)] as

μ̃(n) ∼= 1 − σ̂v
√

E[̂σ 2
e (n)]

{

1 − 1

2

δe(n)

E[̂σ 2
e (n)] + 3

8

δ2e (n)

E[̂σ 2
e (n)]2

}

(24)

and

μ̃2(n) ∼= 1 − 2σ̂v
√

E[̂σ 2
e (n)]

{

1 − 1

2

δe(n)

E[̂σ 2
e (n)] + 3

8

δ2e (n)

E[̂σ 2
e (n)]2

}

+ σ̂ 2
v

E[̂σ 2
e (n)]

{

1 − δe(n)

E[̂σ 2
e (n)] + δ2e (n)

E[̂σ 2
e (n)]2

}

.

(25)

Then, substituting (23) and (24) into (22) and solving the resulting expression, we
have

E[μ(n)|μ(n) > 0] = P[μ(n) > 0] − σ̂v
√

E[̂σ 2
e (n)]×

{

P[μ(n) > 0] − 1

2

E[δe(n)|μ(n) > 0]
E[̂σ 2

e (n)] + 3

8

E[δ2e (n)|μ(n) > 0]
E[̂σ 2

e (n)]2
} (26)
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while, from (25),

E[μ2(n)|μ(n) > 0] = P[μ(n) > 0] − 2σ̂v
√

E[̂σ 2
e (n)]×

{

P[μ(n) > 0] − 1

2

E[δe(n)|μ(n) > 0]
E[̂σ 2

e (n)] + 3

8

E[δ2e (n)|μ(n) > 0]
E[̂σ 2

e (n)]2
}

+ σ̂ 2
v

E[̂σ 2
e (n)]

{

P[μ(n) > 0] − E[δe(n)|μ(n) > 0]
E[̂σ 2

e (n)] + E[δ2e (n)|μ(n) > 0]
E[̂σ 2

e (n)]2
}

(27)

with

P[μ(n) > 0] = 1

2
erfc

{

σ̂ 2
v − E[̂σ 2

e (n)]
√

2E[δ2e (n)]

}

(28)

E[δe(n)|μ(n) > 0] =
√

E[δ2e (n)]
2π

exp

(

−{̂σ 2
v − E[̂σ 2

e (n)]}2
2E[δ2e (n)]

)

(29)

and

E[δ2e (n)|μ(n) > 0] = {̂σ 2
v − E[̂σ 2

e (n)]}E[δe(n)|μ(n) > 0] + E[δ2e (n)]P[μ(n) > 0].
(30)

Finally, notice that (26)–(30) require knowledge of E[̂σ 2
e (n)] and E[δ2e (n)]. So, taking

the expected value, one gets from (6) that

E[̂σ 2
e (n)] = κE[̂σ 2

e (n − 1)] + (1 − κ)J (n). (31)

In turn, substituting (6) and (31) into (20), squaring both sides of the resulting
expression, taking the expected value, and approximating E[δe(n − 1)e2(n)] ∼=
E[δe(n − 1)]E[e2(n)] = 0, it is possible to show that

E[δ2e (n)] = κ2E[δ2e (n − 1)] + (1 − κ)2{E[e4(n)] − J 2(n)} (32)

where [from (10)]

E[e4(n)] ∼= 2λTK′2(n − 1)λ + [λTk′(n − 1)]2
+ 6σ 2

v λk′(n − 1) + 3σ 4
v

(33)

due to the factorization theorem of a fourth-order moment of Gaussian variables [31,
36]. Still, by substituting (33) into (32) and approximating λTK′2(n − 1)λ ∼= J 2ex(n),
(32) can be further simplified to

E[δ2e (n)] ∼= κ2E[δ2e (n − 1)] + 2(1 − κ)2 J 2(n). (34)
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So, given that E[μ(n)] and E[μ2(n)] can be computed recursively through (26)–(31)
and (34), the behavior of the algorithm is completely characterized now during the
transient phase.

3.5 Variable Step Size in Steady State

Assuming convergence, letting n → ∞, considering from (31) and (34) that

E[̂σ 2
e (∞)] = J (∞) (35)

and

E[δ2e (∞)] = 2ρ J 2(∞) (36)

hold, and substituting into (28), (29), and (30), we have [from (26)] that

E[μ(∞)|μ(∞) > 0] = 1

2
erfc

(

τ

2
√

ρ

)(

1 − σ̂v√
J (∞)

− 3ρσ̂v

4
√
J (∞)

)

− σ̂v

2
√
J (∞)

√

ρ

2π
exp

(

− τ 2

4ρ

) (

3

4
τ − 1

) (37)

while, from (27),

E[μ2(∞)|μ(∞) > 0] = 1

2
erfc

(

τ

2
√

ρ

)

[

1 − 2σ̂v√
J (∞)

(

1 + 3ρ

4

)

+ σ̂ 2
v

J (∞)
(1 + 2ρ)

]

+
√

ρ

2π
exp

(

− τ2

4ρ

)[

σ̂ 2
v

J (∞)
(τ − 1) − σ̂v√

J (∞)

(

3

4
τ − 1

)

]

(38)

in which

ρ = 1 − κ

1 + κ
(39)

and

τ = σ̂ 2
v − J (∞)

J (∞)
. (40)

So, the variable step size E[μ(∞)] and its squared version E[μ2(∞)] in steady state
can be predicted from (37)–(40) if J (∞) is known.
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3.6 MSE in Steady State

Using (9) and (10) to express (3) in terms of v(n), determining vT(n)v(n), applying the
expected value, making n → ∞ on both sides, considering Assumptions (A2)–(A5)
to simplify the resulting expression, and approximating [12]

R1 ∼= E

[

1

xT(n)x(n)

]

R (41)

one obtains

− 2E[μ(∞)|μ(∞) > 0][J (∞) − σ 2
v ] + E[μ2(∞)|μ(∞) > 0]J (∞) = 0 (42)

with E[μ(∞)|μ(∞) > 0] and E[μ2(∞)|μ(∞) > 0] depending intrinsically on
J (∞). Now, substituting (37) and (38) into (42), we get

J 3/2(∞) − σ 2
v [2 + αγ (ε)]J 1/2(∞) + 2

√
αβ(ε)σ 3

v = 0 (43)

in which ε denotes an auxiliary variable included to make it possible to obtain an
approximate solution through a perturbation method [16],

α = σ̂ 2
v

σ 2
v

(44)

defines the ratio between the estimate of the measurement noise variance and its true
value, while

β(ε) = 1 + 3

4
ρ + ε

√

ρ

π

(

3

4
τ − 1

)

g

(

τ

2
√

ρ

)

(45)

γ (ε) = 1 + 2ρ + 2ε

√

ρ

π
(τ − 1) g

(

τ

2
√

ρ

)

(46)

and

g(z) = exp(−z2)

erfc(z)
. (47)

Note that (43) leads to the original problem for ε = 1 and to a cubic equation for
ε = 0, whose appropriate solution is given by [19]

√

J∞(0) = σv

(

1

2
+ i

√
3

2

)

3

√

√

√

√
√

αβ(0) −
√

αβ2(0) − [2 + αγ (0)]3
27

+ σv

(

1

2
− i

√
3

2

)

3

√

√

√

√
√

αβ(0) +
√

αβ2(0) − [2 + αγ (0)]3
27

(48)
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with J∞(ε) being a differentiable function. So, taking the implicit derivative with
respect to ε in (43), making ε = 0, and solving the resulting expression, we have

d J∞(ε)

dε

∣

∣

∣

∣

ε=0
= 2σ 2

v J
3/2∞ (0)

J 3/2∞ (0) − √
ασ 3

v

√

ρ

π
g

(

τ0

2
√

ρ

)

×
{

τ0

[

α − 3

4

√
ασv

J 1/2∞ (0)

]

−
[

α −
√

ασv

J 1/2∞ (0)

]} (49)

with

τ0 = σ̂ 2
v − J∞(0)

J∞(0)
. (50)

Based on (48) and (49), the steady-state MSE can be approximated as

J (∞) ∼= J∞(0) + d J∞(ε)

dε

∣

∣

∣

∣

ε=0
(51)

which holds well for

α ≤ 4 − 3
√

ρπ

4(1 − √
ρπ)

. (52)

Therefore, based on (37)–(40) and (44)–(51), the algorithm behavior in steady state is
completely characterized now.

4 Simulation Results

In this section, the model’s accuracy and the algorithm’s performance are assessed
through MC simulations (average of 200 independent runs), highlighting some
interesting characteristics. To this end, four examples are presented and discussed,
considering systems with different lengths, distinct input data correlation levels, sev-
eral values of signal-to-noise ratio (SNR), as well as different values for parameters
σ̂ 2

v and κ [required in (5) and (6)]. In particular, the system impulse responses h1 (with
L = 64 weights) and h2 (with L = 128 weights) are obtained from echo path models
for testing of speech echo cancelers given in the ITU-T G.168 Recommendation [18,
Models 1 and 4] (as depicted in Fig. 2). In turn, the input signal x(n) is generated
through [15]

x(n) = −a1x(n − 1) − a2x(n − 2) + w(n) (53)
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Fig. 2 System impulse responses obtained from echo pathmodels for testing of speech echo cancelers given
in the ITU-T G.168 Recommendation [18]. a System impulse response h1 with L = 64 weights (based on
[18, Model 1]). b System impulse response h2 with L = 128 weights (based on [18, Model 4])

with a1 and a2 being the autoregressive coefficients, and w(n) a white Gaussian noise
whose variance

σ 2
w = σ 2

x

(

1 − a2
1 + a2

)

[(1 + a2)
2 − a21] (54)

is adjusted such that σ 2
x = 1. The SNR is defined (in dB) as [5, 8]

SNR = 10 log10

(

σ 2
y

σ 2
v

)

(55)

with σ 2
y = hTRh characterizing the variance of y(n) (see Fig. 1). Lastly, the algorithm

variables are initialized aŝh(0) = [1 0 . . . 0]T and σ̂ 2
e (0) = 0, while regularization

parameters are set as ζ = σ̂v/1000 and δ = 10−3.

4.1 Example 1

Here, the proposed model’s accuracy is assessed for both uncorrelated and correlated
input data as well as different SNR values. In particular, we consider two eigenvalue
spread values for the input data autocorrelation matrix, i.e., χ = 1 [obtained from (53)
for a1 = a2 = 0] and χ = 454.09 [obtained from (53) for a1 = −0.5 and a2 = 0.9].
Three SNR values are used, i.e., 20, 30, and 40 dB. The system impulse response h1
with L = 64 weights (see Fig. 2a) is used, while the remaining algorithm parameters
are κ = 0.95 and σ̂ 2

v = σ 2
v (i.e., a perfect estimate of themeasurement noise variance).

Figure 3 shows the results obtained for this operating scenario. In particular, Figs. 3a
and b present the mean behavior of four adaptive weights, Fig. 3c and d depict the
evolution of the variable step size, while Fig. 3e and f illustrate the MSE learning
curves. These figures show a very good match between MC simulations and model
predictions, during the transient phase as well as in the steady state, irrespective of the
input data correlation level and SNR considered. Moreover, one observes, from such
figures, that μ(n) plays an important role on the evolution of the adaptive weights
and MSE learning curves. Specifically, μ(n) → 1 at the beginning of the adaptation



Circuits, Systems, and Signal Processing (2024) 43:2409–2427 2421

Fig. 3 Example 1. Results obtained from MC simulations (gray-ragged lines) and predicted from the
proposed model (dark-dashed lines), considering uncorrelated χ = 1 (left) and correlated χ = 454.09
(right) Gaussian input data. a, b Evolution of (four) weights of the adaptive filter. c, d Evolution of the
variable step size. e, f Evolution of the MSE learning curve

process, speeding up the algorithm convergence; in turn, μ(n) → 0 as the algorithm
converges, aiming to reduce the EMSE in steady state. Nevertheless, as opposed to [9,
Sec. II-C], we verify that μ(n) tends to a small positive value as n → ∞, preventing
any further reduction in the EMSE in steady state. Such effect is captured by the
presence of δe(n) in the model expressions; so, finding ways to suppress the effect
of δe(n) can result in improved versions of the algorithm. Therefore, one concludes
that the proposed model may be successfully used to gain insights into the algorithm
behavior without resorting exclusively to extensive simulations and to support the
development of improved algorithms.

4.2 Example 2

Now, the accuracy of the proposed model is verified (via EMSE learning curve) con-
sidering different lengths L for the system impulse response and distinct values for
the smoothing parameter κ . For such, both system impulse responses h1 with L = 64
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Fig. 4 Example 2. Results obtained from MC simulations (gray-ragged lines) and predicted from the
proposedmodel (dark-dashed lines), considering a system impulse responsewith L = 64 (left) and L = 128
(right) weights. a, b Smoothing parameter κ = 0.9. c, d Smoothing parameter κ = 0.999

and h2 with L = 128 (depicted in Fig. 2) and two values for the smoothing parameter
κ = {0.9, 0.999} are used. Also, we consider correlated input data [obtained from
(53) with a1 = −0.6 and a2 = 0.8], yielding an eigenvalue spread of χ = 144.78 (for
L = 64) and χ = 156.40 (for L = 128) for the input autocorrelation matrix. Still,
it is assumed perfect estimate of the measurement noise variance (i.e., σ̂ 2

v = σ 2
v ) and

SNR values of 20, 30, and 40 dB.
Figure 4 depicts the results obtained for this operating scenario. Specifically, EMSE

learning curves obtained for different SNR values are presented in Fig. 4a assuming
L = 64 and κ = 0.9, Fig. 4b with L = 128 and κ = 0.9, Fig. 4c for L = 64
and κ = 0.999, while Fig. 4d considering L = 128 and κ = 0.999. Notice,
comparing either Fig. 4a and c or Fig. 4b and d, that smaller values of steady-
state EMSE are achieved when κ is increased. Nevertheless, values of κ close to
1 slow down the update of σ̂ 2

e (n) [see (6)], maintaining μ(n) [see (5)] high for too
long; as a consequence, one verifies a plateau in the EMSE learning curves after
the initial transient phase. Despite these characteristics of the algorithm behavior,
one observes that the model predictions exhibit a very good match with MC sim-
ulations, during the transient phase and in steady state, irrespective of the length
L of the system impulse response, the value selected for the smoothing parame-
ter κ , the correlation level of the input data, and/or the SNR considered. So, one
concludes that the proposed model may be considered to investigate the impact of
the algorithm parameters on its performance without relying only on trial-and-error
procedures.
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Fig. 5 Example 3. Results obtained from MC simulations (gray-cross markers) and predicted from the
proposed model (dark-dashed lines), considering different values of κ with α = 1 (left) and different values
of α with κ = 0.99 (right). a, b Steady-state value of the variable step size. c, d Steady-state EMSE.
[Condition (52) is depicted (as a shaded area) in b and d.]

4.3 Example 3

This example aims to verify the accuracy of expressions describing the steady-state
algorithm behavior (i.e., variable step size and EMSE in steady state), as a func-
tion of the smoothing parameter κ and the ratio α between the estimate of the
measurement noise variance and its true value [see (44)]. To this end, we assume
either (i) different values for parameter κ ranging from 0.9 to 0.9999 while α = 1
is kept fixed; or (ii) the ratio α ranging from 0.7 to 1.3 while κ = 0.99 is fixed.
Note that, following the approach described in [34, pp. 250], we have averaged the
last 100 values in steady state for each variable of interest to visualize better the
experimental results. The remaining parameter values are the same as in Example
2 with L = 128, except for the SNR which is assumed here equal to 30 dB for
simplicity.

Figure 5 exhibits the results obtained for this operating scenario. Particularly,
Fig. 5a and c present curves characterizing the step size and EMSE in steady state
as a function of κ with α = 1 (fixed), while Fig. 5b and d depict curves assuming
κ = 0.99 (fixed) and varying α. Notice, from Fig. 5a and c, that model predic-
tions match satisfactorily the experimental results over a wide range of values of κ ,
when the measurement noise variance is perfectly estimated (i.e., when σ̂ 2

v = σ 2
v

which implies α = 1). In turn, although Fig. 5b confirms that the steady-state
step-size value can be satisfactorily predicted, observe from Fig. 5d that the model
expression describing the steady-state EMSE fails as α increases above the con-
dition given in (52) (i.e., when σ̂ 2

v overestimates σ 2
v ). Despite these aspects, one
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verifies from Fig. 5c that the EMSE achieved in steady state decreases as κ → 1.
In addition, Fig. 5d highlights how an imperfect estimate of the measurement noise
variance affects the steady-state EMSE achieved; in other words, the steady-state
EMSE increases, whereas σ̂ 2

v moves away from σ 2
v , thus affecting the algorithm

performance. Hence, one concludes that parameters κ and σ̂ 2
v must be determined

carefully.

4.4 Example 4

In this last example, performance comparisons are conducted between the NP-VSS-
NLMS algorithm and the algorithms given in [11, 17, 28, 37, 39, 42]. For such, we
employ the system impulse response h2 with L = 128 (see Fig. 2b), correlated input
data [obtained from (53) with a1 = −0.6 and a2 = 0.8] with eigenvalue spread of
χ = 156.40 for the input autocorrelation matrix, and SNR values of 20 and 40 dB.
Parameters of the algorithms are adjustedmanually for achieving the same steady-state
EMSE, in order to obtain fair comparisons [29]. In particular, the parameter values
are: κ = 0.99 for the NP-VSS-NLMS; α = 0.99, γ = 0.01, a = 0.99, b = 0.9993,
A0 = 0, and B0 = 0.01 for [42]; γ = 0.994, η0 = 0, and ρ0 = 0.1 for [28];
α = 0.99, β = 15, and ζth = 0.35, μ0 = 1, and μmax = 1 for [17]; m0 = 2σ̂ 2

v and
σw,0 = 0 for [11]; μref = 1, γ = 8, α+ = 4, and α0 = 0 for [37]; while λ = 0.8
for 20 dB and 0.99992 for 40 dB SNR, ε = 10−12, and σ 2

e,0 = 0 for [39]. Perfect
estimate of the measurement noise variance (i.e., σ̂ 2

v = σ 2
v ) is assumed. Tracking

performance is assessed by multiplying h2 by −1 after the algorithms have reached
convergence.

Figure 6 presents performance comparisons involving the NP-VSS-NLMS algo-
rithm and other recent and relevant algorithms from the literature. Specifically,
EMSE learning curves obtained from the NP-VSS-NLMS and from the algo-
rithms given in [11, 17, 28, 37, 39, 42] are depicted in Fig. 6a–f, respectively.
Notice that the NP-VSS-NLMS algorithm outperforms the algorithms given in
[17, 28, 39, 42] in terms of convergence speed when algorithms are properly
adjusted to reach the same steady-state EMSE. Although the NP-VSS-NLMS
exhibits similar transient characteristics in comparison to the algorithm given in
[11], it is observed that the EMSE achieved by this latter continues to reduce
as n → ∞. Lastly, one verifies that both the NP-VSS-NLMS and the algo-
rithm given in [37] demonstrate comparable performance; nevertheless, the latter
requires the fine tuning of more parameters. Therefore, even when compared to
other variable step-size algorithms from the literature, we conclude that the NP-VSS-
NLMS is suitable in practice, requiring the tuning of fewer parameters for proper
operation.
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Fig. 6 Example 4. Results obtained from MC simulations comparing the performance of the NP-VSS-
NLMS algorithm (dark-ragged lines) with important algorithms from the literature (gray-ragged lines) for
the same steady-state EMSE. a Algorithm given in [42]. b Algorithm given in [28]. c Algorithm given in
[17]. d Algorithm given in [11]. e Algorithm given in [37]. f Algorithm given in [39]

5 Conclusions

In this paper, a stochastic model for the NP-VSS-NLMS algorithm was presented.
Specifically, model expressions were derived for predicting the algorithm behav-
ior in the transient phase and the steady state, considering a system identification
problem and (uncorrelated and correlated) Gaussian input data. These expressions
revealed interesting algorithm characteristics and provided some design guidelines.
For instance, it was observed that small steady-state EMSE values are achieved by
making the smoothing parameter close to 1. Also, it was found that an imperfect esti-
mate of the measurement noise variance significantly affects the steady-state EMSE
achieved by the algorithm. Simulation results for various operating scenarios attested
both the model’s accuracy and the algorithm’s superior performance relative to other
recent and relevant algorithms from the literature. Note that, based on the obtained
results, further research works could address the derivation of models for other algo-
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rithms which incorporate rules for estimating the measurement noise variance as well
as the development of improved variable step-size algorithms.
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